JP2009227269A - 水中航走体の甲板支持用構造体及び水中航走体 - Google Patents

水中航走体の甲板支持用構造体及び水中航走体 Download PDF

Info

Publication number
JP2009227269A
JP2009227269A JP2009039651A JP2009039651A JP2009227269A JP 2009227269 A JP2009227269 A JP 2009227269A JP 2009039651 A JP2009039651 A JP 2009039651A JP 2009039651 A JP2009039651 A JP 2009039651A JP 2009227269 A JP2009227269 A JP 2009227269A
Authority
JP
Japan
Prior art keywords
deck
pressure
vibration
resistant shell
underwater vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009039651A
Other languages
English (en)
Inventor
Susumu Kimura
延 木村
Katsuyuki Nabeta
克幸 鍋田
Kaneaki Urakawa
兼明 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009039651A priority Critical patent/JP2009227269A/ja
Publication of JP2009227269A publication Critical patent/JP2009227269A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

【課題】水中航走体において、甲板から耐圧殻へ伝達する振動を低減し、かつ、耐圧殻から甲板へ伝達する力、特に衝撃力を低減することを、簡易な構成で実現すること。
【解決手段】水中航走体を構成する耐圧殻2と、耐圧殻2の内部に配置される甲板3との間へ、水中航走体の甲板支持用構造体10を設ける。水中航走体の甲板支持用構造体10は、甲板3から耐圧殻2へ伝達される振動を減衰する振動減衰手段30A,30Bと、振動減衰手段30A,30Bと直列に配置されて、耐圧殻2から甲板3へ伝達される力を緩和する衝撃緩和手段31と、振動減衰手段30A,30B及び衝撃緩和手段31と並列に配置される衝撃緩和時振動減衰手段32と、を備える。
【選択図】図3−2

Description

本発明は、水中航走体の内部に配置される甲板を支持する水中航走体の甲板支持用構造体及び水中航走体に関する。
主として水中を航行する水中航走体が知られている。このような水中航走体は、水圧を受ける耐圧殻と、耐圧殻の内部に配置されて機器が搭載されたり、人員が作業したりする甲板とを備える。例えば、特許文献1には、内部に甲板が配置される内殻の外周面に隔壁を固定して区画室を形成し、区画室へ空気を供給することで外部からの衝撃を区画室の空気によって吸収する水中航走体が開示されている。
特開2003−175890号公報(0005、図1)
ところで、水中航走体では、甲板上の機器や甲板上の人員等が発生する音や振動等ができる限り耐圧殻に伝達されず、また、耐圧殻から入力された力(特に衝撃力)が、できる限り甲板へ伝達されないようにしたい要請がある。特許文献1に開示された技術では、耐圧殻から甲板へ伝達する力を低減することができるが、そのためには空気供給装置や配管等が必要となり、構成が複雑になる。また、特許文献1に開示された技術では、甲板から耐圧殻へ伝達する振動を抑制することについては開示されておらず、この点に改善の余地がある。
本発明は、上記に鑑みてなされたものであって、水中航走体において、甲板から耐圧殻へ伝達する振動を低減し、かつ、耐圧殻から甲板へ伝達する力、特に衝撃力を低減することを、簡易な構成で実現することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る水中航走体の甲板支持用構造体は、水中航走体を構成する耐圧殻と、前記耐圧殻の内部に配置される甲板との間へ設けられて、前記甲板から前記耐圧殻へ伝達される振動を減衰する振動減衰手段と、前記耐圧殻と前記甲板との間に設けられ、かつ前記振動減衰手段と直列に配置されて、前記耐圧殻から前記甲板へ伝達される力を緩和する衝撃緩和手段と、を含んで構成されることを特徴とする。
これにより、例えば、耐圧殻に衝撃力が加わらない場合には、振動減衰手段により甲板の振動を減衰させ、甲板から耐圧殻への振動の伝達を抑制する。そして、例えば、耐圧殻に衝撃力が加わった場合のように、耐圧殻から甲板への入力が大きい場合には、振動減衰手段の変形が進行しにくくなって衝撃緩和手段が作用して衝撃力を緩和するので、耐圧殻から甲板への衝撃力の伝達を抑制する。また、本発明に係る水中航走体の甲板支持用構造体は、空気供給装置や配管等が不要なので、甲板から耐圧殻へ伝達する振動を低減し、かつ、耐圧殻から甲板へ伝達する力、特に衝撃力を低減することを、簡易な構成で実現できる。
本発明の好ましい態様としては、前記水中航走体の甲板支持用構造体において、前記衝撃緩和手段は、弾性体又は弾塑性体であり、前記振動減衰手段は、前記衝撃緩和手段よりもヒステリシスの程度が大きいヒステリシス材料であることが望ましい。これによって、甲板から耐圧殻への振動を効果的に抑制できる。
本発明の好ましい態様としては、前記水中航走体の甲板支持用構造体において、さらに、前記耐圧殻と前記甲板との間に、前記衝撃緩和手段と並列に、前記衝撃緩和手段が前記耐圧殻から前記甲板へ伝達される力を緩和する際に発生する前記衝撃緩和手段の振動を減衰する衝撃緩和時振動減衰手段を設けることが望ましい。このように、前記振動減衰手段とは異なる衝撃緩和時振動減衰手段を用いることにより、衝撃緩和手段の過度な振動を抑制できる。
本発明の好ましい態様としては、前記水中航走体の甲板支持用構造体において、前記衝撃緩和時振動減衰手段は、前記衝撃緩和手段の運動エネルギーを熱エネルギーに変換することにより、前記衝撃緩和手段の振動を減衰することが望ましい。これによって、衝撃緩和時振動減衰手段が作動する際の振動や騒音を低減できる。
本発明の好ましい態様としては、前記水中航走体の甲板支持用構造体において、前記振動減衰手段は、第1の材料と、当該第1の材料よりも剛性の大きい第2の材料とで構成され、前記第1の材料で前記第2の材料を挟持することが望ましい。このように、振動減衰手段を、第1の材料よりも剛性の大きい第2の材料を第1の材料で挟持した二重防新構造とすることにより、振動の減衰能が向上するので、甲板から耐圧殻への振動の伝達をさらに低減できる。
上述した課題を解決し、目的を達成するために、本発明に係る水中航走体は、水圧を受ける耐圧殻と、前記耐圧殻の内部に配置される甲板と、前記耐圧殻と前記甲板との間に設けられる前記水中航走体の甲板支持用構造体と、を含むことを特徴とする。これによって、水中航走体の甲板から耐圧殻へ伝達する振動を低減し、かつ、耐圧殻から甲板へ伝達する力、特に衝撃力を低減することを、簡易な構成で実現できる。
本発明は、水中航走体において、甲板から耐圧殻へ伝達する振動を低減し、かつ、耐圧殻から甲板へ伝達する力、特に衝撃力を低減することを、簡易な構成で実現できる。
図1は、本実施形態に係る水中航走体の内部構造を示す説明図である。 図2は、図1のA−A矢視図である。 図3−1は、本実施形態に係る甲板支持用構造体を示す概念図である。 図3−2は、本実施形態に係る甲板支持用構造体を示す概念図である。 図4−1は、本実施形態に係る甲板支持用構造体に用いる材料の特性を示す概念図である。 図4−2は、本実施形態に係る甲板支持用構造体に用いる材料の特性を示す概念図である。 図5は、本実施形態に係る甲板支持用構造体の試験モデルを示す模式図である。 図6は、加振試験の結果を示す図である。 図7は、落下試験の結果を示す図である。 図8は、本実施形態に係る甲板支持用構造体の構成例を示す模式図である。 図9は、本実施形態の変形例に係る甲板支持用構造体の構成例を示す模式図である。 図10−1は、本実施形態の変形例に係る甲板支持用構造体が備える中間部材を示す平面図である。 図10−2は、本実施形態の変形例に係る甲板支持用構造体が備える中間部材を示す平面図である。 図11は、加振試験の結果を示す図である。
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この発明を実施するための形態(以下実施形態という)によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のもの、いわゆる均等の範囲のものが含まれる。
図1は、本実施形態に係る水中航走体の内部構造を示す説明図である。図2は、図1のA−A矢視図である。本実施形態は、水中航走体1の耐圧殻2と甲板3との間に、甲板3から耐圧殻2へ伝達される振動を減衰する振動減衰手段と、耐圧殻2から甲板3へ伝達される力(特に衝撃力)を緩和する衝撃緩和手段とを直列に配置した、水中航走体の甲板支持用構造体10を設ける点に特徴がある。
水中航走体1は、水圧を受ける耐圧殻2と、耐圧殻2の内部に配置される甲板3とを備えており、主として水中を航行する。ここで、水中航走体1の進行方向(水中航走体1の長手方向と平行な方向)と平行な軸をX軸、X軸に直交し、かつ甲板3と平行な軸をY軸、X軸とY軸とに直交する軸をZ軸とする。耐圧殻2は、圧力容器であり、両端部が閉じられた略円筒形状の構造体である。そして、耐圧殻2は、耐圧殻2の内部の空間2isに甲板3を配置し、内壁2iwを介して支持する。甲板3には、機器類4が搭載される。また、甲板3では、水中航走体を操作等する人員が配置される。
本実施形態では、甲板3と耐圧殻2との間に、甲板支持用構造体(水中航走体の甲板支持用構造体)10を配置して、耐圧殻2と甲板3とを連結し、甲板支持用構造体10を介して耐圧殻2に甲板3を取り付け、支持する。甲板支持用構造体10は、X軸と平行な方向、Y軸と平行な方向及びZ軸と平行な方向で甲板3を支持する。Z軸と平行な方向においては、図2に示す甲板支持用部材5を耐圧殻2の内壁2iwに設け、甲板支持用部材5と甲板3との間に甲板支持用構造体10を配置する。次に、甲板支持用構造体10について説明する。
図3−1、図3−2は、本実施形態に係る甲板支持用構造体を示す概念図である。図4−1、図4−2は、本実施形態に係る甲板支持用構造体に用いる材料の特性を示す概念図である。甲板支持用構造体10は、耐圧殻2と、甲板3との間へ設けられて、甲板3から耐圧殻2へ伝達される振動を減衰する振動減衰手段30と、耐圧殻2と甲板3との間に設けられ、かつ振動減衰手段30と直列に配置されて、耐圧殻2から甲板3へ伝達される力(特に衝撃力)を減衰する衝撃緩和手段31とを含んで構成される。なお、図3−1、図3−2に示す例では、甲板支持用構造体10は、耐圧殻2に設けられる甲板支持用部材5と甲板3との間に設けられる。
図3−2に示すように、振動減衰手段は、甲板3側の第1振動減衰手段30Aと、耐圧殻2(図3−2に示す例では、甲板支持用部材5)側の第2振動減衰手段30Bとの両方で構成してもよい。第1振動減衰手段30A及び第2振動減衰手段30Bは、衝撃緩和手段31と直列に配置される。図3−1、図3−2に示す例において、甲板支持用構造体10は、さらに、衝撃緩和時振動減衰手段32を含むが、これは必須ではなく、甲板支持用構造体10は、少なくとも振動減衰手段30と衝撃緩和手段31とを含んでいればよい。
甲板支持用構造体10が衝撃緩和時振動減衰手段32を含む場合、衝撃緩和時振動減衰手段32は、衝撃緩和手段31と並列に配置される。これによって、衝撃緩和時振動減衰手段32は、衝撃緩和手段31が耐圧殻2から甲板3へ伝達される力を緩和する際に発生する衝撃緩和手段31の振動を減衰する。その結果、甲板支持用構造体10の無用な振動が抑制できる。
甲板3から耐圧殻2へ伝達される振動は、振動減衰手段30によって減衰させられるので、耐圧殻2へ伝達される前記振動が低減する。これによって、甲板3に搭載される機器類4の振動や、甲板3上を人員が歩行する際に発生して耐圧殻2へ伝達される振動は耐圧殻2へ伝達されにくくなるので、耐圧殻2の外部へ漏洩する前記振動が低減される。また、耐圧殻2から甲板3へ伝達される力、(特に、耐圧殻2の周囲の水に衝撃的な圧力の変化が生じて、耐圧殻2へ入力される衝撃的な力)は、衝撃緩和手段31によって吸収され、減衰されるので、甲板3へ伝達される前記力が低減する。これによって、耐圧殻2に作用した衝撃的な力は甲板3へ伝達されにくくなるので、甲板3上の機器類4や人員等をより確実に保護できる。
衝撃緩和手段31は、弾性体又は弾塑性体で構成する。例えば、コイルばね、板ばね、皿ばね、空気ばね、ゴム、防振ゴム等で衝撃緩和手段31を構成する。ゴム、防振ゴムの素材としては、例えば、天然ゴム、ブチルゴム等のゴム材料一般が適用できる。衝撃緩和手段31は、図4−1に示すように、衝撃緩和手段31に作用する力Fが、衝撃緩和手段31の変位δに対して非線形に変化するものが好ましい。これによって、衝撃緩和手段31に作用する力Fが、衝撃緩和手段31の変位δに対して線形に変化するものよりも、耐圧殻2へ入力される力(特に衝撃力)を減衰する際の変位を小さくできる。なお、衝撃緩和手段31に作用する力Fが、衝撃緩和手段31の変位δに対して線形に変化するものを衝撃緩和手段31へ用いることを排除するものではない。
振動減衰手段30は、衝撃緩和手段31よりもヒステリシスが大きいヒステリシス材料を用いる。これによって、甲板3からの振動を効果的に減衰させることができる。ヒステリシス材料としては、例えばゲル(シリコンを主成分とするゲル状素材)、例えばソルボと呼ばれる粘弾性高分子化合物、高密度発泡ウレタン、シリコーンゴム、防振ゴム等で振動減衰手段30を構成する。なお、衝撃緩和手段31へ防振ゴムを用いる場合、振動減衰手段30には衝撃緩和手段31とは異なる防振ゴムを用いる。
ここで、図4−2に示すように、振動減衰手段30に作用する力Fが、振動減衰手段30の変位δに対して非線形に変化し、かつ、伸び側と縮み側とで、前記変位δに対する前記力Fの変化の経路が異なる特性を有する材料を、ヒステリシス材料という。そして、伸び側と縮み側とにおける前記変位δに対する前記力Fの変化の経路が異なる程度をヒステリシスの程度という。このような材料を振動減衰手段30に用いることによって、甲板3から耐圧殻2へ伝達される振動を、効果的に低減できる。
甲板支持用構造体10に衝撃緩和時振動減衰手段32を用いる場合、振動減衰手段30とは異なる手段により、衝撃緩和手段31の振動を減衰する。衝撃緩和時振動減衰手段32は、例えば、衝撃緩和手段31の運動エネルギーを熱エネルギーに変換することにより、衝撃緩和手段31の振動を減衰するものを用いる。これによって、効率的に衝撃緩和手段31の振動を減衰させることができ、また、衝撃緩和時振動減衰手段32が作動する際の振動や騒音を低減できる。
運動エネルギーを熱エネルギーに変換するものとしては、例えば、衝撃緩和手段31の振動が伝達される部材に設けたオリフィスを油や気体が通過する際の抵抗により、前記振動を熱エネルギーに変換して前記振動を減衰する、オイルダンパーやガスダンパーがある。これに限られず、衝撃緩和時振動減衰手段32は、例えば、摩擦を利用して前記振動を熱エネルギーに変換して前記振動を減衰するものであってもよい。
図5は、本実施形態に係る甲板支持用構造体の試験モデルを示す模式図である。上述した甲板支持用構造体10の性能を評価するにあたり、図5に示す、耐圧殻−甲板モデル1Mを用いた。耐圧殻−甲板モデル1Mは、耐圧殻モデル2M内に上述した甲板支持用構造体10の試験モデル(以下甲板支持用構造体モデルという)10Mを用いて甲板モデル3Mを支持する。耐圧殻モデル2M及び甲板モデル3Mには、それぞれ加速度検出計20A、20Bが取り付けられる。また、甲板モデル3Mには、変位計21が取り付けられる。
耐圧殻−甲板モデル1MをベースBに落下させる落下試験及び耐圧殻−甲板モデル1Mを加振する加振試験により、加速度検出計20A、20B及び変位計21から耐圧殻モデル2Mの加速度、甲板モデル3Mの加速度、甲板モデル3Mの変位を取得する。そして、甲板モデル3Mの振動伝達率及び甲板モデル3Mの加速度を求めた。
図6は、加振試験の結果を示す図である。図7は、落下試験の結果を示す図である。図6は、甲板モデル3Mの振動伝達率を示し、図7は、甲板モデル3Mの加速度を示す。加振試験において、耐圧殻モデル2Mを所定の周波数で振動させると、甲板モデル3Mには、それに対応して振動や変位が発生する。甲板モデル3Mの振動伝達率は、甲板モデル3Mの振幅/耐圧殻モデル2Mの振幅である。耐圧殻−甲板モデル1Mは、甲板モデル3Mを加振できないので、耐圧殻モデル2Mを加振して振動伝達率を求める。図7は、耐圧殻−甲板モデル1Mを落下させたときにおける甲板モデル3Mのそれぞれの周波数における加速度応答を示している。
図6の点線Bは、比較例の甲板支持構造体(甲板3と耐圧殻2との間にゴムを設ける)をモデル化した甲板支持用構造体のモデルにおける振動伝達率であり、実線Aは、本実施形態の甲板支持用構造体10をモデル化した甲板支持用構造体モデル10Mによる振動伝達率である。図6の結果から、本実施形態によれば、すべての周波数帯域において、比較例よりも振動伝達率が低減されていることがわかる。すなわち、本実施形態によれば、図1、図2に示す甲板3から耐圧殻2へ伝達する振動が、比較例よりも低減される。
図7の一点鎖線Cは、図1、図2に示す甲板3と耐圧殻2との間に甲板支持構造体を設けない場合、すなわち、図5に示す耐圧殻−甲板モデル1Mから甲板支持用構造体モデル10Mを取り去った状態のモデルにおける甲板モデル3Mの加速度である。図7の二点差線Bは、比較例の甲板支持構造体(甲板3と耐圧殻2との間にゴムを設ける)をモデル化した甲板支持用構造体のモデルを用いた場合における甲板モデル3Mの加速度である。図7の実線Atは、本実施形態の甲板支持用構造体10をモデル化した甲板支持用構造体モデル10Mによる引っ張り側の加速度であり、図7の点線Apは、本実施形態の甲板支持用構造体10をモデル化した甲板支持用構造体モデル10Mによる圧縮側の加速度である。
図7の加速度は、図1、図2に示す甲板3と耐圧殻2との間に甲板支持構造体を設けない場合の100Hzにおける甲板3の加速度を1としたときの相対値で示してある。図7の結果から、本実施形態によれば、すべての周波数帯域において、比較例と同等の加速度が実現されていることがわかる。すなわち、本実施形態によれば、図1、図2に示す耐圧殻2から甲板3へ伝達する力(特に衝撃力)は、比較例と同等である。
図8は、本実施形態に係る甲板支持用構造体の構成例を示す模式図である。甲板支持用構造体10は、甲板3側の第1外筒11と、耐圧殻2側(図5では耐圧殻2に設けられる甲板支持用部材5側)の第2外筒12と、第2外筒12の内側に配置される内筒13と、振動減衰手段である第1振動減衰手段30A及び第2振動減衰手段30Bと、衝撃緩和手段31と、衝撃緩和時振動減衰手段32とを含んで構成される。第1外筒11は、甲板側取付部11Jを備えており、甲板3に設けられる甲板側取付部材3Bに甲板側取付部11Jが連結される。
第1外筒11及び第2外筒12及び内筒13は、コップ状、すなわち有底の円筒形状の構造体である。第1外筒11の開口部には、径方向中心に向かって張り出す第1張り出し部11Kが設けられる。また、第2外筒12の開口部には、径方向外側に向かって張り出す第2張り出し部12Kが設けられる。第1張り出し部11Kにおける内径は、第2外筒12の胴部の外径よりもやや大きく、また、第2張り出し部12Kにおける外径は、第1外筒12の胴部の内径よりもやや小さい。第2外筒12の一部は、第1外筒11の内部に配置されて、第1張り出し部11Kと第2張り出し部12Kとが対向する。これによって、第1外筒11と第2外筒12とは、それぞれの中心軸と平行な方向に向かって相対的に往復運動できるように構成される。
第2外筒12の開口部の内径は、内筒13の胴部の外径よりもやや大きく構成されており、内筒13は、第2外筒12の内部に配置される。内筒13の開口部は、第2外筒12の底部12Bと対向する。このような構成により、第2外筒12と内筒13とは、それぞれの中心軸と平行な方向に向かって相対的に往復運動できるように構成される。第2外筒12の底部12Bには、貫通孔14が形成されている。内筒13の底部13Bには、力伝達部材13Sが取り付けられており、この力伝達部材13Sは、第2外筒12の貫通孔14を通って第2外筒12の外側へ取り出される。内筒13の底部13Bに取り付けられる力伝達部材13Sの端部とは反対側の端部には、耐圧殻側取付部13Jが取り付けられている。耐圧殻側取付部13Jが、耐圧殻2に設けられる甲板支持用部材5に連結される。
甲板支持用部材5と第2外筒12の底部12Bとの間における力伝達部材13Sには、ストッパ15が設けられる。ストッパ15は、甲板3へ向かう力伝達部材13Sの変位が一定値を超えると、第2外筒12の底部12Bに接触して、甲板3へ向かう力伝達部材13Sがそれ以上に変位することを防止する。これによって、耐圧殻2から入力された力は、耐圧殻2に設けられる甲板支持用部材5から第2外筒12へ直接入力される。
第1外筒11の底部11Bと内筒13の底部13Bとの間には、振動減衰手段を構成する第1振動減衰手段30Aが配置される。第1振動減衰手段30Aは、環状の部材である。第1外筒11の第1張り出し部11Kと、第2外筒12の第2張り出し部12Kとの間には、振動減衰手段を構成する第2振動減衰手段30Bが配置される。第2振動減衰手段30Bは、環状の部材である。また、内筒13の底部13Bと内筒13の開口部側端部13Tとの間には、衝撃緩和手段31が配置される。衝撃緩和手段は、環状の部材である。このような構成により、耐圧殻2からの力は、甲板支持用部材5、力伝達部材13S、ストッパ15及び第2外筒12を介して衝撃緩和手段31へ圧縮力として入力される。ここで、第2外筒12の底部12Bと内筒13の底部13Bとは、衝撃緩和時振動減衰手段32で連結される。
通常(耐圧殻2に衝撃力が入力されない場合)は、甲板3の振動が第1外筒11を介して振動減衰手段を構成する第1振動減衰手段30Aへ入力され、また、第1外筒11、第1振動減衰手段30A及び内筒13を介して第2振動減衰手段30Bに入力される。これによって、甲板3から甲板支持用部材5を介して耐圧殻2へ伝達する振動が減衰される。耐圧殻2に衝撃力が入力した場合、内筒13の底部13Bと第1外筒11の底部11Bとが接近し、第1振動減衰手段30Aの変形が大きくなる。すると、内筒13の底部13Bに設けられたストッパ15が第2外筒12の底部12Bに接触する。
これによって、前記衝撃力は、甲板支持用部材5、力伝達部材13S及び第2外筒12を介して衝撃緩和手段31へ引っ張り力として入力される。その結果、前記衝撃力が衝撃緩和手段31によって吸収され、減衰されるので、甲板3へ伝達される前記衝撃力が低減される。衝撃緩和手段31が前記衝撃力を吸収して減衰する際に発生する振動は、衝撃緩和時振動減衰手段32が減衰する。これによって、耐圧殻2へ衝撃力が入力されたことに起因して発生する甲板3の振動が速やかに減衰される。なお、ストッパ15は必須ではない。
(変形例)
図9は、本実施形態の変形例に係る甲板支持用構造体の構成例を示す模式図である。図10−1、図10−2は、本実施形態の変形例に係る甲板支持用構造体が備える中間部材を示す平面図である。図11は、加振試験の結果を示す図である。本変形例に係る甲板支持用構造体10aは、上述した甲板支持用構造体10と略同様の構成であるが、第1振動減衰手段30Aを、第1部材30Aa、30Abで第2部材30Iを挟持した二重防振構造とした点が異なる。他の構成は、上述した甲板支持用構造体10と同様なので説明を省略する。次の説明では、第1部材30Aaを甲板側第1部材30Aa、第1部材30Abを耐圧殻側第1部材30Ab、第2部材30Iを中間部材30Iという。
甲板側第1部材30Aa及び耐圧殻側第1部材30Abは第1の材料で構成され、中間部材30Iは第2の材料で構成される。第1の材料は、上述したようにヒステリシス材料であり、第2の材料は、第1の材料よりも剛性が大きい材料である。ここで、剛性は、弾性係数(ヤング率)で表される。第1の材料あるいは第2の材料が、ひずみに対して応力が非線形で変化する材料である場合、弾性係数は応力やひずみによって変化するので、第1の材料の弾性係数と第2の材料の弾性係数とは、最大値同士で比較する。第2の材料は、できる限り弾性係数が大きい材料を用いることが好ましく、例えば、鋼、ステンレス鋼等を用いることが好ましい。
甲板側第1部材30Aaは、甲板支持用構造体10aの甲板3側に配置される。より具体的には、第1外筒11の底部11Bに甲板側第1部材30Aaが取り付けられる。耐圧殻側第1部材30Abは、甲板支持用構造体10aの耐圧殻2側に配置される。より具体的には、内筒13の底部13Bに耐圧殻側第1部材30Abが取り付けられる。中間部材30Iは、甲板側第1部材30Aaと耐圧殻側第1部材30Abとの間に配置され、両者に挟持される。中間部材30Iは、甲板側第1部材30Aaと耐圧殻側第1部材30Abとに接着等の手段によって接合されることが好ましい。甲板側第1部材30Aa及び耐圧殻側第1部材30Abは、いずれも環状の部材である。
図10−1に示すように、中間部材30Iは、円板状の部材であるが、これに限定されるものではない。例えば、図10−2に示す中間部材30Iaのように、環状の部材(中空円板)であってもよい。中間部材30Iaのように、環状の部材を用いれば、内筒13の底部13Bに、第1外筒11の底部11Bに向かう突起が設けられる場合には、この突起との干渉を回避できるので好ましい。
図11の点線Bは、上述した比較例の甲板支持構造体(甲板3と耐圧殻2との間にゴムを設ける)をモデル化した甲板支持用構造体のモデル(図6に示すものと同じ)における振動伝達率であり、実線Aは、上述した本実施形態の甲板支持用構造体10をモデル化した甲板支持用構造体モデル10Mによる振動伝達率(図6に示すものと同じ)である。また、図11の一点鎖線Cは、本変形例の甲板支持用構造体10aをモデル化した甲板支持用構造体モデルによる振動伝達率である。図11の結果から、本変形例の甲板支持用構造体10aによれば、すべての周波数帯域において、上述した本実施形態の甲板支持用構造体10よりも振動伝達率が低減されていることがわかる。すなわち、本変形例の甲板支持用構造体10aによれば、図1、図2に示す甲板3から耐圧殻2へ伝達する振動が、上述した本実施形態の甲板支持用構造体10よりも低減される。
本変形例の甲板支持用構造体10aは、甲板側第1部材30Aa及び耐圧殻側第1部材30Abを構成する第1の材料よりも剛性の高い第2の材料で構成された中間部材30Cを、甲板側第1部材30Aa及び耐圧殻側第1部材30Abとで挟持した二重防振構造とする。これによって、甲板3から耐圧殻2への振動の伝達をより効果的に抑制できる。
以上、本実施形態及びその変形例では、水中航走体の耐圧殻と甲板との間に、甲板から耐圧殻へ伝達される振動を減衰する振動減衰手段と、耐圧殻から甲板へ伝達される力、特に衝撃力を緩和する衝撃緩和手段とを直列に配置する。これにより、例えば、耐圧殻に衝撃力が加わった場合のように、耐圧殻から甲板への入力が大きい場合には、振動減衰手段の変形が進行しにくくなるので、振動減衰手段が作用する。これによって衝撃力が緩和されて耐圧殻から甲板への衝撃力の伝達を抑制する。また、耐圧殻に衝撃力が加わらない場合には、振動減衰手段により甲板の振動を減衰させ、甲板から耐圧殻への振動の伝達を抑制する。このように、本実施形態によれば、水中航走体の甲板から耐圧殻へ伝達する振動を低減し、かつ、耐圧殻から甲板へ伝達する力、特に衝撃力を低減することを、簡易な構成で実現できる。また、本実施形態の甲板支持用構造体は構成が簡易なので、甲板支持用構造体全体をコンパクトにできる。このため、本実施形態の甲板支持用構造体は、搭載スペースが限られる水中航走体には好適である。
以上のように、本発明に係る水中航走体の甲板支持用構造体及び水中航走体は、主として水中を航行する水中航走体に有用であり、特に、水中航走体を構成する甲板から耐圧殻へ伝達する振動を低減し、かつ、耐圧殻から甲板へ伝達する力、特に衝撃力を低減することを、簡易な構成で実現することに適している。
1 水中航走体
1M 耐圧殻−甲板モデル
2 耐圧殻
2M 耐圧殻モデル
2is 空間
2iw 内壁
3 甲板
3B 甲板側取付部材
3M 甲板モデル
4 機器類
5 甲板支持用部材
10、10a 甲板支持用構造体
10M 甲板支持用構造体モデル
11 第1外筒
11B、12B、13B 底部
11J 甲板側取付部
11K 第1張り出し部
12 第2外筒
12K 第2張り出し部
13T 開口部側端部
13 内筒
13J 耐圧殻側取付部
13S 力伝達部材
14 貫通孔
15 ストッパ
20A、20B 加速度検出計
21 変位計
30、30A、30B 振動減衰手段
30Aa 甲板側第1部材(第1部材)
30Ab 耐圧殻側第1部材(第1部材)
30I、30Ia 中間部材(第2部材)
31 衝撃緩和手段
32 衝撃緩和時振動減衰手段

Claims (6)

  1. 水中航走体を構成する耐圧殻と、前記耐圧殻の内部に配置される甲板との間へ設けられて、前記甲板から前記耐圧殻へ伝達される振動を減衰する振動減衰手段と、
    前記耐圧殻と前記甲板との間に設けられ、かつ前記振動減衰手段と直列に配置されて、前記耐圧殻から前記甲板へ伝達される力を緩和する衝撃緩和手段と、
    を含んで構成されることを特徴とする水中航走体の甲板支持用構造体。
  2. 前記衝撃緩和手段は、弾性体又は弾塑性体であり、前記振動減衰手段は、前記衝撃緩和手段よりもヒステリシスの程度が大きいヒステリシス材料であることを特徴とする請求項1に記載の水中航走体の甲板支持用構造体。
  3. さらに、前記耐圧殻と前記甲板との間に、前記衝撃緩和手段と並列に、前記衝撃緩和手段が前記耐圧殻から前記甲板へ伝達される力を緩和する際に発生する前記衝撃緩和手段の振動を減衰する衝撃緩和時振動減衰手段を設けることを特徴とする請求項1又は2に記載の水中航走体の甲板支持用構造体。
  4. 前記衝撃緩和時振動減衰手段は、前記衝撃緩和手段の運動エネルギーを熱エネルギーに変換することにより、前記衝撃緩和手段の振動を減衰することを特徴とする請求項3に記載の水中航走体の甲板支持用構造体。
  5. 前記振動減衰手段は、第1の材料と、当該第1の材料よりも剛性の大きい第2の材料とで構成され、前記第1の材料で前記第2の材料を挟持することを特徴とする請求項1〜4のいずれか1項に記載の水中航走体の甲板支持用構造体。
  6. 水圧を受ける耐圧殻と、
    前記耐圧殻の内部に配置される甲板と、
    前記耐圧殻と前記甲板との間に設けられる請求項1〜5のいずれか1項に記載の水中航走体の甲板支持用構造体と、
    を含むことを特徴とする水中航走体。
JP2009039651A 2008-02-27 2009-02-23 水中航走体の甲板支持用構造体及び水中航走体 Withdrawn JP2009227269A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039651A JP2009227269A (ja) 2008-02-27 2009-02-23 水中航走体の甲板支持用構造体及び水中航走体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008046700 2008-02-27
JP2009039651A JP2009227269A (ja) 2008-02-27 2009-02-23 水中航走体の甲板支持用構造体及び水中航走体

Publications (1)

Publication Number Publication Date
JP2009227269A true JP2009227269A (ja) 2009-10-08

Family

ID=41243159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039651A Withdrawn JP2009227269A (ja) 2008-02-27 2009-02-23 水中航走体の甲板支持用構造体及び水中航走体

Country Status (1)

Country Link
JP (1) JP2009227269A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203533A1 (ja) * 2019-03-29 2020-10-08 川崎重工業株式会社 水中ビークル用支持構造
CN115465428A (zh) * 2022-08-31 2022-12-13 哈尔滨工程大学 一种水下航行器艉部动力舱减振降噪装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203533A1 (ja) * 2019-03-29 2020-10-08 川崎重工業株式会社 水中ビークル用支持構造
JP2020164008A (ja) * 2019-03-29 2020-10-08 川崎重工業株式会社 水中ビークル用支持構造
CN115465428A (zh) * 2022-08-31 2022-12-13 哈尔滨工程大学 一种水下航行器艉部动力舱减振降噪装置
CN115465428B (zh) * 2022-08-31 2023-10-20 哈尔滨工程大学 一种水下航行器艉部动力舱减振降噪装置

Similar Documents

Publication Publication Date Title
US7703572B2 (en) Sound-attenuating earmuff having isolated double-shell structure
US7263028B2 (en) Composite acoustic attenuation materials
JP2007168785A (ja) フィードバックおよびフィードフォワード制御による航空機エンジンマウントの振動の能動的打ち消しおよび隔離のためのエンジンマウント振動制御システム及び振動制御方法
Du et al. Effects of isolators internal resonances on force transmissibility and radiated noise
KR102004066B1 (ko) 연결구 및 차폐체
JP2018066432A (ja) 防振装置
JP2008281118A (ja) 流体封入型防振装置
US20070221460A1 (en) Vibration damping device for internal combustion engine
JP2009227269A (ja) 水中航走体の甲板支持用構造体及び水中航走体
JP2007010094A (ja) コイルスプリング及びこれを用いた防振装置
JP2007333128A (ja) コイルスプリング及びこれを用いた防振装置
Kilikevičius et al. Research of Dynamics of a Vibration Isolation Platform.
EP3928311B1 (en) Acoustic attenuation device for propagated sound through surfaces
JP3999433B2 (ja) 制振ユニット及び制振装置
JP2009250269A (ja) 防振プレート
JP2006161985A (ja) 電子機器
JPS63275827A (ja) 流体封入式マウント装置を用いた防振方法
JPH07127687A (ja) 防振装置
KR102506696B1 (ko) 바닥충격음 저감용 공명형 흡음구조를 갖는 동조 질량 댐퍼 구조
JP2584097B2 (ja) 記録再生装置とクーロンダンパおよび防振方法
JP4767091B2 (ja) 液体封入式防振マウント
JPH11247917A (ja) エンジンマウント
Sun et al. Determination of the Transfer Matrix for Isolators Using Simulation with Application to Determining Insertion Loss
Howard et al. Finite element analysis of active vibration isolation using vibrational power as a cost function
Autran Radial multi-layered isolator for helicopter interior noise reduction

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501