JP2009229256A - Ultrasonic wind speed/direction apparatus - Google Patents
Ultrasonic wind speed/direction apparatus Download PDFInfo
- Publication number
- JP2009229256A JP2009229256A JP2008075308A JP2008075308A JP2009229256A JP 2009229256 A JP2009229256 A JP 2009229256A JP 2008075308 A JP2008075308 A JP 2008075308A JP 2008075308 A JP2008075308 A JP 2008075308A JP 2009229256 A JP2009229256 A JP 2009229256A
- Authority
- JP
- Japan
- Prior art keywords
- wind
- wind speed
- wind direction
- ultrasonic
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013598 vector Substances 0.000 claims abstract description 22
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 230000000694 effects Effects 0.000 claims abstract description 7
- 230000007717 exclusion Effects 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 abstract description 13
- 238000001514 detection method Methods 0.000 abstract description 4
- 230000010355 oscillation Effects 0.000 abstract 2
- 238000012545 processing Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000007664 blowing Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Landscapes
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
Abstract
Description
本発明は、超音波を利用した風向風速装置に関し、特に、超音波信号を送受可能に配した複数の送受波器において、送受波器間の双方向の超音波信号伝達時間を測定して風速及び風向を求める超音波式風向風速装置に関する。 The present invention relates to a wind direction and wind speed device using ultrasonic waves, and in particular, in a plurality of transducers arranged so as to be able to transmit and receive ultrasonic signals, the bidirectional ultrasonic signal transmission time between the transducers is measured to measure the wind velocity. Further, the present invention relates to an ultrasonic wind direction and wind speed device for obtaining a wind direction.
超音波式風向風速計は、下記する非特許文献1にその原理が記載されており、従来においては、例えば、図7に示される超音波式風向風速計が用いられていた。
この超音波式風向風速計は、図7(a)に示される円柱の長さ振動を利用した縦効果の圧電振動子を備えた超音波パルス送受用の送受波器を90度間隔で4つ設け、対角線上の送受波器を互いに超音波を送受可能に対向配置させ、それぞれの対向配置させた送受波器から交互に超音波信号を発信し、この超音波信号を対向する他方の送受波器で受波して送受波器間の双方向の超音波信号伝播時間を測定し、これにより得られる直交する2つの風速値から風向風速値を算出するようにしている。
The principle of the ultrasonic anemometer is described in
This ultrasonic anemometer includes four transducers for transmitting and receiving ultrasonic pulses at 90 ° intervals, each of which includes a longitudinal-effect piezoelectric vibrator using the length vibration of a cylinder shown in FIG. 7 (a). Provided, the transducers on the diagonal line are arranged opposite to each other so as to be able to transmit and receive ultrasonic waves, and ultrasonic signals are alternately transmitted from the transducers arranged opposite to each other. The ultrasonic wave propagation time between the transmitter and the receiver is measured by receiving the wave, and the wind direction wind speed value is calculated from two orthogonal wind speed values obtained thereby.
これを図8に基づいて説明すると、図8において、対向して設けられた送受波器(A11、A12)と、これと直交するように対向配置させた送受波器(A21、A22)とを信号処理回路5に接続し、この信号処理回路5により、それぞれの対向する送受波器(A11とA12、A21とA22)に対してパルス信号を交互に供給して超音波信号を発生させ、対向する他方の送受波器で超音波信号を受波して双方向のトランシットタイム(一方の送受波器から他方の送受波器へ超音波信号が届く時間、即ち、超音波信号を発生させた時刻と受波した時刻との時間差である超音波信号伝播時間)を測定する。
This will be explained with reference to FIG. 8. In FIG. 8, the transmitter / receiver (A11, A12) provided opposite to each other and the transmitter / receiver (A21, A22) arranged opposite to each other so as to be orthogonal thereto are arranged. Connected to the
超音波は通常の音波と同じように常温空気中を340m/secの速度で伝播し、空気の流れと同じ方向に伝播すると風速分だけ早くなり、逆方向に伝播すると風速分だけ遅くなるので、送受波器A11からA12への伝播時間t11=L/(C+Vx)と、送受波器A12からA11への伝播時間t12=L/(C−Vx)とから風速Vxを次式(1)のように算出する。 Ultrasound propagates in normal temperature air at a speed of 340 m / sec, just like normal sound waves.If it propagates in the same direction as the air flow, it becomes faster by the wind speed, and if it propagates in the opposite direction, it slows by the wind speed. From the propagation time t11 = L / (C + Vx) from the transducer A11 to A12 and the propagation time t12 = L / (C−Vx) from the transducer A12 to A11, the wind speed Vx is expressed by the following equation (1). To calculate.
従って、信号処理回路2aで伝播時間t11、t12を測定し、演算することにより風速Vxが得られる。
同様に、風速Vyは、対向する超音波送受波器A21、A22の伝播時間t21、t22より次式(2)となる。
Accordingly, the wind speed Vx can be obtained by measuring and calculating the propagation times t11 and t12 in the signal processing circuit 2a.
