JP7352948B2 - Airspeed and wind direction measuring device for aircraft and its measurement method - Google Patents

Airspeed and wind direction measuring device for aircraft and its measurement method Download PDF

Info

Publication number
JP7352948B2
JP7352948B2 JP2019188999A JP2019188999A JP7352948B2 JP 7352948 B2 JP7352948 B2 JP 7352948B2 JP 2019188999 A JP2019188999 A JP 2019188999A JP 2019188999 A JP2019188999 A JP 2019188999A JP 7352948 B2 JP7352948 B2 JP 7352948B2
Authority
JP
Japan
Prior art keywords
wind speed
ultrasonic
phase difference
airspeed
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019188999A
Other languages
Japanese (ja)
Other versions
JP2021063741A (en
Inventor
加久治 小河原
遼太 河原
秀徳 新銀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2019188999A priority Critical patent/JP7352948B2/en
Publication of JP2021063741A publication Critical patent/JP2021063741A/en
Application granted granted Critical
Publication of JP7352948B2 publication Critical patent/JP7352948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Description

本発明は、飛行体、特に低速で飛行する小型UAV(Unmanned Aerial Vehicle)に搭載する対気速度及び風向計測装置及びその計測方法に関するものである。 The present invention relates to an airspeed and wind direction measuring device mounted on an aircraft, particularly a small UAV (Unmanned Aerial Vehicle) flying at low speed, and a measuring method thereof.

特許文献1(特許第3574814号公報)に記載されるように、航空機の前方方向に向けその軸芯が三角形の各頂点に位置するように機体に取り付けられた3本の平行な支持棒上に、複数個の超音波送受信機を軸方向に位置を異ならせて配備し、隣接する支持棒上の超音波送受信機との組合せで複数組の超音波送受信経路が形成されるようにし、所定距離の前記複数組の超音波送受信経路を伝搬する時間情報から対気速度に関する三次元情報を得るものが提案されている。 As described in Patent Document 1 (Japanese Patent No. 3574814), three parallel support rods are attached to the aircraft so that their axes are located at each vertex of a triangle toward the front of the aircraft. , a plurality of ultrasonic transceivers are arranged at different positions in the axial direction, and in combination with ultrasonic transceivers on adjacent support rods, multiple sets of ultrasonic transceiver paths are formed, and It has been proposed to obtain three-dimensional information regarding airspeed from time information propagating through the plurality of sets of ultrasonic transmission and reception paths.

また、特許文献2(特許第6347469号公報)には、無人航空機の回転翼よりも高い位置に風向及び風速を計測する気象観測部を配置する点(特に、段落0019~0021及び図1を参照)や、気象観測部を構成する風向風速計測器がアンテナa、アンテナb及びアンテナcを等間隔に配置したものであり、超音波(20kHz以上の周波数の信号)を利用してアンテナa-アンテナb間、アンテナb-アンテナc間及びアンテナc-アンテナa間の3方向の風のベクトルを同時に算出して、正確な風向と風速を測定する点(特に、段落0028~0031及び図3を参照)が記載されている。 Furthermore, in Patent Document 2 (Patent No. 6347469), a meteorological observation unit for measuring wind direction and wind speed is arranged at a higher position than the rotor of the unmanned aircraft (see especially paragraphs 0019 to 0021 and FIG. 1). ), and the wind speed and direction measuring instruments that make up the weather observation section have antennas a, b, and c arranged at equal intervals, and use ultrasonic waves (signals with a frequency of 20 kHz or higher) to connect antenna a to antenna. The point is that the wind vectors in three directions are calculated simultaneously between antenna b and antenna c, and between antenna c and antenna a to measure accurate wind direction and wind speed (in particular, see paragraphs 0028 to 0031 and Figure 3). ) are listed.

一般的に、小型UAVは低速で飛行するため、その対気速度の計測が困難である。
通常、航空機の対気速度の計測にはピトー管流速計が使われているが、ピトー管流速計では、対気速度が4m/秒の場合、差圧が1mmH2Oしか発生せず、低速領域の計測に対しては、傾斜マノメータや高感度の圧力変換器が必要となる。
そのため、小型化や軽量化が難しい上に、コストがかさむという問題があり、また、応答性が悪いため、対気速度の変動を計測できないという問題もある。
特許文献1では、超音波風速計のセンサプローブを改良して、ピトー管流速計で計測できない低速領域の計測が可能である航空機用の対気速度計測装置を提供している。
また、特許文献2でも、超音波を利用して3方向の風のベクトルを同時に算出して、正確な風向と風速を測定できる風向風速計測器を提案している。
Generally, small UAVs fly at low speeds, making it difficult to measure their airspeed.
Normally, a pitot tube current meter is used to measure the airspeed of an aircraft, but with a pitot tube current meter, when the airspeed is 4 m/s, a differential pressure of only 1 mmH 2 O is generated, and at low speed For area measurements, a tilting manometer or a sensitive pressure transducer is required.
Therefore, it is difficult to reduce the size and weight of the device, and it is also expensive.Furthermore, due to poor responsiveness, it is not possible to measure airspeed fluctuations.
Patent Document 1 provides an airspeed measurement device for aircraft that improves the sensor probe of an ultrasonic anemometer and is capable of measuring low speed regions that cannot be measured with a pitot tube current meter.
Moreover, Patent Document 2 also proposes a wind direction and wind speed measuring instrument that can simultaneously calculate wind vectors in three directions using ultrasonic waves and measure accurate wind direction and wind speed.

特許文献1及び2で利用している超音波風速計の計測手法は、超音波の伝播時間差を利用する時間差法である。
すなわち、図1に示すように、2つの超音波送受信器を距離L(m)だけ離して設置した1対の超音波送受信器において、2つの超音波送受信器間における風速がV(m/秒)であれば、音速をVs(m/秒)とした時、空気の流れ方向に超音波が伝播する時の伝播速度はVs+Vとなり、空気の流れの逆方向に超音波が伝播する時の伝播速度がVs-Vとなる。そのため、空気の流れ方向に超音波が伝播する時の伝播時間に対して、空気の流れの逆方向に超音波が伝播する時の伝播時間は長くなる。そして、一方の超音波送受信器から超音波を送信し他方の超音波送受信器でその超音波を受信するまでの伝播時間をt1(秒)とし、他方の超音波送受信器から超音波を送信し一方の超音波送受信器でその超音波を受信するまでの伝播時間をt2(秒)とすると、その伝播時間差を利用して計測される風速Vt(m/秒)は、Vs>>Vtであれば、伝播時間t1を測定するために超音波を送受信した時の伝播方向を正として、下記の式(1)で表される。
Vt=Vs2(t2-t1)/2L・・・・式(1)
なお、この超音波風速計を航空機に搭載すると、計測値の大きさは、風速と対地速度の和である対気速度となり、計測値の向きは対気速度と逆向きとなる。
The measurement method of the ultrasonic anemometer used in Patent Documents 1 and 2 is a time difference method that uses the difference in propagation time of ultrasonic waves.
That is, as shown in Fig. 1, in a pair of ultrasonic transceivers installed a distance L (m) apart, the wind speed between the two ultrasonic transceivers is V (m/sec). ), then when the sound speed is Vs (m/sec), the propagation speed when the ultrasonic wave propagates in the direction of the air flow is Vs + V, and the propagation speed when the ultrasonic wave propagates in the opposite direction of the air flow. The speed becomes Vs-V. Therefore, the propagation time when the ultrasonic waves propagate in the opposite direction of the air flow is longer than the propagation time when the ultrasonic waves propagate in the direction of the air flow. Then, the propagation time from when an ultrasound is transmitted from one ultrasound transceiver to when it is received by the other ultrasound transceiver is t 1 (seconds), and the ultrasound is transmitted from the other ultrasound transceiver. However, if the propagation time until one ultrasonic transmitter/receiver receives the ultrasonic wave is t 2 (seconds), then the wind speed Vt (m/second) measured using the propagation time difference is Vs >> Vt If so, it is expressed by the following equation (1), assuming that the propagation direction when transmitting and receiving ultrasonic waves to measure the propagation time t 1 is positive.
Vt=Vs 2 (t 2 - t 1 )/2L...Formula (1)
Note that when this ultrasonic anemometer is mounted on an aircraft, the magnitude of the measured value becomes the airspeed, which is the sum of the wind speed and the ground speed, and the direction of the measured value is opposite to the airspeed.

特許第3574814号公報Patent No. 3574814 特許第6347469号公報Patent No. 6347469

超音波の伝播時間は、例えば、図2に示すように、超音波を受信して発せられる電圧信号に対して閾値を設けて、受信信号が閾値に達することで受信を検出して測定される。このため、伝播時間の分解能は受信信号の半周期分に相当するものとなる。この伝播時間を測定する手法により測定される伝播時間から算出される対気速度よりも高い分解能が要求される場合には、何回か計測した対気速度の計測値を平均することでしか、この要求を満たすことができなかった。
しかし、小型UAVの自律制御に用いる場合、自律制御の対気速度を参照した制御ループの制御周期よりも計測器のサンプリング時間の方が短くなければならず、時間差法によって対気速度を何回も計測して平均すると応答性を満足することができない。
中心周波数の高い超音波送受信器を用いて、対気速度の分解能の向上を図ることはできるが、超音波は周波数が高いほど空気によるエネルギーの損失が大きくなって振幅が減衰し、受信信号のS/N比が劣化する。そのため、通常、超音波風速計には中心周波数300kHz程度までの超音波送受信器が用いられ、これより高い中心周波数の超音波送受信器は使用されない。また、中心周波数の高い超音波送受信器は高価であるため、これを用いた計測器を搭載する場合、小型UAVを安価に製作できなくなるという問題もある。
この発明は、これらの問題を解決しようとするものであり、低速で飛行する小型UAV等の飛行体に適する、高い分解能で対気速度及び風向を計測できる装置及び方法を安価に提供することを目的としてなされたものである。
The propagation time of ultrasonic waves is measured, for example, by setting a threshold value for the voltage signal emitted by receiving ultrasonic waves and detecting reception when the received signal reaches the threshold value, as shown in Figure 2. . Therefore, the propagation time resolution corresponds to a half period of the received signal. If a higher resolution is required than the airspeed calculated from the propagation time measured by this method of measuring propagation time, it is possible to solve the problem by averaging the airspeed measurements taken several times. This request could not be met.
However, when used for autonomous control of small UAVs, the sampling time of the measuring instrument must be shorter than the control cycle of the control loop that refers to the airspeed of the autonomous control, and the airspeed can be adjusted several times using the time difference method. If you measure and average the results, you will not be able to satisfy the responsiveness.
It is possible to improve the resolution of airspeed by using an ultrasonic transceiver with a high center frequency, but the higher the frequency of ultrasonic waves, the greater the loss of energy through the air, which attenuates the amplitude of the received signal. The S/N ratio deteriorates. Therefore, an ultrasonic transceiver with a center frequency of up to about 300 kHz is usually used in an ultrasonic anemometer, and an ultrasonic transceiver with a center frequency higher than this is not used. Furthermore, since ultrasonic transceivers with high center frequencies are expensive, there is also the problem that small UAVs cannot be manufactured at low cost when equipped with measuring instruments using them.
The present invention aims to solve these problems, and aims to provide an inexpensive device and method that can measure airspeed and wind direction with high resolution and is suitable for low-speed flying vehicles such as small UAVs. It was done for a purpose.

