JP2009226871A - Antistatic thermoplastic resin foamed molding and its production process, molding die for producing antistatic thermoplastic resin foamed molding and molding device for producing antistatic thermoplastic resin foamed molding - Google Patents

Antistatic thermoplastic resin foamed molding and its production process, molding die for producing antistatic thermoplastic resin foamed molding and molding device for producing antistatic thermoplastic resin foamed molding Download PDF

Info

Publication number
JP2009226871A
JP2009226871A JP2008078041A JP2008078041A JP2009226871A JP 2009226871 A JP2009226871 A JP 2009226871A JP 2008078041 A JP2008078041 A JP 2008078041A JP 2008078041 A JP2008078041 A JP 2008078041A JP 2009226871 A JP2009226871 A JP 2009226871A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
molding
mold
antistatic
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008078041A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sakamoto
勝弘 坂本
Takuji Ukawa
拓自 鵜川
Yuichi Gondo
裕一 権藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2008078041A priority Critical patent/JP2009226871A/en
Publication of JP2009226871A publication Critical patent/JP2009226871A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique which decreases washout of a cationic antistatic agent when a preliminary foamed particle contacts steam and allows a low cost obtaining of a foamed molding excellent in antistatic properties. <P>SOLUTION: The production process of an antistatic thermoplastic resin foamed molding is characterized by performing an in-mold foam molding while setting an opening rate between 0.5-1.0%, wherein the opening rate is the ratio of a vent hole opening area to an area of molding face to which the foamed molding in a molding die contacts; provided that the production process of the foamed molding is performed by; containing a foaming agent in a thermoplastic resin particle, preparing a foaming thermoplastic resin particle which adheres a cationic antistatic agent on at least its particle surface, producing the preliminary foamed particle by heating and foaming the foaming thermoplastic resin particle, thereafter filling the preliminary foamed particle in a cavity of a molding die having the cavity corresponding to a desired molding configuration, heating by pouring steam in the cavity through a vent-hole of the molding die and producing the foamed molding by the in-mold foam molding which inflates and fuses the preliminary foamed particle. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱可塑性樹脂粒子に発泡剤とカチオン系帯電防止剤とを含ませた発泡性熱可塑性樹脂粒子を加熱し発泡させて予備発泡粒子を作製し、該予備発泡粒子を成形型のキャビティ内に充填し、成形型のベントホールを通してキャビティ内に水蒸気を流して加熱し、予備発泡粒子同士を膨張・融着させる型内発泡成形を行って発泡成形体を製造する帯電防止性熱可塑性樹脂発泡成形体の製造方法、該製造方法により得られた帯電防止性熱可塑性樹脂発泡成形体、この製造方法を実施するのに好適な帯電防止性熱可塑性樹脂発泡成形体製造用成形型(以下、成形型と記す。)及び帯電防止性熱可塑性樹脂発泡成形体製造用成形装置(以下、成形装置と記す。)に関する。   The present invention provides a foamed thermoplastic resin particle in which a foaming agent and a cationic antistatic agent are added to a thermoplastic resin particle to produce foamed foam, and the prefoamed particle is formed into a mold cavity. Antistatic thermoplastic resin that fills inside and heats by flowing water vapor into the cavity through the vent hole of the mold, and expands and fuses the pre-foamed particles to produce a foam molded body Production method of foam molded article, antistatic thermoplastic resin foam molded article obtained by the production method, mold for producing antistatic thermoplastic foam molded article suitable for carrying out this production method (hereinafter, And a molding apparatus for producing an antistatic thermoplastic resin foam molding (hereinafter referred to as a molding apparatus).

従来、型内発泡成形を行ってポリスチレン系樹脂などの熱可塑性樹脂発泡成形体を製造する際、キャビティ内に水蒸気を流して加熱するためのベントホールの開口率の調整に関して、例えば、特許文献1〜3に開示された技術が提案されている。   Conventionally, when manufacturing a thermoplastic resin foam molded article such as a polystyrene-based resin by performing in-mold foam molding, regarding the adjustment of the opening ratio of a vent hole for heating by flowing water vapor into a cavity, for example, Patent Document 1 The techniques disclosed in -3 are proposed.

特許文献1には、予備発泡樹脂粒子を発泡成形するために使用する一対の雄型と雌型とからなる成形型であり、両型を型締めした際に形成されるキャビティ空間を構成する成形面には多数の蒸気流通用開口が形成されている成形型であって、前記の成形面の少なくとも1面には、当該成形面に形成された蒸気流通用開口の開口率を変えることのできる開口率調整補助板が着脱可能とされていることを特徴とする発泡成形用型が開示されている。   Patent Document 1 discloses a mold comprising a pair of male mold and female mold used for foam molding of pre-foamed resin particles, and forming a cavity space formed when both molds are clamped A molding die having a large number of steam circulation openings formed on the surface, and the opening ratio of the steam circulation openings formed on the molding surface can be changed on at least one of the molding surfaces. A foam molding die is disclosed in which an aperture ratio adjustment auxiliary plate is detachable.

特許文献2には、型締めした際に形成されるキャビティ空間を構成する成形面に多数の蒸気流通用開口が形成されている予備発泡樹脂粒子を発泡成形するための発泡成形型であって、前記蒸気流通用開口の全部または一部はその開口面積が可変とされていることを特徴とする発泡成形型が開示されている。   Patent Document 2 is a foam molding die for foam molding pre-foamed resin particles in which a large number of openings for vapor circulation are formed on a molding surface that constitutes a cavity space formed when the mold is clamped, A foam molding die is disclosed in which the opening area of all or a part of the steam circulation opening is variable.

特許文献3には、ビーズ法型内成形法によって得られるポリオレフィン系樹脂発泡体からなる容器であって、少なくとも容器底面の内面または外面が、蒸気投入孔の開口面積が面積比で4.5%以上である金型面を有する金型によって発泡成形され、かつ、得られた成形体が、短径が1〜5mm幅の凸と、溝幅が1〜5mmで深さが0.3mm以上の凹とを有することを特徴とする発泡体製容器が開示されている。
特開2004−202994号公報 特開2004−230835号公報 特開2006−51979号公報
Patent Document 3 discloses a container made of a polyolefin-based resin foam obtained by a bead method in-mold method, wherein at least the inner surface or outer surface of the bottom surface of the container has an opening area of a steam inlet hole of 4.5% by area ratio. The molded body obtained by foam molding using the mold having the above-described mold surface, and the obtained compact has a convexity with a minor axis of 1 to 5 mm and a groove width of 1 to 5 mm and a depth of 0.3 mm or more. A foam container characterized by having a recess is disclosed.
JP 2004-202994 A JP 2004-230835 A JP 2006-51979 A

ポリスチレン系樹脂などの熱可塑性樹脂発泡成形体の一つの用途として、液晶ディスプレイ装置やプラズマディスプレイ装置を製造するためのガラス基板、該ガラス基板上に回路等を形成した半製品などの板状基板を、複数枚多段に並べて緩衝保持し、搬送するための熱可塑性樹脂発泡成形体からなる基板搬送ボックスがある。
この基板搬送ボックスに対する要求性能として、ボックスを構成する熱可塑性樹脂発泡成形体の機械的特性、例えば、曲げ強度、耐圧縮性、耐衝撃性(落下試験に対する耐久性)などの他、表面抵抗率などの帯電防止特性が所定の範囲に入ることが求められている。
As one application of thermoplastic resin foamed molded products such as polystyrene-based resins, glass substrates for manufacturing liquid crystal display devices and plasma display devices, and plate-like substrates such as semi-finished products in which circuits are formed on the glass substrate are used. There is a substrate transport box made of a thermoplastic resin foam molded body for buffering and holding a plurality of sheets arranged in multiple stages.
The required performance for this substrate transport box includes the mechanical properties of the thermoplastic resin foam moldings that make up the box, such as bending strength, compression resistance, impact resistance (durability against drop test), and surface resistivity. Therefore, it is required that the antistatic characteristics such as those fall within a predetermined range.