Similarly, the wind speed Vy is expressed by the following equation (2) from the propagation times t21 and t22 of the opposing ultrasonic transducers A21 and A22.
しかしながら、従来の超音波式風向風速計は、伝播速度検出方向と平行している風速を計測する場合、送受波器自身が存在することにより、この方向での風流の乱れが顕著となり、正確な風向風速を測定することができなかった。 However, the conventional ultrasonic anemometer measures the wind speed parallel to the propagation velocity detection direction, and the presence of the transducer itself makes the wind flow turbulent in this direction noticeable and accurate. The wind direction and wind speed could not be measured.
例えば、図8において、伝播速度検出方向がA11−A12 間であり、それと同方向にA11側から風が吹いている場合を想定すると、A11→A12の風流の乱れが顕著になる。これは、一様流が円柱を通り過ぎた後にできる流れパターンが、図9に示されるように、レイノズル数(Re=Ud/v,U:断面平均流速、d:円管の直径、v:動粘性係数)によって以下のように変化することから理解できる。
Re≦1 の範囲では、流れは円柱に沿って定常で対称的であり,
Re=1〜10 の範囲では、流れは依然として定常であるが、円柱の下流側に一対の渦(双子渦)ができ、
Re=10〜102 の範囲では、渦対はますます大きくなりその下流に振動が現れ、カルマン渦列が形成され、
Re=102〜105 の範囲では、渦列は乱れて非定常かつ非周期的な伴流が形成され、
Re>105の範囲では、伴流は完全な乱流状態となる。
For example, in FIG. 8, assuming that the propagation velocity detection direction is between A11 and A12 and the wind is blowing from the A11 side in the same direction, the turbulence of the wind flow from A11 to A12 becomes remarkable. As shown in FIG. 9, the flow pattern formed after the uniform flow passes through the cylinder is the number of lay nozzles (Re = Ud / v, U: cross-sectional average flow velocity, d: diameter of the circular tube, v: movement It can be understood from the following change depending on the viscosity coefficient).
In the range of Re ≦ 1, the flow is steady and symmetric along the cylinder,
In the range of Re = 1 to 10, the flow is still steady, but a pair of vortices (twin vortices) is formed downstream of the cylinder,
In the range of Re = 10 to 10 2, the vortex pair appears vibration downstream thereof becomes increasingly, Karman vortex street is formed,
In the range of Re = 10 2 to 10 5 , the vortex street is disturbed to form an unsteady and non-periodic wake,
In the range of Re> 10 5, the wake becomes a complete turbulent state.
本発明は、係る事情に鑑みてなされたものであり、伝播速度検出方向と平行している風速を計測する場合でも、風流の乱れに起因する誤計測を無くして、正確に風向風速値を計測することが可能な超音波式風向風速装置を提供することを主たる課題としている。 The present invention has been made in view of such circumstances, and even when measuring the wind speed parallel to the propagation speed detection direction, the wind direction wind speed value is accurately measured without erroneous measurement due to the turbulence of the wind flow. An object of the present invention is to provide an ultrasonic wind speed device that can be used.
上記課題を解決するために、本発明に係る超音波式風向風速装置は、円筒の拡がり振動を利用した横効果の圧電振動子を備えた送受波器を互いに超音波信号を送受可能に複数配置した超音波式風向風速計を備え、送受波器の1つから超音波信号を発信して残りの他の送受波器で受波する動作を超音波信号を発信する送受波器を順次切り替えて繰り返すことで、全ての送受波器の対の組み合わせについて送受波器間の双方向の超音波信号伝播時間を測定する測定手段と、この測定手段により測定された前記超音波信号伝播時間から送受波器数nについてのn・(n−1)/2個の風向風速ベクトルを算出する風向風速ベクトル算出手段と、前記算出された風向風速ベクトルのうち、所定の閾値以上に相違する風向値および風速値を除外する算出値除外手段と、前記算出値除外手段で除外された風向風速値以外の風向風速値に基づき出力用の風向風速値を生成する出力値生成手段とを具備することを特徴としている。 In order to solve the above-mentioned problems, an ultrasonic wind direction wind speed device according to the present invention includes a plurality of transducers each including a piezoelectric transducer having a lateral effect utilizing the expansion vibration of a cylinder so that ultrasonic signals can be transmitted and received. An ultrasonic anemometer, which transmits the ultrasonic signal from one of the transducers and receives the signals at the other transducers, sequentially switches the transducers that transmit the ultrasonic signals. By repeating, measurement means for measuring the bidirectional ultrasonic signal propagation time between the transducers for all combinations of transducers, and transmitting and receiving waves from the ultrasonic signal propagation time measured by the measurement means Wind direction and wind speed vector calculating means for calculating n · (n−1) / 2 wind directions and wind speed vectors for the number n, and among the calculated wind directions and wind speed vectors, wind direction values and wind speeds differing by a predetermined threshold value or more. Calculation excluding values And excluding means is characterized by comprising an output value generating means for generating a Wind value for output on the basis of the wind speed and direction values other than wind direction and speed values that were excluded by the calculation value excluding means.
