JP2004264184A - Ultrasonic air data sensor - Google Patents

Ultrasonic air data sensor Download PDF

Info

Publication number
JP2004264184A
JP2004264184A JP2003055386A JP2003055386A JP2004264184A JP 2004264184 A JP2004264184 A JP 2004264184A JP 2003055386 A JP2003055386 A JP 2003055386A JP 2003055386 A JP2003055386 A JP 2003055386A JP 2004264184 A JP2004264184 A JP 2004264184A
Authority
JP
Japan
Prior art keywords
ultrasonic
air data
measurement
transceiver
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003055386A
Other languages
Japanese (ja)
Other versions
JP3817610B2 (en
Inventor
Hamaki Inokuchi
浜木 井之口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP2003055386A priority Critical patent/JP3817610B2/en
Publication of JP2004264184A publication Critical patent/JP2004264184A/en
Application granted granted Critical
Publication of JP3817610B2 publication Critical patent/JP3817610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an airspeed measurement device for an aircraft which can perform the measurement from a low velocity region to a relatively high speed region, and can deal with a wide airflow angle; and to provide an ultrasonic air data sensor probe having no mobile parts which can realize a wind direction/velocity and air temperature measurement device for a meteorological observation at high measurement precision without requiring components at high manufacture precision. <P>SOLUTION: When the value of wind velocity to be measured greatly varies discontinuously, the ultrasonic air data sensor probe subtracts an integral multiple of one period of the ultrasonic wave used for the detection value, and performs the correction to the error estimation value nearest to the previous detection value. Further, by providing the combination of an ultrasonic wave transmitter and a receiver for calculating the wind velocity with redundancy, the wind velocity is calculated without using a signal most intensively influenced by inner and outer noises or a signal by the failed ultrasonic transmitter and the receiver. A support part is arranged so that a level difference is not generated between it and the surface of the ultrasonic receiver. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、対気速度および風向風速気温を計測する超音波エアデータセンサに関するものであり、対気速度計測では、特に低速航空機に適した方式に関するものである。なお、対気速度とは気流に対する3次元的な物体の移動方向および速さを表すもので、操縦用の計測では対気速度計測の応答性はあまり重要ではないが、対気速度を利用した乱気流計測のためには応答性が重要となる。また、本明細書中で低速航空機とは、短距離離着陸機、垂直離着陸機、回転翼機、滑空機、飛行船、気球などを意味している。
【0002】
【従来の技術】
通常、航空機で使用されているピトー管は、空気の総圧および静圧を測定して、その差の動圧から対気速度を求めるものであって、気流方向は矢羽根等により測定される。ところで、ピトー管で測定される動圧は、対気速度の2乗に比例する関係にあるために、低速では測定誤差が大きくなってしまい、ピト一管は低速域の速度計測には適していない。ピトー管が使用できるのは通常30〜40m/s以上の領域である。それより低速であるとか、気流方向が機体軸線と大きく異なる場合には、速度計測自体が不可能となる。そして、気流方向を測定するための矢羽根は、可動部分があるため矢羽根の質量による応答性の低下や振動が問題となってくる。したがって、対気速度センサとしてピト一管を搭載している一般の航空機は、低速域での対気速度計測値は測定誤差が大きいか、あるいは測定できないということになっている。ピトー管は、前述の通り低速域の気流が測定できないので当然、気象観測用の風向風速計としても適していない。
【0003】
これに対して気象観測に用いられている超音波風速計は、一定区間を伝搬する超音波の伝搬時間が、風の影響で変化することを利用したもので、全方位的に所定の間隔で配設された複数個(一般的には6個が多い)の超音波送受信機は平面上のあらゆる方位の風を測定することができる。例えば特許文献1がこれに当たる。しかし、超音波送受信機同士の空気力学的干渉により、強風時の測定は困難で、航空機搭載が可能な大きさのもので20m/s以下、地上設置用の大型装置でも60m/s以下が測定可能領域である。この測定可能領域では航空機に利用するには高速側の計測範囲が充分とはいえず、気象観測用の超音波風速計は、航空機に搭載する対気速度計測器には適していない。超音波風速計を気象観測用として使用する場合でも、超音波送受信機同士の空気力学的干渉により、気流が影響を受け、特に風向の測定精度を劣化させる原因となっている。
【0004】
気象観測用として最も一般的な風車型風向風速計は、可動部分があり質量が大きいために、対気速度計として航空機のブーム上に取り付けた場合、振動のおそれを回避するためブームの剛性を高くしなければならない。ブームは前記航空機自身による気流の撹乱の影響を受けにくくするために長くする必要があり、剛性を高めることは困難である。気流計測の応答性もあまり良くないので、航空機に搭載する対気速度計測器には適していない。気象観測用として使用する場合には、大変実用性が高いが、高精度に測定するためにプロペラや尾翼を精度良く製作する必要があり、可動部があるために機械部品が多く、現状よりも製造経費を低減させることは困難である。また、通常の気象観測では問題とならないが、特殊用途のために上下風を測定したり、極微弱風での風向、風速を測定したりすることは困難である。
【0005】
本発明者が先に開発し既に特許出願をしている発明である航空機用超音波式対気速度センサ(特許文献2)は、上記従来装置の欠点を解決するためのもので、低速航空機搭載用として低速飛行時には充分使用可能である。しかし、該対気速度センサは対気速度50m/s以上の領域で計測ノイズ成分が増大する上、気流角度によってはそれより低速度でも計測できないことがある。前者の原因は、超音波送受信機がその支持部の表面に対して傾斜して取り付けられていることにより前記超音波送受信機の表面と前記支持部との間に段差ができ、構造上高速度域では気流が乱れることにより発生するノイズであることが判明した。また、後者の原因は、前記支持部同士の位置関係から、前記超音波送受信機の一部が上流側の超音波送受信機支持部の後流領域に入る気流角度が存在することにより、下流側の超音波送受信機が受ける乱流の影響であることが判明した。
【0006】
【特許文献1】
特開平5−307087号公報「超音波風向風速温度測定装置」
平成5年11月19日公開
【特許文献2】
特開2001−278196号公報「航空機用超音波式対気速度センサ」
平成13年10月10日公開
【0007】
【発明が解決しようとする課題】
本発明の目的課題は、上記の問題点を解決するもの、すなわち低速度領域から比較的高速度領域の計測が可能で、なおかつ広い気流角度に対応できる航空機用の対気速度計測装置、並びに高い製作精度が必要な部品が不要で、測定精度が高い気象観測用の風向風速気温計測装置を実現できる可動部が存在しない超音波エアデータセンサ・プローブを提供することにある。
【0008】
【課題を解決するための手段】
本発明の超音波式エアデータ補正方法は、対向する1対の超音波送受信機により風速を間欠的に連続測定するシステムにおいて、検出値が不連続に変化したときは、その検出値に使用する超音波の1周期の整数倍を減算し前検出値に最も近い誤差推定値に補正するものである。
本発明の超音波式エアデータセンサは、乱流の発生を低減させ測定の安定性を高めるため、超音波送受信機の送受信表面がその支持部の面と滑らかに連続して凹凸の無い形状とすると共に、主な風速方向に対して前記支持部を前後に配置する。また、対向する1対の超音波送受信機を伝搬経路の方向を異ならせて複数個配置組み合わせたものであって、その数は最低限必要な数より余分に冗長性を持たせて配置風速を算出するための超音波送受信機の組み合わせに冗長性を持たせることにより、内外雑音の影響を最も強く受けている信号や、故障した超音波送受信機による信号を使用しないで、風速を算出するようにした。
対気速度計として航空機に搭載するときは、支持棒と基体との接合部分が破壊されても超音波送受信機支持部が脱落しないように、前記超音波送受信機を固定する支持棒を前記基体に貫通させた構造とする。
基体に設置された超音波送受信機と該基体を中心に同心円状に配置された超音波送受信機間において1対の超音波伝搬経路が形成される地上設置用の超音波式エアデータセンサは、基体の後流の影響を軽減させるため、同心円状に配置された超音波送受信機は基体に設置された超音波送受信機より低い位置に取り付ける。
本発明の広域気象観測システムは、基体に設置された超音波送受信機と該基体を中心に同心円状に配置された超音波送受信機間において1対の超音波伝搬経路が形成される地上設置用の多数の超音波式エアデータセンサを公衆通信回線で気象データの管理センターに接続すると共に、各地の端末機を公衆通信回線で気象データの管理センターに接続した。
本発明に係る航空機用計測システムは、ピトー管と同じ等価対気速度測定値を得るために超音波式エアデータセンサと、大気圧センサと、真対気速度から等価対気速度を補正演算する手段とを備える。
【0009】
【発明の実施の形態】
図1は、超音波風速計の原理を示す図である。超音波が空気中を伝搬する場合、超音波が風と順方向に伝搬するときは、風速分だけ伝搬速度が速くなり、逆方向のときは風速分だけ伝搬速度が遅くなる。したがって、距離を速度で割った関係にある超音波の伝搬時間と風速との関係は以下の式の通りになる。
W=D/2×(t−t)/(t×t)‥‥(1)
ただし、
W :風速
D :超音波送受信機の間隔
:風速に順方向の超音波の伝搬時間
:風速に逆方向の超音波の伝搬時間
同時に超音波の伝搬速度が気温によって変化することを利用して、以下の式により気温を求めることができる。
T=T×(a/a×(1+W /a)‥‥(2)
a=D/2×(t+t)/(t×t) ‥‥(3)
ただし、
T :気温
:標準温度
a :音速
:標準温度での音速
:超音波伝搬方向に垂直な風速成分
【0010】
超音波の伝搬時間計測のためには、パルス状の超音波を送受信機から送出し、それを対向する送受信機で受信しそのそのタイミングを計る。このとき、受信時の信号レベルが気流や雑音など何らかの影響で低下すると、パルス信号の先頭を認識することができずに、前記超音波の波長の整数倍分に相当する計測時間の遅れが生ずることがある。なお、自動的に利得を増大する回路を設けたとしても、相対的に雑音のレベルが高くなるので、完全にこの遅れを除去できるとは限らない。この遅れが原因で計測信号に大きな不連続が生ずるので、不連続の大きさに応じて以下の式で得られるτの整数倍を伝搬時間計測値から減ずれば、正しい計測値を求めることができる。
τ=1/f ‥‥(4)
ただし、
τ:1波長分の時間
f:使用する超音波の周波数
【0011】
前記不連続量は風速に応じて変化し、以下の式により推定することができる。風下側の受信信号に1波長分の遅れが生じた場合、
dW=W−D/2×[(t−t−τ)/{(t+τ)×t}] ‥‥(5)
風上側の受信信号に1波長分の遅れが生じた場合、
dW=W−D/2×[(t−t+τ)/{t×(t+τ)}] ‥‥(6)
両方の受信信号に1波長分の遅れが生じた場合、
dW=W−D/2×[(t−t)/{(t+τ)×(t+τ)}]‥‥(7)
ただし、
dW:不連続量推定値
W :風速
D :超音波送受信機の間隔
:風速に順方向の超音波の伝搬時間
:風速に逆方向の超音波の伝搬時間
τ:1波長分の時間
【0012】
予め不連続量と判定するための敷居値を設定しておき、測定値が不連続に変化した場合に、その不連続量に最も近い別記不連続量推定値の整数倍を測定値から差し引き、その値を正確な測定値として利用する。測定値の不連続量は、現実的には1波長分の遅れのみ、つまり前記推定値の1倍であることが最も多い。なお、不連続量推定値による測定値の補正は、超音波の受信レベルが低下したときのみ実施する。なぜなら、不正な状態から正常な状態に復帰したときにも同様の不連続が生じてしまうからである。
風上風下両方の受信信号に同数の波長分の遅れが生じた場合には、不連続量が小さいため、現実には通常の測定値変動と明らかな差が認識できない。しかし、一般的には風下側の受信信号の方が気流の乱れの影響を受けやすいため、圧倒的に不連続の原因になりやすく、風上風下両方の受信信号に同数の波長分の遅れが生ずることは確率的に極めてまれである。
【0013】
従来、気象観測用の超音波風速計は全方位の風速を等しい精度で検出する必要から、6個の超音波送受信機を6本の支持棒に取り付けていたため形状が複雑となり、空気力学的乱流や音響騒音が生じやすかった。しかし、一般的に航空機は1方向にのみ高速で飛行し、他の方向は飛行できないか、または非常に低速で飛行する。したがって、航空機用対気速度センサとしては、あらゆる方位の気流が同じように測定できる必要はなく、比較的高速域が測定できるのは1方向のみでよい。したがって、1方向の気流の計測を重視する観点から超音波風速計で必要な超音波送受信機の配列を工夫すると共に、装置の全体形状を単純化し、空気力学的騒音や気流の乱れを低減させることを考えた。特に、超音波送受信機の上流に物体があると、気流の乱れの影響を受けやすいため、1方向の気流を重視して、超音波送受信機の上流に気流の乱れを生じさせる構造物を配置しないようにすることは重要である。本発明者の先の発明である特許文献2「航空機用超音波式対気速度センサ」では、上記目的をある程度達成することができたが、超音波送受信機がその支持部の表面に対して傾斜して取り付けられていることにより前記超音波送受信機の表面と別記支持部との間に段差ができ、高速度域では気流が乱れてノイズが発生してしまった。本発明では、超音波の送受信軸が支持部の表面に垂直になるように全体の構成を工夫したことにより、前記超音波送受信機の表面が支持部の表面と滑らかに接続され、気流の乱れを最小限にすることができるよになった。この形状は気象観測用の風向風速計として利用する場合にも有効である。
【0014】
前記超音波送受信機の配列を如何に工夫しても、あらゆる方向の気流に対応する場合、必ず気流の乱れの影響を受ける気流方向が存在する。このため、本発明では前記超音波送受信機の組み合わせを最低限必要な3組よりも余分に配置することにより冗長性を持たせ、不正なデータを使用しないことにより利用率と測定精度を向上させるようにした。この構成は、前記超音波送受信機の1部が故障した場合でも有効に作動する機能をも担保するものである。
【0015】
図2および図3を参照して本発明の基本原理を説明する。図2はプローブ形状を示したもので、Aは前方からの正面図であり、Bは側面図である。基体1に4本の支持棒11,12,13,14を軸の先端部が互いに平行で軸芯が四角形の各頂点に位置するように植設し、その先端部は流線形状として超音波送受信機支持部となっている。このプローブ形状は、超音波計測の安定性確保の観点から航空機の主たる検出成分となる流速方向が機体前方からの軸方向と一致する気流に対し最も気流に乱れを生じさせないようにすることを考慮して案出したものである。本発明を航空機の対気速度計測に適用する場合、前述したように機体に対して流速方向は前方から後方に向かう成分が主となる。したがって、その成分を検出するために超音波送受信機は前後方向に位置を違えた配置を必須とし、送受信軸に合わせて設置するために、前記超音波送受信機の表面はX軸に垂直な面とは傾斜することになる。このため、前記支持棒の先端を流線型状にしたうえで、その表面と前記超音波送受信機の表面が平行で滑らかにつながるような前記超音波送受信機の配置を考えた。そして超音波を送受信する複数個の伝搬経路を形成させて流体の流速成分が重畳される伝搬時間情報を基にその流体の流速成分を3次元情報として計測するものである。具体的には従来の超音波風速計の3組6個の超音波送受信機を4組8個として、図3に示したような形態、すなわち、プローブの取り付け方向として基体1および支持棒11,12,13,14の軸方向が航空機の前方に向くように機体に固定し、この基体1および支持棒11,12,13,14に超音波送受信機を取り付け、超音波送受信経路が形成されるようにした。機体の前後方向の異なる位置に配置された超音波送受信機間で超音波送受信経路が形成されているので、機体の前後方向の成分の流速が検知できるのである。しかもこの方向の気流に対してはプローブの基体1および支持棒11,12,13,14が最も抵抗が少ない構造となっているため、流れの状態が安定して精度の良い計測ができる。なお、図4に示すように支持棒11,12,13,14の軸線を前方に向かって若干の開き角を持たせることにより、支持棒の長さを短くすることができるので、剛性を高めることができ、重量も軽減される。
【0016】
本発明を地上での気象観測用の風向風速計に適用して使用する場合は、航空機に取り付ける場合の前方を、鉛直方向上方に向けて使用する。この場合、水平方向のあらゆる方位からの気流に対応する必要があるが、本発明による形状は必ずしも全方位からの気流に対して適しているわけではない。ところが気象観測の場合、最大で60m/sの風速が測れれば充分であり、航空機の対気速度ほど高速の気流を計測する必要がない。さらに後述する冗長性により、風下側の超音波送受信機による信号を利用しないことになるので、あらゆる方位の気流に対して常に最適な信号を利用して、高精度に風向風速を計測することができる。地上での気象観測用の場合、重量の制限が航空機搭載用ほど厳しくないので、航空機搭載用よりも大型にして強風計測性能を向上させることも可能である。
【0017】