このような帯電防止特性を満たすための手段として、発泡性熱可塑性樹脂粒子の表面に帯電防止剤を付着させておき、型内発泡成形を行って得られた熱可塑性樹脂発泡成形体の帯電防止特性を改善することが行われる。このような帯電防止剤としては、例えば、カチオン系帯電防止剤が挙げられる。   As a means for satisfying such an antistatic property, an antistatic agent is adhered to the surface of the foamable thermoplastic resin particles, and the antistatic property of the thermoplastic resin foam molded product obtained by in-mold foam molding is used. Improvements are made to the properties. Examples of such an antistatic agent include a cationic antistatic agent.

しかし、このカチオン系帯電防止剤は水溶性であり、発泡性熱可塑性樹脂粒子に帯電防止剤を添加して型内発泡成形を行う際に、予備発泡粒子が水蒸気に接触し、粒子表面に付着させたカチオン系帯電防止剤が流亡し易いために、確実な帯電防止特性を得るために余剰の帯電防止剤を添加しなければならなかったため、熱可塑性樹脂発泡成形体のコスト上昇をまねくという問題があった。   However, this cationic antistatic agent is water-soluble, and when an antistatic agent is added to expandable thermoplastic resin particles and in-mold foam molding is performed, the pre-expanded particles come into contact with water vapor and adhere to the particle surface. Since the cationic antistatic agent is easily washed away, an excess of the antistatic agent had to be added to obtain reliable antistatic properties, leading to an increase in the cost of the thermoplastic resin foam molding. was there.

本発明は、前記事情に鑑みてなされ、予備発泡粒子が水蒸気に接触した場合に、カチオン系帯電防止剤の流亡が少なくなり、低コストで帯電防止特性に優れた帯電防止性熱可塑性樹脂発泡成形体を得ることが可能な技術の提供を目的とする。   The present invention has been made in view of the above circumstances, and when pre-expanded particles come into contact with water vapor, the flow of the cationic antistatic agent is reduced, and the antistatic thermoplastic foam-molded with excellent antistatic properties at low cost. The purpose is to provide a technique capable of obtaining a body.

前記目的を達成するため、本発明は、熱可塑性樹脂粒子に発泡剤を含ませ、少なくとも粒子表面にカチオン系帯電防止剤を付着させた発泡性熱可塑性樹脂粒子を用意し、該発泡性熱可塑性樹脂粒子を加熱し発泡させて予備発泡粒子を作製し、次いで該予備発泡粒子を、所望の成形体形状と合致するキャビティを有する成形型の該キャビティ内に充填し、成形型のベントホールを通してキャビティ内に水蒸気を流して加熱し、予備発泡粒子を膨張・融着させる型内発泡成形を行って発泡成形体を製造する帯電防止性熱可塑性樹脂発泡成形体の製造方法において、
前記成形型の発泡成形体が接触する成形面の面積に占める前記ベントホールの開口面積の割合である開口率を0.5%〜1.0%の範囲として型内発泡成形を行うことを特徴とする帯電防止性熱可塑性樹脂発泡成形体の製造方法を提供する。
In order to achieve the above object, the present invention provides foamable thermoplastic resin particles in which a foaming agent is contained in thermoplastic resin particles and a cationic antistatic agent is attached to at least the particle surface, and the foamable thermoplastic resin is prepared. Resin particles are heated and foamed to produce pre-expanded particles, and then the pre-expanded particles are filled into the cavities of the mold having cavities that match the shape of the desired molded body, and the cavity is formed through the vent holes of the mold. In the method for producing an antistatic thermoplastic resin foam molded article, which is produced by producing a foam molded article by in-mold foam molding in which water vapor is flowed and heated to expand and fuse the pre-expanded particles.
In-mold foam molding is performed by setting the opening ratio, which is the ratio of the opening area of the vent hole to the area of the molding surface in contact with the foam molded body of the molding die, in the range of 0.5% to 1.0%. A method for producing an antistatic thermoplastic foamed molded article is provided.

本発明の帯電防止性熱可塑性樹脂発泡成形体の製造方法において、前記カチオン系帯電防止剤は、式(1)
[(RN]OSO ・・・(1)
(式中、Rは分岐していてもよい炭素数1〜17のアルキル基を表す。)で表される化合物群から選択される1種又は2種以上であることが好ましい。
In the method for producing an antistatic thermoplastic resin foam molded article of the present invention, the cationic antistatic agent is represented by the formula (1).
[(R 1 ) 4 N] + C 2 H 5 OSO 3 (1)
(Wherein R 1 represents an optionally branched alkyl group having 1 to 17 carbon atoms) is preferably one or more selected from the group of compounds represented by:

本発明の帯電防止性熱可塑性樹脂発泡成形体の製造方法において、前記カチオン系帯電防止剤は、前記式(1)中の4つのR基のうち、3つが炭素数1〜3のアルキル基であることが好ましい。 In the method for producing an antistatic thermoplastic foam-molded article of the present invention, the cationic antistatic agent is an alkyl group having 3 to 3 carbon atoms out of the four R 1 groups in the formula (1). It is preferable that

本発明の帯電防止性熱可塑性樹脂発泡成形体の製造方法において、前記カチオン系帯電防止剤は、前記式(1)中の4つのR基のうち、3つが炭素数1〜3のアルキル基であり、残りの1つが炭素数5〜17のアルキル基であることが好ましい。 In the method for producing an antistatic thermoplastic foam-molded article of the present invention, the cationic antistatic agent is an alkyl group having 3 to 3 carbon atoms out of the four R 1 groups in the formula (1). It is preferable that the remaining one is an alkyl group having 5 to 17 carbon atoms.

本発明の帯電防止性熱可塑性樹脂発泡成形体の製造方法において、前記ベントホールは、多数の小孔が穿設されたレンコン型通気部材を成形型に穿設した孔に装着したものであることが好ましい。   In the method for producing an antistatic thermoplastic resin foam molded article of the present invention, the vent hole is formed by mounting a lotus root type ventilation member having a large number of small holes formed in a hole formed in the mold. Is preferred.

また本発明は、前述した帯電防止性熱可塑性樹脂発泡成形体の製造方法によって得られたものであることを特徴とする帯電防止性熱可塑性樹脂発泡成形体を提供する。   The present invention also provides an antistatic thermoplastic resin foam molded article obtained by the above-described method for producing an antistatic thermoplastic resin foam molded article.