したがって、測定手段により、送受波器の1つから超音波信号を発信して残りの他の送受波器で受波する動作を超音波信号を発信する送受波器を順次切り替えて繰り返すことで、全ての送受波器の対の組み合わせについて送受波器間の双方向の超音波信号伝播時間が測定され、これによって得られた超音波信号伝播時間に基づき、風向風速ベクトル算出手段により送受波器数nについてのn・(n−1)/2個の風向風速ベクトルが算出される。そして、算出値除外手段により、前記算出された風向風速ベクトルのうち、所定の閾値以上に相違する風向値および風速値が除外され、出力値生成手段により、除外された風向風速値以外の風向風速値に基づき出力用の風向風速値が生成されるので、ある方向での風流の乱れが顕著に現れ、その方向で対をなす送受波器間の超音波信号伝播時間の測定に影響が出るような場合でも、算出された風向風速ベクトルのうち、大きくずれた風向値や風速値が除外されて残りの風向風速値から出力用の風向風速値を正確に生成することが可能となる。 Therefore, by repeating the operation of transmitting an ultrasonic signal from one of the transducers and receiving the waves with the remaining other transducers by sequentially switching the transducers that transmit the ultrasonic signals by the measuring means, Two-way ultrasonic signal propagation time between the transducers is measured for all combinations of transducers, and the number of transmitters / receivers is calculated by the wind direction / wind velocity vector calculation means based on the ultrasonic signal propagation time obtained thereby. n · (n−1) / 2 wind direction wind speed vectors for n are calculated. The calculated value excluding means excludes the wind direction value and the wind speed value that differ from the calculated wind direction wind speed vector by a predetermined threshold value or more, and the output value generating means excludes the wind direction wind speed other than the excluded wind direction wind speed value. Since the wind direction value for the output wind direction is generated based on the value, the turbulence of the wind flow in a certain direction appears prominently, and the measurement of the ultrasonic signal propagation time between the paired transducers in that direction may be affected. Even in such a case, out of the calculated wind direction and wind speed vectors, greatly deviated wind direction values and wind speed values are excluded, and the output wind direction wind speed value can be accurately generated from the remaining wind direction wind speed values.
ここで、全ての送受波器の対の組み合わせについて送受波器間の双方向の超音波信号伝播時間を測定する測定手段は、上述のように送受波器の1つから超音波信号を発信して残りの他の送受波器で受波する動作を超音波信号を発信する送受波器を順次切り替えて繰り返すことで測定するものであっても、送受波器の1つから超音波信号を発信して残りの送受波器の1つで受波する動作を、受波する送受波器を順次切り替えて繰り返すと共に超音波信号を発信する送受波器を順次切り替えて繰り返すことで測定するものであってもよい。 Here, the measuring means for measuring the two-way ultrasonic signal propagation time between the transmitter and the receiver for all combinations of the transmitter and the receiver transmits the ultrasonic signal from one of the transmitter and the receiver as described above. Even if the operation of receiving signals with the other transducers is measured by switching the transducers that transmit ultrasonic signals sequentially and repeating, the ultrasonic signals are transmitted from one of the transducers. Then, the operation of receiving the signal with one of the remaining transmitters / receivers is measured by sequentially switching the transmitter / receiver for receiving the waves and repeating the operation by sequentially switching the transmitter / receiver for transmitting the ultrasonic signal. May be.
また、前記出力値生成手段は、測定誤差を考慮して、算出値除外手段で除外された風向風速値以外の風向風速値を平均化して出力用の風向風速値を生成するものであってもよい。尚、風向風速ベクトルの風向値は、基準を形成する必要があることから、真の方位に対する風向値に補正したものを用いるとよい。 Further, the output value generation means may be configured to generate wind direction wind speed values for output by averaging wind direction wind speed values other than the wind direction wind speed values excluded by the calculated value exclusion means in consideration of measurement errors. Good. Since the wind direction value of the wind direction / wind velocity vector needs to form a reference, it is preferable to use a wind direction value corrected to the true direction.
以上述べたように、本発明によれば、円筒の拡がり振動を利用した横効果の圧電振動子を備えた送受波器を互いに超音波信号を送受可能に複数配置した超音波式風向風速計を用い、全ての送受波器の対の組み合わせについて送受波器間の双方向の超音波信号伝播時間を測定し、この測定された超音波信号伝播時間から送受波器数nについてのn・(n−1)/2個のそれぞれの風向風速ベクトル(風速値と風向値)を求め、この算出された風向風速ベクトルのうち、所定の閾値以上に相違する風向風速値を除外して、残りの風向風速値から出力用の風向風速値を生成するようにしたので、送受波器自身が存在することで風流が乱れて著しく異なる風向風速値が存在するような場合でも、正確に風向風速値を測定することが可能となる。 As described above, according to the present invention, there is provided an ultrasonic anemometer in which a plurality of transducers each including a piezoelectric transducer having a lateral effect utilizing the expansion vibration of a cylinder are arranged so as to be able to transmit and receive an ultrasonic signal. The bidirectional ultrasonic signal propagation time between the transducers is measured for all combinations of transducers used, and n · (n for the number of transducers n is determined from the measured ultrasonic signal propagation time. -1) / 2 wind direction wind speed vectors (wind speed value and wind direction value) are obtained, and among the calculated wind direction wind speed vectors, wind direction wind speed values that differ by a predetermined threshold value or more are excluded, and the remaining wind directions Since the wind speed value for output is generated from the wind speed value, the wind direction wind speed value can be accurately measured even when the transducer itself is present and the wind flow is disturbed and there is a significantly different wind direction wind speed value. It becomes possible to do.