請求項1に係る発明の飛行体用対気速度及び風向計測装置は、
飛行体の外面に、第1の方向についての風速を計測する第1風速計測手段及び前記第1の方向とは異なる第2の方向についての風速を計測する第2風速計測手段と、
前記第1風速計測手段で計測された第1の方向についての風速及び前記第2風速計測手段で計測された第2の方向についての風速に基づいて風向を計測する風向計測手段を備え、
前記第1風速計測手段及び前記第2風速計測手段は、いずれも
1対の超音波送受信器と、
一方の超音波送受信器が超音波を送信してから他方の超音波送受信器で該超音波を受信するまでの第1伝播時間を計測する第1伝播時間計測手段と、
前記他方の超音波送受信器が超音波を送信してから前記一方の超音波送受信器で該超音波を受信するまでの第2伝播時間を計測する第2伝播時間計測手段と、
前記第1伝播時間計測手段で計測された第1伝播時間及び前記第2伝播時間計測手段で計測された第2伝播時間に基づいて時間差風速を演算する時間差風速演算手段と、
前記一方の超音波送受信器が超音波を送信した後、前記他方の超音波送受信器で受信した第1受信信号を記録する第1受信信号記録手段と、
前記他方の超音波送受信器が超音波を送信した後、前記一方の超音波送受信器で受信した第2受信信号を記録する第2受信信号記録手段と、
前記第1受信信号記録手段で記録された第1受信信号と前記第2受信信号記録手段で記録された第2受信信号との位相差を演算する位相差演算手段と、
前記時間差風速演算手段で演算された風速及び前記超音波送受信器の支持具の超音波の伝播に関するパラメータに基づいて、前記位相差演算手段で演算された位相差を修正する位相差修正手段と、
前記位相差修正手段で修正された修正位相差に基づいて位相差風速を演算する位相差風速演算手段を有していることを特徴とする。
The airspeed and wind direction measuring device for a flying vehicle of the invention according to claim 1 comprises:
A first wind speed measuring means for measuring wind speed in a first direction and a second wind speed measuring means for measuring wind speed in a second direction different from the first direction, on the outer surface of the flying object;
Wind direction measuring means for measuring the wind direction based on the wind speed in the first direction measured by the first wind speed measuring means and the wind speed in the second direction measured by the second wind speed measuring means,
The first wind speed measuring means and the second wind speed measuring means both include a pair of ultrasonic transceivers,
a first propagation time measuring means for measuring a first propagation time from when one ultrasonic transceiver transmits an ultrasonic wave until the other ultrasonic transceiver receives the ultrasonic wave;
a second propagation time measuring means for measuring a second propagation time from when the other ultrasonic transceiver transmits an ultrasonic wave until the one ultrasonic transceiver receives the ultrasonic wave;
time difference wind speed calculation means for calculating a time difference wind speed based on a first propagation time measured by the first propagation time measurement means and a second propagation time measured by the second propagation time measurement means;
a first received signal recording means for recording a first received signal received by the other ultrasonic transceiver after the one ultrasonic transceiver transmits the ultrasonic wave;
a second received signal recording means for recording a second received signal received by the one ultrasonic transceiver after the other ultrasonic transceiver transmits the ultrasonic wave;
phase difference calculating means for calculating a phase difference between a first received signal recorded by the first received signal recording means and a second received signal recorded by the second received signal recording means;
a phase difference correction means for correcting the phase difference calculated by the phase difference calculation means based on the wind speed calculated by the time difference wind speed calculation means and a parameter related to the propagation of the ultrasonic wave of the support of the ultrasonic transmitter/receiver ;
It is characterized by comprising a phase difference wind speed calculation means for calculating a phase difference wind speed based on the corrected phase difference corrected by the phase difference correction means.

請求項2に係る発明は、請求項1に記載の飛行体用対気速度及び風向計測装置において、
前記第1の方向と前記第2の方向は、同一平面内で直交していることを特徴とする。
The invention according to claim 2 is the airspeed and wind direction measuring device for an aircraft according to claim 1,
The first direction and the second direction are perpendicular to each other within the same plane.

請求項3に係る発明の飛行体用対気速度及び風向計測方法は、
飛行体の外面に設置された第1の方向についての風速を計測する第1風速計測手段及び前記第1の方向とは異なる第2の方向についての風速を計測する第2風速計測手段を用いて、前記飛行体の対気速度及び風向を計測する方法であって、
前記第1風速計測手段及び前記第2風速計測手段が、それぞれ有している1対の超音波送受信器のうちの一方の超音波送受信器が超音波を送信してから他方の超音波送受信器で該超音波を受信するまでの第1伝播時間を計測し、
前記一方の超音波送受信器が超音波を送信した後、前記他方の超音波送受信器で受信した第1受信信号を記録し、
前記他方の超音波送受信器が超音波を送信してから前記一方の超音波送受信器で該超音波を受信するまでの第2伝播時間を計測し、
前記他方の超音波送受信器が超音波を送信した後、前記一方の超音波送受信器で受信した第2受信信号を記録し、
前記第1伝播時間及び前記第2伝播時間に基づいて時間差風速を演算し、
前記第1受信信号と前記第2受信信号との位相差を演算し、
前記時間差風速及び前記超音波送受信器の支持具の超音波の伝播に関するパラメータに基づいて前記位相差を修正し、修正位相差を演算し、
前記修正位相差に基づいて位相差風速を演算し、
前記第1風速計測手段で計測された第1の位相差風速及び前記第2風速計測手段で計測された第2の位相差風速に基づいて風向を計測することを特徴とする。
The airspeed and wind direction measuring method for a flying vehicle according to the invention according to claim 3 includes:
A first wind speed measuring means installed on the outer surface of the flying object measures the wind speed in a first direction, and a second wind speed measuring means measures the wind speed in a second direction different from the first direction. , a method for measuring the airspeed and wind direction of the aircraft, the method comprising:
The first wind speed measuring means and the second wind speed measuring means each have a pair of ultrasonic transceivers, after one of the ultrasonic transceivers transmits an ultrasonic wave, the other ultrasonic transceiver transmits an ultrasonic wave. Measure the first propagation time until receiving the ultrasonic wave at
After the one ultrasonic transceiver transmits the ultrasonic wave, recording a first reception signal received by the other ultrasonic transceiver,
Measuring a second propagation time from when the other ultrasonic transceiver transmits the ultrasonic wave until the one ultrasonic transceiver receives the ultrasonic wave,
After the other ultrasonic transceiver transmits the ultrasonic wave, recording a second reception signal received by the one ultrasonic transceiver,
calculating a time difference wind speed based on the first propagation time and the second propagation time;
calculating a phase difference between the first received signal and the second received signal;
correcting the phase difference based on the time difference wind speed and parameters related to the propagation of the ultrasonic wave of the support of the ultrasonic transmitter/receiver , and calculating a corrected phase difference;
calculating a phase difference wind speed based on the corrected phase difference;
It is characterized in that the wind direction is measured based on the first phase difference wind speed measured by the first wind speed measuring means and the second phase difference wind speed measured by the second wind speed measuring means.

請求項1に係る発明の飛行体用対気速度及び風向計測装置及び請求項3に係る発明の飛行体用対気速度及び風向計測方法によれば、小型、軽量、安価な構成によって、高い分解能で対気速度及び風向を計測でき、かつ、対気速度が小さくても正確に計測可能である。
さらに、時間差風速及び超音波送受信器の支持具の超音波の伝播に関するパラメータに基づいて位相差を修正するので、超音波送受信器の支持具を伝播した超音波を受信することによる対気速度及び風向の計測誤差を除去できる。
According to the airspeed and wind direction measurement device for an aircraft of the invention according to claim 1 and the airspeed and wind direction measurement method for an aircraft of the invention according to claim 3, high resolution can be achieved with a small, lightweight, and inexpensive configuration. It is possible to measure airspeed and wind direction, and it is possible to measure accurately even if the airspeed is small.
Furthermore, since the phase difference is modified based on the time difference wind speed and the parameters related to the propagation of the ultrasonic waves in the support of the ultrasonic transceiver, the airspeed and Measurement errors in wind direction can be removed.

請求項2に係る発明の飛行体用対気速度及び風向計測装置によれば、請求項1に係る発明の効果に加え、計測される風速の方向が同一平面内で直交しているので、風速及び風向の演算を容易に行うことができる。 According to the airspeed and wind direction measuring device for an aircraft of the invention according to claim 2, in addition to the effects of the invention according to claim 1, the directions of the measured wind speeds are orthogonal in the same plane, so that the wind speed and wind direction can be easily calculated.