上記のような超音波送受信機の配置構成により、3次元的な対気速度あるいは風向風速を求めることができる。そしてこの配置は矢印で示した方向の流速計測を最も重視したものである。図3のように機体の前後方向にX軸を、左右方向にY軸をそして上下方向にZ軸の直交座標形を定義し、対気速度のXYZ成分をVx、Vy、Vzとすると、計測される各組の超音波送受信機間の超音波伝搬方向の気流の速度成分Wnは、以下の式で表される。
=Vxsinθn+(Vysinφn+Vzcosφn)×cosθn ‥‥(8)
ただし、
Vx:対気速度のX方向成分
Vy:対気速度のY方向成分
Vz:対気速度のZ方向成分
:気流の超音波送受信機方向(経路n)の速度成分
θn:YZ面とWとの成す角
φn:YZ面内でのZ軸とWとの成す角
ここで仮に各センサの配列を図3のようにそれぞれ直角、つまりφ1を90度、φ2を180度、φ3を270度とすると、
=Vxsinθ1+Vycosθl ‥‥(9)
=Vxsinθ2−Vycosθ2 ‥‥(10)
=Vxsinθ3−Vycosθ3 ‥‥(11)
となり、さらにθ1=θ2=θ3=θとすると、
Vx=(W+W)/2sinθ ‥‥(12)
Vy=(W−W)/2cosθ ‥‥(13)
Vz=(W+W−2×W)/2cosθ ‥‥(14)
となり、この演算式によって対気速度を求めることができる。
【0018】
各超音波送受信機の組により得られる超音波伝搬方向の気流の速度成分が、不連続に変化した場合に、その不連続量に最も近い前記不連続推定値の整数倍を差し引くことにより、測定誤差を低減させることができる。そのときの整数倍をNとすると、正常な測定が行われているときにはNの値は0であるが、気流の乱れや故障などにより測定値に不連続な変化が生ずるとNに値が増加する。それぞれの超音波送受信機の組のNの値を常時監視して、Nの値が最も大きい超音波送受信機の組の測定値を使用しないことにより、前記演算式により最終的に得られる対気速度の信頼性および計測精度が向上する。
【0019】
さらに、超音波伝搬時間の測定値が0または閾値を越える値となった場合にも、該当する超音波送受信機の組の測定値を使用しない。このような状態は、超音波送受信機の故障、または気流の乱れや騒音による計測不能状態が考えられるからである。
【0020】
航空機の外部に露出して物体を取り付ける場合、強度計算か強度試験によりその物体が充分な強度であることを確認することは当然であるが、経年変化や腐食による劣化についても考慮する必要がある。本発明では支持棒11,12,13,14を基体1に貫通させる構造としているため、万一、溶接などによる前記基体と前記支持棒との接合部が破壊された場合に、前記支持棒がずれたり回転したりすることになっても脱落する心配がない。
【0021】
航空機は、通常ピトー管により得られる等価対気速度を操縦計器に表示させ、操縦士はそれを利用して飛行する。なぜなら機体に対する気流の影響力は、気流の速度だけではなく大気の密度にも関係するからである。超音波センサで得られる対気速度は真対気速度であるため、大気圧センサと組み合わせることによって、以下の補正式で等価対気速度を算出し、従来のピトー管と同等な測定値を得る計測システムを構築することができる。
VEAS=VTAS{P/(ρoRT)}0.5 ‥‥(15)
ただし、
VEAS:等価対気速度
VTAS:真対気速度
P:大気圧
R:ガス常数
T:大気温度
ρo:標準大気密度
【0022】
【実施例】
以下では、回転翼機における対気速度計測用に製作した例を図4に示し、本実施例について記述する。一般的な回転翼機では前進方向の対気速度が最大80m/s程度で、それ以外の方向、例えば上下左右に飛行する場合の速度は極低速である。本発明の適用により、回転翼機のほぼ全飛行速度領域で対気速度が計測できることが見込まれる。本実施例は4つの支持棒11,12,13,14の軸が基体1の軸に対し平行ではなく、図に示されたように等しい若干の開き角β(この実施例では10度)を持って取り付けられている。これは回転翼機において高速状態すなわち強い気流を受けるのは前方方向に限られるため、それに対して構造的に剛性が高く重量が少ない必要があることと、気流を乱す構造的ではあるが、その際の気流の乱れは後流として生じるため、超音波伝搬経路には影響がないことを勘案して想到したものである。ちなみにこの実施例では超音波送受信機間の伝搬経路長は50mm、θ角は20度、使用される超音波の波長は200kHzとした。また、基体1および各支持棒先端には氷着を防止するための防氷ヒータを内蔵している。なお、超音波は機体の対気速度に応じて風下側に流されるため、超音波送受信機は直線的に対向配置させるのではなく図4に示すようにそれぞれ風上側にα角向けて設置するようにした。それによって超音波の伝搬経路は図示したように風上側に膨らんだ弓形となる。超音波送受信機の送受信面は凹凸形状とならないように支持棒表面となめらかな連続面に形成する。この実施例で使用される超音波送受信機の指向性は片側15度であるため、αを10度とし音速を340m/sとすると、機体の対気速度が60m/sのときに超音波の覆域の中心点で送受信が行われ、前進約150m/s〜後進約30m/sの範囲が、指向性に基づく測定範囲となる。
【0023】
図5は計測値の不連続変化量推定値を示す。回転翼機の最高速度は通常70m/s以下であるため、超音波経路方向気流成分が30m/sを越えることはまずない。また、風上風下両方の受信信号に同数の波長分の遅れが生じた場合には、図に示すように不連続量が小さいため、通常の測定値変動と明らかな差が認識できない。これらを勘案して不連続量と判定するための閾値は±3m/sと設定し、測定値が±3m/sを越えて不連続に変化した場合に、その不連続量に最も近い前記不連続量推定値の整数倍を測定値から差し引き、その値を正確な測定値として利用する。測定値の不連続量は、現実的には1波長分の遅れのみ、つまり前記推定値の1倍であることが最も多い。なお、データの更新周期は50m秒であり、この間に実際に±3m/s以上の流速変化が生ずることは、通常の物理現象として考えられないので、この補正により測定値が悪影響を受けることはない。
【0024】
図6は回転翼機に本実施例によるセンサを設置搭載した例を示す。回転翼機は、前進速度が他の方向に卓越して大きく、しかもメインロータRの吹き下ろしという現象を伴う。したがって、対気速度計測においてその影響を避けるため、センサSはメインロータRの先端よりも前方に位置するように、機体前方方向に一致する長いロッド状の基体1の先端に支持棒11、12、13、14が取り付けられた形態で搭載される。なお、超音波風速計によって測定される対気速度は真対気速度であるが、気圧計Bを同時に搭載してその計測値によって補正することにより、通常の航空機で使用するピトー管と同様に等価対気速度を得ることができる。
【0025】
本発明を気象観測用の地上風向風速計に適用した例を図7に示す。回転翼機用のものと同じ形態でも問題ないが、上下方向の気流を測定する必要がないときには、図のように支持棒を3本として、上から見たときの支持棒の軸芯が三角形の各頂点に位置するように植設する。基体1に取り付けた超音波送受信機と支持棒11、12、13に取り付けた超音波送受信機とは、図のように上下方向にずれた位置に配置することによって、後流に基づく気流の乱れの影響を少なくすることができる。また地上設置の場合、支持棒脱落時の危険性は搭載時ほど高くはないので、支持棒を基体に貫通させる必要性は少ない。気温の計測は、一定かつ既知の超音波伝搬経路間を往復する超音波の伝搬時間を測定することにより求められ、空中の気温を直接計測できるので百葉箱は不要である。以上により、風向風速および気温を計測するシステムを構成する。
【0026】
超音波風速計は故障が少なく、定期的なメンテナンスも不要なことから、トンネル内などメンテナンスが困難な場所で使用されている。図8はこの利点を生かして本発明による多数の超音波式エアデータセンサを公衆通信回線で接続した広域気象観測システムヘの応用例を示す。メンテナンスが困難な無人の観測点を含めて多数の観測点を各地に配置し、それぞれの観測点に超音波式エアデータセンサを設置して公衆通信回線で気象データの管理センターにつなぐ。中央に管理者のサーバーシステムを設置してセンター機能を持たせ、各地の利用者側にはデータ受信と解析を行うことができる端末機を備える。利用者は端末機で自身の設置するセンサだけでなく、他の地域のデータをも含めて観測データを受信することができるし、共通のソフトをインストールするなりして備えることにより、解析処理を端末機で行うこともできる。管理者は、通信用のサーバーを管理するとともにセンサの故障モニタなどを行う。信号処理器では風向風速気温を演算する必要はなく、単に計測信号を公衆通信回線に送出するだけである。前記演算は汎用計算機上で動作するソフトウェアを利用者が自身の解析システムにインストールして行う。このことにより、信号処理器のハードウェア経費が低減されるとともにソフトウェアの改良に対応しやすくなる。
【0027】
【発明の効果】
本発明の超音波式エアデータ補正方法は、対向する1対の超音波送受信機により風速を間欠的に連続測定するシステムにおいて、検出値が不連続に変化したときは、その検出値に使用する超音波の1周期の整数倍を減算し前検出値に最も近い誤差推定値に補正するものであるから、内外雑音の影響による測定誤差を有効に低減させることができる。
【0028】
また、本発明の超音波式エアデータセンサは、対向する1対の超音波送受信機を伝搬経路の方向を異ならせて複数個配置組み合わせたものであって、該超音波送受信機の送受信表面がその支持部の面と滑らかに連続して凹凸の無い形状とすると共に、主な風速方向に対して前記支持部を前後に配置した構成を採ることにより、乱流の発生を低減させ測定の安定性を高めた。
【0029】
本発明の超音波式エアデータセンサは、対向する1対の超音波送受信機を伝搬経路の方向を異ならせて複数個配置組み合わせたものであって、その数は最低限必要な数より余分に冗長性を持たせて配置し、検知した風向情報に基づき風下側の超音波送受信機の測定値を利用しない風速ベクトル算出手段を備える構成を採用したことにより、装置自体により発生する後流の影響を受ける前記超音波送受信機の検出値を除外して測定精度を向上させた。また、風下側の超音波送受信機の測定値を利用しない判定基準として誤差推定値の大小を利用するものは影響のない時には前記超音波送受信機の検出値をも有効に取り込むことができる。
【0030】
対向する1対の超音波送受信機を伝搬経路の方向を異ならせて複数個配置組み合わせたものであって、その数は最低限必要な数より余分に冗長性を持たせて配置し、前記超音波送受信機が故障または測定不能状態となったことを検知する手段を備える構成を採用した本発明の超音波式エアデータセンサは、前記超音波送受信機の一部が故障または測定不能状態となった際には前記超音波送受信機の検出値を除外して風速を測定することにより安定した測定を可能とする。
【0031】
基体に設置された超音波送受信機と該基体を中心に同心円状に配置された超音波送受信機間において1対の超音波伝搬経路が形成されるものにおいて、前記超音波送受信機を固定する支持棒を前記基体に貫通させた構造とする本発明の超音波式エアデータセンサは、支持棒と基体との接合部分が破壊されても前記超音波送受信機支持部が脱落することがない。
【0032】
基体に設置された超音波送受信機と該基体を中心に同心円状に配置された超音波送受信機間で1対の超音波伝搬経路が形成される地上設置用のものにおいて、前記同心円状に配置された超音波送受信機は前記基体に設置された超音波送受信機より低い位置に取り付ける構成を採用した本発明の超音波式エアデータセンサは、従来の気象観測用超音波風速計よりもセンサの支持棒により発生する気流の乱れの影響を受けにくいので、全方位の気流に対して高精度となり、強風時の計測能力も向上する。また、このセンサには可動部が無く、高度の製作精度が要求されない超音波風速計として精度の高い計測ができる。しかも、同時に気温が計測でき、百葉箱を必要としないため観測システム全体を小型化できる。
【0033】
基体に設置された超音波送受信機と該基体を中心に同心円状に配置された超音波送受信機間において1対の超音波伝搬経路が形成される地上設置用の多数の超音波式エアデータセンサを公衆通信回線で気象データの管理センターに接続すると共に、各地の端末機を公衆通信回線で気象データの管理センターに接続した広域気象観測システムは、大がかりなハードを必要とせず、広域の気象状態を簡便に情報収集できると共に、センターで処理した各地の気象情報を各端末でも簡単に利用することができる。
【0034】
本発明に係る超音波式エアデータセンサと、大気圧センサと、真対気速度から等価対気速度を補正演算する手段とを備えた本発明の航空機用計測システムは、ピトー管と同じ等価対気速度測定値を得ることができ、その結果として低速飛行時の速度表示が従来より高精度となり、航空機の飛行安全性を向上させることができる。
【図面の簡単な説明】
【図1】一般的な超音波風速計の原理説明図である。
【図2】本発明によるエアデータセンサ・プローブを航空機用に具体化した形状であり、Aは前方からの正面図であり、Bは側面図である。
【図3】本発明によるエアデータセンサでの気流測定原理図である。
【図4】本発明によるエアデータセンサを回転機用に具体化した実施例を示す図である。
【図5】本発明によるエアデータセンサの測定値の不連続変化量推定値を示す図である。
【図6】本発明によるエアデータセンサを回転翼機用に設置搭載した例を示す図である。
【図7】本発明によるエアデータセンサ・プローブを気象観測用に具体化した形状であり、Aは上方からの図であり、Bは側面図である。
【図8】本発明によるエアデータセンサを広域気象観測システムに応用した例を示す図である。
【符号の説明】
W 風速
D 超音波伝搬距離
V 対気速度
a 音速
R メインロータ
B 気圧計
S センサ・プローブ
1 基体
11,12,13,14 支持棒
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic air data sensor for measuring airspeed, wind direction, wind temperature, and air temperature, and particularly to a method suitable for low-speed aircraft in airspeed measurement. The airspeed indicates the direction and speed of movement of a three-dimensional object with respect to the airflow, and the response of the airspeed measurement is not so important in the measurement for steering, but the airspeed is used. Responsivity is important for turbulence measurement. In addition, in this specification, a low-speed aircraft refers to a short-range take-off and landing aircraft, a vertical take-off and landing aircraft, a rotary wing aircraft, a glider, an airship, a balloon, and the like.
[0002]
[Prior art]
Normally, a pitot tube used in an aircraft measures the total pressure and static pressure of air, and calculates the airspeed from the dynamic pressure of the difference, and the airflow direction is measured by an arrow blade or the like. . By the way, since the dynamic pressure measured by the pitot tube is proportional to the square of the airspeed, the measurement error increases at low speeds, and the pitot tube is suitable for low-speed speed measurement. Absent. The area where the pitot tube can be used is usually 30 to 40 m / s or more. If the speed is lower than that, or if the airflow direction is significantly different from the body axis, the speed measurement itself becomes impossible. And since the arrow blade for measuring the airflow direction has a movable part, there is a problem that the response is lowered or the vibration is caused by the mass of the arrow blade. Therefore, in a general aircraft equipped with a single pit tube as an airspeed sensor, a measurement error of an airspeed measured in a low speed range is large or cannot be measured. Since the Pitot tube cannot measure the airflow in the low-speed region as described above, it is naturally not suitable as an anemometer for weather observation.
[0003]
On the other hand, the ultrasonic anemometer used for weather observations utilizes the fact that the propagation time of ultrasonic waves propagating in a certain section changes under the influence of wind, and at predetermined intervals in all directions. A plurality of (usually six) ultrasonic transmitters / receivers arranged can measure wind in all directions on a plane. For example, Patent Document 1 corresponds to this. However, due to the aerodynamic interference between the ultrasonic transceivers, it is difficult to measure in strong winds. Measurements of 20 m / s or less for aircraft that can be mounted on an aircraft, and 60 m / s or less for large equipment for ground installation. It is a possible area. In this measurable region, the measurement range on the high-speed side is not sufficient for use in an aircraft, and an ultrasonic anemometer for weather observation is not suitable for an airspeed measuring device mounted on an aircraft. Even when an ultrasonic anemometer is used for weather observation, aerodynamic interference between ultrasonic transmitters and receivers affects the airflow, which causes deterioration in the measurement accuracy of the wind direction in particular.