以下、本発明の最良の実施形態を添付図面を参照しながら説明する。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, the best embodiment of the invention will be described with reference to the accompanying drawings.
図1及び図2において、本発明に係る超音波式風向風速計1が示されている。
この例では、送受波器数が4つの場合が示されており、それぞれの送受波器(トランスデューサー:A(A11,A12,A21,A22))は、図2(a)に示されるように、円筒の拡がり振動を利用した横効果の圧電振動子2を備え、基体3の上部中央を基準に90度の間隔でアーム4を介して取り付けられ、隣り合う送受波器間が等距離となるよう正方形の頂点に配置されている。
1 and 2 show an
In this example, a case where the number of transducers is four is shown, and each transducer (transducer: A (A11, A12, A21, A22)) is as shown in FIG. The
したがって、各送受波器Aから発振された超音波信号は、四方に拡がり、残りの他の送受波器へ送波されることになり、2つの送受波器の組み合わせで構成される6本の経路(隣り合う送受波器間の経路 (R1,R2,R3,R4)と対角線上の送受波器間の経路(R5,R6))のそれぞれについて、双方向に超音波信号の測定を行えるようにしている。 Therefore, the ultrasonic signal oscillated from each transmitter / receiver A spreads in all directions and is transmitted to the remaining other transmitters / receivers. For each of the paths (paths between adjacent transducers (R1, R2, R3, R4) and diagonal paths (R5, R6)), ultrasonic signals can be measured in both directions. I have to.
各送受波器A(A11,A12,A21,A22)は、図3に示されるように、信号処理回路5に電気的に接続し、信号処理回路5は予め記録されたプログラムに基づき、それぞれの経路を構成する対をなす送受波器間で超音波信号の送受信を行い、それぞれの経路において双方向のトランシットタイム(一方の送受波器から他方の送受波器へ超音波が届く時間)を測定し、図4に示す以下の手法に基づき、出力用の風向風速値を算出する。尚、信号処理回路5は、風向風速計1に一体的に設けられるものであっても、別体に構成されるものであってもよい。
Each transducer A (A11, A12, A21, A22) is electrically connected to a
まず、風向風速計1は、一定の方位に設置するのが一般的であるので、ここでは、正方形の頂点に配置された4つの送受波器(A11、A22、A12、A21)のうち、A11,A12を基準(南北)方向、即ち、真の方位に一致させて設置する(ステップS1)。
First, since the
このように設置された風向風速計1において、先ず、それぞれの経路での対をなす送受波器間の双方向の超音波信号伝播時間を計測する(ステップS2)。この全ての送受波器の対の組み合わせでの送受波器間の双方向の超音波信号伝播時間の測定は、送受波器の1つから超音波信号を発信して残りの他の送受波器で受波する動作を超音波信号を発信する送受波器を順次切り替えて繰り返すことで測定するようにしても、送受波器の1つから超音波信号を発信して残りの送受波器の1つで受波する動作を、受波する送受波器を順次切り替えて繰り返すと共に超音波信号を発信する送受波器を順次切り替えて繰り返すことで
測定してもよい。
In the
そして、測定された超音波信号伝播時間に基づき直交する2軸での風速(Vx,Vy)を求め(ステップS3)、この直交する2軸での風速から風向風速ベクトル(風速(V)、風向(θ))を算出する(ステップS4)。その後、風向風速ベクトルの風向(θ)を真の方向(南北)に対する風向(θ0)に補正して置き換える(ステップS5)。 Then, wind speeds (Vx, Vy) in two orthogonal axes are obtained based on the measured ultrasonic signal propagation time (step S3), and the wind direction wind speed vector (wind speed (V), wind direction) is calculated from the wind speeds in the two orthogonal axes. (Θ)) is calculated (step S4). Thereafter, the wind direction (θ) of the wind direction wind speed vector is corrected and replaced with the wind direction (θ0) with respect to the true direction (north and south) (step S5).