時間差法による風速の計測原理を示す図。A diagram showing the principle of wind speed measurement using the time difference method. 伝播時間の測定方法と分解能との関係を示す図。FIG. 3 is a diagram showing the relationship between a propagation time measurement method and resolution. 飛行体用対気速度及び風向計測装置の概念図。A conceptual diagram of an airspeed and wind direction measuring device for an aircraft. 実施例1に係る飛行体用対気速度及び風向計測装置を示す図。1 is a diagram showing an airspeed and wind direction measuring device for an aircraft according to a first embodiment; FIG. 位相差法による風速の計測原理を説明する図。A diagram explaining the principle of wind speed measurement using the phase difference method. 実施例1における位相差の求め方を説明する図。FIG. 3 is a diagram illustrating how to obtain a phase difference in Example 1. 位相差の修正処理について説明する図。FIG. 6 is a diagram illustrating phase difference correction processing. 実施例2に係る飛行体用対気速度及び風向計測装置を示す図。FIG. 3 is a diagram showing an airspeed and wind direction measuring device for an aircraft according to a second embodiment. 3対の超音波送受信器を用いた対気速度の三次元情報を示す図。The figure which shows three-dimensional information of airspeed using three pairs of ultrasonic transceivers. 2対の超音波送受信器を用いた対気速度の二次元情報を示す図。The figure which shows two-dimensional information of airspeed using two pairs of ultrasonic transceivers. 超音波送受信器を双発の固定翼機に取り付けた状態を示す図。FIG. 2 is a diagram showing an ultrasonic transceiver attached to a twin-engine fixed-wing aircraft. 飛行体用対気速度及び風向計測装置の信号処理手段のブロック図。The block diagram of the signal processing means of the airspeed and wind direction measuring device for an aircraft. 対地速度と対気速度の校正時の計測値と誤差を含む校正前の計測値との比較を示すグラフ。A graph showing a comparison between ground speed and air speed measured values during calibration and measured values before calibration including errors. 飛行試験時の対気速度u,v,w,V及び風向α,βの計測値を示すグラフ。A graph showing measured values of airspeeds u, v, w, V and wind directions α, β during a flight test.

図3は飛行体用対気速度及び風向計測装置の概念図である。
本発明の飛行体用対気速度及び風向計測装置は、図3に示すように、第1の方向に距離L(m)の間隔で配置されている1対の超音波送受信器を有する第1風速計測手段1、第2の方向に距離L(m)の間隔で配置されている1対の超音波送受信器を有する第2風速計測手段2及び第1風速計測手段1で計測された第1の方向についての位相差風速及び第2風速計測手段2で計測された第2の方向についての位相差風速に基づいて風向を計測する風向計測手段3を備えている。
なお、第1の方向及び第2の方向は同一平面内で直交している。
FIG. 3 is a conceptual diagram of an airspeed and wind direction measuring device for an aircraft.
As shown in FIG. 3, the airspeed and wind direction measuring device for an aircraft according to the present invention has a first The first wind speed measured by the wind speed measuring means 1, the second wind speed measuring means 2 having a pair of ultrasonic transceivers arranged at a distance L (m) in the second direction, and the first wind speed measuring means 1. A wind direction measuring means 3 is provided for measuring the wind direction based on the phase difference wind speed in the direction of and the phase difference wind speed in the second direction measured by the second wind speed measuring means 2.
Note that the first direction and the second direction are orthogonal within the same plane.

第1風速計測手段1は、一方の超音波送受信器4が中心周波数f(Hz)の超音波を送信してから他方の超音波送受信器5でその超音波を受信するまでの第1伝播時間t1(秒)を計測する第1伝播時間計測手段11、他方の超音波送受信器5が中心周波数fの超音波を送信してから一方の超音波送受信器4でその超音波を受信するまでの第2伝播時間t2(秒)を計測する第2伝播時間計測手段12、第1伝播時間t1及び第2伝播時間t2に基づいて時間差風速V1t(m/秒)を演算する時間差風速演算手段13、一方の超音波送受信器4が超音波を送信した後、他方の超音波送受信器5で受信した第1受信信号α1を記録する第1受信信号記録手段14、他方の超音波送受信器5が超音波を送信した後、一方の超音波送受信器4で受信した第2受信信号β1を記録する第2受信信号記録手段15、第1受信信号α1と第2受信信号β1との位相差φ1(rad)を演算する位相差演算手段16、時間差風速演算手段13で演算された風速に基づいて位相差φ1を修正する位相差修正手段17及び位相差修正手段で修正された修正位相差φ1a(rad)に基づいて位相差風速V1p(m/秒)を演算する位相差風速演算手段18を有している。
同様に第2風速計測手段2は、一方の超音波送受信器6が中心周波数fの超音波を送信してから他方の超音波送受信器7でその超音波を受信するまでの第1伝播時間t3(秒)を計測する第1伝播時間計測手段21、他方の超音波送受信器7が中心周波数fの超音波を送信してから一方の超音波送受信器6でその超音波を受信するまでの第2伝播時間t4(秒)を計測する第2伝播時間計測手段22、第1伝播時間t3及び第2伝播時間t4に基づいて時間差風速V2t(m/秒)を演算する時間差風速演算手段23、一方の超音波送受信器6が超音波を送信した後、他方の超音波送受信器7で受信した第1受信信号α2を記録する第1受信信号記録手段24、他方の超音波送受信器7が超音波を送信した後、一方の超音波送受信器6で受信した第2受信信号β2を記録する第2受信信号記録手段25、第1受信信号α2と第2受信信号β2との位相差φ2(rad)を演算する位相差演算手段26、時間差風速演算手段23で演算された風速に基づいて位相差φ2を修正する位相差修正手段27及び位相差修正手段で修正された修正位相差φ2a(rad)に基づいて位相差風速V2p(m/秒)を演算する位相差風速演算手段28を有している。
なお、時間差風速V1t、V2tの演算式は、下記の式(2)及び式(3)で表される。
V1t=Vs2(t2-t1)/2L・・・・式(2)
V2t=Vs2(t4-t3)/2L・・・・式(3)
また、位相差風速V1p、V2pは、後述するが下記の式(4)及び式(5)で表される。
V1p=Vs2φ1a/4πfL・・・・・式(4)
V2p=Vs2φ2a/4πfL・・・・・式(5)
以下、実施例によって本発明の実施形態を説明する。
The first wind speed measurement means 1 measures the first propagation time from when one ultrasonic transceiver 4 transmits an ultrasonic wave with a center frequency f (Hz) until the other ultrasonic transceiver 5 receives the ultrasonic wave. t 1 (seconds), from when the other ultrasonic transceiver 5 transmits an ultrasonic wave with a center frequency f until one ultrasonic transceiver 4 receives the ultrasonic wave. a second propagation time measuring means 12 for measuring a second propagation time t 2 (seconds) ; calculation means 13, first received signal recording means 14 for recording the first received signal α1 received by the other ultrasonic transceiver 5 after one ultrasonic transceiver 4 transmits an ultrasonic wave, and the other ultrasonic transceiver 4; After the transmitter 5 transmits the ultrasonic wave, a second received signal recording means 15 records the second received signal β1 received by one of the ultrasonic transceivers 4, and a second received signal recording means 15 records the position of the first received signal α1 and the second received signal β1. A phase difference calculation means 16 for calculating the phase difference φ1 (rad), a phase difference correction means 17 for correcting the phase difference φ1 based on the wind speed calculated by the time difference wind speed calculation means 13, and a modified phase difference corrected by the phase difference correction means. It has a phase difference wind speed calculating means 18 that calculates a phase difference wind speed V1p (m/sec) based on φ1a (rad).
Similarly, the second wind speed measuring means 2 measures the first propagation time t from when one ultrasonic transceiver 6 transmits an ultrasonic wave with a center frequency f until the other ultrasonic transceiver 7 receives the ultrasonic wave. The first propagation time measuring means 21 measures 3 (seconds), and the period from when the other ultrasonic transceiver 7 transmits an ultrasonic wave with a center frequency f until one ultrasonic transceiver 6 receives the ultrasonic wave. A second propagation time measuring means 22 that measures a second propagation time t 4 (seconds), a time difference wind speed calculation that calculates a time difference wind speed V2t (m/second) based on the first propagation time t 3 and the second propagation time t 4 means 23, a first received signal recording means 24 for recording the first received signal α2 received by the other ultrasonic transceiver 7 after one ultrasonic transceiver 6 transmits an ultrasonic wave; A second received signal recording means 25 records the second received signal β2 received by one of the ultrasonic transmitter/receivers 6 after the ultrasonic transmitter 7 transmits an ultrasound, and a phase difference between the first received signal α2 and the second received signal β2. A phase difference calculation means 26 that calculates φ2 (rad), a phase difference correction means 27 that corrects the phase difference φ2 based on the wind speed calculated by the time difference wind speed calculation means 23, and a modified phase difference φ2a corrected by the phase difference correction means. It has a phase difference wind speed calculating means 28 which calculates a phase difference wind speed V2p (m/sec) based on (rad).
The calculation formulas for the time difference wind speeds V1t and V2t are expressed by the following formulas (2) and (3).
V1t=Vs 2 (t 2 - t 1 )/2L...Equation (2)
V2t=Vs 2 (t 4 - t 3 )/2L...Equation (3)
Further, the phase difference wind speeds V1p and V2p are expressed by the following equations (4) and (5), which will be described later.
V1p=Vs 2 φ1a/4πfL...Equation (4)
V2p=Vs 2 φ2a/4πfL...Equation (5)
Embodiments of the present invention will be described below with reference to Examples.

実施例1に係る飛行体用対気速度及び風向計測装置は、図4に示すように、図3と同様、2対の超音波送受信器を小型UAV(ドローン)の中央部上面に取り付けたものである。
そして、対気速度及び風向の計測については、従来の超音波風速計の計測手法である伝播時間差を利用したものに、超音波を受信して発せられる電圧信号の位相差、即ち受信信号の位相差を利用したものを組み合わせることによって行う。
As shown in FIG. 4, the airspeed and wind direction measuring device for an aircraft according to Example 1 has two pairs of ultrasonic transceivers attached to the upper surface of the center of a small UAV (drone), similar to FIG. 3. It is.
For measuring airspeed and wind direction, in addition to the measurement method of conventional ultrasonic anemometers that uses the propagation time difference, there is This is done by combining things that utilize phase differences.