また本発明は、前述した帯電防止性熱可塑性樹脂発泡成形体の製造方法に用いられる成形型であって、
前記成形型の発泡成形体が接触する成形面の面積に占めるベントホールの開口面積の割合である開口率が0.5%〜1.0%の範囲であることを特徴とする成形型を提供する。
Further, the present invention is a molding die used in the above-described method for producing an antistatic thermoplastic resin foam molded article,
Provided is a molding die characterized in that the opening ratio, which is the ratio of the opening area of the vent hole to the area of the molding surface with which the foam molding of the molding die contacts, is in the range of 0.5% to 1.0%. To do.

また本発明は、前記成形型を有し、該成形型内で型内発泡成形を行うことを特徴とする成形装置を提供する。   The present invention also provides a molding apparatus having the mold and performing in-mold foam molding in the mold.

本発明によれば、発泡成形体が接触する成形面の面積に占めるベントホールの開口面積の割合である開口率を0.5%〜1.0%の範囲として型内発泡成形を行うことによって、水蒸気加熱時に予備発泡粒子からカチオン系帯電防止剤の流亡が抑制でき、また通常の開口率1.5〜4.8%程度の場合と同等の成形条件で、同品質の発泡成形品が得られる。従って、本発明によれば、予備発泡粒子が水蒸気に接触した場合でも、カチオン系帯電防止剤の流亡が少なくなり、低コストで帯電防止特性に優れた帯電防止性熱可塑性樹脂発泡成形体を得ることができる。   According to the present invention, by performing in-mold foam molding with the opening ratio, which is the ratio of the opening area of the vent hole occupying the area of the molding surface with which the foam molded body is in contact, in the range of 0.5% to 1.0%. In addition, the flow of cationic antistatic agent from the pre-foamed particles during steam heating can be suppressed, and the same quality foamed molded product can be obtained under the same molding conditions as when the opening ratio is about 1.5 to 4.8%. It is done. Therefore, according to the present invention, even when the pre-foamed particles are in contact with water vapor, the loss of the cationic antistatic agent is reduced, and an antistatic thermoplastic foamed molded article having excellent antistatic properties at low cost is obtained. be able to.

本発明の帯電防止性熱可塑性樹脂発泡成形体の製造方法は、熱可塑性樹脂粒子に発泡剤を含ませ、少なくとも粒子表面にカチオン系帯電防止剤を付着させた発泡性熱可塑性樹脂粒子を用意し、該発泡性熱可塑性樹脂粒子を加熱し発泡させて予備発泡粒子を作製し、次いで該予備発泡粒子を、所望の成形体形状と合致するキャビティを有する成形型の該キャビティ内に充填し、成形型のベントホールを通してキャビティ内に水蒸気を流して加熱し、予備発泡粒子を膨張・融着させる型内発泡成形を行って発泡成形体を製造する帯電防止性熱可塑性樹脂発泡成形体の製造方法において、前記成形型の発泡成形体が接触する成形面の面積に占める前記ベントホールの開口面積の割合である開口率(以下、成形型の開口率と記す。)を0.5%〜1.0%の範囲として型内発泡成形を行うことを特徴としている。
本発明において「開口率」とは、成形型の発泡成形体が接触する成形面の面積をAとし、該成形面内で開口しているベントホールの開口面積の合計をBとしたとき、(B/A)×100(%)で算出される開口率のことを指す。
The method for producing an antistatic thermoplastic resin foam molded article according to the present invention comprises preparing foamable thermoplastic resin particles in which a foaming agent is contained in thermoplastic resin particles and a cationic antistatic agent is attached to at least the particle surface. The foamable thermoplastic resin particles are heated and foamed to produce pre-foamed particles, and then the pre-foamed particles are filled into the cavities of a mold having cavities that match the desired molded body shape, and molded. In a method for producing an antistatic thermoplastic foam-molded article in which foam is produced by in-mold foam molding in which steam is flowed into a cavity through a vent hole of a mold and heated, and pre-foamed particles are expanded and fused. The opening ratio (hereinafter referred to as the opening ratio of the mold), which is the ratio of the opening area of the vent hole to the area of the molding surface with which the foamed molded body of the mold comes into contact, is 0.5% to 1. It is characterized by performing mold foaming as% range.
In the present invention, the “opening ratio” means that the area of the molding surface with which the foamed molded body of the mold comes into contact is A, and the total opening area of the vent holes opened in the molding surface is B ( B / A) refers to the aperture ratio calculated by 100 (%).

本発明の帯電防止性熱可塑性樹脂発泡成形体の製造方法において、熱可塑性樹脂発泡成形体を構成する熱可塑性樹脂としては、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂などが挙げられる。また、ポリスチレン系樹脂としては、ポリスチレン樹脂、スチレンとアクリル酸等の他のモノマーとの共重合体、ハイインパクトポリスチレン系樹脂、スチレン改質ポリオレフィン樹脂などが挙げられる。   In the method for producing an antistatic thermoplastic resin foam molded article of the present invention, examples of the thermoplastic resin constituting the thermoplastic resin foam molded article include polystyrene resins, polyethylene resins, polypropylene resins, and polyethylene terephthalate resins. Can be mentioned. Examples of polystyrene resins include polystyrene resins, copolymers of styrene and other monomers such as acrylic acid, high impact polystyrene resins, styrene modified polyolefin resins, and the like.

本発明の帯電防止性熱可塑性樹脂発泡成形体の製造方法において、発泡性熱可塑性樹脂粒子は、前記熱可塑性樹脂に発泡剤とカチオン系帯電防止剤とを添加した樹脂の粒子(ビーズ)である。この発泡性熱可塑性樹脂粒子の形状や平均粒径は特に限定されないが、粒子形状は球状であることが好ましい。また、発泡性熱可塑性樹脂粒子の製造方法は、使用する樹脂材料に応じて適宜選択でき、例えば、ポリスチレン系樹脂からなる発泡性樹脂粒子を製造する場合には、懸濁重合法や溶融押出法などの周知のビーズ製造法を用いることができる。   In the method for producing an antistatic thermoplastic resin foam molded article of the present invention, the foamable thermoplastic resin particles are resin particles (beads) obtained by adding a foaming agent and a cationic antistatic agent to the thermoplastic resin. . The shape and average particle size of the foamable thermoplastic resin particles are not particularly limited, but the particle shape is preferably spherical. Further, the production method of the expandable thermoplastic resin particles can be appropriately selected according to the resin material to be used. For example, in the case of producing expandable resin particles made of a polystyrene resin, a suspension polymerization method or a melt extrusion method is used. Well-known bead manufacturing methods such as can be used.

前記発泡性熱可塑性樹脂粒子に添加される発泡剤としては、従来よりポリスチレン系樹脂発泡成形体などの熱可塑性樹脂発泡成形体の製造において用いられている発泡剤の中から適宜選択して使用でき、例えば、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、シクロペンタン、炭酸ガス、窒素が挙げられ、これらの発泡剤は、単独もしくは2種以上を併用して用いることができる。   The foaming agent added to the foamable thermoplastic resin particles can be appropriately selected from foaming agents conventionally used in the production of thermoplastic resin foam molded articles such as polystyrene resin foam molded articles. Examples thereof include propane, n-butane, i-butane, n-pentane, i-pentane, cyclopentane, carbon dioxide gas, and nitrogen. These blowing agents may be used alone or in combination of two or more. it can.