図3において、Vx11 12はA11発信A12受信およびA12発信A11受信により求めた(A11→A12)軸方向の風速、Vy11 12はA22発信A21受信およびA21発信A22受信により求めた(A22→A21)軸方向の風速、V11 12,θ11 12は、Vx11 12とVy11 12とを合成した風速,風向、θ0 11 12は、θ11 12を基準(南北)方向に補正した風向である。また、Vx11 21はA11発信A21受信およびA21発信A11受信により求めた(A11→A21)軸方向の風速、Vy11 21はA22発信A11受信およびA11発信A22受信により求めた(A22→A11)軸方向の風速、V11 21,θ11 21は、Vx11 21とVy11 21とを合成した風速,風向、θ0 11 21は、θ11 21を基準(南北)方向に補正した風向である。
次の記号 Vx21 22,Vy21 22,V21 22,θ21 22,θ0 21 22、Vx11 22,Vy11 22,V11 22,θ11 22,θ0 11 22、Vx21 12,Vy21 12,V21 12,θ21 12,θ0 21 12、Vx22 12,Vy22 12,V22 12,θ22 12,θ0 22 12も同様の意味を表わす。
In FIG. 3, Vx 11 12 is obtained by A11 transmission A12 reception and A12 transmission A11 reception (A11 → A12) axial wind speed, and Vy 11 12 is obtained by A22 transmission A21 reception and A21 transmission A22 reception (A22 → A21). ) Axial wind speed, V 11 12 , θ 11 12 is the combined wind speed and wind direction of Vx 11 12 and Vy 11 12 , θ 0 11 12 is the wind direction corrected to the reference (north-south) direction of θ 11 12 is there. Vx 11 21 is the wind speed in the axial direction obtained by A11 transmission A21 reception and A21 transmission A11 reception (A11 → A21), and Vy 11 21 is obtained by A22 transmission A11 reception and A11 transmission A22 reception (A22 → A11) axis. The wind speed in the direction, V 11 21 , θ 11 21 is the wind speed and the wind direction obtained by combining Vx 11 21 and Vy 11 21, and θ 0 11 21 is the wind direction obtained by correcting θ 11 21 in the reference (north-south) direction.
Next symbol Vx 21 22 , Vy 21 22 , V 21 22 , θ 21 22 , θ 0 21 22 , Vx 11 22 , Vy 11 22 , V 11 22 , θ 11 22 , θ 0 11 22 , Vx 21 12 , Vy 21 12 , V 21 12 , θ 21 12 , θ 0 21 12 , Vx 22 12 , Vy 22 12 , V 22 12 , θ 22 12 , θ 0 22 12 have the same meaning.
そして、以上のステップS3〜S5の処理をそれぞれの対をなす送受信器について(それぞれの経路について)行い、合計6個(n*(nー1)/2:n=4)の風向風速ベクトル(風速(V)と風向(θ0))を求める(ステップS6)。 Then, the processing of the above steps S3 to S5 is performed for each pair of transceivers (for each path), and a total of six (n * (n−1) / 2: n = 4) wind direction wind speed vectors ( A wind speed (V) and a wind direction (θ0)) are obtained (step S6).
したがって、乱流が無い場合には、風速、風向は、一般的には、下式の通りとなる。
その後、各風向間の差を求め、その差が所定の閾値より大きい場合は除外する。同様に、各風速間の差を求め、その差が所定の閾値より大きい場合は除外する。そして、残った風向風速値(風向値、風速値)から出力用の風向風速値を求める。即ち、残った風向、風速からそれぞれ風向及び風速の平均値を求め、これを最終的な出力用の風向風速値とする(ステップS7)。尚、風向、風速のそれぞれにおいて、上記差が閾値内であれば、6個の全ての値の平均値を求める。 Then, the difference between each wind direction is calculated | required, and when the difference is larger than a predetermined threshold value, it excludes. Similarly, a difference between wind speeds is obtained, and when the difference is larger than a predetermined threshold, it is excluded. And the wind direction wind speed value for an output is calculated | required from the remaining wind direction wind speed value (wind direction value, wind speed value). That is, the average value of the wind direction and the wind speed is obtained from the remaining wind direction and wind speed, respectively, and this is used as the final wind direction wind speed value for output (step S7). If the difference is within the threshold value in each of the wind direction and the wind speed, an average value of all six values is obtained.
以上の手法に基づき、図5に示されるように、X軸方向から風が吹いている場合の風向風速を計測する場合について見ると、この状態において、乱流が無い場合には、風速、風向は下記の通りとなるはずである。
ところが、実際は、送受波器A11自身により、第5図に示すような乱流が発生し、A11→A12間のV11 12、θ0 11 12が他の風速値、風向値と異なる。そこで、この場合には、V11 12、θ0 11 12を除いた残りの5つの値より、出力用の最終的な風速(V)、風向(θ)を算出する。 However, in practice, the transducer A11 itself, a turbulent flow as shown in FIG. 5 is generated, different V 11 12 between the A11 → A12, θ 0 11 12 other wind speed, and wind direction value. Therefore, in this case, the final wind speed (V) and wind direction (θ) for output are calculated from the remaining five values excluding V 11 12 and θ 0 11 12 .
具体的には、各風向間の差を求め、その差が閾値内であれば6個の全ての風向を平均して最終的な風向を求め、風向間の差が閾値より大きい場合には、その大きく異なる風向値を除外して残った風向値から風向の平均値を算出し、これを最終的な出力用の風向とする。
また、 各風速間の差を求め、その差が閾値内であれば6個の全ての風速を平均して最終的な風速を求め、風速間の差が閾値より大きい場合には、その大きく異なる風速値を除外して残った風速値から風速の平均値を算出し、これを最終的な出力用の風速とする。
Specifically, the difference between the wind directions is obtained, and if the difference is within the threshold value, all six wind directions are averaged to obtain the final wind direction. If the difference between the wind directions is greater than the threshold value, The wind direction average value is calculated from the remaining wind direction values by excluding the greatly different wind direction values, and this is used as the final output wind direction.