受信信号の位相差を利用した風速の計測原理の説明図を図5に示す。
ここでは、第1の方向における風速を計測する場合について述べる。
まず、第1伝播時間t1を測定するために、一方の超音波送受信器4から超音波(中心周波数fの正弦波であり、sin2πftで表される)を送信した時に、他方の超音波送受信器5でその超音波を受信して得られた信号を受信信号α1(A1sin(2πft+φ1)で表される)とする(ただし、A1は0より大きい所定値、tは時間(秒)、φ1は受信信号α1と正弦波との位相差)。
そして、位相差φ1は、正弦波の周期をT(T=1/f)とすると、受信してからn波分に亘って積分することにより、下記の式(6)で表される。
次に、第2伝播時間t2を測定するために、他方の超音波送受信器5から超音波(中心周波数fの正弦波であり、sin2πftで表される)を送信した時に、一方の超音波送受信器4でその超音波を受信して得られた信号を受信信号β1(A2sin(2πft+φ2)で表される)とする(ただし、A2は0より大きい所定値、tは時間(秒)、φ2は受信信号β1と正弦波との位相差)。
そうすると、φ2は式(6)のφ1をφ2に、A1をA2に置き換えて同様に計算でき、受信信号α1、β1の位相差を利用して計測される位相差風速Vpは、φ1を算出するために超音波を送受信した時の伝播方向を正として、下記の式(7)で表される。
Vp=Vs2(φ2-φ1)/4πfL・・・・・・式(7)
FIG. 5 shows an explanatory diagram of the principle of measuring wind speed using the phase difference of received signals.
Here, a case will be described in which the wind speed in the first direction is measured.
First, in order to measure the first propagation time t 1 , when an ultrasonic wave (a sine wave with a center frequency f, expressed as sin2πft) is transmitted from one ultrasonic transmitter/receiver 4, the other ultrasonic transmitter/receiver The signal obtained by receiving the ultrasonic wave with the device 5 is the received signal α1 (expressed as A 1 sin (2πft+φ 1 )) (where A 1 is a predetermined value larger than 0, and t is the time (seconds). ), φ1 is the phase difference between the received signal α1 and the sine wave).
Then, when the period of the sine wave is T (T=1/f), the phase difference φ 1 is expressed by the following equation (6) by integrating over n waves after reception.
Next, in order to measure the second propagation time t 2 , when an ultrasonic wave (a sine wave with a center frequency f, expressed as sin2πft) is transmitted from the other ultrasonic transceiver 5, one ultrasonic wave The signal obtained by receiving the ultrasonic wave with the transceiver 4 is assumed to be a received signal β1 (expressed as A 2 sin (2πft+φ 2 )) (where A 2 is a predetermined value larger than 0, and t is a time ( seconds), φ2 is the phase difference between the received signal β1 and the sine wave).
Then, φ 2 can be calculated in the same way by replacing φ 1 with φ 2 and A 1 with A 2 in equation (6), and the phase difference wind speed Vp measured using the phase difference between the received signals α1 and β1 is , φ 1 is expressed by the following equation (7), assuming that the propagation direction when transmitting and receiving ultrasonic waves is positive.
Vp=Vs 221 )/4πfL...Equation (7)

式(7)から分かるように、位相差風速VpはVs、(φ2-φ1)、f及びLから求められるため、実施例1では図6に示すように、受信信号α1と受信信号β1を記録し、両者の位相差φ2-φ1を求めることにより、演算することができる。
ところで、位相差φ1は直交座標系の上記式(6)の大括弧内における上辺及び下辺の式によって決まる偏角であり、-π<φ1<πの範囲で逆正接を計算でき、同様に位相差φ2も-π<φ2<πの範囲で逆正接を計算できる。
そのため、-2π<φ2-φ1<2πの範囲では計算できるが、φ2-φ1<-2π及び2π<φ2-φ1の範囲では正しく計算することができない。
そこで、時間差法によって計測された風速Vtを基準に、位相差法により算出された位相差を修正するアンラップ処理を施すことにより、時間差法によって計測される風速Vtと同等の計測範囲で高い分解能の風速を応答性良く計測できる。
アンラップ処理は、図7に示すように、時間差法で計測された風速Vtの計測値として最も度数の高い値に近い計測値となるように、位相差を修正して風速Vpを求める処理である。
As can be seen from equation (7), the phase difference wind speed Vp is obtained from Vs, (φ 2 −φ 1 ), f, and L. Therefore, in Example 1, as shown in FIG. 6, the received signal α1 and the received signal β1 The calculation can be performed by recording and calculating the phase difference φ 2 −φ 1 between the two.
By the way, the phase difference φ 1 is the argument determined by the upper and lower equations in the square brackets of the above equation (6) in the orthogonal coordinate system, and the arctangent can be calculated in the range -π < φ 1 < π, and similarly The arctangent of the phase difference φ 2 can also be calculated in the range -π < φ 2 < π.
Therefore, calculation is possible in the range -2π<φ 21 <2π, but cannot be calculated correctly in the ranges φ 21 <-2π and 2π<φ 21 .
Therefore, by performing an unwrapping process that corrects the phase difference calculated by the phase difference method using the wind speed Vt measured by the time difference method as a reference, high resolution can be achieved in the same measurement range as the wind speed Vt measured by the time difference method. Wind speed can be measured with good responsiveness.
As shown in FIG. 7, the unwrapping process is a process for determining the wind speed Vp by correcting the phase difference so that the measured value is closest to the value with the highest frequency as the measured value of the wind speed Vt measured by the time difference method. .

実施例2に係る飛行体用対気速度及び風向計測装置は、図8に示すように、図3における第1の方向(以下、「xsen軸方向」という。)及び第2の方向(以下、「ysen軸方向」という。)の2対の超音波送受信器4~7に加え、第3の方向(以下、「zsen軸方向」という。)に1対の超音波送受信器9、10を設け、zsen軸方向における風速を計測できるようにしたものである。
飛行体の対気速度の計測には三次元情報を得ることがより望ましいため、このような3軸方向のセンサ座標系を有する装置を利用する。
As shown in FIG. 8, the airspeed and wind direction measuring device for an aircraft according to Example 2 has two directions: the first direction (hereinafter referred to as "x sen axis direction") and the second direction (hereinafter referred to as , a pair of ultrasonic transceivers 4 to 7 in the 3rd direction (hereinafter referred to as the ``z sen axis direction ' '); 10 so that the wind speed in the z sen axis direction can be measured.
Since it is more desirable to obtain three-dimensional information for measuring the airspeed of an aircraft, a device having such a sensor coordinate system in three-axis directions is used.

図9は、3対の超音波送受信器を用いた対気速度の三次元情報を示す図である。通常、センサの座標系xsensensenと機体座標系xyzとは異なるため、座標変換が必要となる。図9に示すように、3対の超音波送受信器の内、2対の超音波送受信器のそれぞれの超音波の伝播経路からなる平面において、一方の超音波の伝播経路の方向をxsen軸とし、xsen軸に対して右手直交系をなすようにysen軸を決め、xsen軸及びysen軸に対して右手直交系をなすようにzsen軸を決めることで、センサ座標系を設定する。
また、センサ座標系をzsen軸周りにθ1だけ回転させ、これによりできた座標系x111をy1軸周りにθ2だけ回転させ、これによりできた座標系x222をy2軸周りにθ3だけ回転させてできる機体座標系xyzを設定する。
そして、図8において超音波の伝播経路がxsen軸方向の1対の超音波送受信器4,5を除く、2対の超音波送受信器6,7,9,10の各伝播経路とysen軸とのなす角をθ1,θ2とする。
さらに、3対の超音波送受信器による対気速度の計測値を、それぞれusen,vsen,wsenとし、z軸周りにx軸と対気速度ベクトルとのなす角をβ、xy平面と対気速度ベクトルとのなす角をαとすると、対気速度の計測値のx方向成分u、y方向成分v、z方向成分w、対気速度の大きさの計測値Vsen及び風向の計測値β,αは、下記の式(8)~(11)で表される。
sen=(u2+v2+w21/2・・・・・・式(9)
β=arctan(v/u)・・・・・・・・・式(10)
α=arctan{w/(u2+v21/2}・・・・式(11)
ただし、Rxyz senは機体座標系からセンサ座標系に変換する回転行列で、Rsenは3対の超音波送受信器による各対気速度の計測値usen,vsen,wsenをセンサ座標系に変換する行列であり、下記の式(12)及び式(13)で表される。
FIG. 9 is a diagram showing three-dimensional information on airspeed using three pairs of ultrasonic transceivers. Usually, the sensor coordinate system x sen y sen z sen and the body coordinate system xyz are different, so coordinate transformation is required. As shown in FIG. 9, in a plane consisting of the propagation paths of the ultrasonic waves of two of the three pairs of ultrasonic transceivers, the direction of the propagation path of one of the ultrasonic waves is the x sen axis. By determining the y sen axis to form a right-handed orthogonal system to the x sen axis, and determining the z sen axis to form a right-hand orthogonal system to the x sen and y sen axes, the sensor coordinate system can be set. Set.
Also, rotate the sensor coordinate system by θ 1 around the z sen axis, rotate the resulting coordinate system x 1 y 1 z 1 by θ 2 around the y 1 axis, and rotate the resulting coordinate system x 2 y Set the aircraft coordinate system xyz, which is created by rotating 2 z 2 by θ 3 around the y 2 axis.
In FIG. 8, the propagation paths of the two ultrasonic transceivers 6, 7, 9, and 10, except for the pair of ultrasonic transceivers 4 and 5, in which the ultrasonic propagation path is in the x sen axis direction and the y sen Let the angles with the axis be θ 1 and θ 2 .
Furthermore, the airspeed measurements by the three pairs of ultrasonic transceivers are defined as u sen , v sen , and w sen , respectively, and the angle between the x-axis and the airspeed vector around the z-axis is β, which is the xy plane. If the angle formed with the airspeed vector is α, then the x-direction component u, the y-direction component v, the z-direction component w of the measured airspeed value, the measured value of the airspeed magnitude Vsen , and the measurement of the wind direction. The values β and α are expressed by the following equations (8) to (11).
V sen = (u 2 + v 2 + w 2 ) 1/2 ...Formula (9)
β=arctan(v/u)...Formula (10)
α=arctan {w/(u 2 + v 2 ) 1/2 }...Formula (11)
However, R xyz sen is a rotation matrix that converts the aircraft coordinate system to the sensor coordinate system, and R sen is the rotation matrix that converts each airspeed measurement value u sen , v sen , and w sen from the three pairs of ultrasonic transceivers into the sensor coordinate system. It is a matrix to be converted into , and is expressed by the following equations (12) and (13).

