JP2009226512A - Tungsten carbide based sintered body - Google Patents

Tungsten carbide based sintered body Download PDF

Info

Publication number
JP2009226512A
JP2009226512A JP2008072718A JP2008072718A JP2009226512A JP 2009226512 A JP2009226512 A JP 2009226512A JP 2008072718 A JP2008072718 A JP 2008072718A JP 2008072718 A JP2008072718 A JP 2008072718A JP 2009226512 A JP2009226512 A JP 2009226512A
Authority
JP
Japan
Prior art keywords
tungsten carbide
sintered body
based sintered
ray diffraction
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008072718A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takahashi
俊行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2008072718A priority Critical patent/JP2009226512A/en
Priority to PCT/JP2009/055410 priority patent/WO2009116616A1/en
Publication of JP2009226512A publication Critical patent/JP2009226512A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tungsten carbide based sintered body having high hardness and excellent abrasion resistance, and elongating the life of a tool in a high-speed cutting of special alloy such as titanium alloy and a steel material. <P>SOLUTION: This tungsten carbide based sintered body consists of 0.1-2 wt.% of 1 type or 2 types selected from chromium carbides and vanadium carbides, 0.1-1 wt.% of iron group metal, and the rest being tungsten carbide and inevitable impurities, wherein tungsten carbides consist of WC and W<SB>2</SB>C, when an X ray diffraction peak intensity of the surface WC(101) is expressed by IWC(101) and an X ray diffraction peak intensity of the surface W<SB>2</SB>C(101) is expressed by IW<SB>2</SB>C(101), an X ray diffraction peak intensity ratio IW2C(101)/(IWC(101)+IW<SB>2</SB>C(101)) is 0.2-0.3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は切削チップ、ドリル、エンドミル、カッターなどの切削工具に適した炭化タングステン基焼結体に関する。 The present invention relates to a tungsten carbide-based sintered body suitable for cutting tools such as cutting tips, drills, end mills, and cutters.

チタン合金などの特殊合金を切削加工する場合、もしくは、鉄系材料を高速切削加工する場合、従来の超硬合金工具に結合相として含まれている鉄族金属は被削材と反応して溶着を生じるため工具寿命を低下させる原因となっていた。また、特殊合金の切削加工や鉄系材料の高速切削加工では工具の刃先温度が高くなるため、高温硬さの低い従来の超硬合金工具では十分な切削性能を得ることはできなかった。そこで結合相が少ない炭化タングステン基焼結体が、こうした加工に用いられるようになった。 When cutting special alloys such as titanium alloys, or when cutting ferrous materials at high speed, iron group metals contained as binder phases in conventional cemented carbide tools react with the work material and are welded. As a result, the tool life is reduced. In addition, since the cutting edge temperature of the tool is high in cutting of special alloy and high-speed cutting of iron-based material, a conventional cemented carbide tool having a low high-temperature hardness cannot obtain a sufficient cutting performance. Therefore, a tungsten carbide-based sintered body having a small binder phase has been used for such processing.

結合相が少ない炭化タングステン基焼結体の従来技術としては、WCおよびW2Cを含み、さらにCrの炭化物およびVの炭化物の少なくとも一方を含む超硬質焼結体であって、X線回折法によるWC結晶(100)面の回折強度をIWC(100)、WC結晶(101)面の回折強度をIWC(101)としたときに、IWC(100)/IWC(101)が0.65以上0.9以下で、WC結晶(100)面およびWC結晶(101)面の回折ピークの半価値幅が0.4〜0.6を満たし、WCの平均粒径は1.5μm以下で、ビッカース硬度は25GPa以上、金属含有量の合計が200ppm以下であることを特徴とする超硬質焼結体がある(例えば、特許文献1参照。)。しかしながら、この超硬質焼結体はW2C量が少なくW2Cを添加して得られる効果が十分ではないという問題がある。また、通電加圧焼結という特殊な焼結を行うことから、形状の自由度が著しく制限されるという問題がある。 As a prior art of a tungsten carbide-based sintered body having a small binder phase, an ultra-hard sintered body containing WC and W 2 C, and further containing at least one of Cr carbide and V carbide, and an X-ray diffraction method I WC (100) / I WC (101) is 0 when the diffraction intensity of the WC crystal (100) plane is I WC (100) and the diffraction intensity of the WC crystal (101) plane is I WC (101). The half-value width of diffraction peaks of the WC crystal (100) plane and the WC crystal (101) plane satisfy 0.4 to 0.6, and the average particle diameter of WC is 1.5 μm or less. There is an ultra-hard sintered body characterized in that the Vickers hardness is 25 GPa or more and the total metal content is 200 ppm or less (see, for example, Patent Document 1). However, this ultra-hard sintered body has a problem that the amount of W 2 C is small and the effect obtained by adding W 2 C is not sufficient. In addition, there is a problem that the degree of freedom of shape is remarkably limited because special sintering called current-pressure sintering is performed.

特開2000−29845号公報JP 2000-29845 A

本発明は、硬さが高く耐摩耗性に優れ、チタン合金などの特殊合金や鉄系材料の高速切削加工において工具寿命を延長する炭化タングステン基焼結体の提供を目的とする。 An object of the present invention is to provide a tungsten carbide-based sintered body that has high hardness and excellent wear resistance and extends the tool life in high-speed cutting of special alloys such as titanium alloys and iron-based materials.

本発明は、炭化クロム、炭化バナジウムの中から選ばれた1種または2種:0.1〜2重量%と、鉄族金属:0.1〜1重量%と、残りが炭化タングステンおよび不可避的不純物とからなる炭化タングステン基焼結体であって、炭化タングステンはWCとW2Cとからなり、X線回折測定によるWC(101)面のX線回折ピーク強度をIWC(101)と表し、W2C(101)面のX線回折ピーク強度をIW2C(101)と表したとき、X線回折ピーク強度比IW2C(101)/(IWC(101)+IW2C(101))は0.2〜0.3である炭化タングステン基焼結体である。 In the present invention, one or two kinds selected from chromium carbide and vanadium carbide: 0.1 to 2% by weight, iron group metal: 0.1 to 1% by weight, and the balance is tungsten carbide and unavoidable A tungsten carbide-based sintered body composed of impurities, wherein tungsten carbide is composed of WC and W 2 C, and the X-ray diffraction peak intensity of the WC (101) plane by X-ray diffraction measurement is expressed as IWC (101), W 2 C (101) when the X-ray diffraction peak intensity of the face represented and IW 2 C (101), X-ray diffraction peak intensity ratio IW 2 C (101) / ( IWC (101) + IW 2 C (101)) Is a tungsten carbide based sintered body of 0.2 to 0.3.

本発明の炭化タングステン基焼結体は、炭化クロム、炭化バナジウムの中から選ばれた1種または2種:0.1〜2重量%と、鉄族金属:0.1〜1重量%と、残りが炭化タングステンおよび不可避的不純物とからなる。 The tungsten carbide-based sintered body of the present invention is one or two selected from chromium carbide and vanadium carbide: 0.1 to 2% by weight, iron group metal: 0.1 to 1% by weight, The remainder consists of tungsten carbide and inevitable impurities.

炭化クロム、炭化バナジウムは、炭化タングステン基焼結体の組織を微細化する効果を有する。炭化クロム、炭化バナジウムの中から選ばれた1種または2種は、0.1重量%未満であると組織を微細化する効果が低く、2重量%を超えて多くなると焼結しにくくなり緻密な焼結体を得ることが難しくなる。そのため、炭化クロム、炭化バナジウムの中から選ばれた1種または2種を0.1〜2重量%とした。 Chromium carbide and vanadium carbide have the effect of refining the structure of the tungsten carbide-based sintered body. One or two kinds selected from chromium carbide and vanadium carbide are less effective if the content is less than 0.1% by weight, and if the content exceeds 2% by weight, sintering becomes difficult. It becomes difficult to obtain a sintered body. Therefore, 1 type or 2 types chosen from chromium carbide and vanadium carbide was made into 0.1 to 2 weight%.

鉄族金属は、0.1重量%未満であると焼結しにくく、1重量%を超えて多くなると、W3Co3C、W6Co6Cなどのη相と呼ばれる脆弱な複合炭化物相が生成して強度が低下する。そのため、鉄族金属を0.1〜1重量%とした。その中でも鉄族金属は0.10〜0.18重量%であるとさらに好ましい。なお、本発明において鉄族金属とはFe、Co、Niを意味する。 If the iron group metal is less than 0.1% by weight, it is difficult to sinter, and if it exceeds 1% by weight, a fragile complex carbide phase called η phase such as W 3 Co 3 C, W 6 Co 6 C, etc. Is generated and the strength decreases. Therefore, the iron group metal is set to 0.1 to 1% by weight. Among them, the iron group metal is more preferably 0.10 to 0.18% by weight. In the present invention, the iron group metal means Fe, Co, or Ni.

炭化タングステンはWCとW2Cとからなる。W2Cは硬さを高くする効果がある。本発明の炭化タングステン基焼結体に対して、Cuターゲットを用いたX線回折測定を行い、WC(101)面のX線回折ピーク強度をIWC(101)と表し、W2C(101)面のX線回折ピーク強度をIW2C(101)と表したとき、X線回折ピーク強度比IW2C(101)/(IWC(101)+IW2C(101))が0.2未満であるとW2Cが少なくなり硬さが低下する。X線回折ピーク強度比IW2C(101)/(IWC(101)+IW2C(101))が0.3を超えて多くなると破壊靭性値(KIC)が低下し、切削工具として用いたとき耐欠損性が低下する。そのため、X線回折ピーク強度比IW2C(101)/(IWC(101)+IW2C(101))を0.2〜0.3とした。その中でも0.25〜0.3であるとさらに好ましい。 Tungsten carbide consists of WC and W 2 C. W 2 C has the effect of increasing hardness. The tungsten carbide-based sintered body of the present invention was subjected to X-ray diffraction measurement using a Cu target, the X-ray diffraction peak intensity of the WC (101) plane was expressed as IWC (101), and W 2 C (101) When the X-ray diffraction peak intensity of the surface is expressed as IW 2 C (101), the X-ray diffraction peak intensity ratio IW 2 C (101) / (IWC (101) + IW 2 C (101)) is less than 0.2 If there is, W 2 C decreases and hardness decreases. When the X-ray diffraction peak intensity ratio IW 2 C (101) / (IWC (101) + IW 2 C (101)) exceeds 0.3, the fracture toughness value (K IC ) decreases, and it was used as a cutting tool. Sometimes chipping resistance decreases. Therefore, the X-ray diffraction peak intensity ratio IW 2 C (101) / (IWC (101) + IW 2 C (101)) is set to 0.2 to 0.3. Among these, it is more preferable in it being 0.25-0.3.

本発明の炭化タングステンの平均粒径は、2μmを超えて大きくなると硬さが低下し、0.1μm未満になると強度が低下する。そのため、炭化タングステンの平均粒径は0.1〜2μmであると好ましい。 When the average particle size of the tungsten carbide of the present invention exceeds 2 μm, the hardness decreases, and when it is less than 0.1 μm, the strength decreases. Therefore, the average particle diameter of tungsten carbide is preferably 0.1 to 2 μm.

本発明の炭化タングステン基焼結体のビッカース硬さHV10(印加荷重:10kgf)は2300以上であると、耐摩耗性が高くなるので好ましい。その中でもHV10が2400以上であるとさらに好ましく、HV10が2500以上であるとさらに好ましい。 It is preferable that the Vickers hardness HV10 (applied load: 10 kgf) of the tungsten carbide-based sintered body of the present invention is 2300 or more because wear resistance is increased. Among them, HV10 is more preferably 2400 or more, and HV10 is more preferably 2500 or more.

本発明の炭化タングステン基焼結体の表面に、Al、Cr、Tiの炭化物、窒化物、酸化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の被膜を被覆した被覆炭化タングステン基焼結体は、優れた耐摩耗性を示すので、好ましい。 Coated tungsten carbide-based sintered body in which the surface of the tungsten carbide-based sintered body of the present invention is coated with at least one film selected from carbides, nitrides, oxides of Al, Cr, Ti, and their mutual solid solutions. The bonded body is preferable because it exhibits excellent wear resistance.

本発明の被膜の膜厚は、0.05μm未満であると耐摩耗性が向上する効果が少なく、20μmを超えると欠損しやすくなる。そのため、被膜の膜厚は0.05〜20μmが好ましい。 If the film thickness of the coating of the present invention is less than 0.05 μm, the effect of improving the wear resistance is small, and if it exceeds 20 μm, the film tends to be lost. Therefore, the film thickness is preferably 0.05 to 20 μm.

本発明の炭化タングステン基焼結体および本発明の被覆炭化タングステン基焼結体は硬さが高く耐摩耗性に優れるため、切削チップ、ドリル、エンドミル、カッターなどの切削工具として用いると切削工具の寿命を大幅に延長することができるので、好ましい。その中でも、チタン合金の切削加工および鉄系材料の高速切削加工において優れた切削性能を示し工具の寿命が延長するので、さらに好ましい。その中でも、チタン合金の切削加工において優れた切削性能を示し工具の寿命が延長するので、さらに好ましい。 Since the tungsten carbide-based sintered body of the present invention and the coated tungsten carbide-based sintered body of the present invention have high hardness and excellent wear resistance, when used as a cutting tool such as a cutting tip, a drill, an end mill, or a cutter, This is preferable because the lifetime can be greatly extended. Among these, the cutting performance of titanium alloy and the high-speed cutting processing of iron-based materials are excellent, and the tool life is extended, which is further preferable. Among them, it is more preferable because it shows excellent cutting performance in the cutting of a titanium alloy and extends the tool life.

本発明の炭化タングステン基焼結体は硬さが高く耐摩耗性に優れるため、切削チップ、ドリル、エンドミル、カッターなどの切削工具として用いると切削工具の寿命を大幅に延長できる。 Since the tungsten carbide-based sintered body of the present invention is high in hardness and excellent in wear resistance, when used as a cutting tool such as a cutting tip, a drill, an end mill, or a cutter, the life of the cutting tool can be greatly extended.

原料粉末として、平均粒径0.5μmのWC粉末、平均粒径0.7μmのW粉末、平均粒径2μmのVC粉末、平均粒径1.8μmのTiC粉末、平均粒径1.5μmのCr3C2粉末、平均粒径1.4μmのCo粉末を用意して、それらを表1に示す配合組成に配合した。配合した原料粉末300gを超硬合金製ボール1.5kg、水300cc、消泡剤0.7gと共に内径10cmのウレタン張り円筒型ポットに入れ、湿式ボールミル混合を24時間行った後、成形助剤を添加し乾燥した。乾燥した原料粉末を篩別した後、得られた原料粉末を成形圧力147MPaで成形した。得られた成形体を焼結後の形状がISO規格SNGN120408形状になるようにダイヤモンド砥粒で研削加工した。 As raw material powder, WC powder with an average particle size of 0.5 μm, W powder with an average particle size of 0.7 μm, VC powder with an average particle size of 2 μm, TiC powder with an average particle size of 1.8 μm, Cr with an average particle size of 1.5 μm 3 C 2 powder and Co powder having an average particle size of 1.4 μm were prepared, and these were blended in the blending composition shown in Table 1. 300 g of the blended raw material powder is placed in a urethane-clad cylindrical pot with an inner diameter of 10 cm together with 1.5 kg of cemented carbide balls, 300 cc of water and 0.7 g of antifoaming agent, and after 24 hours of wet ball mill mixing, a molding aid is added. Added and dried. After the dried raw material powder was sieved, the obtained raw material powder was molded at a molding pressure of 147 MPa. The obtained molded body was ground with diamond abrasive grains so that the shape after sintering became the ISO standard SNGN120408 shape.

Figure 2009226512
Figure 2009226512

研削加工した成形体を焼結炉に入れ、焼結温度1900℃、大気圧のAr気流中、2時間保持という焼結条件で一次焼結を行って焼結体の相対密度が94%以上となるようにした。その後、一次焼結した焼結体を処理温度1700℃、Ar雰囲気、圧力152MPa、保持時間1時間という条件でHIP処理して発明品1〜3および比較品1〜3の焼結体を得た。 The green compact is put into a sintering furnace, primary sintering is performed under a sintering condition of 1900 ° C. in an Ar air flow at atmospheric pressure for 2 hours, and the relative density of the sintered body is 94% or more. It was made to become. Thereafter, the sintered body subjected to primary sintering was subjected to HIP treatment under the conditions of a processing temperature of 1700 ° C., an Ar atmosphere, a pressure of 152 MPa, and a holding time of 1 hour to obtain sintered bodies of invention products 1 to 3 and comparative products 1 to 3. .

得られた焼結体について、炭化タングステンの平均粒径、ビッカース硬さHV10、IF法による破壊靭性値(KIC)を測定し、それらの値を表2に記載した。また得られた焼結体について、X線回折測定を行い、X線回折ピーク強度比IW2C(101)/(IWC(101)+IW2C(101))を求めて、その値を表3に記載した。 With respect to the obtained sintered body, the average particle diameter of tungsten carbide, Vickers hardness HV10, fracture toughness value (K IC ) by IF method were measured, and those values are shown in Table 2. The obtained sintered body was subjected to X-ray diffraction measurement to obtain an X-ray diffraction peak intensity ratio IW 2 C (101) / (IWC (101) + IW 2 C (101)). It was described in.

Figure 2009226512
Figure 2009226512

Figure 2009226512
Figure 2009226512

発明品1の焼結体を基材に用いて,表4に示す被膜をPVD法により被覆して、発明品4、5を得た。 Inventions 4 and 5 were obtained by coating the coating shown in Table 4 by the PVD method using the sintered body of Invention 1 as a substrate.

Figure 2009226512
Figure 2009226512

発明品1〜5および比較品1〜3について、被削材:Ti-Al-4V(チタン合金)、切削速度Vc:120m/min、切り込みd:0.2mm、送りf:0.1mm/rev.、wetの条件で外周連続旋削試験を行った。加工時間は30minまでとし、そのときの逃げ面摩耗量VBを測定した。その結果を表5に示した。なお、VBが0.30mmを超えると工具寿命に至ったとする。 For invention products 1 to 5 and comparative products 1 to 3, work material: Ti-Al-4V (titanium alloy), cutting speed Vc: 120 m / min, cutting d: 0.2 mm, feed f: 0.1 mm / rev . , The outer peripheral continuous turning test was performed under the conditions of wet. The machining time was up to 30 min, and the flank wear amount VB at that time was measured. The results are shown in Table 5. It is assumed that the tool life is reached when VB exceeds 0.30 mm.

Figure 2009226512
Figure 2009226512

表5に示すように、チタン合金の切削加工において発明品1〜5は比較品1〜3よりも、VBが少なく耐摩耗性に優れ、工具寿命が長いことが分かる。 As shown in Table 5, it can be seen that the inventive products 1 to 5 have less VB and superior wear resistance and longer tool life than the comparative products 1 to 3 in the cutting of the titanium alloy.

Claims (7)

炭化クロム、炭化バナジウムの中から選ばれた1種または2種:0.1〜2重量%と、鉄族金属:0.1〜1重量%と、残りが炭化タングステンおよび不可避的不純物とからなる炭化タングステン基焼結体であって、炭化タングステンはWCとW2Cとからなり、X線回折測定によるWC(101)面のX線回折ピーク強度をIWC(101)と表し、W2C(101)面のX線回折ピーク強度をIW2C(101)と表したとき、X線回折ピーク強度比IW2C(101)/(IWC(101)+IW2C(101))は0.2〜0.3である炭化タングステン基焼結体。 One or two kinds selected from chromium carbide and vanadium carbide: 0.1 to 2% by weight, iron group metal: 0.1 to 1% by weight, and the remainder consisting of tungsten carbide and inevitable impurities A tungsten carbide-based sintered body, tungsten carbide is composed of WC and W 2 C, and the X-ray diffraction peak intensity of the WC (101) plane by X-ray diffraction measurement is expressed as IWC (101), and W 2 C ( When the X-ray diffraction peak intensity of the 101) plane is expressed as IW 2 C (101), the X-ray diffraction peak intensity ratio IW 2 C (101) / (IWC (101) + IW 2 C (101)) is 0.2. A tungsten carbide-based sintered body of ~ 0.3. 炭化タングステンの平均粒径は0.05〜1μmである請求項1に記載の炭化タングステン基焼結体。 The tungsten carbide based sintered body according to claim 1, wherein the tungsten carbide has an average particle diameter of 0.05 to 1 μm. 炭化タングステン基焼結体のビッカース硬さは2300以上である請求項1または2に記載の炭化タングステン基焼結体。 The tungsten carbide-based sintered body according to claim 1 or 2, wherein the tungsten carbide-based sintered body has a Vickers hardness of 2300 or more. 炭化タングステン基焼結体に含まれる鉄族金属は0.10〜0.18重量%である請求項1〜3のいずれか1項に記載の炭化タングステン基焼結体。 The tungsten carbide-based sintered body according to any one of claims 1 to 3, wherein the iron group metal contained in the tungsten carbide-based sintered body is 0.10 to 0.18% by weight. 請求項1〜4のいずれか1項に記載の炭化タングステン基焼結体の表面に膜厚0.05〜20μmのAl、Cr、Tiの炭化物、窒化物、酸化物およびこれらの相互固溶体の中の少なくとも1種の被膜が被覆されている被覆炭化タングステン基焼結体。 The tungsten carbide-based sintered body according to any one of claims 1 to 4, wherein the surface of the carbide, nitride, oxide of Al, Cr, Ti having a film thickness of 0.05 to 20 μm and their mutual solid solution A coated tungsten carbide based sintered body coated with at least one kind of coating. 請求項1〜4のいずれか1項に記載の炭化タングステン基焼結体からなる炭化タングステン基焼結体切削工具。 A tungsten carbide-based sintered body cutting tool comprising the tungsten carbide-based sintered body according to any one of claims 1 to 4. 請求項5に記載の被覆炭化タングステン基焼結体からなる被覆炭化タングステン基焼結体切削工具。 A coated tungsten carbide based sintered body cutting tool comprising the coated tungsten carbide based sintered body according to claim 5.
JP2008072718A 2008-03-21 2008-03-21 Tungsten carbide based sintered body Withdrawn JP2009226512A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008072718A JP2009226512A (en) 2008-03-21 2008-03-21 Tungsten carbide based sintered body
PCT/JP2009/055410 WO2009116616A1 (en) 2008-03-21 2009-03-19 Tungsten carbide-based sintered object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072718A JP2009226512A (en) 2008-03-21 2008-03-21 Tungsten carbide based sintered body

Publications (1)

Publication Number Publication Date
JP2009226512A true JP2009226512A (en) 2009-10-08

Family

ID=41091014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072718A Withdrawn JP2009226512A (en) 2008-03-21 2008-03-21 Tungsten carbide based sintered body

Country Status (2)

Country Link
JP (1) JP2009226512A (en)
WO (1) WO2009116616A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154917A (en) * 2017-03-17 2018-10-04 三菱日立ツール株式会社 Cemented carbide and method for producing the same, and cutting tool prepared therewith

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7068658B2 (en) * 2018-09-28 2022-05-17 三菱マテリアル株式会社 Hard sintered body and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089447A (en) * 1990-10-09 1992-02-18 The Dow Chemical Company High hardness, wear resistant materials
JPH05230588A (en) * 1992-02-24 1993-09-07 Sumitomo Electric Ind Ltd Hard alloy
JP3310138B2 (en) * 1995-07-11 2002-07-29 ダイジ▲ェ▼ット工業株式会社 Sintered hard material
SE525898C2 (en) * 2003-09-24 2005-05-24 Sandvik Ab Cutting based on WC with a binder phase of tungsten, ways of making the cutter and using it
JP2007269534A (en) * 2006-03-31 2007-10-18 Allied Material Corp Wc powder and its production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154917A (en) * 2017-03-17 2018-10-04 三菱日立ツール株式会社 Cemented carbide and method for producing the same, and cutting tool prepared therewith
JP7021528B2 (en) 2017-03-17 2022-02-17 株式会社Moldino Cemented carbide and its manufacturing method, and cutting tools using it

Also Published As

Publication number Publication date
WO2009116616A1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP6124877B2 (en) FeNi binder with versatility
JP6330387B2 (en) Sintered body and manufacturing method thereof
WO2002060833A1 (en) Cubic boron nitride sintered body and cutting tool
JP2010523355A (en) tool
JP5559575B2 (en) Cermet and coated cermet
JP2008001918A (en) Wc-based cemented carbide
JP5880598B2 (en) Sintered body and cutting tool using the sintered body
JP5284684B2 (en) Super hard alloy
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
KR20170122103A (en) Sintered body and cutting tool
JP4229750B2 (en) Cubic boron nitride sintered body
WO2021079561A1 (en) Cemented carbide and cutting tool comprising same as base material
JP2009226512A (en) Tungsten carbide based sintered body
JP2006037160A (en) Sintered compact
JP2006239792A (en) Hard film coated cemented carbide member
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
JP2011207689A (en) Composite sintered compact
JP7385351B2 (en) Free-cutting cemented carbide
JP2006144089A (en) Hard metal made of superfine particle
JP2004131769A (en) Hyperfine-grained cemented carbide
JP3292949B2 (en) Fine-grained cemented carbide and method for producing the same
JP2011140414A (en) Sintered compact and cutting tool using the sintered compact
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP4540791B2 (en) Cermet for cutting tools

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607