Also, the difference between the respective wind speeds is obtained, and if the difference is within the threshold value, all six wind speeds are averaged to obtain the final wind speed. If the difference between the wind speeds is greater than the threshold value, the difference is greatly different. The average value of the wind speed is calculated from the remaining wind speed values excluding the wind speed value, and this is used as the final output wind speed.
また、第6図に示されるように、南北に対して45度の方向から風が吹いている場合についてみると、乱流が無い場合には、風速、風向は下記の通りとなるはずである。
ところが、実際は、A11およびA21自身により、第5図に示すような乱流が発生し、A11→A22間およびA21→A12間のV11 22、θ0 11 22およびV21 12、θ0 21 12 が他の風速、風向と異なる。そこで、この場合は、V11 22、θ0 11 22およびV21 12、θ0 21 12 を除いた残りの4つの値より、風速(V)、風向(θ)を算出する。 However, in practice, the A11 and A21 itself, a turbulent flow as shown in FIG. 5 is generated, A11 → A22 between and A21 → A12 between the V 11 22, θ 0 11 22 and V 21 12, θ 0 21 12 Is different from other wind speeds and directions. Therefore, in this case, the wind speed (V) and the wind direction (θ) are calculated from the remaining four values excluding V 11 22 and θ 0 11 22 and V 21 12 and θ 0 21 12 .
以上のようにして、いずれの方向から風が吹いた場合においても、大きく異なる風向風速値を除外し、残りの風向風速値を平均化することで最終的な出力用の風向風速値が得られるので、送受波器自身の存在により風流の乱れが顕著となるような場合でも、正確な風向風速値を測定することが可能となる。
尚、上述の例においては、送受波器Aが4つ(n=4)の場合の例を示したが、これに限定されるものではなく、送受波器が3又は5つ以上の場合においても、上述の技術思想を採用して風向風速値を測定するようにしてもよい。
As described above, even when the wind blows from any direction, the wind direction wind speed value for final output can be obtained by excluding significantly different wind direction wind speed values and averaging the remaining wind direction wind speed values. Therefore, even when the turbulence of the wind flow becomes significant due to the presence of the transducer itself, it is possible to measure an accurate wind direction and wind speed value.
In the above example, an example in which there are four transducers A (n = 4) is shown, but the present invention is not limited to this, and in the case where there are three or five transducers. Alternatively, the above-mentioned technical idea may be adopted to measure the wind direction and wind speed value.
A(A11,A12,A21,A22) 送受波器
1 超音波式風向風速計
A (A11, A12, A21, A22)
Claims (4)
送受波器の1つから超音波信号を発信して残りの他の送受波器で受波する動作を超音波信号を発信する送受波器を順次切り替えて繰り返すことで、全ての送受波器の対の組み合わせについて送受波器間の双方向の超音波信号伝播時間を測定する測定手段と、
この測定手段により測定された前記超音波信号伝播時間から送受波器数nについてのn・(n−1)/2個の風向風速ベクトルを算出する風向風速ベクトル算出手段と、
前記算出された風向風速ベクトルのうち、所定の閾値以上に相違する風向値および風速値を除外する算出値除外手段と、
前記算出値除外手段で除外された風向風速値以外の風向風速値に基づき出力用の風向風速値を生成する出力値生成手段と
を具備することを特徴とする超音波式風向風速装置。 It is equipped with an ultrasonic anemometer in which a plurality of transducers equipped with a lateral-effect piezoelectric vibrator using the expansion vibration of a cylinder are arranged so as to be able to send and receive ultrasonic signals to each other,
The operation of transmitting an ultrasonic signal from one of the transducers and receiving it by the remaining other transducers is performed by sequentially switching the transducers that transmit the ultrasonic signals to repeat the operation of all the transducers. A measuring means for measuring a bidirectional ultrasonic signal propagation time between a transmitter and a receiver for a combination of pairs;
Wind direction and wind speed vector calculating means for calculating n · (n−1) / 2 wind direction and wind speed vectors for the number of transducers n from the ultrasonic signal propagation time measured by the measuring means;
Of the calculated wind direction wind speed vectors, calculated value excluding means for excluding wind direction values and wind speed values that differ by a predetermined threshold value or more;
An ultrasonic wind direction wind speed device comprising: output value generation means for generating a wind direction wind speed value for output based on a wind direction wind speed value other than the wind direction wind speed value excluded by the calculated value exclusion means.