小型UAVの対気速度及び風向の計測では、小型UAVの飛行が制御されていて水平飛行しており、風向がある程度分かっている場合等、二次元情報のみで十分な場合がある。
二次元情報を得るために、2対の超音波送受信器を用いる。一方の超音波送受信器の超音波の伝播経路の方向をxsen軸とし、xsen軸に対して右手直交系をなすようにysen軸を決めることで、センサ座標系を設定する。
また、センサ座標系をθ1だけ回転させてできる機体座標系xyを設定する。2対の超音波送受信器を用いた対気速度の二次元情報を示す図を図10に示す。超音波の伝播経路がxsen軸方向の1対の超音波送受信器4,5でない、他方の1対の超音波送受信器6,7の各伝播経路とysen軸とのなす角をθ1とする。
さらに、2対の超音波送受信器による対気速度の計測値を、それぞれusen,vsenとし、x軸と対気速度ベクトルとのなす角をβとすると、対気速度の計測値のx方向成分u、y方向成分v、対気速度の大きさの計測値Vsen及び風向の計測値βは、下記の式(14)~(16)で表される。
sen=(u2+v21/2・・・・・・式(15)
β=arctan(v/u)・・・・・・式(16)
特に、対気速度及び風向の三次元情報又は二次元情報を得る時、それぞれの超音波送受信器の伝播経路が直交する場合、すなわち、三次元情報を得る時のθ1=0°,θ2=90°又は二次元情報を得る時のθ1=0°である場合、式(13)及び式(14)は簡単になり、演算する上で有利である。
In measuring the airspeed and wind direction of a small UAV, only two-dimensional information may be sufficient, such as when the small UAV is flying in a controlled and horizontal manner and the wind direction is known to some extent.
Two pairs of ultrasound transceivers are used to obtain two-dimensional information. The sensor coordinate system is set by setting the direction of the ultrasonic propagation path of one ultrasonic transmitter/receiver as the x sen axis, and determining the y sen axis to form a right-handed orthogonal system to the x sen axis.
In addition, the body coordinate system xy, which is created by rotating the sensor coordinate system by θ 1 , is set. A diagram showing two-dimensional information on airspeed using two pairs of ultrasonic transceivers is shown in FIG. The angle between each propagation path of the other pair of ultrasonic transceivers 6 and 7 and the y sen axis is θ 1 shall be.
Furthermore, if the airspeed measurements by the two pairs of ultrasonic transceivers are u sen and v sen , respectively, and the angle between the x-axis and the airspeed vector is β, then the airspeed measurement value x The direction component u, the y-direction component v, the measured value V sen of the airspeed, and the measured value β of the wind direction are expressed by the following equations (14) to (16).
V sen = (u 2 + v 2 ) 1/2 ...Formula (15)
β=arctan(v/u)...Formula (16)
In particular, when obtaining three-dimensional or two-dimensional information on airspeed and wind direction, if the propagation paths of the respective ultrasonic transceivers are orthogonal, that is, when obtaining three-dimensional information, θ 1 =0°, θ 2 =90° or when θ 1 =0° when obtaining two-dimensional information, equations (13) and (14) become simple and are advantageous in calculation.

複数対の超音波送受信器の取り付けについて、各対の超音波送受信器の距離は同じである必要はないが、同じであれば対気速度及び風向を算出する演算の処理が簡便である。
また、超音波送受信器が超音波を検出できる範囲であれば、各対の超音波送受信器の距離に制限はないが、超音波送受信器の外形の寸法に対して、各対の超音波送受信器の間の距離が十分大きくない場合、計測する流れの内、超音波送受信器及びその支持具等によって乱される流れの割合が大きくなって、対気速度及び風向の計測誤差が大きくなる。
さらに、取り付ける航空機の機体の外形の寸法を大きく超える距離の場合、超音波送受信器及びその支持具等が航空機の飛行特性を大きく悪化させる原因となる。
そのため、各対の超音波送受信器の間の距離は、超音波送受信器の外形の寸法より十分大きく、取り付ける航空機の外形の寸法を超えない範囲が望ましい。
Regarding the installation of multiple pairs of ultrasonic transceivers, it is not necessary that the distances between the ultrasonic transceivers of each pair be the same, but if they are the same, the calculation process for calculating the airspeed and wind direction will be easier.
There is no limit to the distance between each pair of ultrasonic transmitters and receivers as long as the ultrasonic transmitter and receiver can detect ultrasonic waves, but the distance between each pair of ultrasonic transmitters and receivers is If the distance between the instruments is not large enough, a large proportion of the flow to be measured will be disturbed by the ultrasonic transmitter/receiver and its support, resulting in large errors in measuring airspeed and wind direction.
Furthermore, if the distance greatly exceeds the external dimensions of the aircraft body to which the ultrasonic transmitter/receiver is attached, the ultrasonic transmitter/receiver, its support, etc. will greatly deteriorate the flight characteristics of the aircraft.
Therefore, it is desirable that the distance between each pair of ultrasonic transceivers be sufficiently larger than the external dimensions of the ultrasonic transceivers, and within a range that does not exceed the external dimensions of the aircraft to which they are attached.

本発明の対気速度を計測する対象の小型UAVは、実施例1のような回転翼タイプと、図11に示すような固定翼タイプのものに大別される。
回転翼タイプの小型UAVの場合、物資の運搬を目的とする機体では、機体の下部は物資を積載するスペースとして確保し、機体の外形に対称性を持つ機体では、飛行特性の観点から機体の外形の対称性を崩ないように、超音波送受信器を取り付けると良い。
一例として、回転翼の小型UAVには、位置や速度情報を取得するために、全球測位衛星システム(GNSS:Global Navigation Satellite System)の受信器が機体の上部に搭載されているものがあり、実施例1では受信機部分に超音波送受信器を取り付けている。
固定翼の小型UAVは、プロペラ等から推進力を得て、操舵翼を操舵して飛行する。プロペラから推進力を得る場合、プロペラ後流が超音波の伝播経路に入ると、対気速度及び風向に計測誤差が生まれる。そのため、超音波の伝播経路がプロペラ後流に晒されないように、超音波送受信器を取り付ける。また、固定翼の小型UAVの対気速度は、機首方向の成分が大きいため、機首方向の流れをセンサプローブが乱さないように、超音波の伝播経路が機首方向と平行にならないように超音波送受信器を配置する。
一例として、双発の固定翼の小型UAVは、機軸の周辺がプロペラ後流に晒されにくいので、図11ではその部分に超音波送受信器を取り付けている。
また、本発明は、伝播時間差を利用して計測される対気速度と同等の計測範囲で、高い分解能の対気速度の計測ができるため、小型UAVだけでなく有人の航空機に対しても適用できる。
The small UAVs whose airspeeds are to be measured according to the present invention are broadly classified into rotary wing types as in Example 1 and fixed wing types as shown in FIG. 11.
In the case of small rotary-wing type UAVs, if the purpose is to transport goods, the lower part of the fuselage should be reserved as a space for loading supplies, and if the aircraft has a symmetrical external shape, the lower part of the fuselage should be set aside from the viewpoint of flight characteristics. It is best to attach an ultrasonic transmitter/receiver so as not to disrupt the symmetry of the external shape.
For example, some small rotary-wing UAVs are equipped with a Global Navigation Satellite System (GNSS) receiver mounted on top of the aircraft to obtain position and speed information. In Example 1, an ultrasonic transceiver is attached to the receiver section.
A small fixed-wing UAV obtains propulsion power from a propeller or the like and flies by steering the control blades. When propulsive force is obtained from a propeller, if the propeller wake enters the ultrasonic propagation path, measurement errors will occur in airspeed and wind direction. Therefore, the ultrasonic transceiver is installed so that the ultrasonic propagation path is not exposed to the wake of the propeller. In addition, the airspeed of small fixed-wing UAVs has a large component in the nose direction, so in order to prevent the sensor probe from disturbing the flow in the nose direction, the ultrasonic propagation path should not be parallel to the nose direction. Place the ultrasonic transmitter/receiver at
As an example, since the area around the axis of a small twin-engine fixed-wing UAV is less likely to be exposed to the wake of the propeller, an ultrasonic transceiver is attached to that area in FIG. 11.
In addition, the present invention can measure airspeed with high resolution in the same measurement range as airspeed measured using propagation time differences, so it is applicable not only to small UAVs but also to manned aircraft. can.

小型UAVに取り付けられた1対の超音波送受信器の一方から送信した超音波は、空気中を伝播する他、超音波送受信器の支持具等を伝播し、他方の超音波送受信機が受信する。
本発明では、超音波が1対の超音波送受信器の間の空気中を伝播して、その受信信号から対気速度及び風向を算出する。そのため、超音波送受信器の支持具等を伝播した超音波を受信すると、対気速度及び風向の計測誤差の原因となる。
一般的に、このような意図しない超音波の伝播を防止するため、超音波送受信器と意図しない超音波の伝播経路を吸音材で仕切れば良い。
しかし、小型UAVの対気速度及び風向の計測では、超音波送受信器及びその支持具等によって、計測したい流れを乱すことや、小型UAVの飛行特性を悪化させることは避けらず、これらの影響を抑える上で、吸音材は妨げになる。
そこで、超音波送受信器の支持具の超音波の伝播に関するパラメータの同定により、超音波送受信器の支持具を伝播した超音波を受信することによる、対気速度及び風向の計測誤差を除去する。
同定されるパラメータは、送信側の超音波送受信器から発せられた超音波が支持具を伝播して受信側の超音波送受信器によって受信されるときに生じるもので、超音波の受信信号に含まれており対気速度の測定誤差の原因となるパラメータである。このため計測する流れ方向及び流れと逆方向に超音波が伝播したときの受信信号と正弦波との位相差を算出する際に、逆正接を計算する分母と分子にそれぞれ1つずつパラメータが生じる。
超音波が超音波送受信器の支持具を伝播して受信したことによる計測誤差を含んだ、受信信号α1と周波数fの正弦波の位相差φ1は、ω=2πfとして下記の式(17)で表される。

Figure 0007352948000006
ただし、超音波が超音波送受信器の支持具を伝播して受信した電圧信号をA1’>0でA1’sin(ωt+φ1’)と仮定し、対気速度及び風向の計測誤差の原因となるパラメータをEs1,Ec1とした。
位相差φ2も、超音波が超音波送受信器の支持具を伝播して受信した電圧信号をA2’>0でA2’sin(ωt+φ2’)と仮定して、対気速度及び風向の計測誤差の原因となるパラメータをEs2,Ec2とすれば、式(17)のφ1をφ2に置き換えて同様に計算される。
パラメータEs1,Ec1,Es2,Ec2を同定しておくことで、超音波送受信器の支持具を伝播した超音波を受信することによる対気速度及び風向の計測誤差を除去できる。
以上の説明は、1対の超音波送受信器を用いた場合の対気速度及び風向の計測誤差の原因となるパラメータの除去方法であったが、2対及び3対の超音波送受信器を用いた場合も、それぞれ独立に対気速度及び風向の計測を、1対の超音波送受信器の対気速度及び風向の計測方法で行っているから、それぞれ対気速度及び風向の計測誤差の原因となるパラメータを除去すれば、それぞれ誤差を除去でき、2対及び3対の超音波送受信器を用いた対気速度及び風向の計測誤差を除去できる。 Ultrasonic waves transmitted from one of a pair of ultrasonic transceivers attached to a small UAV propagate through the air and through the support of the ultrasonic transceiver, and are received by the other ultrasonic transceiver. .
In the present invention, ultrasonic waves propagate in the air between a pair of ultrasonic transceivers, and airspeed and wind direction are calculated from the received signals. Therefore, when receiving ultrasonic waves propagated through the support of an ultrasonic transmitter/receiver, etc., it causes measurement errors in airspeed and wind direction.
Generally, in order to prevent such unintended propagation of ultrasonic waves, the ultrasonic transmitter/receiver and the propagation path of unintended ultrasonic waves may be partitioned off with a sound absorbing material.
However, when measuring the airspeed and wind direction of a small UAV, it is unavoidable that the ultrasonic transmitter/receiver and its support equipment disturb the flow to be measured and deteriorate the flight characteristics of the small UAV. Sound-absorbing materials can be a hindrance to suppressing noise.
Therefore, by identifying parameters related to the propagation of ultrasonic waves through the support of the ultrasonic transceiver, errors in measuring airspeed and wind direction due to reception of ultrasonic waves propagated through the support of the ultrasonic transceiver are removed.
The identified parameters are those that occur when the ultrasonic waves emitted from the ultrasonic transceiver on the transmitting side propagate through the support and are received by the ultrasonic transceiver on the receiving side, and are included in the received ultrasonic signal. This is a parameter that causes airspeed measurement errors. Therefore, when calculating the phase difference between the received signal and the sine wave when the ultrasonic wave propagates in the flow direction to be measured and in the opposite direction to the flow, one parameter is generated for the denominator and numerator for calculating the arctangent. .
The phase difference φ 1 between the received signal α 1 and the sine wave of frequency f, which includes a measurement error due to the ultrasonic wave being received after propagating through the support of the ultrasonic transmitter/receiver, is expressed by the following equation (17) with ω = 2πf. It is expressed as
Figure 0007352948000006
However, assuming that the voltage signal received by the ultrasonic wave propagating through the support of the ultrasonic transmitter/receiver is A 1 '> 0 and A 1 ' sin (ωt + φ 1 '), the cause of measurement error in airspeed and wind direction is The parameters are E s1 and E c1 .
The phase difference φ 2 is also determined by the airspeed and wind direction, assuming that the voltage signal received by the ultrasonic wave propagating through the support of the ultrasonic transmitter/receiver is A 2 ′ > 0 and A 2 ′ sin (ωt + φ 2 ′). Let E s2 and E c2 be the parameters that cause the measurement error in Eq.
By identifying the parameters E s1 , E c1 , E s2 , and E c2 , it is possible to eliminate measurement errors in airspeed and wind direction caused by receiving ultrasonic waves propagated through the support of the ultrasonic transmitter/receiver.
The above explanation was about how to remove parameters that cause airspeed and wind direction measurement errors when one pair of ultrasonic transceivers is used, but when using two or three pairs of ultrasonic transceivers, Even in cases where airspeed and wind direction are measured independently, airspeed and wind direction are measured independently using a pair of ultrasonic transmitter/receiver, which may be the cause of measurement errors in airspeed and wind direction, respectively. By removing these parameters, the respective errors can be removed, and the errors in measuring airspeed and wind direction using two and three pairs of ultrasonic transceivers can be removed.

3対の超音波送受信器による対気速度及び風向の計測システム及びその計測システムを用いる対気速度及び風向の計測方法について図12を用いて説明する。
計測システムは、超音波送受信器と送受信切り替えユニット、受信信号増幅ユニット、マイクロコンピュータから構成される。
1対の超音波送受信器は、それぞれが印加された電圧信号から超音波を送信する及び超音波を受信して電圧信号を発生する機能を持つ。
送受信切り替えユニットは、超音波送受信器に超音波の送信をさせるか、または超音波を受信させるかのいずれかに切り替える機能を持つ。
受信信号増幅ユニットは、超音波送受信器が超音波を受信して発生した電圧信号を増幅する機能を持つ。
マイクロコンピュータは、超音波を送信する超音波送受信機に印加する電圧信号を発生する回路と、受信信号増幅ユニットにより増幅された受信信号をA/D変換してデジタル化する回路、デジタル化された受信信号から対気速度及び風向を算出するCPU、外部システムと通信して算出した対気速度及び風向データを送信する回路からなる。
マイクロコンピュータにより、超音波送受信器に印加する電圧信号を生成し、送受信切り替えユニットにより超音波を送信する機能に指定された超音波送受信器に印加される。
送受信切り替えユニットにより、超音波を受信する機能に指定された超音波送受信器が送信された超音波を受信して電圧信号を生成し、受信信号増幅ユニットにより受信した受信信号が増幅される。
そして、マイクロコンピュータにより、増幅された受信信号をA/D変換してデジタル化し、デジタル化された受信信号から対気速度及び風向を算出して、外部システムに対気速度及び風向データを送信する。
外部システムは、対気速度及び風向データを必要とするシステムであり、小型UAVの自律飛行制御の場合、得られた対気速度及び風向のデータを用いてアクチュエータの指令値を決定し、アクチュエータを動かすシステムを指す。
A system for measuring airspeed and wind direction using three pairs of ultrasonic transceivers and a method for measuring airspeed and wind direction using the measurement system will be described with reference to FIG. 12.
The measurement system consists of an ultrasonic transceiver, a transmission/reception switching unit, a received signal amplification unit, and a microcomputer.
The pair of ultrasonic transceivers each have the function of transmitting ultrasonic waves from an applied voltage signal and receiving ultrasonic waves to generate a voltage signal.
The transmission/reception switching unit has a function of switching the ultrasonic transceiver to either transmit ultrasonic waves or receive ultrasonic waves.
The received signal amplification unit has a function of amplifying the voltage signal generated by the ultrasonic transceiver receiving ultrasonic waves.
A microcomputer consists of a circuit that generates a voltage signal to be applied to an ultrasonic transmitter/receiver that transmits ultrasonic waves, a circuit that converts the received signal amplified by a received signal amplification unit into digital form by A/D converting it, and a circuit that converts the received signal into a digital signal. It consists of a CPU that calculates airspeed and wind direction from received signals, and a circuit that communicates with an external system and transmits the calculated airspeed and wind direction data.
The microcomputer generates a voltage signal to be applied to the ultrasound transceiver, and the transmission/reception switching unit applies the voltage signal to the ultrasound transceiver designated for the function of transmitting ultrasound.
The transmission/reception switching unit causes the ultrasound transceiver designated to receive the ultrasound to receive the transmitted ultrasound and generate a voltage signal, and the reception signal amplification unit amplifies the received signal.
Then, the microcomputer converts the amplified reception signal into digital form, calculates airspeed and wind direction from the digitized reception signal, and sends the airspeed and wind direction data to an external system. .
The external system is a system that requires airspeed and wind direction data, and in the case of autonomous flight control of a small UAV, the obtained airspeed and wind direction data is used to determine the command value of the actuator and control the actuator. Refers to the system that moves.

計測器は、標準器で計測して得た値を真の値の推定値として校正を行う必要がある。
実施例3の特徴は、小型UAVの自律制御を目的とした低速領域の対気速度及び風向を計測することにあり、中心周波数40kHzの超音波送受信器(UT1612MPR/UR1612MPR,CPL (Hong Kong) Limited)を用いて、従来の小型UAV用風向風速計では計測できない4m/秒以下の対気速度に対して校正を行った。
校正手法として、インクリメンタル型ロータリエンコーダにより対地速度を計測できる手押し車に、計測器を搭載して人力で走行し、静止した空気中で対地速度と対気速度が等しくなることを利用した。
これは、産業技術総合研究所(https://unit.aist.go.jp/riem/gfstd/facility.html)による、地下トンネル内で微風速計を載せた台車を走行させる校正施設を模したものである。
Measuring instruments need to be calibrated using the values obtained by measuring with standard instruments as estimates of the true values.
The feature of Embodiment 3 is to measure the airspeed and wind direction in a low speed region for the purpose of autonomous control of a small UAV, and it uses an ultrasonic transceiver (UT1612MPR/UR1612MPR, CPL (Hong Kong) Limited) with a center frequency of 40kHz. ) was used to calibrate airspeeds of 4 m/s or less, which cannot be measured with conventional small UAV anemometers.
As a calibration method, we installed a measuring device in a wheelbarrow that can measure ground speed using an incremental rotary encoder and drove it manually, taking advantage of the fact that ground speed and air speed are equal in still air.
This is a calibration facility designed by the National Institute of Advanced Industrial Science and Technology (https://unit.aist.go.jp/riem/gfstd/facility.html) that runs a trolley carrying a microanemometer inside an underground tunnel. It is something.

マイクロコンピュータ(dePIC33FJ64GP802,Microchip Technology)により、10周期の電圧差3.3Vp-pで40kHzの矩形波の電圧信号を生成し、3ステートバッファ(SN74HC125N,TEXAS INSTRUMENTS)とアナログスイッチ(TC74HC4066AP,TOSHIBA)からなる送受信切り替えユニットにより、超音波を送信する機能に指定された超音波送受信器に印加される。
送受信切り替えユニットにより、超音波を受信する機能に指定された超音波送受信器が、送信された超音波を受信して電圧信号を生成し、オペアンプ(NJM2732D,新日本無線株式会社)を用いた反転増幅回路からなる受信信号増幅ユニットにより、受信した受信信号が増幅される。
マイクロコンピュータにより、増幅された受信信号をサンプリング周波数400kHzでA/D変換してデジタル化し、デジタル化された受信信号から対気速度及び風向を算出して、外部システム(Arduino Micro,Arduino Srl)に対気速度及び風向データをI2C通信で送信する。
A microcomputer (dePIC33FJ64GP802, Microchip Technology) generates a 40kHz square wave voltage signal with a 10-cycle voltage difference of 3.3V pp , and consists of a 3-state buffer (SN74HC125N, TEXAS INSTRUMENTS) and an analog switch (TC74HC4066AP, TOSHIBA). The transmitting/receiving switching unit applies the voltage to the ultrasound transceiver designated for the function of transmitting ultrasound.
The ultrasonic transmitter/receiver designated to receive ultrasonic waves by the transmission/reception switching unit receives the transmitted ultrasonic waves, generates a voltage signal, and inverts the signal using an operational amplifier (NJM2732D, New Japan Radio Co., Ltd.). A received signal is amplified by a received signal amplification unit including an amplifier circuit.
A microcomputer converts the amplified received signal into digital data at a sampling frequency of 400kHz, calculates airspeed and wind direction from the digitized received signal, and sends it to an external system (Arduino Micro, Arduino Srl). Transmits airspeed and wind direction data via I2C communication.

外部システムは、小型UAVの自律制御で対気速度を参照した制御手法の実装において必要と思われるサンプリング周波数10Hzで対気速度を計測し校正を行った。
それぞれ距離L=150mmで、θ1=0°、すなわち、それぞれの伝播経路が直交して設置された2対の超音波送受信器を用いて、二次元の対気速度の大きさの計測値Vsenを、ロータリエンコーダによる対地速度の計測値Vreを対気速度の真の値の推定値として、θ1=0°で機体座標系を設定した時のβ=45°について校正した結果を図13に示す。
校正する前の小型UAV用超音波風向微風速計による対気速度の計測値は、ロータリエンコーダによる対地速度の計測値に対して、およそ30%の計測誤差が生じることが分かり、超音波送受信器の支持具等を伝播した超音波を受信することによる対気速度の計測誤差を除去した。
校正した結果から、サンプリング周波数10Hzで、小型UAVの自律制御に用いるに十分な分解能で、対気速度や風向を計測できることが分かった。
The external system measured and calibrated airspeed at a sampling frequency of 10 Hz, which is considered necessary for implementing a control method that refers to airspeed in autonomous control of a small UAV.
Using two pairs of ultrasonic transceivers installed at a distance L = 150 mm and θ 1 = 0°, that is, their respective propagation paths are orthogonal, the two-dimensional airspeed magnitude is measured V The figure shows the results of calibration for β = 45° when the aircraft coordinate system is set at θ 1 = 0°, with sen as the ground speed measurement value V re measured by the rotary encoder as the estimated value of the true value of airspeed. 13.
It was found that the airspeed measurements made by the ultrasonic anemometer for small UAVs before calibration had a measurement error of approximately 30% compared to the ground speed measurements made by the rotary encoder. Airspeed measurement errors caused by receiving ultrasonic waves propagated through supports, etc., have been eliminated.
The calibration results showed that airspeed and wind direction can be measured at a sampling frequency of 10Hz with sufficient resolution for autonomous control of small UAVs.

校正した小型UAV用超音波風向微風速計を搭載した双発の固定翼の小型UAVを、旋回半径を一定とする旋回飛行の制御を実装した上で飛行し、その時の対気速度及び風向を計測した。
小型UAV用超音波風向微風速計は、それぞれ距離L=150mmでθ1=0°,θ2=90°、すなわち、それぞれの伝播経路が直交して設置された3対の超音波送受信器を用いて、機体の機首方向をx軸、左右方向をy軸、x軸に垂直な胴体の上下方向をz軸とする機体座標系を設定して、センサ座標系がθ1=0°,θ2=0°となるように、機体に3対の超音波送受信器を設置した。
旋回半径を一定とする旋回飛行の制御ループの制御周期が20ミリ秒であったため、サンプリング周波数50Hzで対気速度及び風向を計測した。
飛行試験における対気速度u,v,w,V及び風向α,βの計測結果を図14に示す。これらの飛行試験における対気速度や風向の計測の結果から、本発明によれば低速で飛行する小型UAVの対気速度及び風向を計測できることが分かった。
A small, twin-engine fixed-wing UAV equipped with a calibrated ultrasonic wind direction and microanemometer for small UAVs is flown with control for turning flight with a constant turning radius, and the airspeed and wind direction are measured at that time. did.
The ultrasonic anemometer for small UAV has three pairs of ultrasonic transmitters and receivers installed at a distance L = 150 mm and θ 1 = 0°, θ 2 = 90°, that is, their respective propagation paths are orthogonal. Using this, we set an aircraft coordinate system in which the nose direction of the aircraft is the x axis, the horizontal direction is the y axis, and the vertical direction of the fuselage perpendicular to the x axis is the z axis, so that the sensor coordinate system is θ 1 = 0°, Three pairs of ultrasonic transceivers were installed on the aircraft so that θ 2 =0°.
Since the control cycle of the control loop for turning flight with a constant turning radius was 20 milliseconds, airspeed and wind direction were measured at a sampling frequency of 50 Hz.
Figure 14 shows the measurement results of airspeeds u, v, w, V and wind directions α, β in the flight test. From the results of measuring airspeed and wind direction in these flight tests, it was found that according to the present invention, the airspeed and wind direction of a small UAV flying at low speed can be measured.

実施例1及び2の飛行体用対気速度及び風向計測装置及びその計測方法に関する変形例を列記する。
(1)実施例1及び2では、第1伝播時間計測手段11、21及び第2伝播時間計測手段12,22で伝播時間を計測し、時間差風速を演算したが、位相差を演算する時と同様に第1受信信号及び第2受信信号を記録した上で、第1伝播時間及び第2伝播時間を計測し、時間差風速を演算しても良い。
(2)実施例1及び2では、・・・でも良い。
(3)実施例1及び2では、・・・でも良い。
Modifications regarding the airspeed and wind direction measuring device for aircraft and the measuring method of Examples 1 and 2 will be listed.
(1) In Examples 1 and 2, the first propagation time measuring means 11 and 21 and the second propagation time measuring means 12 and 22 measured the propagation time and calculated the time difference wind speed, but when calculating the phase difference Similarly, after recording the first received signal and the second received signal, the first propagation time and the second propagation time may be measured to calculate the time difference wind speed.
(2) In Examples 1 and 2,... may be used.
(3) In Examples 1 and 2,... may be used.

1 第1風速計測手段 2 第2風速計測手段 3 風向計測手段
4、6、9 一方の超音波送受信器 5、7、10 他方の超音波送受信器
8 第3風速計測手段 11、21 第1伝播時間計測手段
12、22 第2伝播時間計測手段 13 時間差風速演算手段
14、24 第1受信信号記録手段 15、25 第2受信信号記録手段
16、26 位相差演算手段 17、27 位相差修正手段
18、28 位相差風速演算手段
f 中心周波数(Hz) L 1対の超音波送受信器間の距離
t 時間(秒) t1、t3 第1伝播時間(秒) t2、t4 第2伝播時間(秒)
Vp、V1p、V2p 位相差風速(m/秒) Vs 音速(m/秒)
u、usen 対気速度の計測値のx方向成分(m/秒)
v、vsen 対気速度の計測値のy方向成分(m/秒)
w、wsen 対気速度の計測値のz方向成分(m/秒)
V、Vsen 対気速度の大きさの計測値(m/秒) α、β 風向の計測値(rad)
α1、α2 第1受信信号 β1、β2 第2受信信号
θ1、θ2、θ3 回転角度(rad) φ1、φ2 位相差(rad)
φ1a、φ2a 修正位相差(rad) φ1、φ2 正弦波との位相差(rad)
xyz sen 機体座標系からセンサ座標系に変換する回転行列
sen 各対気速度の計測値usen,vsen,wsenをセンサ座標系に変換する行列
1 First wind speed measuring means 2 Second wind speed measuring means 3 Wind direction measuring means 4, 6, 9 One ultrasonic transceiver 5, 7, 10 Other ultrasonic transceiver 8 Third wind speed measuring means 11, 21 First propagation Time measurement means 12, 22 Second propagation time measurement means 13 Time difference wind speed calculation means 14, 24 First received signal recording means 15, 25 Second reception signal recording means 16, 26 Phase difference calculation means 17, 27 Phase difference correction means 18 , 28 Phase difference wind speed calculation means f Center frequency (Hz) L Distance t between a pair of ultrasonic transceivers Time (seconds) t 1 , t 3 First propagation time (seconds) t 2 , t 4 Second propagation time (seconds)
Vp, V1p, V2p Phase difference wind speed (m/sec) Vs Sound speed (m/sec)
u, u sen x-direction component of measured airspeed (m/s)
v, v sen y-direction component of measured airspeed (m/s)
w, w sen Z-component of measured airspeed (m/s)
V, V sen Measured value of airspeed (m/sec) α, β Measured value of wind direction (rad)
α1, α2 First received signal β1, β2 Second received signal θ 1 , θ 2 , θ 3 Rotation angle (rad) φ1, φ2 Phase difference (rad)
φ1a, φ2a Corrected phase difference (rad) Phase difference with φ 1 , φ 2 sine wave (rad)
R xyz sen Rotation matrix for converting from the aircraft coordinate system to the sensor coordinate system R sen Matrix for converting each airspeed measurement value u sen , v sen , w sen to the sensor coordinate system

Claims (3)

飛行体の外面に、第1の方向についての風速を計測する第1風速計測手段及び前記第1の方向とは異なる第2の方向についての風速を計測する第2風速計測手段と、
前記第1風速計測手段で計測された第1の方向についての風速及び前記第2風速計測手段で計測された第2の方向についての風速に基づいて風向を計測する風向計測手段を備え、
前記第1風速計測手段及び前記第2風速計測手段は、いずれも
1対の超音波送受信器と、
一方の超音波送受信器が超音波を送信してから他方の超音波送受信器で該超音波を受信するまでの第1伝播時間を計測する第1伝播時間計測手段と、
前記他方の超音波送受信器が超音波を送信してから前記一方の超音波送受信器で該超音波を受信するまでの第2伝播時間を計測する第2伝播時間計測手段と、
前記第1伝播時間計測手段で計測された第1伝播時間及び前記第2伝播時間計測手段で計測された第2伝播時間に基づいて時間差風速を演算する時間差風速演算手段と、
前記一方の超音波送受信器が超音波を送信した後、前記他方の超音波送受信器で受信した第1受信信号を記録する第1受信信号記録手段と、
前記他方の超音波送受信器が超音波を送信した後、前記一方の超音波送受信器で受信した第2受信信号を記録する第2受信信号記録手段と、
前記第1受信信号記録手段で記録された第1受信信号と前記第2受信信号記録手段で記録された第2受信信号との位相差を演算する位相差演算手段と、
前記時間差風速演算手段で演算された風速及び前記超音波送受信器の支持具の超音波の伝播に関するパラメータに基づいて、前記位相差演算手段で演算された位相差を修正する位相差修正手段と、
前記位相差修正手段で修正された修正位相差に基づいて位相差風速を演算する位相差風速演算手段を有している
ことを特徴とする飛行体用対気速度及び風向計測装置。
A first wind speed measuring means for measuring wind speed in a first direction and a second wind speed measuring means for measuring wind speed in a second direction different from the first direction, on the outer surface of the flying object;
Wind direction measuring means for measuring the wind direction based on the wind speed in the first direction measured by the first wind speed measuring means and the wind speed in the second direction measured by the second wind speed measuring means,
The first wind speed measuring means and the second wind speed measuring means each include a pair of ultrasonic transceivers,
a first propagation time measuring means for measuring a first propagation time from when one ultrasonic transceiver transmits an ultrasonic wave until the other ultrasonic transceiver receives the ultrasonic wave;
a second propagation time measuring means for measuring a second propagation time from when the other ultrasonic transceiver transmits an ultrasonic wave until the one ultrasonic transceiver receives the ultrasonic wave;
time difference wind speed calculation means for calculating a time difference wind speed based on a first propagation time measured by the first propagation time measurement means and a second propagation time measured by the second propagation time measurement means;
a first received signal recording means for recording a first received signal received by the other ultrasonic transceiver after the one ultrasonic transceiver transmits the ultrasonic wave;
a second received signal recording means for recording a second received signal received by the one ultrasonic transceiver after the other ultrasonic transceiver transmits the ultrasonic wave;
phase difference calculating means for calculating a phase difference between a first received signal recorded by the first received signal recording means and a second received signal recorded by the second received signal recording means;
a phase difference correction means for correcting the phase difference calculated by the phase difference calculation means based on the wind speed calculated by the time difference wind speed calculation means and a parameter regarding the propagation of the ultrasonic wave of the support of the ultrasonic transmitter/receiver ;
An airspeed and wind direction measuring device for an aircraft, comprising: a phase difference wind speed calculation means for calculating a phase difference wind speed based on the corrected phase difference corrected by the phase difference correction means.
前記第1の方向と前記第2の方向は、同一平面内で直交している
ことを特徴とする請求項1に記載の飛行体用対気速度及び風向計測装置。
The airspeed and wind direction measuring device for an aircraft according to claim 1, wherein the first direction and the second direction are perpendicular to each other within the same plane.
飛行体の外面に設置された第1の方向についての風速を計測する第1風速計測手段及び前記第1の方向とは異なる第2の方向についての風速を計測する第2風速計測手段を用いて、前記飛行体の対気速度及び風向を計測する方法であって、
前記第1風速計測手段及び前記第2風速計測手段が、それぞれ有している1対の超音波送受信器のうちの一方の超音波送受信器が超音波を送信してから他方の超音波送受信器で該超音波を受信するまでの第1伝播時間を計測し、
前記一方の超音波送受信器が超音波を送信した後、前記他方の超音波送受信器で受信した第1受信信号を記録し、
前記他方の超音波送受信器が超音波を送信してから前記一方の超音波送受信器で該超音波を受信するまでの第2伝播時間を計測し、
前記他方の超音波送受信器が超音波を送信した後、前記一方の超音波送受信器で受信した第2受信信号を記録し、
前記第1伝播時間及び前記第2伝播時間に基づいて時間差風速を演算し、
前記第1受信信号と前記第2受信信号との位相差を演算し、
前記時間差風速及び前記超音波送受信器の支持具の超音波の伝播に関するパラメータに基づいて前記位相差を修正し、修正位相差を演算し、
前記修正位相差に基づいて位相差風速を演算し、
前記第1風速計測手段で計測された第1の位相差風速及び前記第2風速計測手段で計測された第2の位相差風速に基づいて風向を計測する
ことを特徴とする飛行体用対気速度及び風向計測方法。
A first wind speed measuring means installed on the outer surface of the flying object measures the wind speed in a first direction, and a second wind speed measuring means measures the wind speed in a second direction different from the first direction. , a method for measuring the airspeed and wind direction of the aircraft, the method comprising:
The first wind speed measuring means and the second wind speed measuring means each have a pair of ultrasonic transceivers, after one of the ultrasonic transceivers transmits an ultrasonic wave, the other ultrasonic transceiver transmits an ultrasonic wave. Measure the first propagation time until receiving the ultrasonic wave at
After the one ultrasonic transceiver transmits the ultrasonic wave, recording a first reception signal received by the other ultrasonic transceiver,
Measuring a second propagation time from when the other ultrasonic transceiver transmits the ultrasonic wave until the one ultrasonic transceiver receives the ultrasonic wave,
After the other ultrasonic transceiver transmits the ultrasonic wave, recording a second reception signal received by the one ultrasonic transceiver,
calculating a time difference wind speed based on the first propagation time and the second propagation time;
calculating a phase difference between the first received signal and the second received signal;
correcting the phase difference based on the time difference wind speed and parameters related to the propagation of the ultrasonic wave of the support of the ultrasonic transmitter/receiver , and calculating a corrected phase difference;
calculating a phase difference wind speed based on the corrected phase difference;
An air conditioner for an aircraft, characterized in that wind direction is measured based on a first phase difference wind speed measured by the first wind speed measuring means and a second phase difference wind speed measured by the second wind speed measuring means. Speed and wind direction measurement method.
JP2019188999A 2019-10-15 2019-10-15 Airspeed and wind direction measuring device for aircraft and its measurement method Active JP7352948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019188999A JP7352948B2 (en) 2019-10-15 2019-10-15 Airspeed and wind direction measuring device for aircraft and its measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019188999A JP7352948B2 (en) 2019-10-15 2019-10-15 Airspeed and wind direction measuring device for aircraft and its measurement method

Publications (2)

Publication Number Publication Date
JP2021063741A JP2021063741A (en) 2021-04-22
JP7352948B2 true JP7352948B2 (en) 2023-09-29

Family

ID=75486117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019188999A Active JP7352948B2 (en) 2019-10-15 2019-10-15 Airspeed and wind direction measuring device for aircraft and its measurement method

Country Status (1)

Country Link
JP (1) JP7352948B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088972B (en) * 2021-11-21 2024-04-05 吉林大学 Ultrasonic wind speed and direction measurement system and method based on phase double-frequency method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316721A (en) 2014-11-13 2015-01-28 大连海事大学 Wind speed and direction dynamic measurement method and device with moving posture compensation function
KR101886001B1 (en) 2017-09-05 2018-08-06 한국항공우주연구원 Apparatus and method for driving assistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739185B1 (en) * 1995-09-25 1997-11-14 Schlumberger Ind Sa METHOD FOR ACOUSTIC MEASUREMENT OF A FLUID FLOW

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316721A (en) 2014-11-13 2015-01-28 大连海事大学 Wind speed and direction dynamic measurement method and device with moving posture compensation function
KR101886001B1 (en) 2017-09-05 2018-08-06 한국항공우주연구원 Apparatus and method for driving assistance

Also Published As

Publication number Publication date
JP2021063741A (en) 2021-04-22

Similar Documents

Publication Publication Date Title
US8718971B2 (en) System for determining the airspeed of an aircraft
EP3693746B1 (en) Acoustic air data system
CN104316721A (en) Wind speed and direction dynamic measurement method and device with moving posture compensation function
US8261609B2 (en) Aerodynamic measurement probe and helicopter equipped with the probe
US8261610B2 (en) Aerodynamic measurement probe of an airstream along a wall
EP3712620B1 (en) Acoustic air data sensing system with skin friction sensor
JP7352948B2 (en) Airspeed and wind direction measuring device for aircraft and its measurement method
EP3770609B1 (en) Air data systems
US6601447B1 (en) Acoustic anemometer for simultaneous measurement of three fluid flow vector components
EP3882639B1 (en) Acoustic air data system with radially paired receivers
Prudden et al. An anemometer for UAS-based atmospheric wind measurements
JP4892695B2 (en) Instrument calibration flight test method using kinematic GPS
JP2022065535A (en) Airspeed and wind direction measuring device, method, and program for flying object
JP2019095219A (en) Measurement device, mobile body, and method for measurement
KR101724330B1 (en) Remote measuring system and compensation method of the doppler frequency shift usinf the same, and apparatus thereof
JP3574814B2 (en) Aircraft ultrasonic airspeed sensor
RU2592705C2 (en) Onboard system for measuring parameters of wind velocity vector during parking, takeoff and landing of helicopter
US11016114B1 (en) Determining aircraft flying conditions based on acoustic signals caused by airflow
CN112166329B (en) Ultrasonic airspeed indicator
JPH09184720A (en) Geodetic survey method and device therefor
CN104965103A (en) Wind speed measurement method based on parametric array
US20230350082A1 (en) Systems and Methods for Dynamic Characterization and Adjustment of Radio Frequency Aperture and Transmission
CN111856074B (en) Combined type atmospheric data measurement experiment cabin section and flight data measurement method thereof
Feist Acoustic Michelson-Morley Experiment with an Ultrasonic Range Finder
JPS6246277A (en) Negative range finding method of aerial emitter by single non-steering of fixing sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230911

R150 Certificate of patent or registration of utility model

Ref document number: 7352948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150