前記発泡性熱可塑性樹脂粒子に添加されるカチオン系帯電防止剤としては、式(1)
[(RN]OSO ・・・(1)
(式中、Rは分岐していてもよい炭素数1〜17のアルキル基を表す。)で表される化合物群から選択される1種又は2種以上であることが好ましい。
As the cationic antistatic agent added to the foamable thermoplastic resin particles, the formula (1)
[(R 1 ) 4 N] + C 2 H 5 OSO 3 (1)
(Wherein R 1 represents an optionally branched alkyl group having 1 to 17 carbon atoms) is preferably one or more selected from the group of compounds represented by:

本発明の帯電防止性熱可塑性樹脂発泡成形体の製造方法において、前記カチオン系帯電防止剤は、前記式(1)中の4つのR基のうち、3つが炭素数1〜3のアルキル基であることが好ましい。 In the method for producing an antistatic thermoplastic foam-molded article of the present invention, the cationic antistatic agent is an alkyl group having 3 to 3 carbon atoms out of the four R 1 groups in the formula (1). It is preferable that

本発明の帯電防止性熱可塑性樹脂発泡成形体の製造方法において、前記カチオン系帯電防止剤は、前記式(1)中の4つのR基のうち、3つが炭素数1〜3のアルキル基であり、残りの1つが炭素数5〜17のアルキル基であることが好ましい。さらに、残りの一つは、炭素数9〜14のアルキル基であることがより好ましい。 In the method for producing an antistatic thermoplastic foam-molded article of the present invention, the cationic antistatic agent is an alkyl group having 3 to 3 carbon atoms out of the four R 1 groups in the formula (1). It is preferable that the remaining one is an alkyl group having 5 to 17 carbon atoms. Furthermore, the remaining one is more preferably an alkyl group having 9 to 14 carbon atoms.

本発明の帯電防止性熱可塑性樹脂発泡成形体の製造方法において、発泡性熱可塑性樹脂粒子には、前記発泡剤と帯電防止剤以外に、必要に応じて、難燃剤、難燃助剤、酸化防止剤、紫外線吸収剤、顔料、着色剤などの添加物が含まれていてもよい。   In the method for producing an antistatic thermoplastic resin foam molded article of the present invention, the expandable thermoplastic resin particles include, in addition to the foaming agent and the antistatic agent, a flame retardant, a flame retardant aid, an oxidation, if necessary. Additives such as an inhibitor, an ultraviolet absorber, a pigment, and a colorant may be contained.

前記発泡性熱可塑性樹脂粒子は、従来より周知の予備発泡機により、所望の嵩倍数に予備発泡(一次発泡)させ、予備発泡粒子とする。   The foamable thermoplastic resin particles are prefoamed (primary foaming) to a desired bulk factor by a conventionally known prefoaming machine to obtain prefoamed particles.

次に、所望の成形体形状と合致するキャビティを有する成形型の該キャビティ内に、前記予備発泡粒子を充填し、成形型のベントホールを通してキャビティ内に水蒸気を流して加熱し、予備発泡粒子同士を膨張・融着させる型内発泡成形を行って発泡成形体を製造する。本発明においては、成形型の開口率を0.5%〜1.0%の範囲とする。この開口率が0.5%未満であると、成形型の通気性が悪くなり、加熱にムラが発生したり、発泡粒子同士の融着が不十分となって、得られる発泡成形体の機械強度が劣化するおそれがある。一方、開口率が1.0%を超えると、成形型の通気性は良くなるものの、発泡成形体の表面からカチオン系帯電防止剤が流亡し易くなり、得られる発泡成形体の帯電防止特性が悪化しやすくなる。   Next, the pre-expanded particles are filled into the cavities of the mold having a cavity that matches the desired shape of the molded body, heated by flowing steam into the cavities through the vent holes of the mold, and the pre-expanded particles A foam-molded product is produced by in-mold foam molding for expanding and fusing the material. In the present invention, the opening ratio of the mold is set in the range of 0.5% to 1.0%. When the opening ratio is less than 0.5%, the air permeability of the molding die is deteriorated, unevenness in heating occurs, or the fusion between the foamed particles becomes insufficient, and the machine of the foamed molded body to be obtained is obtained. Strength may be deteriorated. On the other hand, if the opening ratio exceeds 1.0%, the air permeability of the mold is improved, but the cationic antistatic agent tends to flow away from the surface of the foam molded article, and the resulting foam molded article has antistatic properties. It becomes easy to get worse.

図1は、本発明に係る成形型の一例を示す断面図であり、図2はその要部拡大断面図である。これらの図中、符号1は成形型、2は第1の型枠部、3は第1の型(雌型)、4は第2の型枠、5は第2の型(雄型)、6はキャビティ、7はベントホール、8は孔、9は通気部材である。本例の成形型1は、一方が他方に対して接近・離間する第1の型枠部2及び第2の型枠部4と、第1の型枠部2に取り付けられた第1の型3と、第2の型枠部4に取り付けられた第2の型とを有している。なお、本例示では、箱形の発泡成形体を成形するための成形型1を示しているが、発泡成形体の形状は本例示に限定されず、発泡成形体の使用目的に応じて種々の形状とすることができ、第1、第2の型の形状もこれに合わせて種々変更される。   FIG. 1 is a cross-sectional view showing an example of a mold according to the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part thereof. In these drawings, reference numeral 1 is a mold, 2 is a first mold part, 3 is a first mold (female mold), 4 is a second mold frame, 5 is a second mold (male mold), 6 is a cavity, 7 is a vent hole, 8 is a hole, and 9 is a ventilation member. The molding die 1 of this example includes a first mold part 2 and a second mold part 4 that are approached and separated from each other, and a first mold attached to the first mold part 2. 3 and a second mold attached to the second mold part 4. In addition, in this illustration, although the shaping | molding die 1 for shape | molding a box-shaped foaming molding is shown, the shape of a foaming molding is not limited to this illustration, According to the intended purpose of a foaming molding, it is various. The shape of the first and second molds can be variously changed accordingly.

また、本発明に係る成形装置は、本発明に係る成形型1を有していれば良く、型内発泡成形に必要なその他の構成要素を含み得る。例えば、成形装置としては、前記成形型1と、いずれか一方の型枠部を型閉め・型開き可能に移動させる駆動機構と、それぞれの型枠部2,4に加熱用の水蒸気を供給する水蒸気供給源と、それぞれの型枠部2,4の排気を行う排気機構と、キャビティ6内に予備発泡粒子を供給する管路と、それぞれの型枠部2,4の冷却を行う冷却水供給源等を備えることができる。   Moreover, the molding apparatus according to the present invention only needs to include the molding die 1 according to the present invention, and may include other components necessary for in-mold foam molding. For example, as the molding apparatus, the mold 1, a driving mechanism for moving any one of the mold sections so as to be mold-closed and mold-openable, and heating steam are supplied to the mold sections 2, 4. A water vapor supply source, an exhaust mechanism for exhausting each mold part 2, 4, a pipe for supplying pre-expanded particles into the cavity 6, and a cooling water supply for cooling each mold part 2, 4 Sources and the like.

図2に示すように、それぞれの型3,5には、予備発泡粒子が充填されるキャビティ6に型3,5の外部から水蒸気を流すための多数のベントホール7が設けられている。これらのベントホール7は、それぞれの型3,5に穿設された孔8と、この孔8内に装着された通気部材9とからなっている。成形型1の開口率を調整するには、例えば、予め多数の孔8が穿設された成形型1に、前記通気部材9と、開口していない部材(メクラ部材)とを適宜組み合わせ、成形型の開口率が0.5%〜1.0%の範囲となるように調整することで実施できる。   As shown in FIG. 2, each of the molds 3 and 5 is provided with a number of vent holes 7 for flowing water vapor from the outside of the molds 3 and 5 into the cavity 6 filled with the pre-expanded particles. These vent holes 7 are composed of holes 8 drilled in the respective molds 3 and 5 and ventilation members 9 mounted in the holes 8. In order to adjust the opening ratio of the mold 1, for example, the ventilation member 9 and a non-opening member (Mekura member) are appropriately combined with the mold 1 in which a large number of holes 8 are previously formed. It can implement by adjusting so that the aperture ratio of a type | mold may become the range of 0.5%-1.0%.

このベントホール7に装着された通気部材9は、有底筒状をなしており、その底部には、多数の小孔(レンコン型)や複数のスリット(スリット型)の開口が穿設されている。本発明において通気部材の開口形状は、レンコン型とすることが好ましい。レンコン型はスリット型よりも1個当たりのベントホール7の開口率が少ないため、成形面に対し、均等に配置できる。   The ventilation member 9 attached to the vent hole 7 has a bottomed cylindrical shape, and a plurality of small holes (lotus type) and a plurality of slits (slit type) are formed in the bottom. Yes. In the present invention, the opening shape of the ventilation member is preferably a lotus root type. Since the lotus root type has a smaller opening rate of the vent holes 7 than the slit type, it can be arranged evenly on the molding surface.

この成形型1を用いて型内発泡成形を行う場合には、双方の型枠部2,4を接近させた型閉め状態とし、双方の型3,5の間に形成されるキャビティ6内に予備発泡粒子を充填し、型3,5の外側から水蒸気を流し、予備発泡粒子を加熱する。この加熱によって予備発泡粒子は膨張し、粒子同士が融着して発泡成形体が得られる。成形型を冷却後、型開きし、発泡成形体を取り出す。   In the case of performing in-mold foam molding using this mold 1, the mold is closed in a state where both mold parts 2, 4 are brought close to each other, and inside the cavity 6 formed between both molds 3, 5. The pre-expanded particles are filled, water vapor is flowed from the outside of the molds 3 and 5, and the pre-expanded particles are heated. By this heating, the pre-expanded particles are expanded, and the particles are fused to obtain a foamed molded product. After cooling the mold, the mold is opened and the foamed molded article is taken out.

このように、成形型の開口率を0.5%〜1.0%の範囲として型内発泡成形を行うことによって、水蒸気加熱時に予備発泡粒子からカチオン系帯電防止剤の流亡が抑制でき、また通常の開口率1.5〜4.8%程度の場合と同等の成形条件で、同品質の発泡成形品が得られる。従って、帯電防止剤を粒子表面に付着させた予備発泡粒子が水蒸気に接触した場合でも、カチオン系帯電防止剤の流亡が少なくなり、低コストで帯電防止特性に優れた帯電防止性熱可塑性樹脂発泡成形体を得ることができる。本発明の製造方法により得られた発泡成形体は、帯電防止特性に優れていることから、例えば、基板搬送ボックスなどとして好適に用いられる。   Thus, by performing in-mold foam molding with the opening ratio of the mold within the range of 0.5% to 1.0%, the flow of the cationic antistatic agent from the pre-foamed particles during steam heating can be suppressed, A foam-molded article of the same quality can be obtained under the same molding conditions as in the case of a normal opening ratio of about 1.5 to 4.8%. Therefore, even when pre-foamed particles with antistatic agent attached to the particle surface come into contact with water vapor, the flow of cationic antistatic agent is reduced, and the antistatic thermoplastic foamed with low cost and excellent antistatic properties. A molded body can be obtained. Since the foam-molded article obtained by the production method of the present invention is excellent in antistatic properties, it is suitably used, for example, as a substrate transport box.

[実施例1]
(ポリエチレン系樹脂ペレットの作製)
メルトフローレートが0.3g/10分、酢酸ビニル含量が5.5質量%であるエチレン−酢酸ビニル共重合体100質量部に対して、気泡調整剤としてケイ酸カルシウム0.3質量部とステアリン酸カルシウム0.1質量部とを加え、これらを押出機に投入し、押出機内で加熱溶融して均一に混練した後、押出して造粒し、ポリエチレン系樹脂ペレットを作製した。
[Example 1]
(Production of polyethylene resin pellets)
With respect to 100 parts by mass of an ethylene-vinyl acetate copolymer having a melt flow rate of 0.3 g / 10 min and a vinyl acetate content of 5.5% by mass, 0.3 part by mass of calcium silicate as a foam regulator and steer 0.1 parts by mass of calcium phosphate was added, and these were put into an extruder, heated and melted in the extruder and uniformly kneaded, and then extruded and granulated to prepare polyethylene resin pellets.

(スチレン改質ポリエチレン系樹脂粒子の作製)
内容積100リットルの撹拌機付き耐圧容器に、前記ポリエチレン系樹脂ペレット40質量部、水120質量部、ピロリン酸マグネシウム0.45質量部、ドデシルベンゼンスルホン酸ソーダ0.02質量部を添加し、撹拌しながら85℃まで昇温した。別にラジカル重合開始剤としてベンゾイルパーオキサイド0.8質量部、及びt−ブチルパーオキシベンゾエート0.02質量部、架橋剤としてジクミルパーオキサイド0.8質量部を60質量部のスチレン単量体に溶解させて溶液とし、この溶液を前記耐圧容器内の水性媒質中に添加し、ポリエチレン系樹脂ペレットに吸収させながら、4時間維持して重合を行った。その後、水性媒質温度を140℃に昇温して3時間保持した後、冷却してスチレン改質ポリエチレン系樹脂粒子を取り出した。
(Production of styrene-modified polyethylene resin particles)
40 parts by mass of the polyethylene resin pellets, 120 parts by mass of water, 0.45 parts by mass of magnesium pyrophosphate, and 0.02 parts by mass of sodium dodecylbenzenesulfonate are added to a pressure-resistant container with a stirrer having an internal volume of 100 liters and stirred. The temperature was raised to 85 ° C. Separately, 0.8 parts by mass of benzoyl peroxide as a radical polymerization initiator and 0.02 parts by mass of t-butylperoxybenzoate, and 0.8 parts by mass of dicumyl peroxide as a crosslinking agent were added to 60 parts by mass of a styrene monomer. The solution was dissolved to form a solution, and this solution was added to the aqueous medium in the pressure vessel, and the polymerization was carried out for 4 hours while being absorbed by the polyethylene resin pellets. Thereafter, the aqueous medium temperature was raised to 140 ° C. and held for 3 hours, and then cooled to take out styrene-modified polyethylene resin particles.

(発泡剤の含浸及び発泡成形)
内容積50リットルの耐圧で密閉可能なV型ブレンダーに、前記スチレン改質ポリエチレン系樹脂粒子を100質量部、カチオン系帯電防止剤として、第一工業製薬社製の商品名「カチオーゲンESO」を2.0質量部加え、密閉し撹拌しながら、発泡剤としてブタン14質量部を圧入した。そして、器内を50℃とし4時間維持して樹脂粒子中にブタンを含浸させた。その後、冷却して発泡性熱可塑性樹脂粒子を取り出した。
次に、取り出した発泡性熱可塑性樹脂粒子は、直ちにバッチ式発泡機で水蒸気加熱して、嵩倍数30倍に予備発泡し、その後、得られた予備発泡粒子を室温で24時間保存した。
次に、前記予備発泡粒子を発泡成形装置(積水工機社製,Wiz−40LL)に組み付けた、長さ40mm×幅300mm×高さ30mmの成形型のキャビティ内に充填した。この時成形型にセットされたベントホールは、φ0.8mm×24個の小孔が穿設されたレンコン型通気部材を、成形型に穿設された直径10mmの円形の孔に装着した構造であり、成形型の開口率が1.0%となるように、234個のベントホールを成形型に均等に配置し、他の孔にはメクラ部材を装着した。
次に、成形型にゲージ圧力0.08MPaの水蒸気を127秒間注入して、成形型内の予備発泡粒子を膨張させて粒子表面同士を融着させ、その後冷却してから発泡成形体を取り出した。
(Impregnation of foaming agent and foam molding)
To a V-type blender having an internal volume of 50 liters that can be sealed with a pressure resistance, 100 parts by mass of the styrene-modified polyethylene resin particles and a cationic antistatic agent, 2 trade names “Kachiogen ESO” manufactured by Daiichi Kogyo Seiyaku Co., Ltd. 0.04 parts by mass was added, and 14 parts by mass of butane was press-fitted as a foaming agent while stirring and sealing. Then, the inside of the vessel was kept at 50 ° C. for 4 hours, and the resin particles were impregnated with butane. Then, it cooled and took out the foamable thermoplastic resin particle.
Next, the taken-out foamable thermoplastic resin particles were immediately steam-heated with a batch-type foaming machine, pre-foamed to a bulk multiple of 30 times, and then the obtained pre-foamed particles were stored at room temperature for 24 hours.
Next, the pre-expanded particles were filled into a cavity of a mold having a length of 40 mm, a width of 300 mm, and a height of 30 mm, which was assembled in a foam molding apparatus (manufactured by Sekisui Koki Co., Ltd., Wiz-40LL). At this time, the vent hole set in the mold has a structure in which a lotus root type ventilation member having a small hole of φ0.8 mm × 24 holes is attached to a circular hole having a diameter of 10 mm formed in the mold. Yes, 234 vent holes were evenly arranged in the mold so that the opening ratio of the mold was 1.0%, and the other member was fitted with a mekura member.
Next, water vapor with a gauge pressure of 0.08 MPa was injected into the mold for 127 seconds to expand the pre-foamed particles in the mold to fuse the particle surfaces to each other, and after cooling, the foamed molded article was taken out. .

得られた発泡成形体の表面抵抗率を測定したところ、1×1012Ω以下であり、帯電防止性能に優れたものであった。
なお、表面抵抗率の測定法は下記の通りとした。
When the surface resistivity of the obtained foamed molded product was measured, it was 1 × 10 12 Ω or less and was excellent in antistatic performance.
The surface resistivity was measured as follows.

<表面抵抗率の測定法>
JIS K6911:1995「熱硬化性プラスチック一般試験方法」記載の方法に準じて測定した。試験装置として、アドバンテスト社製のデジタル超高抵抗/微少電流計R8340及びレジスティビティ・チェンバR12702Aを使用し、試料サンプル(発泡成形体)に、約30Nの荷重にて電極を圧着させ、500Vで1分間充電後の抵抗値を測定し、次式(2)により表面抵抗率を算出した。試料サンプルは、100mm×100mm×25mmであり、測定面(100mm×100mm)をスキン面とし、同一の発泡成形体から10個のサンプルを切り出し、それぞれについて測定を行った。表面抵抗率が1×1012Ω以下であれば、その発泡成形体は帯電防止性を有すると判断した。
ρs=π(D+d)/(D−d)×Rs ・・・(2)
(式中、ρsは表面抵抗率(MΩ)、Dは表面の環状電極の内径(cm)、dは表面電極の内円の外径(cm)、Rsは表面抵抗(MΩ)をそれぞれ表す。
<Measurement method of surface resistivity>
Measured according to the method described in JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. As test equipment, a digital ultra-high resistance / microammeter R8340 and a resiliency chamber R12702A manufactured by Advantest Co., Ltd. are used, and an electrode is pressure-bonded to a sample sample (foamed molded body) with a load of about 30 N, and 1 at 500V. The resistance value after charging for a minute was measured, and the surface resistivity was calculated by the following formula (2). The sample sample was 100 mm × 100 mm × 25 mm, the measurement surface (100 mm × 100 mm) was used as the skin surface, 10 samples were cut out from the same foamed molded product, and each was measured. If the surface resistivity was 1 × 10 12 Ω or less, the foamed molded article was judged to have antistatic properties.
ρs = π (D + d) / (D−d) × Rs (2)
(Wherein ρs represents the surface resistivity (MΩ), D represents the inner diameter (cm) of the annular electrode on the surface, d represents the outer diameter (cm) of the inner circle of the surface electrode, and Rs represents the surface resistance (MΩ).

[実施例2]
成形型の開口率が0.5%となるように、117個のレンコン型(直径10mm内にφ0.8mm×24個の小孔)のベントホールを成形型に均等に配置し、他の孔にはメクラ部材を装着した。それ以外は実施例1と同様にして発泡成形体を作製し、その表面抵抗率を測定した。得られた発泡成形体の表面抵抗率は1×1012Ω以下であり、帯電防止性能に優れたものであった。
[Example 2]
Place 117 loton type (φ0.8mm × 24 small holes within 10mm diameter) vent holes evenly in the mold so that the mold opening ratio is 0.5%. Was fitted with a mekura member. Otherwise, a foamed molded article was produced in the same manner as in Example 1, and the surface resistivity was measured. The obtained foamed molded article had a surface resistivity of 1 × 10 12 Ω or less, and was excellent in antistatic performance.

[実施例3]
ベントホールに装着した通気部材を、直径10mm内に幅0.3mmのスリットが6本開口しているスリット型とし、成形型の開口率が1.0%となるように、180個のベントホールを成形型に均等に配置し、他の孔にはメクラ部材を装着した。それ以外は実施例1と同様にして発泡成形体を作製し、その表面抵抗率を測定した。得られた発泡成形体の表面抵抗率は1×1012Ω以下であり、帯電防止性能に優れたものであった。
[Example 3]
The ventilation member attached to the vent hole is a slit mold in which six slits having a width of 0.3 mm are opened within a diameter of 10 mm, and 180 vent holes are formed so that the opening ratio of the mold is 1.0%. Were placed evenly on the mold, and the other holes were fitted with mekura members. Otherwise, a foamed molded article was produced in the same manner as in Example 1, and the surface resistivity was measured. The obtained foamed molded article had a surface resistivity of 1 × 10 12 Ω or less, and was excellent in antistatic performance.

[比較例1]
成形型の開口率が4.8%となるように、1123個のレンコン型(直径10mm内にφ0.8mm×24個の小孔)のベントホールを成形型に均等に配置した。それ以外は実施例1と同様にして発泡成形体を作製し、その表面抵抗率を測定した。その結果、得られた発泡成形体の表面抵抗率は1013Ω以上であり、帯電防止性能が劣るものであった。
[Comparative Example 1]
1123 lotus-shaped vent holes (φ0.8 mm × 24 small holes in a diameter of 10 mm) were evenly arranged in the mold so that the opening ratio of the mold was 4.8%. Otherwise, a foamed molded article was produced in the same manner as in Example 1, and the surface resistivity was measured. As a result, the surface resistivity of the obtained foamed molded article was 10 13 Ω or more, and the antistatic performance was inferior.

[比較例2]
成形型の開口率が1.5%となるように、351個のレンコン型(直径10mm内にφ0.8mm×24個の小孔)のベントホールを成形型に均等に配置し、他の孔にはメクラ部材を装着した。それ以外は実施例1と同様にして発泡成形体を作製し、その表面抵抗率を測定した。その結果、得られた発泡成形体の表面抵抗率は1×1013Ω以上であり、帯電防止性能が劣るものであった。
[Comparative Example 2]
Arrange 351 lotus-shaped vent holes (φ0.8 mm × 24 small holes within a diameter of 10 mm) evenly in the mold so that the opening ratio of the mold is 1.5%. Was fitted with a mekura member. Otherwise, a foamed molded article was produced in the same manner as in Example 1, and the surface resistivity was measured. As a result, the surface resistivity of the obtained foamed molded article was 1 × 10 13 Ω or more, and the antistatic performance was inferior.

[比較例3]
成形型の開口率が0.3%となるように、70個のレンコン型のベントホールを成形型に均等に配置し、他の孔にはメクラ部材を装着した。それ以外は実施例1と同様にして発泡成形体を作製したが、得られた発泡成形体は、発泡粒子同士の融着度合が低く、機械強度が低いために、実用には不向きであった。
[Comparative Example 3]
Seventy loton type vent holes were evenly arranged in the mold so that the opening ratio of the mold was 0.3%, and the other members were fitted with mekura members. Otherwise, a foamed molded article was produced in the same manner as in Example 1. However, the obtained foamed molded article was unsuitable for practical use because the degree of fusion between the foamed particles was low and the mechanical strength was low. .

前述した実施例1〜3及び比較例1〜3の試験結果から、成形型の開口率が0.5%〜1.0%の範囲である本発明に係る実施例1〜3では、得られる発泡成形体の表面抵抗率が1×1012Ω以下であり、帯電防止性能に優れた発泡成形体が得られることがわかった。また、実施例1〜3で製造した発泡成形体は、実用上十分な機械強度が得られた。 From the test results of Examples 1 to 3 and Comparative Examples 1 to 3 described above, the results are obtained in Examples 1 to 3 according to the present invention in which the opening ratio of the mold is in the range of 0.5% to 1.0%. The surface resistivity of the foamed molded product was 1 × 10 12 Ω or less, and it was found that a foamed molded product excellent in antistatic performance was obtained. Moreover, practically sufficient mechanical strength was obtained for the foam molded articles produced in Examples 1 to 3.

一方、開口率が本発明の開口率範囲を超える比較例1,2の場合には、得られる発泡成形体の表面抵抗率が1×1012Ωより高くなり、帯電防止性能に劣っていた。これは、予備発泡粒子に水蒸気が接触した際に、粒子表面に付着していた帯電防止剤が流亡したため、表面抵抗率が高くなったものと思われる。
また、開口率が本発明の開口率範囲未満である比較例3では、実用上十分な機械強度を持つ発泡成形体が得られなかった。
On the other hand, in Comparative Examples 1 and 2 in which the aperture ratio exceeded the aperture ratio range of the present invention, the surface resistivity of the obtained foamed molded product was higher than 1 × 10 12 Ω, and the antistatic performance was inferior. This is presumably because when the pre-expanded particles were brought into contact with water vapor, the antistatic agent adhering to the particle surface was washed away, so that the surface resistivity increased.
Further, in Comparative Example 3 in which the aperture ratio was less than the aperture ratio range of the present invention, a foamed molded article having a practically sufficient mechanical strength could not be obtained.

本発明に係る成形型の一例を示す断面図である。It is sectional drawing which shows an example of the shaping | molding die concerning this invention. 図1の要部拡大断面図である。It is a principal part expanded sectional view of FIG.

符号の説明Explanation of symbols

1…成形型、2…第1の型枠部、3…第1の型、4…第2の型枠、5…第2の型、6…キャビティ、7…ベントホール、8…孔、9…通気部材。   DESCRIPTION OF SYMBOLS 1 ... Molding die, 2 ... 1st mold part, 3 ... 1st type | mold, 4 ... 2nd mold frame, 5 ... 2nd type | mold, 6 ... Cavity, 7 ... Vent hole, 8 ... Hole, 9 ... ventilation member.

Claims (8)

熱可塑性樹脂粒子に発泡剤を含ませ、少なくとも粒子表面にカチオン系帯電防止剤を付着させた発泡性熱可塑性樹脂粒子を用意し、該発泡性熱可塑性樹脂粒子を加熱し発泡させて予備発泡粒子を作製し、次いで該予備発泡粒子を、所望の成形体形状と合致するキャビティを有する成形型の該キャビティ内に充填し、成形型のベントホールを通してキャビティ内に水蒸気を流して加熱し、予備発泡粒子を膨張・融着させる型内発泡成形を行って発泡成形体を製造する帯電防止性熱可塑性樹脂発泡成形体の製造方法において、
前記成形型の発泡成形体が接触する成形面の面積に占める前記ベントホールの開口面積の割合である開口率を0.5%〜1.0%の範囲として型内発泡成形を行うことを特徴とする帯電防止性熱可塑性樹脂発泡成形体の製造方法。
Preparation of foamable thermoplastic resin particles in which a foaming agent is contained in the thermoplastic resin particles and a cationic antistatic agent is attached to at least the particle surface, and the foamable thermoplastic resin particles are heated and foamed to be prefoamed particles Then, the pre-expanded particles are filled into the cavity of a mold having a cavity matching the desired shape of the molded body, heated by flowing steam into the cavity through the vent hole of the mold, and pre-expanded In the method for producing an antistatic thermoplastic resin foam molded article in which a foam molded article is produced by performing in-mold foam molding for expanding and fusing particles,
In-mold foam molding is performed by setting the opening ratio, which is the ratio of the opening area of the vent hole to the area of the molding surface in contact with the foam molded body of the molding die, in the range of 0.5% to 1.0%. A process for producing an antistatic thermoplastic resin foam molded article.
前記カチオン系帯電防止剤は、式(1)
[(RN]OSO ・・・(1)
(式中、Rは分岐していてもよい炭素数1〜17のアルキル基を表す。)で表される化合物群から選択される1種又は2種以上であることを特徴とする請求項1に記載の帯電防止性熱可塑性樹脂発泡成形体の製造方法。
The cationic antistatic agent has the formula (1)
[(R 1 ) 4 N] + C 2 H 5 OSO 3 (1)
(Wherein R 1 represents an optionally branched alkyl group having 1 to 17 carbon atoms) is one or more selected from the group of compounds represented by the formula: 2. A method for producing an antistatic thermoplastic resin foam molded article according to 1.
前記カチオン系帯電防止剤は、前記式(1)中の4つのR基のうち、3つが炭素数1〜3のアルキル基であることを特徴とする請求項2に記載の帯電防止性熱可塑性樹脂発泡成形体の製造方法。 3. The antistatic heat according to claim 2, wherein three of the four R 1 groups in the formula (1) are alkyl groups having 1 to 3 carbon atoms as the cationic antistatic agent. A method for producing a plastic resin foam molded article. 前記カチオン系帯電防止剤は、前記式(1)中の4つのR基のうち、3つが炭素数1〜3のアルキル基であり、残りの1つが炭素数5〜17のアルキル基であることを特徴とする請求項3に記載の帯電防止性熱可塑性樹脂発泡成形体の製造方法。 In the cationic antistatic agent, three of the four R 1 groups in the formula (1) are alkyl groups having 1 to 3 carbon atoms, and the remaining one is an alkyl group having 5 to 17 carbon atoms. The manufacturing method of the antistatic thermoplastic resin foaming molding of Claim 3 characterized by the above-mentioned. 前記ベントホールは、多数の小孔が穿設されたレンコン型通気部材を成形型に穿設した孔に装着したものであることを特徴とする請求項1〜4のいずれかに記載の帯電防止性熱可塑性樹脂発泡成形体の製造方法。   5. The antistatic device according to claim 1, wherein the vent hole is formed by mounting a lotus root type ventilation member having a large number of small holes formed in a hole formed in the mold. Method for producing a foamed thermoplastic resin molded article. 請求項1〜5のいずれかに記載の帯電防止性熱可塑性樹脂発泡成形体の製造方法によって得られたものであることを特徴とする帯電防止性熱可塑性樹脂発泡成形体。   An antistatic thermoplastic resin foam molded article obtained by the method for producing an antistatic thermoplastic resin foam molded article according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の帯電防止性熱可塑性樹脂発泡成形体の製造方法に用いられる帯電防止性熱可塑性樹脂発泡成形体製造用成形型であって、
前記成形型の発泡成形体が接触する成形面の面積に占めるベントホールの開口面積の割合である開口率が0.5%〜1.0%の範囲であることを特徴とする帯電防止性熱可塑性樹脂発泡成形体製造用成形型。
A mold for producing an antistatic thermoplastic resin foam molded article used in the method for producing an antistatic thermoplastic resin foam molded article according to any one of claims 1 to 5,
The antistatic heat, wherein the opening ratio, which is the ratio of the opening area of the vent hole to the area of the molding surface with which the foamed molded body of the mold comes into contact, is in the range of 0.5% to 1.0%. Mold for manufacturing plastic resin foam moldings.
請求項7に記載の帯電防止性熱可塑性樹脂発泡成形体製造用成形型を有し、該成形型内で型内発泡成形を行うことを特徴とする帯電防止性熱可塑性樹脂発泡成形体製造用成形装置。   An antistatic thermoplastic resin foam molded article for manufacturing an antistatic thermoplastic resin foam molded article, comprising the mold for producing an antistatic thermoplastic resin foam molded article according to claim 7 and performing in-mold foam molding in the mold. Molding equipment.
JP2008078041A 2008-03-25 2008-03-25 Antistatic thermoplastic resin foamed molding and its production process, molding die for producing antistatic thermoplastic resin foamed molding and molding device for producing antistatic thermoplastic resin foamed molding Pending JP2009226871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008078041A JP2009226871A (en) 2008-03-25 2008-03-25 Antistatic thermoplastic resin foamed molding and its production process, molding die for producing antistatic thermoplastic resin foamed molding and molding device for producing antistatic thermoplastic resin foamed molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078041A JP2009226871A (en) 2008-03-25 2008-03-25 Antistatic thermoplastic resin foamed molding and its production process, molding die for producing antistatic thermoplastic resin foamed molding and molding device for producing antistatic thermoplastic resin foamed molding

Publications (1)

Publication Number Publication Date
JP2009226871A true JP2009226871A (en) 2009-10-08

Family

ID=41242848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078041A Pending JP2009226871A (en) 2008-03-25 2008-03-25 Antistatic thermoplastic resin foamed molding and its production process, molding die for producing antistatic thermoplastic resin foamed molding and molding device for producing antistatic thermoplastic resin foamed molding

Country Status (1)

Country Link
JP (1) JP2009226871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013154910A (en) * 2012-01-30 2013-08-15 Sekisui Plastics Co Ltd Foamed container, and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283429A (en) * 1989-04-26 1990-11-20 Asahi Chem Ind Co Ltd Mold for polyolefinic resin foam-molding
JPH03221543A (en) * 1990-01-28 1991-09-30 Kanegafuchi Chem Ind Co Ltd Additive coating method for pre-expanded beads
JP2001106850A (en) * 1999-10-12 2001-04-17 Dai Ichi Kogyo Seiyaku Co Ltd Antistatic resin composition and thermoplastic resin composition using the same
JP2006051979A (en) * 2004-08-11 2006-02-23 Kaneka Corp Container made of foam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283429A (en) * 1989-04-26 1990-11-20 Asahi Chem Ind Co Ltd Mold for polyolefinic resin foam-molding
JPH03221543A (en) * 1990-01-28 1991-09-30 Kanegafuchi Chem Ind Co Ltd Additive coating method for pre-expanded beads
JP2001106850A (en) * 1999-10-12 2001-04-17 Dai Ichi Kogyo Seiyaku Co Ltd Antistatic resin composition and thermoplastic resin composition using the same
JP2006051979A (en) * 2004-08-11 2006-02-23 Kaneka Corp Container made of foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013154910A (en) * 2012-01-30 2013-08-15 Sekisui Plastics Co Ltd Foamed container, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP7228334B2 (en) Foamed resin particles and foamed resin products
KR102010450B1 (en) Manufacturing method of a molded foam article with low density using propylene based polymer
JP3732418B2 (en) Expandable styrene resin particles
JP2805286B2 (en) Polyolefin-based resin foam molded article having communicating voids and method for producing the same
JP4933913B2 (en) Expandable styrene resin particles and production method thereof, styrene resin foam particles and styrene resin foam molded article
JP2010248341A (en) Polypropylene-based resin prefoamed particle
CN108601460B (en) Vehicle seat member, vehicle seat, and method for manufacturing same
JP2008274133A (en) Expandable resin particles and method for producing the same
JP3474995B2 (en) Method for producing expandable styrene polymer particles
JP2009226871A (en) Antistatic thermoplastic resin foamed molding and its production process, molding die for producing antistatic thermoplastic resin foamed molding and molding device for producing antistatic thermoplastic resin foamed molding
KR101584133B1 (en) Expanded articles using different types of expanded particles and process for producing the same
JP3955782B2 (en) Styrenic resin pre-expanded particles, method for producing the same, and expanded resin molded article
JP6081266B2 (en) Foam molding
JP6343485B2 (en) Polystyrene foamed molded product and method for producing the same
JP4990814B2 (en) Process for producing modified polystyrene resin particles, pre-expanded particles, and expanded molded article.
JP2010043171A (en) Method for producing polystyrene resin foamed sheet, polystyrene resin foamed sheet, and container
JP5704831B2 (en) Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
KR20180003305A (en) Manufacturing method of olefin based expanded bead molded article by molding olefin based expanded bead and olefin based expanded bead molded article using the same
JP2012006356A (en) Thermoplastic resin laminate foamed sheet and container
JP2009108161A (en) Polypropylene resin expandable particle
JP2022172040A (en) Foam molded body, and use thereof
JP5518510B2 (en) Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding
JP2023100351A (en) Composite resin particle, and foamed molded product
JP2006088442A (en) Foam molded product having voids
JP2006088439A (en) Foam molded product having voids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204