送受波器の1つから超音波信号を発信して残りの送受波器の1つで受波する動作を、受波する送受波器を順次切り替えて繰り返すと共に超音波信号を発信する送受波器を順次切り替えて繰り返すことで、全ての送受波器の対の組み合わせについて送受波器間の双方向の超音波信号伝播時間を測定する測定手段と、
この測定手段により測定された前記超音波信号伝播時間から送受波器数nについてのn・(n−1)/2個の風向風速ベクトルを算出する風向風速ベクトル算出手段と、
前記算出された風向風速ベクトルのうち、所定の閾値以上に相違する風向値および風速値を除外する算出値除外手段と、
前記算出値除外手段で除外された風向風速値以外の風向風速値に基づき出力用の風向風速値を生成する出力値生成手段と
を具備することを特徴とする超音波式風向風速装置。 Equipped with an ultrasonic anemometer in which a plurality of transducers equipped with a piezoelectric transducer with a lateral effect utilizing the expansion vibration of a cylinder are arranged so as to be able to send and receive ultrasonic waves to each other,
The transmitter / receiver that transmits an ultrasonic signal from one of the transducers and repeats the operation of receiving the signal by one of the remaining transducers by sequentially switching the transducers to be received. By sequentially switching and repeating, measurement means for measuring the bidirectional ultrasonic signal propagation time between the transmitter and receiver for the combination of all the transmitter and receiver,
Wind direction and wind speed vector calculating means for calculating n · (n−1) / 2 wind direction and wind speed vectors for the number of transducers n from the ultrasonic signal propagation time measured by the measuring means;
Of the calculated wind direction wind speed vectors, calculated value excluding means for excluding wind direction values and wind speed values that differ by a predetermined threshold value or more;
An ultrasonic wind direction wind speed device comprising: output value generation means for generating a wind direction wind speed value for output based on a wind direction wind speed value other than the wind direction wind speed value excluded by the calculated value exclusion means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008075308A JP5029993B2 (en) | 2008-03-24 | 2008-03-24 | Ultrasonic wind speed device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008075308A JP5029993B2 (en) | 2008-03-24 | 2008-03-24 | Ultrasonic wind speed device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009229256A true JP2009229256A (en) | 2009-10-08 |
JP5029993B2 JP5029993B2 (en) | 2012-09-19 |
Family
ID=41244828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008075308A Active JP5029993B2 (en) | 2008-03-24 | 2008-03-24 | Ultrasonic wind speed device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5029993B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101893645A (en) * | 2010-07-07 | 2010-11-24 | 东南大学 | Ultrasonic wind speed and direction measuring device |
CN102103854A (en) * | 2010-12-28 | 2011-06-22 | 电子科技大学 | Energy converter transceiver circuit of ultrasonic aerovane |
CN102323443A (en) * | 2011-06-03 | 2012-01-18 | 北京安良永信电器有限公司 | Ultrasonic anerovane |
CN102478585A (en) * | 2010-11-23 | 2012-05-30 | 深圳市智翔宇仪器设备有限公司 | Ultrasonic wave wind speed anemoscope and corresponding multiple meteorology parameter measuring instrument |
CN103245796A (en) * | 2012-02-14 | 2013-08-14 | 上海安偌电子科技有限公司 | Two-dimensional ultrasonic wind speed and wind direction measurement method |
JP2013171031A (en) * | 2012-02-23 | 2013-09-02 | Sonic Corp | Measuring instrument and control method for the same |
KR101315640B1 (en) * | 2011-01-28 | 2013-10-08 | 경북대학교 산학협력단 | Anemometer and measuring method of wind velocity using ultrasonic |
CN103472252A (en) * | 2013-09-17 | 2013-12-25 | 国家电网公司 | Ultrasonic wind speed measurement device based on bus communication mode |
JP2017007493A (en) * | 2015-06-22 | 2017-01-12 | スズキ株式会社 | Berthing support system |
CN108459175A (en) * | 2018-03-30 | 2018-08-28 | 吉林大学 | A kind of wind speed wind direction sensor and its measurement method based on bionical deformation blade |
CN109633200A (en) * | 2019-02-27 | 2019-04-16 | 吉林大学 | Wind measuring device and method based on multiple-input multiple-output ultrasonic sensor |
RU200523U1 (en) * | 2020-07-22 | 2020-10-28 | Акционерное общество "Металкомп" | FLOW RATE SENSOR |
CN112433065A (en) * | 2020-12-28 | 2021-03-02 | 佳木斯大学 | Computer-assisted meteorological monitoring robot |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103728463B (en) * | 2013-12-31 | 2015-12-09 | 南京信息工程大学 | Ultrasonic wind meter and measuring method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH047368U (en) * | 1990-05-09 | 1992-01-23 | ||
JPH05307087A (en) * | 1992-04-30 | 1993-11-19 | Erumu:Kk | Ultrasonic wind direction/velocity and temperature measuring device |
JP2004264184A (en) * | 2003-03-03 | 2004-09-24 | National Aerospace Laboratory Of Japan | Ultrasonic air data sensor |
JP2005253029A (en) * | 2004-02-04 | 2005-09-15 | Aloka Co Ltd | Method of manufacturing ultrasonic probe |
-
2008