[0004]
The most common wind turbine type anemometer for weather observation has a movable part and a large mass, so when installed on an aircraft boom as an airspeed indicator, the rigidity of the boom is reduced to avoid the possibility of vibration. Must be higher. The boom needs to be long in order to make it less susceptible to the disturbance of the airflow by the aircraft itself, and it is difficult to increase the rigidity. Since the responsiveness of airflow measurement is not very good, it is not suitable for an airspeed measuring device mounted on an aircraft. When used for weather observation, it is very practical, but it is necessary to manufacture propellers and tails with high accuracy in order to measure with high accuracy, and there are many mechanical parts due to the presence of moving parts. It is difficult to reduce manufacturing costs. Although this is not a problem in ordinary weather observation, it is difficult to measure the vertical wind and the wind direction and wind speed with a very weak wind for special purposes.
[0005]
An ultrasonic airspeed sensor for an aircraft (Patent Document 2), which has been developed by the inventor first and has already filed a patent application, is for solving the above-mentioned drawbacks of the conventional device, and is mounted on a low-speed aircraft. It can be used for low speed flight. However, the airspeed sensor increases the measurement noise component in the region where the airspeed is 50 m / s or more, and may not be able to measure at a lower speed depending on the airflow angle. The former is caused by a step formed between the surface of the ultrasonic transceiver and the support part due to the ultrasonic transceiver being attached to the surface of the support part at an angle, and the structurally high speed In the area, it was found that the noise was generated by the turbulence of the airflow. In addition, the latter cause is that, due to the positional relationship between the support portions, the presence of an airflow angle at which a part of the ultrasonic transceiver enters the downstream region of the upstream ultrasonic transceiver support portion, the downstream side. It was found that the effect was due to the turbulence of the ultrasonic transceiver.
[0006]
[Patent Document 1]
JP-A-5-307087 "Ultrasonic wind direction and wind speed temperature measuring device"
Released on November 19, 1993
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2001-278196, "Aircraft Ultrasonic Airspeed Sensor"
Released on October 10, 2001
[0007]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, that is, an airspeed measuring device for an aircraft capable of measuring a relatively high speed region from a low speed region and capable of coping with a wide airflow angle, and a high airspeed measurement device. It is an object of the present invention to provide an ultrasonic air data sensor / probe which does not require any parts which require high manufacturing accuracy and which does not have a movable part capable of realizing a wind direction / wind speed / temperature measuring device for weather observation with high measurement accuracy.
[0008]
[Means for Solving the Problems]
The ultrasonic air data correction method of the present invention is used for a system in which a pair of ultrasonic transmitters / receivers intermittently measures wind speed intermittently when a detected value changes discontinuously. This is to subtract an integral multiple of one period of the ultrasonic wave and correct the error estimation value to the error estimation value closest to the previous detection value.
The ultrasonic air data sensor of the present invention has a transmission / reception surface of an ultrasonic transmitter / receiver that is smoothly continuous with the surface of its support portion and has no irregularities in order to reduce the occurrence of turbulence and increase the stability of measurement. At the same time, the support portions are arranged in front and rear with respect to the main wind direction. Also, a plurality of opposing ultrasonic transceivers are arranged and combined in different directions of the propagation path, and the number is set to be more redundant than the minimum required number and the arrangement wind speed is increased. By making the combination of ultrasonic transceivers for calculation redundant, the wind speed can be calculated without using the signal that is most affected by internal and external noise or the signal from the failed ultrasonic transceiver. I made it.
When mounted on an aircraft as an airspeed indicator, the support rod for fixing the ultrasonic transceiver is attached to the base so that the ultrasonic transceiver support does not fall off even if the joint between the support rod and the base is broken. Through the structure.
An ultrasonic air data sensor for ground installation in which a pair of ultrasonic propagation paths is formed between an ultrasonic transceiver installed on a base and an ultrasonic transceiver arranged concentrically around the base, In order to reduce the influence of the wake of the base, the ultrasonic transceivers arranged concentrically are mounted at a lower position than the ultrasonic transceiver installed on the base.
The wide-area meteorological observation system of the present invention is for ground installation in which a pair of ultrasonic propagation paths is formed between an ultrasonic transceiver installed on a base and an ultrasonic transceiver arranged concentrically around the base. A large number of ultrasonic air data sensors were connected to a weather data management center via a public communication line, and terminals in various places were connected to a weather data management center via a public communication line.
The aircraft measurement system according to the present invention corrects and calculates the equivalent airspeed from the ultrasonic air data sensor, the atmospheric pressure sensor, and the true airspeed to obtain the same equivalent airspeed measurement value as the pitot tube. Means.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a diagram showing the principle of an ultrasonic anemometer. When the ultrasonic wave propagates in the air, when the ultrasonic wave propagates in the forward direction with the wind, the propagation speed increases by the wind speed, and when the ultrasonic wave propagates in the reverse direction, the propagation speed decreases by the wind speed. Accordingly, the relationship between the propagation time of the ultrasonic wave and the wind speed, which are obtained by dividing the distance by the speed, is as follows.
W = D / 2 × (t2-T1) / (T1× t2) ‥‥ (1)
However,
W: Wind speed
D: Spacing between ultrasonic transmitter and receiver
t1: Propagation time of ultrasonic wave in forward direction to wind speed
t2: Propagation time of ultrasonic wave in the direction opposite to wind speed
At the same time, utilizing the fact that the propagation speed of the ultrasonic wave changes with the temperature, the temperature can be obtained by the following equation.
T = T0× (a / a0)2× (1 + Wv 2/ A2) ‥‥ (2)
a = D / 2 × (t1+ T2) / (T1× t2) ‥‥ (3)
However,
T: Temperature
T0: Standard temperature
a: Sound speed
a0: Sound speed at standard temperature
Wv: Wind velocity component perpendicular to the ultrasonic wave propagation direction
[0010]
In order to measure the propagation time of the ultrasonic wave, a pulsed ultrasonic wave is transmitted from the transceiver, received by the opposing transceiver, and its timing is measured. At this time, if the signal level at the time of reception decreases due to some influence such as airflow or noise, the head of the pulse signal cannot be recognized, and a measurement time delay corresponding to an integral multiple of the wavelength of the ultrasonic wave occurs. Sometimes. Even if a circuit for automatically increasing the gain is provided, the delay is not always completely eliminated because the noise level becomes relatively high. Since a large discontinuity occurs in the measurement signal due to this delay, a correct measurement value can be obtained by subtracting an integer multiple of τ obtained by the following equation from the propagation time measurement value according to the magnitude of the discontinuity. it can.
τ = 1 / f ‥‥ (4)
However,
τ: time for one wavelength
f: Frequency of ultrasonic wave used
[0011]
The discontinuous amount changes according to the wind speed, and can be estimated by the following equation. If the received signal on the leeward side is delayed by one wavelength,
dW = W−D / 2 × [(t2-T1−τ) / {(t1+ Τ) × t2}] ‥‥ (5)
If the received signal on the windward side is delayed by one wavelength,
dW = W−D / 2 × [(t2-T1+ Τ) / {t1× (t2+ Τ)}] ‥‥ (6)
If both received signals are delayed by one wavelength,
dW = W−D / 2 × [(t2-T1) / {(T1+ Τ) × (t2+ Τ)}] ‥‥ (7)
However,
dW: Discontinuous amount estimation value
W: Wind speed
D: Spacing between ultrasonic transmitter and receiver
t1: Propagation time of ultrasonic wave in forward direction to wind speed
t2: Propagation time of ultrasonic wave in the direction opposite to wind speed
τ: time for one wavelength
[0012]
A threshold value for determining the discontinuous amount is set in advance, and when the measured value changes discontinuously, an integer multiple of the separately stated discontinuous amount estimated value closest to the discontinuous amount is subtracted from the measured value, Use that value as an accurate measurement. In practice, the discontinuity of the measured value is most often only a delay of one wavelength, that is, one time the estimated value. The correction of the measurement value based on the discontinuous amount estimation value is performed only when the reception level of the ultrasonic wave decreases. This is because the same discontinuity occurs when returning from an incorrect state to a normal state.
If the same number of wavelength delays occur in both the upwind and downwind received signals, the amount of discontinuity is small, and in practice, a clear difference from a normal measured value fluctuation cannot be recognized. However, in general, the received signal on the leeward side is more susceptible to the turbulence of the airflow, so that it is likely to be overwhelmingly discontinuous. What happens is very rarely stochastic.
[0013]
Conventionally, ultrasonic anemometers for meteorological observations need to detect wind speeds in all directions with the same accuracy. Therefore, six ultrasonic transceivers are mounted on six support rods, which complicates the shape and causes aerodynamic turbulence. Streams and acoustic noise were likely to occur. However, aircraft generally fly at high speeds in only one direction and cannot fly in other directions or fly at very low speeds. Therefore, as an airspeed sensor for an aircraft, it is not necessary to be able to measure airflow in all directions in the same way, and only a single direction can be measured in a relatively high speed range. Therefore, the arrangement of the ultrasonic transceiver necessary for the ultrasonic anemometer is devised from the viewpoint of emphasizing the measurement of the airflow in one direction, the overall shape of the device is simplified, and the aerodynamic noise and the turbulence of the airflow are reduced. I thought that. In particular, if there is an object upstream of the ultrasonic transmitter / receiver, it is easily affected by the turbulence of the airflow. Therefore, a structure that causes turbulence of the airflow is arranged upstream of the ultrasonic transmitter / receiver, placing importance on the airflow in one direction. It is important not to do so. In Patent Document 2 “Aircraft ultrasonic airspeed sensor”, which was the inventor's earlier invention, the above object was able to be achieved to some extent. Due to the inclined mounting, a step was formed between the surface of the ultrasonic transceiver and the separately-supported portion, and in a high-speed region, the airflow was disturbed and noise was generated. In the present invention, the entire configuration is devised so that the transmission / reception axis of the ultrasonic wave is perpendicular to the surface of the support, so that the surface of the ultrasonic transceiver is smoothly connected to the surface of the support, and the turbulence of airflow Can now be minimized. This shape is also effective when used as an anemometer for weather observation.
[0014]
No matter how the ultrasonic transceiver is arranged, there is always an airflow direction that is affected by turbulence when dealing with airflow in all directions. For this reason, in the present invention, redundancy is provided by arranging the combination of the ultrasonic transceivers more than the minimum required three sets, and the utilization rate and the measurement accuracy are improved by not using incorrect data. I did it. This configuration also ensures a function that operates effectively even when a part of the ultrasonic transceiver fails.
[0015]
The basic principle of the present invention will be described with reference to FIGS. FIG. 2 shows a probe shape, in which A is a front view from the front, and B is a side view. Four support rods 11, 12, 13, and 14 are planted on the base body 1 such that the ends of the shafts are parallel to each other and the axes of the shafts are located at the vertices of a quadrangle. It is a transceiver support. This probe shape is designed to minimize the turbulence in the airflow, where the direction of flow velocity, which is the main detection component of the aircraft, coincides with the axial direction from the front of the fuselage from the viewpoint of ensuring the stability of ultrasonic measurement. It was devised. When the present invention is applied to the measurement of the airspeed of an aircraft, as described above, the main component in the direction of flow velocity from the front to the rear of the aircraft is mainly. Therefore, in order to detect the component, the ultrasonic transceiver must be arranged in a different position in the front-rear direction, and the surface of the ultrasonic transceiver is perpendicular to the X axis in order to be installed in accordance with the transmission / reception axis. Will be inclined. For this reason, the arrangement of the ultrasonic transceiver was considered such that the tip of the support rod was formed in a streamline shape, and the surface thereof was parallel and smoothly connected to the surface of the ultrasonic transceiver. Then, a plurality of propagation paths for transmitting and receiving ultrasonic waves are formed, and the flow velocity component of the fluid is measured as three-dimensional information based on the propagation time information on which the flow velocity component of the fluid is superimposed. Specifically, three sets of six ultrasonic transceivers of a conventional ultrasonic anemometer are provided as four sets and eight sets, and the base 1 and the support rods 11, as shown in FIG. An ultrasonic transceiver is fixed to the fuselage so that the axial directions of 12, 13, and 14 face the front of the aircraft, and an ultrasonic transceiver is attached to the base 1 and the support rods 11, 12, 13, and 14, and an ultrasonic transmission and reception path is formed. I did it. Since the ultrasonic transmission / reception path is formed between the ultrasonic transmission / reception devices arranged at different positions in the longitudinal direction of the body, the flow velocity of the component in the longitudinal direction of the body can be detected. Moreover, since the probe base 1 and the support rods 11, 12, 13, and 14 have the least resistance to the airflow in this direction, the flow state is stable and accurate measurement can be performed. In addition, as shown in FIG. 4, by providing the axes of the support rods 11, 12, 13, and 14 with a slight opening angle toward the front, the length of the support rods can be shortened, so that the rigidity is increased. Weight can be reduced.
[0016]
When the present invention is applied to and used in an anemometer for weather observation on the ground, the front when mounted on an aircraft is used vertically upward. In this case, it is necessary to cope with airflow from all directions in the horizontal direction, but the shape according to the present invention is not necessarily suitable for airflow from all directions. However, in the case of meteorological observation, it is sufficient to measure a wind speed of 60 m / s at the maximum, and it is not necessary to measure an airflow as high as an airspeed of an aircraft. Furthermore, due to the redundancy described later, the signal from the ultrasonic transmitter / receiver on the leeward side is not used, so that the wind direction and wind speed can be measured with high accuracy by always using the optimal signal for the airflow in all directions. it can. In the case of ground-based meteorological observation, since the weight limit is not as strict as that for aircraft, it is possible to improve the strong wind measurement performance by making it larger than for aircraft.
[0017]
With the arrangement configuration of the ultrasonic transceiver as described above, a three-dimensional airspeed or wind direction can be obtained. This arrangement places the most importance on the measurement of the flow velocity in the direction indicated by the arrow. As shown in FIG. 3, an X-axis is defined in the front-rear direction of the aircraft, a Y-axis is defined in the left-right direction, and a rectangular coordinate system of the Z-axis is defined in the up-and-down direction. The velocity component Wn of the airflow in the ultrasonic wave propagation direction between each pair of ultrasonic transceivers is expressed by the following equation.
Wn= Vxsinθn + (Vysinφn + Vzcosφn) × cosθn (8)
However,
Vx: X direction component of airspeed
Vy: Y-direction component of airspeed
Vz: Z component of airspeed
Wn: Velocity component of the airflow in the direction of the ultrasonic transceiver (path n)
θn: YZ plane and WnAngle with
φn: Z axis and W in YZ planenAngle with
Here, assuming that the arrangement of each sensor is a right angle as shown in FIG. 3, that is, φ1 is 90 degrees, φ2 is 180 degrees, and φ3 is 270 degrees.
W1= Vxsin θ1 + Vycos θl (9)
W2= Vxsin θ2-Vycos θ2 (10)
W3= Vxsin θ3-Vycos θ3 (11)
Then, if θ1 = θ2 = θ3 = θ, then
Vx = (W1+ W3) / 2 sin θ ‥‥ (12)
Vy = (W1-W3) / 2cosθ ‥‥ (13)
Vz = (W1+ W3-2 x W3) / 2cosθ ‥‥ (14)
Thus, the airspeed can be obtained from this equation.
[0018]
When the velocity component of the airflow in the ultrasonic wave propagation direction obtained by each set of ultrasonic transceivers changes discontinuously, it is measured by subtracting an integer multiple of the discontinuous estimated value closest to the discontinuity. Errors can be reduced. Assuming that an integer multiple of that time is N, the value of N is 0 when a normal measurement is being performed, but the value increases to N when a discontinuous change occurs in the measured value due to a turbulence in the airflow or a failure. I do. By constantly monitoring the value of N of each ultrasonic transceiver set and not using the measured value of the ultrasonic transceiver set having the largest value of N, the airflow finally obtained by the above equation can be obtained. Speed reliability and measurement accuracy are improved.
[0019]
Further, even when the measured value of the ultrasonic propagation time becomes 0 or a value exceeding the threshold value, the measured value of the corresponding ultrasonic transceiver set is not used. This is because such a state may be a failure of the ultrasonic transceiver, or an unmeasurable state due to airflow turbulence or noise.
[0020]
When mounting an object exposed to the outside of the aircraft, it is natural to confirm that the object is strong enough by strength calculation or strength test, but it is also necessary to consider deterioration due to aging and corrosion . In the present invention, since the support rods 11, 12, 13, and 14 are configured to penetrate the base 1, in the event that the joint between the base and the support rod is broken by welding or the like, the support rod is There is no fear of falling off even if it shifts or rotates.
[0021]
Aircraft usually display the equivalent airspeed obtained by a pitot tube on a flight control instrument, which the pilot uses to fly. This is because the influence of the airflow on the airframe is related not only to the speed of the airflow but also to the density of the atmosphere. Since the airspeed obtained by the ultrasonic sensor is a true airspeed, by combining with an atmospheric pressure sensor, the equivalent airspeed is calculated by the following correction formula, and a measurement value equivalent to that of a conventional pitot tube is obtained. A measurement system can be constructed.
VEAS = VTAS {P / (ρoRT)}0.5 ‥‥ (15)
However,
VEAS: equivalent airspeed
VTAS: true airspeed
P: Atmospheric pressure
R: gas constant
T: Atmospheric temperature
ρo: standard atmospheric density
[0022]
【Example】
Hereinafter, an example manufactured for measuring airspeed in a rotary wing aircraft is shown in FIG. 4, and the present embodiment will be described. In a general rotary wing aircraft, the maximum airspeed in the forward direction is about 80 m / s, and the speed when flying in other directions, for example, up, down, left, and right is extremely low. By applying the present invention, it is expected that the airspeed can be measured in almost the entire flight speed range of the rotary wing aircraft. In this embodiment, the axes of the four support rods 11, 12, 13, and 14 are not parallel to the axis of the base 1, but have a slight opening angle β (10 degrees in this embodiment) as shown in the figure. It is held and attached. This is because high-speed conditions, that is, strong airflow in a rotary wing aircraft, are limited only in the forward direction, so it is necessary to have a structure that is rigid and low in weight, and it is structurally disturbing the airflow. The turbulence of the air flow at the time is generated as a wake, and thus has been considered in view of the fact that the ultrasonic wave propagation path is not affected. Incidentally, in this embodiment, the propagation path length between the ultrasonic transceivers was 50 mm, the θ angle was 20 degrees, and the wavelength of the ultrasonic wave used was 200 kHz. Further, an anti-ice heater for preventing icing is built in the base 1 and the tip of each support rod. In addition, since the ultrasonic waves are caused to flow on the leeward side according to the airspeed of the airframe, the ultrasonic transceivers are not linearly opposed to each other, but are installed on the windward side with an α angle as shown in FIG. I did it. As a result, the propagation path of the ultrasonic wave has a bow shape bulging to the windward side as shown in the figure. The transmitting / receiving surface of the ultrasonic transceiver is formed as a smooth continuous surface with the surface of the support rod so as not to have an uneven shape. Since the directivity of the ultrasonic transceiver used in this embodiment is 15 degrees on one side, if α is 10 degrees and the sound speed is 340 m / s, the ultrasonic wave is transmitted when the airspeed of the aircraft is 60 m / s. Transmission and reception are performed at the center point of the covered area, and a range from about 150 m / s forward to about 30 m / s backward is a measurement range based on directivity.
[0023]
FIG. 5 shows the discontinuous change estimated value of the measured value. Since the maximum speed of the rotary wing aircraft is usually 70 m / s or less, the airflow component in the ultrasonic path direction rarely exceeds 30 m / s. In addition, when the same number of wavelength delays occur in the received signals on both the windward and leeward sides, the amount of discontinuity is small as shown in FIG. In consideration of these, the threshold value for determining the discontinuity amount is set to ± 3 m / s, and when the measured value changes discontinuously beyond ± 3 m / s, the discontinuity closest to the discontinuity amount is set. An integer multiple of the continuous amount estimate is subtracted from the measured value, and the value is used as an accurate measured value. In practice, the discontinuity of the measured value is most often only a delay of one wavelength, that is, one time the estimated value. The data update period is 50 ms, and it is not considered as a normal physical phenomenon that a flow velocity change of ± 3 m / s or more actually occurs during this period. Absent.
[0024]
FIG. 6 shows an example in which the sensor according to the present embodiment is installed and mounted on a rotary wing machine. The rotary wing machine has a phenomenon in which the forward speed is remarkably large in other directions, and the main rotor R is blown down. Therefore, in order to avoid the influence on the airspeed measurement, the sensor S is attached to the front end of the long rod-shaped base body 1 that coincides with the forward direction of the fuselage so that the support rods 11 and 12 are located forward of the front end of the main rotor R. , 13, and 14 are mounted. The airspeed measured by the ultrasonic anemometer is a true airspeed. However, by installing the barometer B at the same time and correcting it with the measured value, the airspeed is measured in the same manner as a pitot tube used in a normal aircraft. An equivalent airspeed can be obtained.
[0025]
FIG. 7 shows an example in which the present invention is applied to a ground anemometer for weather observation. There is no problem with the same form as that for the rotary wing machine, but when it is not necessary to measure the airflow in the vertical direction, the support rods are three as shown in the figure and the axis of the support rod when viewed from above is triangular. It is planted so as to be located at each vertex. By arranging the ultrasonic transceiver mounted on the base 1 and the ultrasonic transceiver mounted on the support rods 11, 12, and 13 at positions vertically displaced as shown in the figure, the turbulence of the airflow based on the wake is obtained. Can be reduced. In the case of installation on the ground, the risk of dropping the support rod is not as high as that at the time of mounting, so that it is not necessary to penetrate the support rod through the base. The measurement of the temperature is obtained by measuring the propagation time of the ultrasonic wave reciprocating between the constant and known ultrasonic wave propagation paths, and the air temperature can be directly measured. As described above, a system for measuring the wind direction and the wind speed and the air temperature is configured.
[0026]
Ultrasonic anemometers are used in places where maintenance is difficult, such as in tunnels, because they have few failures and do not require regular maintenance. FIG. 8 shows an example of application to a wide area weather observation system in which a number of ultrasonic air data sensors according to the present invention are connected by a public communication line by taking advantage of this advantage. Numerous observation points including unmanned observation points that are difficult to maintain are located in various places, and ultrasonic air data sensors are installed at each observation point and connected to a weather data management center via a public communication line. An administrator server system is installed in the center to provide a center function, and users in each region are equipped with terminals capable of receiving and analyzing data. The user can receive the observation data including the data of other areas as well as the sensors installed by the user at the terminal, and the analysis processing can be performed by installing and preinstalling common software. It can also be performed on a terminal. The administrator manages the communication server and monitors the failure of the sensor. The signal processor does not need to calculate the wind direction, the wind speed, and the temperature, but simply sends the measurement signal to the public communication line. The calculation is performed by a user installing software operating on a general-purpose computer in his / her analysis system. This reduces the hardware cost of the signal processor and makes it easier to respond to software improvements.
[0027]
【The invention's effect】
The ultrasonic air data correction method of the present invention is used for a system in which a pair of ultrasonic transmitters / receivers intermittently measures wind speed intermittently when a detected value changes discontinuously. Since an integral multiple of one cycle of the ultrasonic wave is subtracted and corrected to an error estimation value closest to the previous detection value, a measurement error due to the influence of internal and external noise can be effectively reduced.
[0028]
Also, the ultrasonic air data sensor of the present invention is a combination of a plurality of opposed ultrasonic transmitters / receivers arranged in different directions of the propagation path, and the transmitting / receiving surface of the ultrasonic transmitter / receiver is By adopting a configuration in which the shape of the support is smoothly continuous with the surface of the support and has no irregularities, and the support is arranged back and forth in the main wind direction, the occurrence of turbulence is reduced and the measurement is stabilized. I raised the character.
[0029]
The ultrasonic air data sensor according to the present invention is a combination of a plurality of opposed ultrasonic transceivers arranged in different directions of the propagation paths, and the number is extra than the minimum required number. By adopting a configuration that has a wind speed vector calculation means that is arranged with redundancy and does not use the measured value of the leeward side ultrasonic transceiver based on the detected wind direction information, the effect of the wake generated by the device itself The accuracy of the measurement was improved by excluding the detection values of the ultrasonic transceiver receiving the above. In addition, when a criterion that uses the magnitude of the error estimation value as a criterion that does not use the measurement value of the ultrasonic transceiver on the leeward side has no influence, the detection value of the ultrasonic transceiver can be effectively captured when there is no influence.
[0030]
A plurality of opposing ultrasonic transceivers are arranged and combined with different directions of propagation paths, and the number thereof is arranged with extra redundancy than the minimum required number. The ultrasonic air data sensor according to the present invention, which employs a configuration including means for detecting that the ultrasonic transceiver has failed or is in a measurement-disabled state, is such that a part of the ultrasonic transceiver is in a failure or measurement-disabled state. In this case, a stable measurement can be performed by measuring the wind speed while excluding the detection value of the ultrasonic transceiver.
[0031]
A support for fixing the ultrasonic transceiver, wherein a pair of ultrasonic propagation paths are formed between the ultrasonic transceiver installed on the base and the ultrasonic transceiver arranged concentrically around the base. In the ultrasonic air data sensor of the present invention having a structure in which a rod penetrates through the base, the ultrasonic transceiver supporting portion does not fall off even when the joint between the support rod and the base is broken.
[0032]
An ultrasonic transmitter / receiver installed on a base and an ultrasonic transmitter / receiver arranged concentrically around the base, wherein a pair of ultrasonic transmission paths are formed on the ground, and the ultrasonic transmitter / receiver is arranged concentrically. The ultrasonic air data sensor of the present invention, which employs a configuration in which the ultrasonic transmitter / receiver is mounted at a position lower than the ultrasonic transmitter / receiver installed on the base body, is a sensor having a smaller size than a conventional ultrasonic anemometer for weather observation. Since it is less susceptible to the turbulence of the airflow generated by the support rod, the accuracy is high with respect to the omnidirectional airflow, and the measurement ability in strong winds is also improved. In addition, this sensor has no moving parts and can perform highly accurate measurement as an ultrasonic anemometer that does not require a high degree of manufacturing accuracy. In addition, the temperature can be measured at the same time, and the entire observation system can be miniaturized because a one hundred box is not required.
[0033]
Numerous ultrasonic air data sensors for ground installation, wherein a pair of ultrasonic propagation paths are formed between an ultrasonic transceiver installed on a base and an ultrasonic transceiver arranged concentrically around the base. Is connected to a weather data management center via a public communication line, and a wide-area weather observation system that connects terminals in various places to a weather data management center via a public communication line does not require extensive hardware, Information can be easily collected, and the weather information of each place processed at the center can be easily used at each terminal.
[0034]
The aircraft measurement system of the present invention including the ultrasonic air data sensor according to the present invention, an atmospheric pressure sensor, and a unit that corrects and calculates an equivalent airspeed from a true airspeed is provided by the same equivalent pair as the pitot tube. The air speed measurement value can be obtained, and as a result, the speed display at low speed flight becomes more accurate than before, and the flight safety of the aircraft can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of a general ultrasonic anemometer.
FIG. 2 is a shape embodying an air data sensor / probe according to the present invention for an aircraft, wherein A is a front view from the front, and B is a side view.
FIG. 3 is a diagram illustrating an airflow measurement principle in an air data sensor according to the present invention.
FIG. 4 is a diagram showing an embodiment in which the air data sensor according to the present invention is embodied for a rotating machine.
FIG. 5 is a diagram showing a discontinuous change estimated value of a measurement value of the air data sensor according to the present invention.
FIG. 6 is a diagram showing an example in which an air data sensor according to the present invention is installed and mounted for a rotary wing aircraft.
FIGS. 7A and 7B show a shape of an air data sensor / probe according to the present invention embodied for weather observation, wherein A is a top view and B is a side view.
FIG. 8 is a diagram showing an example in which the air data sensor according to the present invention is applied to a wide-area weather observation system.
[Explanation of symbols]
W wind speed
D Ultrasonic propagation distance
V airspeed
a sound velocity
R main rotor
B Barometer
S Sensor probe
1 Substrate
11,12,13,14 Support rod

Claims (10)

対向する1対の超音波送受信機により風速を間欠的に連続測定するシステムにおいて、検出値が不連続に変化したときは、その検出値に使用する超音波の1周期の整数倍を減算し前検出値に最も近い誤差推定値に補正することを特徴とする内外雑音の影響による測定誤差を低減させる超音波式エアデータ補正方法。In a system in which the wind speed is intermittently and continuously measured by a pair of opposed ultrasonic transceivers, when the detected value changes discontinuously, an integer multiple of one cycle of the ultrasonic wave used for the detected value is subtracted. An ultrasonic air data correction method for reducing a measurement error due to the influence of internal and external noise, wherein the correction is performed to an error estimated value closest to a detected value. 対向する1対の超音波送受信機を伝搬経路の方向を異ならせて複数個配置組み合わせたものであって、該超音波送受信機の送受信表面がその支持部の面と滑らかに連続して凹凸の無い形状とすると共に、主な風速方向に対して前記支持部を前後に配置することにより、乱流の発生を低減させ測定の安定性を高めたことを特徴とする超音波式エアデータセンサ。A plurality of opposed ultrasonic transceivers are arranged and combined with different directions of propagation paths, and the transmitting and receiving surfaces of the ultrasonic transceivers are smoothly continuous with the surface of the supporting portion, and the irregularities are formed. An ultrasonic air data sensor characterized by having no shape and arranging the support part back and forth in the main wind direction to reduce turbulence and enhance measurement stability. 対向する1対の超音波送受信機を伝搬経路の方向を異ならせて複数個配置組み合わせたものであって、その数は最低限必要な数より余分に冗長性を持たせて配置し、検知した風向情報に基づき風下側の超音波送受信機の測定値を利用しない風速ベクトル算出手段を備えることにより、装置自体により発生する後流の影響を受ける前記超音波送受信機の検出値を除外して測定精度を向上させたことを特徴とする超音波式エアデータセンサ。A plurality of opposed ultrasonic transceivers are arranged and combined with different directions of propagation paths, and the number is arranged with redundancy more than the minimum required number and detected. By providing a wind speed vector calculating means that does not use the measured value of the leeward side ultrasonic transceiver based on the wind direction information, measurement is performed excluding the detected value of the ultrasonic transceiver which is affected by the wake generated by the device itself An ultrasonic air data sensor having improved accuracy. 風下側の超音波送受信機の測定値を利用しない判定基準として誤差推定値の大小を利用する請求項3に記載の超音波式エアデータセンサ。4. The ultrasonic air data sensor according to claim 3, wherein the magnitude of the error estimation value is used as a criterion for not using the measurement value of the ultrasonic transceiver on the leeward side. 対向する1対の超音波送受信機を伝搬経路の方向を異ならせて複数個配置組み合わせたものであって、その数は最低限必要な数より余分に冗長性を持たせて配置し、前記超音波送受信機が故障または測定不能状態となったことを検知する手段を備えることにより、前記超音波送受信機の一部が故障または測定不能状態となった際には前記超音波送受信機の検出値を除外して風速を測定することを特徴とする超音波式エアデータセンサ。A plurality of opposing ultrasonic transceivers are arranged and combined with different directions of propagation paths, and the number thereof is arranged with extra redundancy than the minimum required number. By providing means for detecting that the ultrasonic transceiver has failed or has become unmeasurable, when a part of the ultrasonic transceiver has failed or becomes unmeasurable, the detection value of the ultrasonic transceiver has been detected. An ultrasonic air data sensor characterized by measuring a wind speed by excluding the following. 故障または測定不能状態を判定基準として、超音波伝搬時間測定値が0または閾値を越えるものであることを利用する請求項5に記載の超音波式エアデータセンサ。6. The ultrasonic air data sensor according to claim 5, wherein a failure or an unmeasurable state is used as a criterion, and the fact that the ultrasonic propagation time measured value is 0 or exceeds a threshold value is used. 基体に設置された超音波送受信機と該基体を中心に同心円状に配置された超音波送受信機間において1対の超音波伝搬経路が形成されるものにおいて、前記超音波送受信機を固定する支持棒を前記基体に貫通させた構造とすることにより、支持棒と基体との接合部分が破壊されても前記超音波送受信機支持部が脱落しないことを特徴とする超音波式エアデータセンサ。A support for fixing the ultrasonic transceiver, wherein a pair of ultrasonic propagation paths are formed between the ultrasonic transceiver installed on the base and the ultrasonic transceiver arranged concentrically around the base. An ultrasonic air data sensor having a structure in which a rod penetrates through the base so that the ultrasonic transceiver supporting portion does not fall off even when a joint between the support rod and the base is broken. 基体に設置された超音波送受信機と該基体を中心に同心円状に配置された超音波送受信機間において1対の超音波伝搬経路が形成される地上設置用のものにおいて、前記同心円状に配置された超音波送受信機は前記基体に設置された超音波送受信機より低い位置に取り付けることにより、基体の後流の影響を軽減させたことを特徴とする超音波式エアデータセンサ。An ultrasonic transmitter / receiver installed on a base and an ultrasonic transmitter / receiver disposed concentrically around the base, wherein a pair of ultrasonic transmission paths is formed on the ground, and the ultrasonic transmitter / receiver is arranged concentrically. An ultrasonic air data sensor characterized in that the effect of the wake of the substrate is reduced by mounting the ultrasonic transmitter / receiver at a position lower than the ultrasonic transmitter / receiver installed on the base. 基体に設置された超音波送受信機と該基体を中心に同心円状に配置された超音波送受信機間において1対の超音波伝搬経路が形成される地上設置用の多数の超音波式エアデータセンサを公衆通信回線で気象データの管理センターに接続すると共に、各地の端末機を公衆通信回線で気象データの管理センターに接続した広域気象観測システム。Numerous ultrasonic air data sensors for ground installation, wherein a pair of ultrasonic propagation paths are formed between an ultrasonic transceiver installed on a base and an ultrasonic transceiver arranged concentrically around the base. A wide-area meteorological observation system that connects to a weather data management center via a public communication line and terminals in various locations to a weather data management center via a public communication line. 請求項2乃至9のいずれかに記載の超音波式エアデータセンサと、大気圧センサと、真対気速度から等価対気速度を補正演算する手段とを備えることにより、ピトー管と同じ等価対気速度測定値を得る航空機用計測システム。10. An ultrasonic air data sensor according to any one of claims 2 to 9, an atmospheric pressure sensor, and means for correcting and calculating an equivalent airspeed from a true airspeed, so that an equivalent air sensor equivalent to a pitot tube is provided. Aircraft measurement system that obtains airspeed measurements.
JP2003055386A 2003-03-03 2003-03-03 Ultrasonic air data sensor Expired - Lifetime JP3817610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055386A JP3817610B2 (en) 2003-03-03 2003-03-03 Ultrasonic air data sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055386A JP3817610B2 (en) 2003-03-03 2003-03-03 Ultrasonic air data sensor

Publications (2)

Publication Number Publication Date
JP2004264184A true JP2004264184A (en) 2004-09-24
JP3817610B2 JP3817610B2 (en) 2006-09-06

Family

ID=33119411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055386A Expired - Lifetime JP3817610B2 (en) 2003-03-03 2003-03-03 Ultrasonic air data sensor

Country Status (1)

Country Link
JP (1) JP3817610B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014770A (en) * 2006-07-05 2008-01-24 Jfe Advantech Co Ltd Physical quantity measuring apparatus and ultrasonic apparatus for measuring quantity of flow
JP2009031137A (en) * 2007-07-27 2009-02-12 Kaijo Sonic Corp Ultrasonic wind measurement system
JP2009229256A (en) * 2008-03-24 2009-10-08 Koshin Denki Kogyo Kk Ultrasonic wind speed/direction apparatus
JP2010217077A (en) * 2009-03-18 2010-09-30 Japan Aerospace Exploration Agency Alarm display method of remote air flow, and system for the same
EP2365343A1 (en) 2010-03-09 2011-09-14 Japan Aerospace Exploration Agency Optical air data sensor
CN107576819A (en) * 2017-08-29 2018-01-12 吉林大学 A kind of method and system for measuring wind speed and direction
CN107817819A (en) * 2017-12-07 2018-03-20 智灵飞(北京)科技有限公司 Unmanned plane position control method and device based on indoor environment, unmanned plane
CN109633200A (en) * 2019-02-27 2019-04-16 吉林大学 Wind measuring device and method based on multiple-input multiple-output ultrasonic sensor
KR20210009688A (en) * 2019-07-17 2021-01-27 한국항공대학교산학협력단 An integrated navigation system combining ins/gps/ultrasonic speedometer to overcome gps-denied area
CN112305259A (en) * 2020-10-26 2021-02-02 西安工程大学 Space wind speed and wind direction monitoring method based on ultrasonic transducer
CN112964899A (en) * 2021-03-24 2021-06-15 北京凌阳伟业科技有限公司 Method and device for measuring air flow velocity
CN114113676A (en) * 2021-11-19 2022-03-01 深圳市欧赛特电子有限公司 Wind speed measurement system and method
JP7489150B1 (en) 2023-11-30 2024-05-23 陽一 金子 Anemometer, wind speed calculation method, and program

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014770A (en) * 2006-07-05 2008-01-24 Jfe Advantech Co Ltd Physical quantity measuring apparatus and ultrasonic apparatus for measuring quantity of flow
JP2009031137A (en) * 2007-07-27 2009-02-12 Kaijo Sonic Corp Ultrasonic wind measurement system
JP2009229256A (en) * 2008-03-24 2009-10-08 Koshin Denki Kogyo Kk Ultrasonic wind speed/direction apparatus
JP2010217077A (en) * 2009-03-18 2010-09-30 Japan Aerospace Exploration Agency Alarm display method of remote air flow, and system for the same
EP2365343A1 (en) 2010-03-09 2011-09-14 Japan Aerospace Exploration Agency Optical air data sensor
US8434358B2 (en) 2010-03-09 2013-05-07 Japan Aerospace Exploration Agency Method for measuring airspeed by optical air data sensor
CN107576819B (en) * 2017-08-29 2019-11-15 吉林大学 A kind of method and system measuring wind speed and direction
CN107576819A (en) * 2017-08-29 2018-01-12 吉林大学 A kind of method and system for measuring wind speed and direction
CN107817819A (en) * 2017-12-07 2018-03-20 智灵飞(北京)科技有限公司 Unmanned plane position control method and device based on indoor environment, unmanned plane
CN109633200A (en) * 2019-02-27 2019-04-16 吉林大学 Wind measuring device and method based on multiple-input multiple-output ultrasonic sensor
CN109633200B (en) * 2019-02-27 2023-06-02 吉林大学 Wind measuring device and method based on multiple-input multiple-output ultrasonic sensor
KR20210009688A (en) * 2019-07-17 2021-01-27 한국항공대학교산학협력단 An integrated navigation system combining ins/gps/ultrasonic speedometer to overcome gps-denied area
KR102318378B1 (en) * 2019-07-17 2021-10-26 한국항공대학교산학협력단 An integrated navigation system combining ins/gps/ultrasonic speedometer to overcome gps-denied area
CN112305259A (en) * 2020-10-26 2021-02-02 西安工程大学 Space wind speed and wind direction monitoring method based on ultrasonic transducer
CN112964899A (en) * 2021-03-24 2021-06-15 北京凌阳伟业科技有限公司 Method and device for measuring air flow velocity
CN112964899B (en) * 2021-03-24 2023-02-24 北京凌阳伟业科技有限公司 Method and device for measuring air flow speed
CN114113676A (en) * 2021-11-19 2022-03-01 深圳市欧赛特电子有限公司 Wind speed measurement system and method
JP7489150B1 (en) 2023-11-30 2024-05-23 陽一 金子 Anemometer, wind speed calculation method, and program

Also Published As

Publication number Publication date
JP3817610B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
JP3817610B2 (en) Ultrasonic air data sensor
JP5371432B2 (en) Airflow pressure gradient measurement parameter monitoring system for aircraft
JP4804393B2 (en) Ducted fan air data system
US20060178790A1 (en) High-altitude capable wide velocity range flight velocity vector measurement probe and measurement system
US7730776B2 (en) Vector wind sensor and integrated antenna
US8718971B2 (en) System for determining the airspeed of an aircraft
Arens et al. Measuring 3D indoor air velocity via an inexpensive low-power ultrasonic anemometer
US11512953B2 (en) Altitude estimation for aerial vehicles
US20120298801A1 (en) Aircraft wing and sensor
AU2016248563B2 (en) Ultrasonic anemometer and method for determining at least one component of a wind speed vector or the sound speed in the atmosphere
EP3611517B1 (en) Acoustic airspeed sensors
WO2015059085A1 (en) Air data sensor for an aircraft
US20130311013A1 (en) Measurement Assisted Aerodynamic State Estimator
CN111289035B (en) Acoustic air data sensor and system
JP3574814B2 (en) Aircraft ultrasonic airspeed sensor
JP7352948B2 (en) Airspeed and wind direction measuring device for aircraft and its measurement method
GB2491167A (en) Aircraft wing blister
EP3865880B1 (en) Determining aircraft flying conditions based on acoustic signals caused by airflow
EP3995835A1 (en) Acoustic airspeed sensors and processing techniques
US10739369B2 (en) Device and method for accurate wind measurement
Ghahramani et al. An Inexpensive Low-Power Ultrasonic 3-Dimensional Air Velocity Sensor
JP2807772B2 (en) Pitot tube probe
EP3825233A1 (en) Acoustic detection of characteristics of an airstream moving over an airfoil surface
EP4086637A1 (en) Computation of aircraft airspeed by inclusion of static air temperature
GB2519668A (en) Air data sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

R150 Certificate of patent or registration of utility model

Ref document number: 3817610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term