JP7228334B2 - Foamed resin particles and foamed resin products - Google Patents

Foamed resin particles and foamed resin products Download PDF

Info

Publication number
JP7228334B2
JP7228334B2 JP2018023398A JP2018023398A JP7228334B2 JP 7228334 B2 JP7228334 B2 JP 7228334B2 JP 2018023398 A JP2018023398 A JP 2018023398A JP 2018023398 A JP2018023398 A JP 2018023398A JP 7228334 B2 JP7228334 B2 JP 7228334B2
Authority
JP
Japan
Prior art keywords
resin
foamed
particles
expanded
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018023398A
Other languages
Japanese (ja)
Other versions
JP2018131620A (en
Inventor
哲生 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2018131620A publication Critical patent/JP2018131620A/en
Application granted granted Critical
Publication of JP7228334B2 publication Critical patent/JP7228334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、特殊形状の発泡樹脂粒子、および発泡樹脂粒子を融合させ成形して得られる連続した空隙を有する吸音性能に優れた樹脂発泡成形体に関する TECHNICAL FIELD The present invention relates to foamed resin particles having a special shape, and resin foam molded articles having continuous voids obtained by fusing and molding foamed resin particles and having excellent sound absorbing performance.

樹脂発泡材は、従来の中実の樹脂材料や金属材料を代替する材料として、自動車や電子機器の部材、容器の構造材料として使用されている。これらの樹脂発泡材の特長として低密度、高断熱性、緩衝性があり、主にこれらの特性が有効に利用されている。一方、樹脂発泡材に期待される特性として吸音性、遮音性が挙げられるが利用範囲は従来限られたものであった。 Resin foam materials are used as materials for replacing conventional solid resin materials and metal materials, as members of automobiles and electronic devices, and as structural materials for containers. These resin foam materials are characterized by low density, high heat insulation, and cushioning properties, and these properties are mainly used effectively. On the other hand, sound absorption and sound insulation are expected properties of foamed resin materials, but their range of application has been limited in the past.

その理由としては、吸音性、遮音性は発泡体全般に発現する特性ではなく、気泡構造に依存し、発泡体構造の隣接する気泡が樹脂の隔壁で隔てられた構造である独立気泡構造の発泡体は剛性、機械強度に優れる一方で吸音、遮音性能が非常に低いのに対して、気泡の隔壁が破壊または消失した連通気泡構造の発泡体は吸音、遮音性能に優れる一方で剛性、機械強度に劣るというように各性質が互いに相反する傾向があり、それらの両立が困難な点が挙げられる。 The reason for this is that sound absorption and sound insulation are not characteristics that are expressed in foams in general, but rather depend on the cell structure. While the body has excellent rigidity and mechanical strength, its sound absorption and sound insulation performance is extremely low. Each property tends to conflict with each other, such as being inferior to the other, and it is difficult to achieve both.

連通気泡型の樹脂発泡体の例としてはウレタン樹脂、メラミン樹脂が有り主な用途は、流体を吸収するスポンジ用途や柔軟性、衝撃吸収性を利用した緩衝材用途である。これらは吸音性に優れるため無機材料と比較して軽量な吸音材としても広く使用されるが剛性が低いため、自立した構造材料としてではなく主に他の構造材との積層材の構成層として使用されている。 Examples of open-cell resin foams include urethane resins and melamine resins, and their main uses are as sponges that absorb fluids and cushioning materials that utilize flexibility and shock absorption. Because of their excellent sound absorption properties, they are widely used as sound absorbing materials that are lighter in weight than inorganic materials. It is used.

発泡体の主な製造方法としては、ビーズ発泡成形法、押出発泡成形法が有り、ビーズ発泡成形法は樹脂粒子を予備的に発泡させて得られた粒状の樹脂発泡粒子を所望の形状の成形用型内に充填した後、樹脂発泡粒子の熱膨張による融着により成形品を形成させる機構により成形させる方法であって、押出発泡成形法と比較した利点として様々な複雑な3次元形状の発泡体製品が高生産性で製造可能な点、切削加工で発生する材料ロスの発生が無い点、および成形用金型が低コストで製造可能な点が挙げられ種々の構造部材用発泡材の成形方法として特に好ましい方法である。しかしビーズ発泡成形法の発泡成形プロセスは気泡セルが樹脂膜で隔てられた独立気泡であり気泡の膨張に起因する発泡粒子間の相互に融着する機構によるため、通常得られる発泡体の気泡構造は基本的に独立気泡構造となるため、吸音性能に劣るのが一般的である。 The main methods of manufacturing foams include the bead foaming method and the extrusion foaming method. In the bead foaming method, granular resin foam particles obtained by pre-expanding resin particles are molded into a desired shape. After being filled in a mold, it is formed by a mechanism that forms a molded product by fusion due to thermal expansion of resin foam particles. Molding of foam materials for various structural members This is a particularly preferred method. However, in the foam molding process of the bead foam molding method, the foam cells are independent cells separated by a resin film, and due to the mechanism of mutual fusion between the foam particles due to the expansion of the bubbles, the foam structure of the foam normally obtained Since it basically has a closed cell structure, it is generally inferior in sound absorption performance.

一方、以下に例示するようにビーズ発泡成形法により発泡体内に連続した空隙構造すなわち、連通空隙構造を設けた発泡体およびその製造方法が提案され、吸音性発泡材として使用できることが知られている。 On the other hand, as exemplified below, a foam having a continuous pore structure, that is, a continuous pore structure, has been proposed in the foam by a bead foam molding method, and a method for producing the same has been proposed, and it is known that it can be used as a sound absorbing foam material. .

特許文献1記載の方法では、柱状ポリオレフィン系樹脂発泡体を配向のない不規則な方向に位置させた状態で相互に融着させ連通空隙を持つ成形体を得るが、樹脂発泡粒子の形状が細長く、金型内に発泡粒子を充填する際に充填不良を引き起こし易い点、成形体の空隙率と成形体の融着強度のバランスを取りにくい点等の問題が有り実用化することは難しかった。 In the method described in Patent Document 1, columnar polyolefin-based resin foams are fused to each other in a state in which they are positioned in non-oriented, irregular directions to obtain a molded article having communicating voids, but the shape of the resin foam particles is elongated. However, it has been difficult to put it to practical use due to problems such as the tendency to cause poor filling when filling the foamed particles into the mold, and the difficulty in balancing the porosity of the molded body and the fusion bond strength of the molded body.

特許文献2記載の方法では、特定の嵩密度、真密度の関係を満足し、形状パラメーターが特定条件を満足する熱可塑性樹脂発泡粒子に、物理発泡材を含浸させて空隙構造を持つ粒状の樹脂発泡粒子を型内発泡してなる連通した空隙を有する熱可塑性樹脂発泡成形体が透水性、吸音性に優れると記載されている。しかし例示されている発泡体はエチレンプロピレンランダムポリマーおよび低密度ポリエチレンの中空および十字型断面の粒状発泡体により空隙を形成させた発泡体であり、強度および、吸音性能の具体的記載はなく空隙構造の吸音材としての適否は不明である。 In the method described in Patent Document 2, a granular resin having a void structure is obtained by impregnating thermoplastic resin expanded particles satisfying specific bulk density and true density relationships and shape parameters satisfying specific conditions with a physical foaming material. It is described that a thermoplastic resin foam molded article having continuous voids formed by foaming expanded particles in a mold is excellent in water permeability and sound absorption. However, the exemplified foam is a foam in which voids are formed by hollow and cruciform cross-sectional granular foams of ethylene propylene random polymer and low density polyethylene, and there is no specific description of strength and sound absorption performance, and void structure. It is unknown whether it is suitable as a sound absorbing material.

特許文献3記載の方法では、樹脂発泡粒子の多数個が隣接する樹脂発泡粒子表面の一部で面接合し全体容積に対して15~40%の容積空隙率を有して一体化させる方法では、発泡性樹脂粒子の表面に該粒子の軟化温度より低い温度で熱接着し得る接着用樹脂を添着することにより製造されるが、樹脂発泡粒子に対して熱接着性樹脂を添着させる工程が必要となり生産性が低下するほか、強度と空隙率のバランスにおいて十分でなく、かつ空隙率は40%以下に限られる欠点が有った。例示されている発泡体は塩化ビニリデン系共重合体のみであり且つ請求項記載の吸音性能を得るための発泡体の構造は示されていない。 In the method described in Patent Document 3, a large number of foamed resin beads are surface-bonded at a part of the surface of adjacent foamed resin beads and integrated with a volume porosity of 15 to 40% with respect to the total volume. , it is produced by attaching an adhesive resin that can be thermally bonded at a temperature lower than the softening temperature of the expandable resin particles to the surface of the expandable resin particles, but a step of attaching the thermally adhesive resin to the expanded resin particles is required. As a result, the productivity is lowered, the balance between the strength and the porosity is not sufficient, and the porosity is limited to 40% or less. The exemplified foam is only a vinylidene chloride copolymer and the structure of the foam for obtaining the claimed sound absorbing performance is not shown.

特許文献4記載の方法では、筒状形状のポリオレフィン系樹脂の樹脂発泡粒子の3次元的形状、サイズ、樹脂発泡粒子の嵩密度と真密度の関係を特定範囲とした樹脂発泡粒子を融着一体化することにより、透水性に優れたポリオレフィン系発泡体を生成する技術が開示されているが、吸音材としての性能の開示はなく空隙構造の適否は不明である。 In the method described in Patent Document 4, the three-dimensional shape, size, and relationship between the bulk density and the true density of the expanded resin particles of a cylindrical polyolefin resin are fused and integrated. However, there is no disclosure of performance as a sound absorbing material, and the adequacy of the void structure is unknown.

特許文献5記載の方法では、成形体の空隙率、及び嵩密度を特定の範囲とした中空円筒樹脂発泡粒子を型内発泡することにより広い周波数範囲で優れた吸音性を有する成形体を得ることができることが記載されている。しかし吸音性能は不充分であり成形体の厚みを必要とするほか、機械強度等、物性については開示されていない。 In the method described in Patent Document 5, a molded body having excellent sound absorption in a wide frequency range is obtained by in-mold expansion of hollow cylindrical resin expanded particles having a specific range of porosity and bulk density of the molded body. It states that you can However, the sound absorbing performance is insufficient and the thickness of the molded body is required, and physical properties such as mechanical strength are not disclosed.

特許文献6記載の方法では、予備発泡前の発泡剤の樹脂粒子への含浸状態を制御し、鼓形状の熱可塑性樹脂発泡粒子を製造後、型内で発泡融着させ空隙を持つ発泡体粒子を製造する方法であり、形状が鼓型に限られるため発泡成形体の空隙の構造に制限が大きく、発泡剤の樹脂粒子への含浸状態の制御が難しい欠点が有った。 In the method described in Patent Document 6, the state of impregnation of resin particles with a foaming agent before pre-foaming is controlled, and after producing drum-shaped thermoplastic resin foamed beads, the foamed particles having voids are foam-fused in a mold. However, since the shape is limited to an hourglass shape, there are large restrictions on the structure of the voids in the foamed molded product, and there are drawbacks that it is difficult to control the state of impregnation of the foaming agent into the resin particles.

以上の特許文献1~6のようにポリエチレン、ポリプロピレン、エチレン-プロピレンコポリマー等のポリオレフィン系樹脂、塩化ビニリデン系樹脂などの汎用樹脂について連通空隙を形成する粒状発泡体を融着させて形成された発泡体の吸音効果発現を示唆する先行文献は存在するが、発泡体の微細構造と吸音性能の関係は不明確であり特に連通した空隙の構造の特定と空隙を形成する発泡ビーズの構造としてどのような形状が適するかについても開示されていない。 As in Patent Documents 1 to 6 above, foams formed by fusing granular foams forming continuous voids in general-purpose resins such as polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymers, and vinylidene chloride resins. Although there are prior literatures suggesting that the sound absorption effect of the foam is manifested, the relationship between the microstructure of the foam and the sound absorption performance is unclear. Also, it is not disclosed whether a suitable shape is suitable.

その他の一般的樹脂においては、空隙構造を導入した発泡成形体およびその製造技術は未確立と考えられ、特に汎用樹脂以外の樹脂例えば、耐熱変形性、耐溶剤性、難燃性などの優れた機能を持ついわゆるエンジニアリング樹脂を材料とする連通空隙を形成する樹脂発泡粒子およびそれを融着させて形成された連通空隙を有する発泡成形体の製造技術、発泡成形体の吸音性能は知られていないのが現状であった。 For other general resins, it is thought that foamed moldings with void structures and their manufacturing technology have not yet been established. Technology for producing resin foam particles that form interconnected voids made from so-called engineering resins with functions, foam molded products having interconnected voids formed by fusing them, and sound absorption performance of foam molded products are not known. was the current situation.

特開平3-224727号公報JP-A-3-224727 特開平7-137063号公報JP-A-7-137063 特開平7-168577号公報JP-A-7-168577 特開平8-108441号公報JP-A-8-108441 特開平10-329220号公報JP-A-10-329220 特開2000-302909号公報JP-A-2000-302909

本発明が解決しようとする課題は、ビーズ発泡成形により成形される、吸音性能に優れかつ構造材料としても優れた樹脂発泡成形体を成形することが可能な樹脂発泡粒子を提供することにある。 The problem to be solved by the present invention is to provide foamed resin particles that can be molded by bead foaming to form a foamed resin article that is excellent in sound absorbing performance and also as a structural material.

本発明者は、課題解決のため鋭意検討した結果、驚くべきことに特定形状を有する等の樹脂発泡粒子を加熱融着させるプロセスで形成された、特定構造の連通空隙を有する新規な樹脂発泡成形体が、従来の発泡体には見られない高吸音性能と機械強度を示し吸音、遮音性能を持つ好適な構造材料となり得ること、更には特定範囲の表面張力を持つ熱可塑性樹脂を原料樹脂として選択することにより、機械強度、耐熱性、耐熱変形性、難燃性、耐溶剤性、剛性から選ばれる性能と高度の吸音性能を併せ持った自立型の吸音構造材となり得ることを見出し、本発明を完成させた。 As a result of intensive studies to solve the problem, the present inventor surprisingly found a novel resin foam molding having communicating voids of a specific structure, which is formed by a process of heat-sealing foamed resin particles having a specific shape. The foam exhibits high sound absorption performance and mechanical strength not found in conventional foams, and can be a suitable structural material with sound absorption and sound insulation performance. It was found that a self-supporting sound absorbing structural material having high sound absorption performance and performance selected from mechanical strength, heat resistance, heat deformation resistance, flame retardancy, solvent resistance, and rigidity can be obtained by selecting, and the present invention. completed.

すなわち、本発明は以下の通りである。
(1)
樹脂を含む、凹外形部を有する樹脂発泡粒子であって、
前記樹脂の密度ρと前記樹脂発泡粒子の真密度ρとの比ρ/ρが2~20であり、前記樹脂発泡粒子の真密度ρと前記樹脂発泡粒子の嵩密度ρとの比ρ/ρが1.5~4.0であり、
前記樹脂が変性ポリエーテル樹脂であり、
前記樹脂の20℃における表面張力が37~60mN/mであり、
前記樹脂のガラス転移温度が10℃以上280℃以下であり、
前記樹脂発泡粒子の平均粒子径が1.2~6.0mmである
樹脂発泡粒子。
(2)
樹脂を含む、凹外形部を有する樹脂発泡粒子であって、
前記樹脂の密度ρ と前記樹脂発泡粒子の真密度ρ との比ρ /ρ が2~20であり、前記樹脂発泡粒子の真密度ρ と前記樹脂発泡粒子の嵩密度ρ との比ρ /ρ が1.5~4.0であり、
前記樹脂がポリアミド樹脂又は変性ポリエーテル樹脂であり、
前記樹脂の20℃における表面張力が37~60mN/mであり、
前記樹脂のガラス転移温度が10℃以上280℃以下であり、
前記樹脂発泡粒子の平均粒子径が1.2~6.0mmである、
樹脂発泡粒子。
(3)
(1)又は(2)に記載の樹脂発泡粒子が相互に融着した成形体であり、
融着した前記樹脂発泡粒子間に連続した空隙部を有し、空隙率が15~80%である、樹脂発泡成形体。
(4)
(3)に記載の樹脂発泡成形体からなる防音部材。
That is, the present invention is as follows.
(1)
A resin foamed particle having a concave outer shape containing a resin,
The ratio ρ 0 / ρ 1 of the density ρ 0 of the resin to the true density ρ 1 of the expanded resin beads is 2 to 20, and the true density ρ 1 of the expanded resin beads and the bulk density ρ 2 of the expanded resin beads The ratio ρ 1 / ρ 2 is 1.5 to 4.0,
The resin is a modified polyether resin,
The resin has a surface tension of 37 to 60 mN/m at 20° C.,
The resin has a glass transition temperature of 10° C. or higher and 280° C. or lower,
The average particle diameter of the expanded resin particles is 1.2 to 6.0 mm ,
Resin foam particles.
(2)
A resin foamed particle having a concave outer shape containing a resin,
The ratio ρ 0 / ρ 1 of the density ρ 0 of the resin to the true density ρ 1 of the expanded resin beads is 2 to 20, and the true density ρ 1 of the expanded resin beads and the bulk density ρ 2 of the expanded resin beads The ratio ρ 1 / ρ 2 is 1.5 to 4.0,
The resin is a polyamide resin or a modified polyether resin,
The resin has a surface tension of 37 to 60 mN/m at 20° C.,
The resin has a glass transition temperature of 10° C. or higher and 280° C. or lower,
The average particle diameter of the expanded resin particles is 1.2 to 6.0 mm,
Resin foam particles.
(3)
(1 ) or (2) is a molded body in which the foamed resin particles are fused to each other,
A foamed resin article having continuous voids between the fused resin foamed particles and having a porosity of 15 to 80%.
(4)
A soundproof member comprising the resin foam molded article according to (3) .

本発明によれば、ビーズ発泡成形により成形される、吸音性能に優れかつ構造材料としても優れた樹脂発泡成形体を成形することが可能な樹脂発泡粒子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the resin foaming bead which can shape|mold the resin expansion molding excellent in sound absorption performance, and is excellent also as a structural material can be provided by foaming bead molding.

本実施形態の樹脂発泡粒子の断面図の一例を示す図である。It is a figure which shows an example of sectional drawing of the resin expansion particle of this embodiment. 本実施形態の樹脂発泡粒子の斜視図である。1 is a perspective view of resin foam beads of the present embodiment. FIG. 実施例で用いた異形押し出しダイの吐出口形状、および得られた樹脂発泡粒子の凹外形部を示す断面図を示す図である。FIG. 4 is a cross-sectional view showing the shape of the discharge port of the profiled extrusion die used in Examples and the concave outer shape portion of the obtained foamed resin beads.

本実施形態の特殊形状の樹脂発泡粒子を融合させ発泡成形することにより得られる連通した空隙を有する樹脂発泡成形体は、吸音性能に優れ、構造材料として優れ、種々の吸音部材として利用可能であるだけでなく、硬質の発泡体として、発泡体相互および発泡体以外の部材との嵌合組立性に優れた部材として、自動組み立てラインへの適合性が高く、生産性に優れた吸音機能製品用途に有効に用いられる。
さらに、特定の原料樹脂を用いることにより、機械強度、耐熱性、耐熱変形性、難燃性、耐溶剤性、剛性から選ばれる性能を兼備させた新規な発泡成形体を得ることもできる。
A resin foam molded article having interconnected voids obtained by fusing and foam-molding the specially shaped resin foam particles of the present embodiment has excellent sound absorbing performance, is excellent as a structural material, and can be used as various sound absorbing members. In addition, as a hard foam, it is highly suitable for automatic assembly lines and has excellent productivity as a member with excellent fitting and assembly properties between foam and other members. effectively used for
Furthermore, by using a specific raw material resin, it is also possible to obtain a novel foam-molded article having performance selected from mechanical strength, heat resistance, heat deformation resistance, flame retardancy, solvent resistance, and rigidity.

[樹脂発泡粒子]
本発明の樹脂発泡粒子は、凹外形部を有すること(少なくとも一つの方向から見た外形において、凹形状部を有すること)が必要である。
なお、本明細書において凹外形部を有するとは、樹脂発泡粒子の正射影像が凹図形となる正射影像が得られる方向が存在することを意味する。また、本明細書において凹図形とは、凹図形となる正射影像図形の外表面上の2点間を結んだ線分の少なくとも一部(好ましくは全線分)が樹脂発泡粒子の外部領域を通る線分となる2点を選ぶことが可能であることを言う。凹図形の例を図1に示す。
また、上記凹外形部は、発泡時に形成される発泡気泡と異なる構造である。
[Resin foamed particles]
The expanded resin bead of the present invention is required to have a concave outer shape portion (having a concave shape portion in the outer shape viewed from at least one direction).
In this specification, having a concave outer shape portion means that there is a direction in which the orthogonal projection image of the expanded resin bead is a concave figure. In this specification, a concave figure means that at least a part (preferably, the whole line segment) of a line segment connecting two points on the outer surface of the orthogonal projection image figure to be a concave figure forms an external region of the resin foam beads. It means that it is possible to choose two points that will be a line segment that passes through. An example of a concave figure is shown in FIG.
Further, the concave outer shape portion has a structure different from that of foamed cells formed during foaming.

上記凹外形部は、一個でも複数個でも良い。
上記凹外形部は、樹脂発泡粒子の表面を連結する一個または複数個の貫通孔であっても良いし、粒子を貫通しない一個または複数個の凹部であっても良いし、一個または複数個の貫通孔および一個または複数個の凹部が混在していても良い。ここで、貫通孔とは、樹脂発泡粒子外表面に形成された2つの穴を結ぶ空洞であってよく、該空洞が映る正射影像において、該空洞が樹脂発泡粒子に囲まれている正射影像(空洞が樹脂発泡粒子内に孤立した空洞を形成する正射影像)が得られる構造としてよい。
There may be one or a plurality of concave outer portions.
The concave outer shape portion may be one or more through-holes that connect the surfaces of the foamed resin particles, one or more concave portions that do not penetrate the particles, or one or more Through holes and one or more recesses may be mixed. Here, the through-hole may be a cavity connecting two holes formed on the outer surface of the resin foamed bead. The structure may be such that a projection image (an orthographic projection image in which the cavity forms an isolated cavity within the foamed resin particles) can be obtained.

本実施形態の樹脂発泡粒子において、上記凹部としては、凹部が確認できる正射影像において、樹脂発泡粒子が占める領域に対する、該凹部に少なくとも2点以上で外接する直線と樹脂発泡粒子の外表面とで囲まれた領域Aの割合(領域A/樹脂発泡粒子が占める領域)が、10%以上であることが好ましく、より好ましくは30%以上である。中でも、凹部の最深部を含む正射影像において、上記範囲を満たすことが好ましい。ここで、凹部の最深部は、凹部に少なくとも2点以上で外接する直線の垂線の凹部外表面との交点までの距離が最も長くなる部分としてもよい。 In the expanded resin bead of the present embodiment, the concave portion is defined as a straight line that circumscribes the region occupied by the expanded resin bead in an orthographic projection image in which the concave portion can be confirmed, and the outer surface of the expanded resin bead. The ratio of the area A surrounded by (area A/area occupied by the expanded resin particles) is preferably 10% or more, more preferably 30% or more. Above all, it is preferable that the orthogonal projection image including the deepest part of the concave portion satisfies the above range. Here, the deepest part of the recess may be the part where the distance to the intersection of the straight line perpendicular to the recess at least at two points or more and the outer surface of the recess is the longest.

凹外形部が貫通孔の場合は、樹脂発泡粒子の貫通孔が確認できる正射影像において、貫通孔の面積が、樹脂発泡粒子の正射影像の全面積に対して、10%以上であることが好ましく、より好ましくは30%以上である。中でも、樹脂発泡粒子の貫通孔の面積が最も大きくなる正射影像において、上記範囲を満たすことが好ましい。また、上記貫通孔は、貫通する空洞形状が確認できる断面において、該断面上の樹脂発泡粒子の全面積に対して、空洞形状の面積が、10%以上であることが好ましく、より好ましくは30%以上である。上記貫通孔は、空洞形状の面積が上記を満たす断面が少なくとも一面以上あることが好ましく、全断面で上記範囲を満たすことがより好ましい。 When the concave outer portion is a through-hole, the area of the through-hole should be 10% or more of the total area of the orthographic projection image of the expanded resin bead, in which the through-hole can be confirmed in the expanded resin bead. is preferred, and more preferably 30% or more. Above all, it is preferable that the above range is satisfied in an orthographic image in which the area of the through-holes of the expanded resin beads is the largest. In addition, in the cross section where the hollow shape passing through the through hole can be confirmed, the area of the hollow shape is preferably 10% or more, more preferably 30%, with respect to the total area of the expanded resin beads on the cross section. % or more. The through-hole preferably has at least one cross-section in which the area of the hollow shape satisfies the above, and more preferably the entire cross-section satisfies the above range.

上記凹外形部が、上記の凹部の条件及び/又は上記貫通孔の条件を満足するように樹脂発泡粒子の形状を選択することにより、融着成形後の樹脂発泡成形体の連通空隙(連続する空隙、連通する空隙)を良好に形成させることができる。 By selecting the shape of the foamed resin particles such that the recessed outer shape portion satisfies the conditions for the recesses and/or the conditions for the through holes, the communicating voids (continuous voids, communicating voids) can be formed satisfactorily.

本実施形態において、樹脂発泡粒子の凹外形部は貫通孔であっても貫通孔でなくとも良いが、樹脂発泡粒子は凹部を有する形状であることが特に好ましい。凹部を有する形状をとることにより従来の樹脂発泡粒子にはなかった充填状態が有られ、成形後に得られる樹脂発泡成形体の連通空隙の構造を吸音性能、機械的強度の両方に特に優れたバランスを実現することができる。 In the present embodiment, the concave outer shape portion of the expanded resin bead may or may not be a through hole, but it is particularly preferable that the expanded resin bead has a shape having a concave portion. By adopting a shape with recesses, there is a filling state that conventional foamed resin beads did not have, and the structure of the communicating voids of the resin foamed molded product obtained after molding has a particularly excellent balance in both sound absorption performance and mechanical strength. can be realized.

上記凹部を有する形状として特に優れた形状は、樹脂発泡粒子に溝状凹部を設けた構造が挙げられ、樹脂発泡成形体製造時に樹脂発泡粒子間を熱融着させる際に溝状凹部が隣接する樹脂発泡粒子が部分的にかみ合った充填状態となり接合されることにより、樹脂発泡粒子間の接合面積が大きく強度の高い樹脂発泡成形体を形成すると同時に、隣接する樹脂発泡粒子の溝が連結された形態で接合される場合に樹脂発泡粒子間にわたる空隙、すなわち連通空隙が形成される。 A particularly excellent shape as the shape having the recesses is a structure in which groove-shaped recesses are provided in the foamed resin particles, and the groove-shaped recesses are adjacent when the resin foamed particles are heat-sealed during the production of the foamed resin article. The foamed resin particles are joined in a partially meshed filled state to form a foamed resin article having a large bonding area between the foamed resin particles and high strength, and at the same time, the grooves of the adjacent foamed resin particles are connected. Voids extending between the resin foam particles, that is, interconnected voids are formed when they are joined together.

上記溝状凹部としては、例えば、中空の略円の一部を切り取った形状(C形状、U形状等)の断面(図1)を重ねた形状(図2(a)(b))、中空の略多角形(三角形、四角形等)の一部を切り取った断面(図1)を重ねた形状等が挙げられる。ここで、上記中空の略円及び中空の略多角形における中空とは、略円であってもよいし、略多角形であってもよいが、中空を囲む形状と同一形状であることが好ましい。また、上記中空の形状の中心と、上記中空を囲む形状の中心とが重なる形状(例えば、同心円等)ことが好ましい。 As the groove-shaped concave portion, for example, a shape (FIGS. 2A and 2B) obtained by overlapping cross sections (FIG. 1) of a shape (C shape, U shape, etc.) obtained by cutting a part of a hollow substantially circle (FIGS. 2A and 2B), a hollow and a shape in which cross sections (FIG. 1) obtained by partially cutting out approximately polygons (triangles, quadrilaterals, etc.) of are overlapped. Here, the hollow in the hollow substantially circle and the hollow substantially polygon may be substantially circular or substantially polygonal, but preferably has the same shape as the shape surrounding the hollow. . Moreover, it is preferable that the center of the hollow shape and the center of the shape surrounding the hollow overlap (for example, a concentric circle).

上記凹部の例としては、例えば、一定の厚みを持つ円盤形状を湾曲させた鞍状の形状、円盤を面外方向に湾曲または折り曲げて形成される形状、円筒状の外側面に単一又は複数の凹部を設けた構造等が挙げられる。粒子の形状のうち、製造の容易性が有り、生産性に優れ、形状を制御し易い点で特に好ましい粒子形状の例として、円柱からその外径より小さい外径を有する共通の軸を持つ同じ高さの円柱を切除した円筒の、軸方向から見て一定の角度以内の部分を切り出し切除した形状(図2)等が挙げられる。以下ではこの形状をC型断面部分円筒状と呼び、この形状をもとに小変形させた実質的に同形状の形状であっても樹脂発泡成形体に同等の空隙を形成させることが可能であり、上記条件を満足すれば本発明の範囲内として利用可能である。図2に、切り出し切除する部分の大きさが異なるC型断面部分円筒状の好ましい例を挙げる。 Examples of the recess include, for example, a saddle-shaped shape formed by bending a disk shape having a certain thickness, a shape formed by bending or bending a disk in the out-of-plane direction, and a single or multiple recesses on the outer surface of a cylindrical shape. structure provided with a concave portion. Among the particle shapes, an example of a particle shape that is particularly preferable in terms of ease of production, excellent productivity, and easy control of the shape is a cylindrical shape having a common axis with an outer diameter smaller than the outer diameter. Examples include a shape (FIG. 2) obtained by cutting out and cutting out a portion within a certain angle when viewed from the axial direction of a cylinder obtained by cutting a column of height. Hereinafter, this shape will be referred to as a C-shaped cross-sectional partial cylindrical shape, and even if it is substantially the same shape that is slightly deformed based on this shape, it is possible to form the same voids in the resin foam molding. Therefore, if the above conditions are satisfied, it can be used within the scope of the present invention. FIG. 2 shows a preferred example of a C-shaped cross-section partial cylinder having different sizes of portions to be cut and cut.

上記凹部は、樹脂発泡粒子の特定の一方向に対して断面を連続して形成した場合に、同じ形状であることが好ましい。例えば、図2に示すように、樹脂発泡粒子の一方向(図2の上下方向、押出方向)に対する断面における凹部の形状と、該一方向にずらして形成した異なる断面における凹部形状とが同じであることが好ましい。
上記樹脂発泡粒子は、特定の一方向に対して断面を連続して形成した場合に、同じ形状であっても異なる形状であってもよく、同じ形状であることが好ましい。
It is preferable that the concave portions have the same shape when the cross section is continuously formed in one specific direction of the foamed resin beads. For example, as shown in FIG. 2, the shape of the concave portion in a cross section in one direction (vertical direction in FIG. 2, extrusion direction) of the foamed resin particle is the same as the shape of the concave portion in a different cross section formed by being shifted in the one direction. Preferably.
The expanded resin particles may have the same shape or different shapes when the cross section is continuously formed in one specific direction, and preferably have the same shape.

本実施形態において、樹脂発泡粒子が凹外形部を持つことは光学顕微鏡により樹脂発泡粒子の透過画像を粒子の観察方向を変えながら観察し判定することにより確認することができる。 In this embodiment, whether or not the foamed resin beads have a concave outer shape portion can be confirmed by observing and judging transmission images of the foamed resin beads with an optical microscope while changing the observation direction of the particles.

本実施形態の樹脂発泡粒子において、樹脂発泡粒子に含まれる樹脂の密度ρ0と樹脂発泡粒子の真密度ρ1との比ρ0/ρ1が2~20であることが必要であり、好ましくは2.2~18、より好ましくは2.5~15である。ρ0/ρ1が2未満であると吸音性能発現が十分でなく、20を超えると機械的強度が低下し好ましくない。 In the expanded resin beads of the present embodiment, the ratio ρ 01 between the density ρ 0 of the resin contained in the expanded resin beads and the true density ρ 1 of the expanded resin beads is required and preferably 2 to 20. is 2.2-18, more preferably 2.5-15. If ρ 01 is less than 2, the sound absorption performance is not sufficiently developed, and if it exceeds 20, the mechanical strength is undesirably lowered.

本実施形態の樹脂発泡粒子において、樹脂発泡粒子の真密度ρ1と樹脂発泡粒子の嵩密度ρ2との比ρ1/ρ2が1.5~4.0であることが必要であり、好ましくは1.8~3.5、より好ましくは2~3である。ρ1/ρ2が1.5未満であると樹脂発泡成形体の吸音性能が十分でなく、4.0を超えると樹脂発泡成形体の機械的強度が低下し好ましくない。 In the expanded resin beads of the present embodiment, the ratio ρ 12 between the true density ρ 1 of the expanded resin beads and the bulk density ρ 2 of the expanded resin beads is required to be 1.5 to 4.0, It is preferably 1.8-3.5, more preferably 2-3. If ρ 12 is less than 1.5, the sound absorption performance of the resin foam molding is insufficient, and if it exceeds 4.0, the mechanical strength of the resin foam molding decreases, which is undesirable.

本明細書において嵩密度ρ2とは、所定重量Mの樹脂発泡粒子をその重量Mにおける樹脂発泡粒子の嵩体積V2で除した値M/V2であり、真密度ρ1とは所定重量Mの樹脂発泡粒子をその重量Mにおける樹脂発泡粒子の真体積V1で除した値M/V1である。上記嵩体積V2とは、上記所定重量Mの樹脂発泡粒子をメスシリンダー内に充填してメスシリンダーを振動させ、その体積が恒量に達した時の目盛りを読んだ値を指す。また真体積V1とは、上記所定重量Mの樹脂発泡粒子を、樹脂発泡粒子を溶解しない液体の入ったメスシリンダー中に沈めた時に上記液体の増量した部分の体積をいう。
樹脂の密度ρ0とは、発泡前の原料樹脂の密度であり、水没法により重計を使用して測定される密度である。
本明細書においてρ0、ρ1、ρ2はすべて、20℃、0.10MPaの環境下において測定し得られた値を意味するものとする。
In this specification, the bulk density ρ 2 is the value M/V 2 obtained by dividing the resin foamed beads of a predetermined weight M by the bulk volume V 2 of the resin foamed beads at the weight M, and the true density ρ 1 is the predetermined weight It is a value M/ V1 obtained by dividing M resin expanded beads by the true volume V1 of the resin expanded beads at the weight M. The bulk volume V 2 refers to the value obtained by filling a graduated cylinder with the foamed resin particles of the predetermined weight M, vibrating the graduated cylinder, and reading the scale when the volume reaches a constant weight. Further, the true volume V 1 is the volume of the portion increased by the liquid when the foamed resin beads of the predetermined weight M are submerged in a graduated cylinder containing a liquid that does not dissolve the foamed resin beads.
The density ρ 0 of the resin is the density of the raw material resin before foaming, and is the density measured by the submersion method using a weighing scale.
In this specification, ρ 0 , ρ 1 , and ρ 2 all mean values obtained by measurement under an environment of 20° C. and 0.10 MPa.

本実施形態の樹脂発泡粒子の平均粒子径は、100gの樹脂発泡粒子をJIS Z8801で規定される標準ふるいを用いた分級法により測定することができる。上記樹脂発泡粒子の平均粒子径は0.5~6.0mmであることが好ましく、より好ましくは0.7~5.0mmであり、更に好ましくは1.0mm~4.0mm、特に好ましくは1.2mm~3.0mmである。平均粒子径が0.5mm未満であると製造工程での取り扱いが難しく、6.0mmを超えると複雑な成形品の表面精度が低下する傾向が現れ好ましくない。
なお、本実施形態の樹脂発泡粒子の形状は、特に限定されず、様々な形状として良い。
The average particle size of the expanded resin beads of the present embodiment can be measured by classifying 100 g of expanded resin beads using a standard sieve defined by JIS Z8801. The average particle diameter of the expanded resin particles is preferably 0.5 to 6.0 mm, more preferably 0.7 to 5.0 mm, even more preferably 1.0 mm to 4.0 mm, particularly preferably 1 .2 mm to 3.0 mm. If the average particle size is less than 0.5 mm, it is difficult to handle in the manufacturing process, and if it exceeds 6.0 mm, the surface precision of complicated molded articles tends to decrease, which is undesirable.
The shape of the foamed resin particles of the present embodiment is not particularly limited, and various shapes may be used.

本実施形態の樹脂発泡粒子の製造方法としては、熱可塑性樹脂の熱可塑性を利用した方法、固体状態の粒子の切削などの後加工による方法などが可能であり、粒子に所望の外形を付与できる方法であれば適用可能である。その中で生産性に優れ、安定した形状の粒子が製造可能な方法として、特殊形状の吐出断面を設けたダイを使用した異形押し出し法が好適に使用できる。特殊形状の吐出断面を設けたダイを有する押出機により熱可塑性樹脂を溶融押し出し、ストランドカットまたはアンダーウォーターカットなど工業的に通常使用されている方法によりペレタイズして得られたペレットを発泡させ樹脂発泡粒子を得る方法、および押し出し機に発泡剤をバレル途中から注入し吐出と同時に発泡させ、冷却後、アンダーウォーターカットまたはストランドカットし樹脂発泡粒子を直接得る方法、押出機内で溶融させ所望の断面形状を有するダイスから押し出し、冷却後ペレタイザーにより所定の長さに切断することにより基材樹脂ペレットを製造し、該基材樹脂ペレットに発泡剤を含浸させ、加熱することにより所定の発泡倍率で発泡させる方法、等従来公知の方法を任意に応用して製造することができる。 As a method for producing the resin foamed particles of the present embodiment, a method utilizing the thermoplasticity of a thermoplastic resin, a method using post-processing such as cutting of particles in a solid state, and the like are possible, and a desired external shape can be imparted to the particles. Any method is applicable. Among them, a profile extrusion method using a die having a discharge cross section of a special shape can be suitably used as a method that is excellent in productivity and capable of producing particles with a stable shape. Thermoplastic resin is melt extruded by an extruder equipped with a die with a specially shaped discharge cross section, and the pellets obtained by pelletizing by a commonly used industrial method such as strand cutting or underwater cutting are foamed to foam the resin. A method of obtaining particles, a method of injecting a foaming agent into an extruder from the middle of a barrel, foaming simultaneously with discharge, cooling and then underwater cutting or strand cutting to obtain resin foamed particles directly, a method of melting in an extruder to obtain a desired cross-sectional shape. and then cut to a predetermined length by a pelletizer after cooling to produce base resin pellets. The base resin pellets are impregnated with a foaming agent and heated to foam at a predetermined expansion ratio. It can be manufactured by applying any conventionally known method such as a method.

本実施形態の樹脂発泡粒子は樹脂を含む。上記樹脂としては、熱可塑性樹脂等が挙げられる。
上記熱可塑性樹脂としては、例えば、ポリスチレン、ポリα-メチルスチレン、スチレン無水マレイン酸コポリマー、ポリフェニレンオキサイドとポリスチレンとのブレンド又はグラフトポリマー、アクリロニトリル-スチレンコポリマー、アクリロニトリル-ブタジエン-スチレンターポリマー、スチレン-ブタジエンコポリマー、ハイインパクトポリスチレンなどのスチレン系重合体、ポリ塩化ビニル、塩化ビニル-酢酸ビニルコポリマー、後塩素化ポリ塩化ビニル、エチレン又はプロピレンと塩化ビニルのコポリマーなどの塩化ビニル系重合体、ポリ塩化ビニリデン系共重合樹脂、ナイロン-6、ナイロン-6,6、単独および共重合ポリアミド樹脂、ポリエチレンテレフタレート、単独および共重合ポリエステル系樹脂、変性ポリフェニレンエーテル樹脂(フェニレンエーテル-ポリスチレンアロイ樹脂)、ポリカーボネート樹脂、メタクリルイミド樹脂、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエステル系樹脂、フェノール樹脂、ウレタン樹脂、ポリオレフィン系樹脂などが挙げられる。
The expanded resin particles of the present embodiment contain a resin. Examples of the resin include thermoplastic resins.
Examples of the thermoplastic resin include polystyrene, polyα-methylstyrene, styrene maleic anhydride copolymer, blend or graft polymer of polyphenylene oxide and polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene terpolymer, styrene-butadiene. Copolymers, styrenic polymers such as high impact polystyrene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymers, post-chlorinated polyvinyl chloride, vinyl chloride polymers such as copolymers of ethylene or propylene and vinyl chloride, polyvinylidene chloride Copolymer resins, nylon-6, nylon-6,6, homo- and copolymer polyamide resins, polyethylene terephthalate, homo- and copolymer polyester resins, modified polyphenylene ether resins (phenylene ether-polystyrene alloy resins), polycarbonate resins, methacrylimide Resins, polyphenylene sulfides, polysulfones, polyethersulfones, polyester resins, phenolic resins, urethane resins, polyolefin resins, and the like.

上記ポリオレフィン系樹脂としては、チーグラー触媒またはメタロセン触媒等を用いて重合されたポリプロピレン、エチレン-プロピレンランダム共重合体、プロピレン-ブテンランダム共重合体、エチレン-プロピレンブロック共重合体、エチレン-プロピレン-ブテン3元共重合体等のポリプロピレン系樹脂や、低密度ポリエチレン、中密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-メチルメタクリレート共重合体、アイオノマー樹脂等のポリエチレン系樹脂が、それぞれ単独であるいは混合して用いられる。 Examples of the polyolefin resin include polypropylene polymerized using a Ziegler catalyst or metallocene catalyst, ethylene-propylene random copolymer, propylene-butene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-butene. Polypropylene resins such as terpolymers, low density polyethylene, medium density polyethylene, linear low density polyethylene, linear ultra-low density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl Polyethylene-based resins such as methacrylate copolymers and ionomer resins may be used alone or in combination.

上記樹脂としては、20℃における表面張力が37~60mN/mであることが好ましく、より好ましくは38~55mN/mである。表面張力が上記範囲内であれば、力学的強度の高い吸音性の樹脂発泡成形体が得られ、特に好ましい。
樹脂の表面張力は、JIS K6768「プラスチック-フィルム及びシート-ぬれ張力試験方法」記載の方法において温度を20℃に変更した方法により測定される値を用いる。
The resin preferably has a surface tension of 37 to 60 mN/m at 20° C., more preferably 38 to 55 mN/m. If the surface tension is within the above range, a sound-absorbing foamed resin article having high mechanical strength can be obtained, which is particularly preferable.
As the surface tension of the resin, the value measured by the method described in JIS K6768 "Plastics-Film and Sheet-Wet Tension Test Method" with the temperature changed to 20°C is used.

上記、好ましい表面張力範囲に含まれる熱可塑性樹脂の例としてはポリアミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、メタクリル系樹脂、変性ポリエーテル樹脂(フェニレンエーテル-ポリスチレンアロイ樹脂)等で表面張力が上記範囲内である熱可塑性樹脂が挙げられる。中でも、耐熱性、耐薬品、耐溶剤性に優れ、高耐熱発泡構造材料用途に適した樹脂としてポリアミド樹脂、耐熱性、高温剛性に優れた樹脂としては、変性ポリエーテル樹脂(フェニレンエーテル-ポリスチレンアロイ樹脂)が挙げられる。 Examples of thermoplastic resins included in the preferred surface tension range include polyamide resins, polyester resins, polyether resins, methacrylic resins, modified polyether resins (phenylene ether-polystyrene alloy resins), etc., and the surface tension is within the above range. A thermoplastic resin is exemplified. Among them, polyamide resin has excellent heat resistance, chemical resistance, and solvent resistance, and is suitable for use as a highly heat-resistant foam structure material. Modified polyether resin (phenylene ether-polystyrene alloy resin).

樹脂の表面張力を上記範囲とすることにより、特に発泡樹脂の過熱水蒸気による加熱膨張融着時に、水蒸気と表面との親和性が高くなる結果として、融着強度の高い均一な発泡成形体が得られる。なお、樹脂の表面張力とは、樹脂発泡粒子を構成する全ての樹脂の混合樹脂の表面張力としてよく、樹脂発泡粒子を構成する全ての樹脂のうち少なくとも一つの樹脂の表面張力が上記範囲を満たすことが好ましく、全ての樹脂の表面張力が上記範囲を満たすことがより好ましい。 By setting the surface tension of the resin within the above range, especially when the foamed resin is thermally expanded and fused by superheated steam, the affinity between the water vapor and the surface increases, resulting in a uniform foamed molded product with high fusion strength. be done. The surface tension of the resin may be the surface tension of the mixed resin of all the resins constituting the resin foamed beads, and the surface tension of at least one resin among all the resins constituting the resin foamed beads satisfies the above range. More preferably, the surface tension of all the resins satisfies the above range.

上記樹脂としては、ガラス転移温度が-10℃以上、280℃以下であることが好ましい。
樹脂のガラス転移温度は、JIS K7121:1987「プラスチックの転移温度測定方法」に準拠してDSC法により測定される値を用いる。すなわち、温度23±2℃及び相対湿度50±5%において24時間以上状態調節後、試験片をDSC装置の容器に入れ、非結晶性の場合にはガラス転移終了時より少なくとも約30℃高い温度まで、結晶性の場合には融解ピーク終了時より少なくとも約30℃高い温度まで加熱し、それぞれの温度に10分間保った後、ガラス転移温度より約50℃低い温度まで急冷する。加熱速度は、あらかじめ転移温度より約50℃低い温度で装置が安定するまで保持した後、加熱速度毎分20℃で転移終了時よりも約30℃高い温度まで加熱し、DSC曲線を描かせる。
The resin preferably has a glass transition temperature of −10° C. or higher and 280° C. or lower.
As the glass transition temperature of the resin, a value measured by the DSC method in accordance with JIS K7121:1987 "Method for measuring transition temperature of plastics" is used. That is, after conditioning for at least 24 hours at a temperature of 23 ± 2°C and a relative humidity of 50 ± 5%, place the specimen in the container of the DSC instrument and, if amorphous, at a temperature at least about 30°C higher than the end of the glass transition. to at least about 30° C. above the end of the melting peak, if crystalline, and held at each temperature for 10 minutes, followed by quenching to about 50° C. below the glass transition temperature. The heating rate was maintained at a temperature about 50°C lower than the transition temperature until the device stabilized, and then heated at a heating rate of 20°C per minute to a temperature about 30°C higher than the end of the transition, and a DSC curve was drawn.

前記樹脂原料のガラス転移温度の下限値は、より好ましくは0℃、更に好ましくは10℃である。ガラス転移温度を上記下限値以上とすることにより、成形品への長時間の圧縮力による吸音性能の低下を抑制することができ、応力のかかる吸音部材にも用いることができる点で好ましい。 The lower limit of the glass transition temperature of the resin raw material is more preferably 0°C, still more preferably 10°C. By making the glass transition temperature equal to or higher than the above lower limit, it is possible to suppress deterioration of the sound absorbing performance due to long-term compressive force applied to the molded product, and it is preferable in that it can be used for sound absorbing members to which stress is applied.

上記ガラス転移温度の上限値は、より好ましくは260℃、更に好ましくは240℃である。ガラス転移温度の上記上限値以下とすることにより、発泡成形の温度を低く設定することができ、高生産性で発泡を製造することができ特に好ましい。 The upper limit of the glass transition temperature is more preferably 260°C, still more preferably 240°C. When the glass transition temperature is not higher than the above upper limit, the temperature for foam molding can be set low, and the foam can be manufactured with high productivity, which is particularly preferable.

上記、好ましいガラス転移温度範囲に含まれる熱可塑性樹脂の例としては、ポリアミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、メタクリル系樹脂、変性ポリエーテル樹脂(フェニレンエーテル-ポリスチレンアロイ樹脂)等でガラス転移温度が上記範囲内である熱可塑性樹脂が挙げられる。
中でも、耐熱性、耐薬品、耐溶剤性に優れ、高耐熱発泡構造材料用途に適した樹脂としてポリアミド樹脂、耐熱性、高温剛性に優れた樹脂としては、変性ポリエーテル樹脂(フェニレンエーテル-ポリスチレンアロイ樹脂)が挙げられる。
なお、樹脂のガラス転移温度とは、樹脂発泡粒子を構成する全ての樹脂の混合樹脂のガラス転移温度としてよく、樹脂発泡粒子を構成する全ての樹脂のうち少なくとも一つの樹脂のガラス転移温度が上記範囲を満たすことが好ましく、全ての樹脂のガラス転移温度が上記範囲を満たすことがより好ましい。
Examples of thermoplastic resins included in the preferred glass transition temperature range include polyamide resins, polyester resins, polyether resins, methacrylic resins, modified polyether resins (phenylene ether-polystyrene alloy resins), etc., and the glass transition temperature is Thermoplastic resins within the above range can be mentioned.
Among them, polyamide resin has excellent heat resistance, chemical resistance, and solvent resistance, and is suitable for use as a highly heat-resistant foam structure material. Modified polyether resin (phenylene ether-polystyrene alloy resin).
The glass transition temperature of the resin may be the glass transition temperature of the mixed resin of all the resins constituting the resin foamed beads, and at least one resin among all the resins constituting the resin foamed beads has the above glass transition temperature. It is preferable that the range is satisfied, and it is more preferable that the glass transition temperatures of all the resins satisfy the above range.

上記熱可塑性樹脂は、無架橋の状態で用いても良いが、パーオキサイドや放射線などにより架橋させて用いても良い。 The above thermoplastic resin may be used in an uncrosslinked state, or may be used after being crosslinked by peroxide, radiation, or the like.

本実施形態の樹脂発泡粒子は必要に応じて、通常の配合剤、たとえば、酸化防止剤、光安定剤、紫外線吸収剤、難燃剤、染料、顔料などの着色剤、可塑剤、滑剤、結晶化核剤、タルク、炭カル等の無機充填剤等を目的に応じて含んでいてもよい。
上記難燃剤としては、臭素系、リン系等の難燃剤が使用可能であり、上記酸化防止剤としては、フェノール系、リン系、硫黄系等の酸化防止剤が使用可能であり、上記光安定剤としては、ヒンダードアミン系、ベンゾフェノン系等の光安定剤が使用可能である。
上記樹脂発泡粒子の平均気泡径を調節する必要がある場合は、気泡調整剤を添加してもよい。気泡調整剤としては、無機造核剤には、タルク、シリカ、ケイ酸カルシウム、炭酸カルシウム、酸化アルミニウム、酸化チタン、珪藻土、クレー、重曹、アルミナ、硫酸バリウム、酸化アルミニウム、ベントナイト等があり、その使用量は通常、樹脂発泡粒子の原料全量に対して、0.005~2質量部を添加する。
The foamed resin particles of the present embodiment may optionally contain conventional compounding agents such as antioxidants, light stabilizers, ultraviolet absorbers, flame retardants, coloring agents such as dyes and pigments, plasticizers, lubricants, and crystallization agents. Inorganic fillers such as nucleating agents, talc, and calcium carbonate may be included depending on the purpose.
As the flame retardant, a bromine-based, phosphorus-based, etc. flame retardant can be used, and as the antioxidant, a phenol-based, phosphorus-based, sulfur-based, etc. antioxidant can be used. Hindered amine-based and benzophenone-based light stabilizers can be used as the agent.
If it is necessary to adjust the average cell diameter of the expanded resin beads, a cell control agent may be added. Inorganic nucleating agents include talc, silica, calcium silicate, calcium carbonate, aluminum oxide, titanium oxide, diatomaceous earth, clay, sodium bicarbonate, alumina, barium sulfate, aluminum oxide, bentonite, and the like. The amount to be used is usually 0.005 to 2 parts by mass based on the total amount of raw materials for the expanded resin particles.

本実施形態の樹脂発泡粒子の製造時に用いる発泡剤としては、揮発性発泡剤等が挙げられる。上記揮発性発泡剤としては、メタン、エタン、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ネオペンタン、ヘキサン、へプタン、シクロペンタン、シクロヘキサン、メチルシクロペンタン等の鎖状または環状低級脂肪族炭化水素類、ジシクロジフルオロメタン、トリクロロモノフルオロメタン、1-クロロ-1、1-ジフルオロエタン、1-クロロ-2,2,2-トリフルオロエタン等のハロゲン化炭化水素類、窒素、空気、二酸化炭素等の無機ガス系発泡剤等が挙げられる。 A volatile foaming agent or the like may be used as the foaming agent used in producing the foamed resin beads of the present embodiment. Examples of the volatile foaming agent include chain or cyclic lower aliphatic hydrocarbons such as methane, ethane, propane, butane, isobutane, pentane, isopentane, neopentane, hexane, heptane, cyclopentane, cyclohexane, and methylcyclopentane; Halogenated hydrocarbons such as dicyclodifluoromethane, trichloromonofluoromethane, 1-chloro-1,1-difluoroethane, 1-chloro-2,2,2-trifluoroethane; inorganics such as nitrogen, air, and carbon dioxide; A gas-based foaming agent and the like are included.

[発泡成形体]
本実施形態の樹脂発泡成形体は、上記樹脂発泡粒子が相互に融着した成形体である。即ち、本実施形態の樹脂発泡成形体は、少なくとも2個以上の上記樹脂発泡粒子が互いに融着した部分を少なくとも有する成形体である。融着した樹脂発泡粒子間には融着した部分及び空隙部がある。本実施形態の樹脂発泡成形体は、種々の騒音を遮蔽する部材、例えは自動車等の車両用の防音部材等として用いることができる。上記防音部材は、本実施形態の樹脂発泡成形体を含むことが好ましく、本実施形態の樹脂発泡成形体のみからなっていてもよい。
また、本実施形態の樹脂発泡成形体は、融着した上記樹脂発泡粒子間に連続した空隙部を有し、空隙率が15~80%(より好ましくは30~70%)であることが好ましい。
上記空隙率は、後述の実施例に記載の方法により測定することができる。
[Foam molding]
The foamed resin article of the present embodiment is a molded article in which the foamed resin particles are fused to each other. That is, the foamed resin article of the present embodiment is a molded article having at least a portion in which at least two or more of the foamed resin particles are fused to each other. There are fused parts and voids between the fused resin foam particles. The resin foam molded article of the present embodiment can be used as a member that shields various noises, such as a soundproof member for vehicles such as automobiles. The soundproof member preferably contains the foamed resin article of the present embodiment, and may consist of the foamed resin article of the present embodiment only.
Further, the resin foam molded article of the present embodiment preferably has continuous voids between the fused resin foam particles, and preferably has a porosity of 15 to 80% (more preferably 30 to 70%). .
The porosity can be measured by the method described in Examples below.

本実施形態の樹脂発泡成形体において、上記樹脂発泡粒子が、樹脂発泡成形体全体に占める割合が、98重量%以上であれば実質的に凹外形部を持つ樹脂発泡粒子の性能が得られるため好ましい。 In the foamed resin article of the present embodiment, if the proportion of the resin foamed particles in the entire foamed resin article is 98% by weight or more, the performance of the foamed resin particles having a substantially concave outer shape can be obtained. preferable.

本実施形態の樹脂発泡成形体は、上記樹脂発泡粒子の集合体が相互に融着して得られる成形体であって、樹脂発泡粒子間に連続した空隙部を有することが必要である。本明細書において「連続した空隙部」とは、融着している樹脂発泡粒子間に相互に連続した空隙部が形成された結果として、樹脂発泡成形体の相対する2面間(2表面間)に連続した空隙が生じ流体が流動可能な状態となっていることを意味する。本実施形態の樹脂発泡成形体は、少なくとも一方向に連続した空隙部を有することが好ましく、厚み方向に連続した空隙部を有することが好ましい。本実施形態において、連通空隙としては、厚み10mmの平板状樹脂発泡成形体試料を用いて、国際規格ISO9053に規定されているAC法により測定される厚み方向に測定した単位長さ流れ抵抗が1,000,000N・s/m4以下であることが好ましく、より好ましくは500,000N・s/m4以下である。 The foamed resin article of the present embodiment is a molded article obtained by fusion-bonding aggregates of the foamed resin particles, and is required to have continuous voids between the foamed resin particles. As used herein, the term “continuous void” refers to the formation of mutually continuous voids between the fused resin foam particles. ), which means that continuous voids are generated and the fluid can flow. The resin foam molded article of the present embodiment preferably has voids continuous in at least one direction, and preferably has voids continuous in the thickness direction. In the present embodiment, a plate-shaped resin foam molded sample with a thickness of 10 mm is used as the communicating void, and the unit length flow resistance measured in the thickness direction by the AC method specified in the international standard ISO 9053 is 1. ,000,000 N·s/m 4 or less, more preferably 500,000 N·s/m 4 or less.

本実施形態の樹脂発泡成形体の製造は、上記樹脂発泡粒子を閉鎖した金型内に充填、発泡させて得るが、密閉し得ない金型内に充填して加熱し、樹脂発泡粒子相互を融着させる方法が採用してもよい。樹脂種と成形条件によっては汎用の型内発泡自動成形機を使用することができる。 The foamed resin article of the present embodiment is produced by filling the foamed resin particles into a closed mold and foaming them. A fusing method may be employed. A general-purpose in-mold foaming automatic molding machine can be used depending on the type of resin and molding conditions.

本実施形態において、凹外形部を持つ樹脂発泡粒子と、凹外形部を持たない楕円球状、円柱状、多角柱状など樹脂発泡粒子として一般的な形状の粒子を任意の比率で混合使用して樹脂発泡成形体を製造することにより所望の吸音性能、機械的強度のバランスを調整することができる。 In the present embodiment, resin foamed particles having a concave outer shape and resin foamed particles having a general shape such as an elliptical sphere, a columnar shape, a polygonal columnar shape, or the like, having no concave shape, are mixed at an arbitrary ratio and used. A desired balance between sound absorption performance and mechanical strength can be adjusted by producing a foam molded article.

本実施形態の樹脂発泡成形体は単独の成形体として用いる以外にその他の無機および有機の織布、不織布など繊維集合層、無機および有機の多孔質体層を任意の形態で積層して用いることができる。積層する層は表皮材として製品の表面外観や表面特性の改良のために発泡成形品と積層、接着する他、ビーズ成形時に金型内部に表皮材をセットした状態で発泡樹脂ビーズを充填して発泡成形を行うことにより熱融着させる方法を用いることもできる。 The resin foam molded article of the present embodiment may be used as a single molded article, or may be used by laminating other inorganic and organic woven fabrics, nonwoven fabrics, and other fiber assembly layers and inorganic and organic porous layers in an arbitrary form. can be done. The layer to be laminated is used as a skin material to improve the surface appearance and surface characteristics of the product.In addition to laminating and bonding with the foam molded product, foamed resin beads are filled with the skin material set inside the mold during bead molding. A method of heat-sealing by performing foam molding can also be used.

以下実施例により本発明の実施態様を説明する。ただし、本発明の範囲は実施例によりなんら限定されるものではない。 The embodiments of the present invention are illustrated by the following examples. However, the scope of the present invention is not limited by the examples.

実施例及び比較例で用いた評価方法について以下に説明する。 Evaluation methods used in Examples and Comparative Examples are described below.

(1)樹脂の密度ρ0(g/cm3
発泡前の樹脂の質量W(g)を測定した後、水没法で体積V(cm3)を測定し、W/V(g/cm3)を樹脂の密度とした。
(1) Resin density ρ 0 (g/cm 3 )
After measuring the mass W (g) of the resin before foaming, the volume V (cm 3 ) was measured by the submersion method, and W/V (g/cm 3 ) was defined as the density of the resin.

(2)樹脂発泡粒子の真密度ρ1(g/cm3
樹脂発泡粒子の質量W(g)を測定した後、水没法で体積V(cm3)を測定し、W/V(g/cm3)を樹脂発泡粒子の真密度とした。
比重計により予備発泡後の樹脂原料ペレットの密度を測定した。
(2) True density ρ 1 (g/cm 3 ) of foamed resin particles
After measuring the mass W (g) of the foamed resin beads, the volume V (cm 3 ) was measured by the submersion method, and W/V (g/cm 3 ) was defined as the true density of the foamed resin beads.
The density of the resin raw material pellets after pre-foaming was measured with a hydrometer.

(3)樹脂発泡粒子の嵩密度ρ2(g/cm3
樹脂発泡粒子100gをメスシリンダーに入れ振動させその体積が恒量に達した時平坦化させた上面の目盛りを読んだ値として嵩体積V1(cm3)、樹脂発泡粒子を入れたメスシリンダーの質量W1(g)とメスシリンダーの質量W0(g)を測定し、下式により求めた。
ρ2=[W1-W0]/V1
(3) Bulk Density ρ 2 (g/cm 3 ) of Expanded Resin Particles
Bulk volume V1 (cm 3 ) is obtained by reading the scale on the flattened upper surface when 100 g of the expanded resin particles are placed in a graduated cylinder and vibrated, and the volume reaches a constant weight, and the mass of the graduated cylinder containing the expanded resin particles is W 1 (g) and the mass W 0 (g) of the graduated cylinder were measured and obtained by the following formula.
ρ 2 = [W 1 -W 0 ]/V 1

(4)樹脂発泡粒子の平均粒子径D(mm)
100gの樹脂発泡粒子をJIS Z8801で規定される、呼び寸法がd1=5.6mm、d2=4.75mm、d3=4mm、d4=3.35mm、d5=2.36mm、d6=1.7mm、d7=1.4mm、d8=1mmである標準ふるいを用いて分級を行い、ふるいdiを通過して、ふるいdi+1で止まる粒子の重量割合をXi、全粒子集合体の平均粒子径Dを次式により求めた。
D=ΣXi(di・di+11/2
(iは1~7の整数を表す)
(4) Average particle diameter D (mm) of expanded resin particles
100 g of foamed resin particles are defined by JIS Z8801 and have nominal dimensions of d 1 =5.6 mm, d 2 =4.75 mm, d 3 =4 mm, d 4 =3.35 mm, d 5 =2.36 mm, d Classification is carried out using standard sieves with 6 = 1.7 mm, d 7 = 1.4 mm, d 8 = 1 mm . , the average particle diameter D of all particle aggregates was determined by the following equation.
D=ΣX i (d i ·d i+1 ) 1/2
(i represents an integer from 1 to 7)

(5)樹脂発泡成形体の空隙率(%)
以下の式より、樹脂発泡成形体の空隙率を求めた。
樹脂発泡成形体の空隙率(%)=[(B-C)/B]×100
但し、B:樹脂発泡成形体の見掛け体積(cm3)、C:樹脂発泡成形体の真の体積(cm3)であり、見掛け体積は成形体の外形寸法から算出される体積、真の体積Cは成形体の空隙部を除いた実体積をそれぞれ意味する。真の体積Cは樹脂発泡成形体を液体(例えばアルコール)中に沈めた時の増量した体積を測定することにより得られる。
(5) Porosity (%) of resin foam molding
The porosity of the foamed resin product was obtained from the following formula.
Porosity (%) of resin foam molding = [(BC) / B] × 100
However, B is the apparent volume (cm 3 ) of the resin foam molding, C is the true volume (cm 3 ) of the resin foam molding, and the apparent volume is the volume calculated from the outer dimensions of the molded body, and the true volume. C means the actual volume of the compact excluding voids. The true volume C can be obtained by measuring the increased volume when the foamed resin article is submerged in a liquid (for example, alcohol).

(6)連続した空隙部の有無
単位長さ流れ抵抗の測定から以下のように判定した。
単位長さ流れ抵抗値の測定方法としては、国際標準規格ISO9053のAC法を適用して日本音響エンジニアリング(株)製、流れ抵抗測定システムAirReSys型を使用して測定した。すなわち、厚み10mmの平板状樹脂発泡成形体試料を用い、流速F=0.5mm/sの一様流中の流れる状態で材料表裏面の差圧P(Pa)を測定し、その差圧と材料厚みt(m)からP/(t・F)(N・s/m4)として求めた。単位長さ流れ抵抗値が200,000N・s/m4以下の場合を連続した空隙部有り(○)、200,000N・s/m4を超える場合を連続した空隙部無し(×)と評価した。
(6) Presence or Absence of Continuous Gaps Judgment was made as follows from the measurement of the unit length flow resistance.
As a method for measuring the unit length flow resistance value, the AC method of the international standard ISO9053 was applied, and the flow resistance measurement system AirReSys type manufactured by Nippon Onkyo Engineering Co., Ltd. was used. That is, using a flat resin foam molded product sample with a thickness of 10 mm, the differential pressure P (Pa) between the front and back surfaces of the material is measured in a uniform flow at a flow rate of F = 0.5 mm / s. It was obtained from the material thickness t (m) as P/(t·F) (N·s/m 4 ). When the unit length flow resistance value is 200,000 N·s/m 4 or less, it is evaluated as having continuous voids (○), and when it exceeds 200,000 N·s/m 4 , it is evaluated as having no continuous voids (x). bottom.

(7)樹脂発泡成形体の融着強度
JIS K6767Aに基づき引っ張り強度を測定し、樹脂発泡成形体の破断伸度が2%以上の場合を融着強度に優れる(◎)、破断伸度が1%以上2%未満の場合を融着強度が良好(〇)、破断伸度が1%未満の場合を融着強度が劣る(×)と評価した。
(7) Fusion strength of resin foam molding Tensile strength was measured based on JIS K6767A, and when the breaking elongation of the resin foam molding was 2% or more, the fusion strength was excellent (◎), and the breaking elongation was 1. % or more and less than 2%, the fusion bond strength was evaluated as good (O), and when the elongation at break was less than 1%, the fusion bond strength was evaluated as poor (X).

(8)樹脂発泡成形体の吸音特性
JIS A1405-2に基づき23℃における垂直入射吸音率を測定した。厚さ30mmの平板状樹脂発泡成形体を作製し直径41mm、厚さ30mmの円盤を切り出し、日本音響エンジニアリング社製垂直入射吸音率測定システムWinZacMTX型により、周波数200~5000Hzにおける垂直入射吸音率を20℃において測定した。測定は、200Hz、250Hz、315Hz、400Hz、500Hz、630Hz、800Hz、1000Hz、1250Hz、1600Hz、2000Hzの11点を中心周波数とする1/3オクターブ帯の平均吸音率を測定し11帯の平均吸音率のうち、吸音率20%以上の周波数が5点以上ある場合を吸音特性に優れる(◎)、吸音率20%以上の周波数が3点以上4点以下の場合を吸音特性が良好(〇)、吸音率20%以上の周波数が2点以下の場合を吸音特性が劣る(×)として評価した。
(8) Sound Absorption Characteristics of Resin Foam Molding The normal incident sound absorption coefficient at 23° C. was measured according to JIS A1405-2. A plate-shaped resin foam molding with a thickness of 30 mm was prepared, and a disk with a diameter of 41 mm and a thickness of 30 mm was cut out, and the normal incidence sound absorption coefficient at a frequency of 200 to 5000 Hz was measured to be 20 using a normal incidence sound absorption measurement system WinZac MTX manufactured by Nippon Onkyo Engineering Co., Ltd. °C. The measurement is the average sound absorption coefficient of 1/3 octave band with 11 points of 200Hz, 250Hz, 315Hz, 400Hz, 500Hz, 630Hz, 800Hz, 1000Hz, 1250Hz, 1600Hz and 2000Hz as the center frequency. Among them, when there are 5 or more frequencies with a sound absorption coefficient of 20% or more, the sound absorption characteristics are excellent (◎), and when the frequencies with a sound absorption coefficient of 20% or more are 3 or more and 4 or less, the sound absorption characteristics are good (○). When the number of frequencies with a sound absorption rate of 20% or more was 2 points or less, the sound absorption characteristics were evaluated as poor (x).

(9)圧縮試験後の吸音特性
厚さ30mmの平板状樹脂発泡成形体を、JIS K6767に準じて、40℃、応力0.020MPaの条件で圧縮クリープ試験を実施し、168hr試験終了直後の樹脂発泡成形体の23℃垂直入射吸音率を、上記(8)樹脂発泡成形体の吸音特性と同様に評価した。
(9) Sound absorption properties after compression test A flat resin foam molded product with a thickness of 30 mm was subjected to a compression creep test under the conditions of 40 ° C. and a stress of 0.020 MPa according to JIS K6767. The 23° C. normal incident sound absorption coefficient of the foam molded product was evaluated in the same manner as the sound absorption property of the resin foam molded product (8) above.

[実施例1]
ポリアミド6樹脂(UBEナイロン「1022B」、宇部興産製、20℃における表面張力46mN/m)を、押出し機を用いて溶融し、図3(a1)記載の断面形状の異形押し出しダイから吐出させたストランドをペレタイザーでペレタイズし、平均粒子径1.4mmのペレットを得た。得られたペレットを10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み3時間吸収させた。次いで炭酸ガス含浸ミニペレットを発泡装置に移し、240℃の空気を20秒間吹き込み、ポリアミド樹脂発泡粒子の集合体を得た。得られたポリアミド樹脂発泡粒子の集合体に含まれるポリアミド樹脂発泡粒子の平均粒子径は2.0mmであった。ポリアミド樹脂発泡粒子を切断し観察したところ、ポリアミド樹脂発泡粒子には独立気泡が切断面一面にまんべんなく多数形成されていた。ポリアミド樹脂発泡粒子の断面は図3(a2)に記した形状で凹外形部を有していた。
得られたポリアミド樹脂発泡粒子集合体を再度圧力釜に入れ、10℃にて4MPaの炭酸ガスを3時間吸収させた。次いでこの炭酸ガスを含浸したポリアミド樹脂発泡粒子を型内発泡成形装置の金型内に充填し、230℃の空気を30秒間吹き込み、ポリアミド樹脂発泡粒子同士が融着した樹脂発泡成形体A-1を得た。樹脂発泡成形体の発泡倍率は7.5倍であった。樹脂発泡成形体を切断し観察したところ、セル径が200~400μmである独立気泡を多数有するポリアミド樹脂発泡粒子の集合体が形成されていた。通気抵抗の測定値から連続した空隙部を持つことが確認された。ポリアミド樹脂発泡粒子および樹脂発泡成形体の評価結果を表1中に記す。
[Example 1]
Polyamide 6 resin (UBE nylon "1022B", manufactured by Ube Industries, surface tension 46 mN / m at 20 ° C.) was melted using an extruder and extruded from a profile extrusion die having a cross-sectional shape shown in FIG. 3 (a1). The strand was pelletized with a pelletizer to obtain pellets with an average particle size of 1.4 mm. The obtained pellets were put into a pressure cooker at 10° C., and carbon dioxide gas of 4 MPa was blown thereinto for absorption for 3 hours. Next, the mini-pellets impregnated with carbon dioxide gas were transferred to a foaming device, and air at 240° C. was blown for 20 seconds to obtain aggregates of foamed polyamide resin particles. The average particle diameter of the expanded polyamide resin particles contained in the obtained aggregate of expanded polyamide resin particles was 2.0 mm. When the expanded polyamide resin beads were cut and observed, it was found that a large number of closed cells were evenly formed on the cut surface of the expanded polyamide resin beads. The cross section of the foamed polyamide resin beads had a concave outer shape portion in the shape shown in FIG. 3(a2).
The polyamide resin foamed particle aggregate thus obtained was placed in the pressure cooker again and allowed to absorb 4 MPa of carbon dioxide gas at 10° C. for 3 hours. Next, the foamed polyamide resin particles impregnated with carbon dioxide gas are filled in the mold of an in-mold foam molding apparatus, and air at 230° C. is blown in for 30 seconds to obtain a resin foam molded product A-1 in which the foamed polyamide resin particles are fused together. got The expansion ratio of the resin foam molding was 7.5 times. When the resin foam molded product was cut and observed, aggregates of polyamide resin foam particles having a large number of closed cells with a cell diameter of 200 to 400 μm were formed. It was confirmed from the measurement value of airflow resistance that it had continuous voids. Table 1 shows the evaluation results of the foamed polyamide resin particles and the foamed resin article.

[実施例2~5]
ポリフェニレンエーテル系樹脂(商品名:ザイロンTYPE S201A、旭化成(株)製、20℃における表面張力40mN/m)を60質量%、非ハロゲン系難燃剤(ビスフェノールA-ビス(ジフェニルホスフェート)(BBP))を18質量%、ゴム濃度が6質量%の耐衝撃性ポリスチレン樹脂(HIPS)10質量%(基材樹脂中のゴム成分含有量は0.6質量%)及び汎用ポリスチレン樹脂(PS)(商品名:GP685、PSジャパン(株)製)を12質量%加え、押出機にて加熱溶融混練の図3記載の異形押し出しダイから吐出させたストランドをペレタイザーでペレタイズし、ペレットを得た。特開平4-372630号公報の実施例1に記載の方法に準じ、基材樹脂としての上記ペレットを耐圧容器に収容し、容器内の気体を乾燥空気で置換した後、発泡剤として二酸化炭素(気体)を注入し、圧力3.2MPa、温度11℃の条件下で3時間かけて基材樹脂としてのペレットに対して二酸化炭素を7質量%含浸させ、基材樹脂ペレットを発泡炉内で攪拌羽させながら加圧水蒸気により発泡させた。得られた樹脂発泡粒子の概形を図3に示す。
なお、図3(b1)が実施例2、図3(c1)が実施例3、図3(d1)が実施例4、図3(e1)が実施例5、のダイ吐出口の断面形状である。また、図3(b2)が実施例2、図3(c2)が実施例3、図3(d2)が実施例4、図3(e2)が実施例5、の樹脂発泡粒子の断面である。
得られた樹脂発泡粒子を耐圧容器に移し、圧縮空気により内圧を0.5MPaまで1時間かけて昇圧し、その後0.5MPaで8時間保持し、加圧処理を施した。これを、型内発泡成形装置の水蒸気孔を有する金型内に充填し、加圧水蒸気0.35MPaで加熱して樹脂発泡粒子を相互に膨張・融着させた後、冷却し、成形金型より取り出し、樹脂発泡成形体A-2~A-5を得た。なお、実施例2の樹脂発泡粒子から得られた樹脂発泡成形体がA-2、実施例3の樹脂発泡粒子から得られた樹脂発泡成形体がA-3、実施例4の樹脂発泡粒子から得られた樹脂発泡成形体がA-4、実施例5の樹脂発泡粒子から得られた樹脂発泡成形体がA-5である。通気抵抗の測定値から連続した空隙部を持つことが確認された。樹脂発泡粒子および樹脂発泡成形体の評価結果を表1中に記す。
[Examples 2 to 5]
Polyphenylene ether resin (trade name: Zylon TYPE S201A, Asahi Kasei Co., Ltd., surface tension 40 mN / m at 20 ° C.) 60% by mass, non-halogen flame retardant (bisphenol A-bis (diphenyl phosphate) (BBP)) 18% by mass, 10% by mass of impact-resistant polystyrene resin (HIPS) with a rubber concentration of 6% by mass (rubber content in base resin is 0.6% by mass), and general-purpose polystyrene resin (PS) (trade name : GP685, manufactured by PS Japan Co., Ltd.) was added at 12% by mass, and the strand discharged from the profile extrusion die shown in FIG. According to the method described in Example 1 of JP-A-4-372630, the pellets as the base resin are placed in a pressure-resistant container, the gas in the container is replaced with dry air, and then carbon dioxide ( gas) is injected, and the pellets as the base resin are impregnated with 7% by mass of carbon dioxide over 3 hours under the conditions of a pressure of 3.2 MPa and a temperature of 11 ° C., and the base resin pellets are stirred in a foaming furnace. Foaming was performed with pressurized steam while feathering. FIG. 3 shows the general shape of the obtained expanded resin beads.
3(b1) shows Example 2, FIG. 3(c1) shows Example 3, FIG. 3(d1) shows Example 4, and FIG. 3(e1) shows Example 5. be. 3(b2) is Example 2, FIG. 3(c2) is Example 3, FIG. 3(d2) is Example 4, and FIG. 3(e2) is Example 5. .
The obtained resin expanded beads were transferred to a pressure-resistant container, and the internal pressure was increased to 0.5 MPa over 1 hour with compressed air, and then held at 0.5 MPa for 8 hours to perform pressure treatment. This is filled into a mold having steam holes of an in-mold foam molding device, heated with pressurized steam of 0.35 MPa to expand and fuse the resin foam particles to each other, cooled, and released from the mold. It was taken out to obtain resin foam molded articles A-2 to A-5. A-2 is the resin foam molded article obtained from the expanded resin particles of Example 2, A-3 is the resin expanded molded article obtained from the expanded resin particles of Example 3, and A-3 is the expanded resin article obtained from the expanded resin particles of Example 4. The obtained resin foam molded product is A-4, and the resin foam molded product obtained from the resin foam beads of Example 5 is A-5. It was confirmed from the measurement value of airflow resistance that it had continuous voids. Table 1 shows the evaluation results of the foamed resin particles and the foamed resin article.

[実施例6]
エチレングリコールとイソフタル酸とテレフタル酸の重縮合体(イソフタル酸含有率 2重量%、20℃における表面張力43mN/m)100重量部と、ピロメリット酸二無水物0.3重量部と、炭酸ナトリウム0.03重量部、との混合物を押出機により270~290℃溶融、混練しながらバレルの途中に発泡剤としてブタンを混合物に対して1.0重量%の割合で注入し、図3(f1)記載の異形押出しダイを通して予備発泡させたのち、直ちに冷却水槽で冷却しペレタイザーを用いて小粒状に切断して樹脂発泡粒子を製造した。得られた樹脂発泡粒子の断面は、図3(f2)であった。
得られた樹脂発泡粒子の嵩密度は0.14g/cm3、平均粒子径は1.5mmであった。
上記の樹脂発泡粒子を密閉容器に入れ、炭酸ガスを0.49MPaの圧力で圧入して4時間、保持したのち、密閉容器から取り出した樹脂発泡粒子を直ちに、型内発泡成形機の金型内に充填して型締めし、型内に、ゲージ圧0.02MPaのスチームを10秒間、ついでゲージ圧0.06MPaのスチームを20秒間導入し、120秒間保熱したのち水冷して、樹脂発泡粒子同士が融着した樹脂発泡成形体A-6を得た。通気抵抗の測定値から連続した空隙部を持つことが確認された。樹脂発泡粒子および樹脂発泡成形体の評価結果を表1中に記す。
[Example 6]
100 parts by weight of a polycondensate of ethylene glycol, isophthalic acid, and terephthalic acid (isophthalic acid content: 2% by weight, surface tension: 43 mN/m at 20°C), 0.3 parts by weight of pyromellitic dianhydride, and sodium carbonate 0.03 parts by weight of the mixture was melted and kneaded by an extruder at 270 to 290° C., butane as a foaming agent was injected into the middle of the barrel at a rate of 1.0% by weight with respect to the mixture, and FIG. 3 (f1 ), it was immediately cooled in a cooling water bath and cut into small granules using a pelletizer to produce expanded resin particles. The cross section of the obtained expanded resin beads was shown in FIG. 3(f2).
The obtained foamed resin particles had a bulk density of 0.14 g/cm 3 and an average particle diameter of 1.5 mm.
The foamed resin particles were placed in a closed container, carbon dioxide was injected at a pressure of 0.49 MPa, and the resin foamed particles were held for 4 hours. and the mold is clamped, steam at a gauge pressure of 0.02 MPa is introduced into the mold for 10 seconds, then steam at a gauge pressure of 0.06 MPa is introduced for 20 seconds, and the resin foamed particles are water-cooled after holding the temperature for 120 seconds. A resin foam molded product A-6 in which the two were fused together was obtained. It was confirmed from the measurement value of airflow resistance that it had continuous voids. Table 1 shows the evaluation results of the foamed resin particles and the foamed resin article.

[実施例7]
ポリアミド6樹脂(UBEナイロン「1022B」、宇部興産製)を、押出し機を用いて溶融し、実施例1で使用した異形押し出しダイと同型でサイズを1/3倍に縮小した構造のダイを使用して押出し、吐出させたストランドをペレタイザーでペレタイズし、平均粒子径0.5mmのペレットを得た。得られたペレットを実施例1記載の方法により発泡させ、ポリアミド樹脂発泡粒子を得た。ポリアミド樹脂発泡粒子を切断し観察したところ、ポリアミド樹脂発泡粒子には独立気泡が切断面一面にまんべんなく多数形成されていた。ポリアミド樹脂発泡粒子の断面は図3(a2)に記した形状で凹外形部を有していた。
得られたポリアミド樹脂発泡粒子集合体を、型内発泡成形装置を使用して実施例1と同様に成形し樹脂発泡成形体A-7を得た。樹脂発泡粒子および樹脂発泡成形体の評価結果を表1中に記す。
[Example 7]
Polyamide 6 resin (UBE nylon "1022B", manufactured by Ube Industries) is melted using an extruder, and a die with the same shape as the profile extrusion die used in Example 1 but with a size reduced to 1/3 times is used. The extruded strand was pelletized by a pelletizer to obtain pellets having an average particle size of 0.5 mm. The obtained pellets were expanded by the method described in Example 1 to obtain expanded polyamide resin particles. When the expanded polyamide resin beads were cut and observed, it was found that a large number of closed cells were evenly formed on the cut surface of the expanded polyamide resin beads. The cross section of the foamed polyamide resin beads had a concave outer shape portion in the shape shown in FIG. 3(a2).
The resulting polyamide resin foamed particle assembly was molded in the same manner as in Example 1 using an in-mold foam molding apparatus to obtain a resin foam molded article A-7. Table 1 shows the evaluation results of the foamed resin particles and the foamed resin article.

[実施例8]
ポリアミド6樹脂(UBEナイロン「1022B」、宇部興産製)を、押出し機を用いて溶融し、実施例1で使用した異形押し出しダイと同型でサイズを3倍に拡大した断面形状のダイを使用して押出し、吐出させたストランドをペレタイザーでペレタイズし、平均粒子径6.0mmのペレットを得た。実施例1記載の方法により発泡させたポリアミド樹脂発泡粒子の集合体を得た。得られたポリアミド発泡粒子の平均粒径は6.0mmであった。ポリアミド樹脂発泡粒子を切断し観察したところ、ポリアミド樹脂発泡粒子には独立気泡が切断面一面にまんべんなく多数形成されていた。ポリアミド樹脂発泡粒子の断面は図3(a2)に記した形状で凹外形部を有していた。
得られたポリアミド樹脂発泡粒子集合体を、型内発泡成形装置を使用して実施例1と同様に成形し樹脂発泡成形体A-8を得た。樹脂発泡粒子および樹脂発泡成形体の評価結果を表1中に記す。
[Example 8]
Polyamide 6 resin (UBE nylon "1022B", manufactured by Ube Industries) was melted using an extruder, and a cross-sectional die with the same shape as the profile extrusion die used in Example 1 and three times the size was used. The extruded strand was pelletized with a pelletizer to obtain pellets having an average particle size of 6.0 mm. An aggregate of expanded polyamide resin particles expanded by the method described in Example 1 was obtained. The average particle size of the resulting expanded polyamide particles was 6.0 mm. When the expanded polyamide resin beads were cut and observed, it was found that a large number of closed cells were evenly formed on the cut surface of the expanded polyamide resin beads. The cross section of the foamed polyamide resin beads had a concave outer shape portion in the shape shown in FIG. 3(a2).
The resulting polyamide resin foamed particle assembly was molded in the same manner as in Example 1 using an in-mold foam molding apparatus to obtain a resin foam molded article A-8. Table 1 shows the evaluation results of the foamed resin particles and the foamed resin article.

[実施例9]
エチレン-プロピレンランダム共重合体(MI=10g/10min、エチレンコンテント=2.4wt%、融点147℃)を、押出し機を用いて溶融し、図3(a1)記載の断面形状の異形押し出しダイから吐出させたストランドを水中で急冷した後、ペレタイザーでペレタイズし、平均粒子径1.4mmのペレットを得た。得られたペレット100重量部に対して発泡剤として炭酸ガス2.5重量部、分散剤としてカオリン0.4重量部、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.004重量部、水240重量部の混合物に撹拌分散させ150℃に昇温し、15分保持した後に、密閉容器内の平衡蒸気圧に等しい背圧を掛け、その圧力を保持したまま容器の圧力を開放して樹脂粒子と水を同時に放出して樹脂発泡粒子を得た。樹脂発泡粒子を切断し観察したところ、樹脂発泡粒子には独立気泡が切断面一面にまんべんなく多数形成されていた。樹脂発泡粒子の断面は図3(a2)に記した形状で凹外形部を有していた。
上記樹脂発泡粒子を型内発泡成型装置の水蒸気孔を有する金型内に充填し、加圧水蒸気0.3MPaで加熱して樹脂発泡粒子を相互に膨張・融着させた後、冷却し、成形金型より取り出し、樹脂発泡成形体A-9を得た。成形温度は145℃とした。通気抵抗の測定値から連続した空隙部を持つことが確認された。樹脂発泡粒子および樹脂発泡成形体の評価結果を表1中に記す。
[Example 9]
An ethylene-propylene random copolymer (MI = 10 g/10 min, ethylene content = 2.4 wt%, melting point 147°C) is melted using an extruder, and extruded from a profile extrusion die having the cross-sectional shape shown in Fig. 3(a1). After the extruded strand was quenched in water, it was pelletized with a pelletizer to obtain pellets having an average particle size of 1.4 mm. 2.5 parts by weight of carbon dioxide as a foaming agent, 0.4 parts by weight of kaolin as a dispersant, 0.004 parts by weight of sodium dodecylbenzenesulfonate as a surfactant, and 240 parts by weight of water for 100 parts by weight of the pellets obtained. The mixture was stirred and dispersed, heated to 150 ° C., held for 15 minutes, and then applied with a back pressure equal to the equilibrium vapor pressure in the closed container. were released at the same time to obtain foamed resin particles. When the resin foamed beads were cut and observed, it was found that a large number of closed cells were evenly formed on the cut surface of the resin foamed beads. The cross section of the foamed resin beads had a concave outer shape in the shape shown in FIG. 3(a2).
The foamed resin particles are filled in a mold having steam holes of an in-mold expansion molding device, heated with pressurized steam of 0.3 MPa to expand and fuse the resin foamed particles to each other, and then cooled to form a mold. It was taken out from the mold to obtain a resin foam molded article A-9. The molding temperature was 145°C. It was confirmed from the measurement value of airflow resistance that it had continuous voids. Table 1 shows the evaluation results of the foamed resin particles and the foamed resin article.

[実施例10]
1,4-ブタンジオールとコハク酸を主成分とする脂肪族ポリエステル樹脂(ビオノーレ#1001)(昭和高分子(株)製)を、押出機にて溶融混練した後、溶融混練物を図3の(a1)に示す断面形状のダイスより押出して急冷した後、次いでこのストランドを切断して、平均粒子径1.4mmの空隙樹脂粒子を得た。
次に、この樹脂粒子100重量部、水300重量部(溶存酸素濃度6mg/l)、酸化アルミニウム0.5重量部、ドデシルベンゼンスルホン酸ナトリウム0.004重量部、有機過酸化物(ナイパーFF)(過酸化ベンゾイル純度50%品:日本油脂(株)製)1.5重量部、メタクリル酸メチル0.1重量部を5リットルのオートクレーブに仕込み、窒素ガスを5分間導入しオートクレーブ内の気相部の酸素濃度を0.3体積%とした。そして、オートクレーブ内の内容物を撹拌しながら、75℃まで昇温速度1.7℃/分にて昇温し同温度で20分間保持した後、次いで105℃まで昇温速度0.5℃/分にて加熱し、発泡剤として炭酸ガスをオートクレーブ圧力が4.0MPaとなるまで注入し、同温度で45分間オートクレーブ内の内容物を攪拌しつつ保持することにより樹脂粒子に加熱クロロホルム不溶分として現れるゲルを発現する操作(ゲル化)と発泡剤の樹脂粒子へ含浸させる操作を行い、その後、90℃まで降温速度1.7℃/分にて内容物を冷却し同温度にて5分間保持した後、オートクレーブの一端を開放して、オートクレーブ内に窒素ガスを導入してオートクレーブ内圧力を維持しながら内容物を大気圧下に放出して樹脂粒子を発泡させ発泡粒子を得た。次に発泡粒子を密閉容器内で空気により加圧し粒子内圧0.12MPaを付与した。次いで、他の容器内に内圧を付与した発泡粒子を充填した後、容器内を-0.02MPaまで減圧した後、水蒸気と圧縮空気とを混合した94℃の加熱媒体により加熱し、さらに膨張発泡した樹脂発泡粒子を得た。表1に得られた樹脂発泡粒子の性状を示す。
次いで、得られた樹脂発泡粒子を、密閉容器内に充填し、空気により加圧し、粒子内圧0.12MPaを樹脂発泡粒子に付与した後、金型に充填し、ゲージ圧0.10MPaのスチームで加熱成形した。得られた成形体は大気圧下40℃で24時間養生し樹脂発泡成形体A-10を得た。樹脂発泡粒子および樹脂発泡成形体の評価結果を表1中に記す。
[Example 10]
After melt-kneading an aliphatic polyester resin (Bionol #1001) (manufactured by Showa High Polymer Co., Ltd.) mainly composed of 1,4-butanediol and succinic acid with an extruder, the melt-kneaded product is shown in FIG. After extruding through a die having a cross-sectional shape shown in (a1) and quenching, the strand was then cut to obtain porous resin particles having an average particle size of 1.4 mm.
Next, 100 parts by weight of the resin particles, 300 parts by weight of water (concentration of dissolved oxygen: 6 mg/l), 0.5 parts by weight of aluminum oxide, 0.004 parts by weight of sodium dodecylbenzenesulfonate, organic peroxide (Nyper FF) A 5-liter autoclave was charged with 1.5 parts by weight of benzoyl peroxide with a purity of 50% (manufactured by NOF Co., Ltd.) and 0.1 part by weight of methyl methacrylate. The oxygen concentration in the part was set to 0.3% by volume. Then, while stirring the contents in the autoclave, the temperature was raised to 75°C at a temperature increase rate of 1.7°C/min, held at the same temperature for 20 minutes, and then raised to 105°C at a temperature increase rate of 0.5°C/min. The content in the autoclave was stirred and held at the same temperature for 45 minutes at the same temperature as the heated chloroform-insoluble matter on the resin particles. An operation to develop a gel that appears (gelation) and an operation to impregnate the resin particles with the blowing agent are performed, after which the contents are cooled to 90°C at a temperature-lowering rate of 1.7°C/min and held at the same temperature for 5 minutes. After that, one end of the autoclave was opened and nitrogen gas was introduced into the autoclave to maintain the internal pressure of the autoclave while releasing the contents to atmospheric pressure to expand the resin particles and obtain expanded particles. Next, the foamed particles were pressurized with air in a closed container to give an internal particle pressure of 0.12 MPa. Next, after filling the foamed particles to which the internal pressure was applied into another container, the pressure inside the container was reduced to -0.02 MPa, and then heated with a heating medium of 94 ° C. mixed with steam and compressed air, and expanded and foamed. Thus, expanded resin particles were obtained. Table 1 shows the properties of the foamed resin particles obtained.
Next, the obtained resin foamed beads are filled in a closed container, pressurized with air, and an internal particle pressure of 0.12 MPa is applied to the resin foamed beads. Heat molded. The resulting molded product was cured at 40° C. under atmospheric pressure for 24 hours to obtain a resin foam molded product A-10. Table 1 shows the evaluation results of the foamed resin particles and the foamed resin article.

[実施例 1B]
樹脂発泡成形体厚みを20mmに変更する以外は、実施例1と同等の方法により、樹脂発泡成形体A-11を作製し評価した。評価結果を表1中に記す。
[Example 1B]
A foamed resin article A-11 was produced and evaluated in the same manner as in Example 1, except that the thickness of the foamed resin article was changed to 20 mm. The evaluation results are shown in Table 1.

[比較例1~3]
押出し機の異形押し出しダイを通常の中空部のない円形断面ダイに変える以外は、それ実施例1、2、6と同様の条件で、樹脂発泡粒子および樹脂発泡成形体B-1、B-2、B-3を得た。通気抵抗の測定値から連続した空隙部を持たないことが確認された。樹脂発泡粒子および樹脂発泡成形体の評価結果を表2中に記す。
[Comparative Examples 1 to 3]
Resin foam particles and resin foam moldings B-1 and B-2 were obtained under the same conditions as in Examples 1, 2, and 6, except that the profile extrusion die of the extruder was changed to a normal hollow circular cross-section die. , B-3. It was confirmed from the measurement value of airflow resistance that there was no continuous void. Table 2 shows the evaluation results of the foamed resin particles and the foamed resin article.

Figure 0007228334000001
Figure 0007228334000001

Figure 0007228334000002
Figure 0007228334000002

本発明の特殊形状の樹脂発泡粒子を融合させ成形することにより連続した空隙を有する吸音性能と優れた機械強度を兼ね備えた樹脂発泡成形体を製造することができる。
本発明により従来困難であった高吸音性を示す連続した空隙部の構造の制御された発泡体の製造が可能になり、ビーズ発泡成形法の特長を生かした種々の吸音性部材を高効率で製造することが可能である。
本発明の特定構造の樹脂発泡粒子から製造される連通空隙発泡成形体の用途例としては、軽量性と静音化が求められる自動車、電車、汽車などの車両および航空機などの駆動騒音低減に使用される部材が挙げられ、特に自動車エンジンカバー、エンジンカプセル、エンジンルームフード、変速機ケーシング、吸音カバー、電気自動車用モーターのケーシング、吸音カバー等の吸音部材用途に特に好適に使用できる。
更に本発明の特定構造の樹脂発泡粒子から製造される連通空隙発泡成形体は静音化が求められるエアコンなどの空調機器、冷凍機、ヒートポンプ等や、ダクト等の風路を形成する部分、洗濯機、乾燥機、冷蔵庫、掃除機等の各種家庭用電気製品、プリンター、コピー機、FAX等のOA機器、の他壁材芯材、床材心材などの建築用資材にも好適に用いることができる。
By fusing and molding the foamed resin particles having a special shape according to the present invention, it is possible to produce a foamed resin article having both sound absorption performance with continuous voids and excellent mechanical strength.
The present invention enables the production of foams with a controlled structure of continuous voids exhibiting high sound absorption, which has been difficult in the past. It is possible to manufacture
Examples of applications of the continuous-gap foam molded article produced from the expanded resin particles of the present invention having a specific structure include the reduction of drive noise in vehicles such as automobiles, trains, and trains, and aircraft, which require lightness and noise reduction. In particular, it can be suitably used for sound absorbing members such as automobile engine covers, engine capsules, engine room hoods, transmission casings, sound absorbing covers, motor casings for electric vehicles, and sound absorbing covers.
Furthermore, the continuous-gap foamed molded product manufactured from the resin foamed particles of the specific structure of the present invention can be used in air conditioning equipment such as air conditioners, refrigerators, heat pumps, etc., parts that form air passages such as ducts, washing machines, etc., where noise reduction is required. , dryers, refrigerators, vacuum cleaners and other household electrical appliances; printers, copiers, OA equipment such as FAX; .

Claims (4)

樹脂を含む、凹外形部を有する樹脂発泡粒子であって、
前記樹脂の密度ρと前記樹脂発泡粒子の真密度ρとの比ρ/ρが2~20であり、前記樹脂発泡粒子の真密度ρと前記樹脂発泡粒子の嵩密度ρとの比ρ/ρが1.5~4.0であり、
前記樹脂が変性ポリエーテル樹脂であり、
前記樹脂の20℃における表面張力が37~60mN/mであり、
前記樹脂のガラス転移温度が10℃以上280℃以下であり、
前記樹脂発泡粒子の平均粒子径が1.2~6.0mmである
、樹脂発泡粒子。
A resin foamed particle having a concave outer shape containing a resin,
The ratio ρ 0 / ρ 1 of the density ρ 0 of the resin to the true density ρ 1 of the expanded resin beads is 2 to 20, and the true density ρ 1 of the expanded resin beads and the bulk density ρ 2 of the expanded resin beads The ratio ρ 1 / ρ 2 is 1.5 to 4.0,
The resin is a modified polyether resin,
The resin has a surface tension of 37 to 60 mN/m at 20° C.,
The resin has a glass transition temperature of 10° C. or higher and 280° C. or lower,
The average particle diameter of the expanded resin particles is 1.2 to 6.0 mm
, resin foam particles.
樹脂を含む、凹外形部を有する樹脂発泡粒子であって、 A resin foamed particle having a concave outer shape containing a resin,
前記樹脂の密度ρ Density ρ of the resin 0 と前記樹脂発泡粒子の真密度ρand the true density ρ of the foamed resin particles 1 との比ρratio ρ 0 /ρ 1 が2~20であり、前記樹脂発泡粒子の真密度ρis 2 to 20, and the true density ρ of the resin foam particles 1 と前記樹脂発泡粒子の嵩密度ρand the bulk density ρ of the foamed resin particles 2 との比ρratio ρ 1 /ρ 2 が1.5~4.0であり、is 1.5 to 4.0,
前記樹脂がポリアミド樹脂又は変性ポリエーテル樹脂であり、 The resin is a polyamide resin or a modified polyether resin,
前記樹脂の20℃における表面張力が37~60mN/mであり、 The resin has a surface tension of 37 to 60 mN/m at 20° C.,
前記樹脂のガラス転移温度が10℃以上280℃以下であり、 The resin has a glass transition temperature of 10° C. or higher and 280° C. or lower,
前記樹脂発泡粒子の平均粒子径が1.2~6.0mmである The average particle diameter of the expanded resin particles is 1.2 to 6.0 mm
、樹脂発泡粒子。, resin foam particles.
請求項1又は2に記載の樹脂発泡粒子が相互に融着した成形体であり、
融着した前記樹脂発泡粒子間に連続した空隙部を有し、空隙率が15~80%である、樹脂発泡成形体。
A molded article in which the expanded resin particles according to claim 1 or 2 are fused to each other,
A foamed resin article having continuous voids between the fused resin foamed particles and having a porosity of 15 to 80%.
請求項3に記載の樹脂発泡成形体からなる防音部材。 A soundproof member comprising the resin foam molded article according to claim 3 .
JP2018023398A 2017-02-13 2018-02-13 Foamed resin particles and foamed resin products Active JP7228334B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017024111 2017-02-13
JP2017024111 2017-02-13

Publications (2)

Publication Number Publication Date
JP2018131620A JP2018131620A (en) 2018-08-23
JP7228334B2 true JP7228334B2 (en) 2023-02-24

Family

ID=63248886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023398A Active JP7228334B2 (en) 2017-02-13 2018-02-13 Foamed resin particles and foamed resin products

Country Status (1)

Country Link
JP (1) JP7228334B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328353B2 (en) * 2019-12-12 2023-08-16 旭化成株式会社 Multi-layer sound absorbing material
US20230407035A1 (en) * 2020-10-22 2023-12-21 Jsp Corporation Method for producing polyamide-based resin multi-stage-expanded beads
CN117396546A (en) * 2021-06-25 2024-01-12 株式会社Jsp Polypropylene resin foam particle molded article and method for producing same
WO2022270426A1 (en) * 2021-06-25 2022-12-29 株式会社ジェイエスピー Polypropylene resin foam particles, method for producing same, and polypropylene resin foam particle molded body
WO2023153310A1 (en) * 2022-02-14 2023-08-17 株式会社ジェイエスピー Expanded crystalline-thermoplastic-resin particles, molded object from expanded crystalline-thermoplastic-resin particles, and production method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096323A (en) 2000-09-25 2002-04-02 Jsp Corp Small piece of polyester resin foam and moldings of foam pieces
JP2016017144A (en) 2014-07-09 2016-02-01 株式会社ジェイエスピー Method for producing crosslinked polyethylene-based resin foamed particle and method for producing cross-linked polyethylene-based resin particle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3377575B2 (en) * 1993-11-16 2003-02-17 株式会社ジエイエスピー Molded polymer foam particles having voids
JP3268094B2 (en) * 1993-12-13 2002-03-25 旭化成株式会社 Sound absorber and method of construction
JP4023911B2 (en) * 1998-06-01 2007-12-19 株式会社ジェイエスピー Cylindrical polyolefin resin foam particles having through holes and a method for producing a polyolefin resin foam molded body having continuous voids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096323A (en) 2000-09-25 2002-04-02 Jsp Corp Small piece of polyester resin foam and moldings of foam pieces
JP2016017144A (en) 2014-07-09 2016-02-01 株式会社ジェイエスピー Method for producing crosslinked polyethylene-based resin foamed particle and method for producing cross-linked polyethylene-based resin particle

Also Published As

Publication number Publication date
JP2018131620A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP7228334B2 (en) Foamed resin particles and foamed resin products
KR102271926B1 (en) Resin expanded particles, resin expanded molded article, and laminate
TWI468448B (en) Polypropylene resin foamed particles and foamed particles
JP6653049B1 (en) Polyamide-based resin expanded particles and method for producing the same
US10487188B2 (en) Propylene resin foamed particle and foamed particle molded body
JP6982972B2 (en) Laminate
TW201708333A (en) Thermoplastic polyurethane foam particles, and thermoplastic polyurethane foam particle molded body
JP6620387B2 (en) Propylene-based resin expanded particles and expanded molded articles
WO2015107847A1 (en) Propylene-based resin foam particle and foam particle molded body
EP2163574A1 (en) Polyolefin resin pre-foamed particle having antistatic property, and molded article produced from the particle
JP7328353B2 (en) Multi-layer sound absorbing material
JP6026814B2 (en) Polyolefin resin expanded particles and molded articles thereof
JP6670850B2 (en) Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles and in-mold expanded molded article
JP2012025347A (en) Exterior material for automobile
JP2006297807A (en) Polypropylene-based resin in-mold foam-molding body
JP2023014887A (en) Foamed bead and method for producing foamed bead
JP2018070735A (en) Foamed particle and method for producing foamed particle molding
JP2023056827A (en) Composite cover material for vehicle
WO2020090335A1 (en) Foam particles
JP7029540B2 (en) Laminated structure
JP7040916B2 (en) Laminates and sound absorbing materials
JP2012025908A (en) Automotive interior material
JP2024014407A (en) Polypropylene-based resin foamed particles and polypropylene-based resin foamed particles molded article
JP2007063455A (en) Composite foamed molded article
JP2007118747A (en) Automobile floor structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7228334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150