- 2008-03-24 JP JP2008075308A patent/JP5029993B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH047368U (en) * | 1990-05-09 | 1992-01-23 | ||
JPH05307087A (en) * | 1992-04-30 | 1993-11-19 | Erumu:Kk | Ultrasonic wind direction/velocity and temperature measuring device |
JP2004264184A (en) * | 2003-03-03 | 2004-09-24 | National Aerospace Laboratory Of Japan | Ultrasonic air data sensor |
JP2005253029A (en) * | 2004-02-04 | 2005-09-15 | Aloka Co Ltd | Method of manufacturing ultrasonic probe |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101893645A (en) * | 2010-07-07 | 2010-11-24 | 东南大学 | Ultrasonic wind speed and direction measuring device |
CN102478585A (en) * | 2010-11-23 | 2012-05-30 | 深圳市智翔宇仪器设备有限公司 | Ultrasonic wave wind speed anemoscope and corresponding multiple meteorology parameter measuring instrument |
CN102103854A (en) * | 2010-12-28 | 2011-06-22 | 电子科技大学 | Energy converter transceiver circuit of ultrasonic aerovane |
KR101315640B1 (en) * | 2011-01-28 | 2013-10-08 | 경북대학교 산학협력단 | Anemometer and measuring method of wind velocity using ultrasonic |
CN102323443A (en) * | 2011-06-03 | 2012-01-18 | 北京安良永信电器有限公司 | Ultrasonic anerovane |
CN103245796B (en) * | 2012-02-14 | 2015-01-21 | 上海安偌电子科技有限公司 | Two-dimensional ultrasonic wind speed and wind direction measurement method |
CN103245796A (en) * | 2012-02-14 | 2013-08-14 | 上海安偌电子科技有限公司 | Two-dimensional ultrasonic wind speed and wind direction measurement method |
JP2013171031A (en) * | 2012-02-23 | 2013-09-02 | Sonic Corp | Measuring instrument and control method for the same |
CN103472252A (en) * | 2013-09-17 | 2013-12-25 | 国家电网公司 | Ultrasonic wind speed measurement device based on bus communication mode |
JP2017007493A (en) * | 2015-06-22 | 2017-01-12 | スズキ株式会社 | Berthing support system |
CN108459175A (en) * | 2018-03-30 | 2018-08-28 | 吉林大学 | A kind of wind speed wind direction sensor and its measurement method based on bionical deformation blade |
CN108459175B (en) * | 2018-03-30 | 2019-06-11 | 吉林大学 | A kind of wind speed wind direction sensor and its measurement method based on bionical deformation blade |
CN109633200A (en) * | 2019-02-27 | 2019-04-16 | 吉林大学 | Wind measuring device and method based on multiple-input multiple-output ultrasonic sensor |
CN109633200B (en) * | 2019-02-27 | 2023-06-02 | 吉林大学 | Wind measuring device and method based on multiple-input multiple-output ultrasonic sensor |
RU200523U1 (en) * | 2020-07-22 | 2020-10-28 | Акционерное общество "Металкомп" | FLOW RATE SENSOR |
CN112433065A (en) * | 2020-12-28 | 2021-03-02 | 佳木斯大学 | Computer-assisted meteorological monitoring robot |
CN112433065B (en) * | 2020-12-28 | 2022-12-09 | 佳木斯大学 | Computer-assisted meteorological monitoring robot |
Also Published As
Publication number | Publication date |
---|---|
JP5029993B2 (en) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5029993B2 (en) | Ultrasonic wind speed device | |
CN104501889B (en) | Ultrasonic flow detection method based on cross-correlation time difference method | |
US7806003B2 (en) | Doppler type ultrasonic flow meter | |
CN114088972B (en) | Ultrasonic wind speed and direction measurement system and method based on phase double-frequency method | |
JP2007051913A (en) | Correction method for ultrasonic flowmeter | |
CN108431554B (en) | Fluid measuring device | |
JP2010256075A (en) | Flowmeter and method of measuring flow rate | |
JP4760115B2 (en) | Fluid flow measuring device | |
Chandran et al. | Time of flight measurement system for an ultrasonic anemometer | |
JP5282955B2 (en) | Ultrasonic flow meter correction method and ultrasonic flow meter | |
JP4797515B2 (en) | Ultrasonic flow measuring device | |
JPH11304559A (en) | Flow rate measuring apparatus | |
JP2007322186A (en) | Ultrasonic flow meter | |
JP6187343B2 (en) | Ultrasonic measuring instrument | |
JP6876643B2 (en) | Ultrasonic flow measuring device and ultrasonic flow measuring method | |
JP6321316B1 (en) | Ultrasonic flow measuring device and ultrasonic flow measuring method | |
JP2005091332A (en) | Ultrasonic flowmeter | |
JP2018066585A (en) | Temperature measuring device | |
JP2007064988A (en) | Flowmeter | |
JP5990770B2 (en) | Ultrasonic measuring device | |
JP2007064988A5 (en) | ||
JP5229349B2 (en) | Fluid flow measuring device | |
JP2012127654A (en) | Ultrasonic wave measuring device | |
JP4239106B2 (en) | Phase difference type ultrasonic flowmeter | |
JP3480711B2 (en) | Ultrasonic vortex flowmeter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100709 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120522 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120615 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5029993 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |