JP2009224557A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2009224557A
JP2009224557A JP2008067345A JP2008067345A JP2009224557A JP 2009224557 A JP2009224557 A JP 2009224557A JP 2008067345 A JP2008067345 A JP 2008067345A JP 2008067345 A JP2008067345 A JP 2008067345A JP 2009224557 A JP2009224557 A JP 2009224557A
Authority
JP
Japan
Prior art keywords
cooling
downstream
upstream
cooling fins
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008067345A
Other languages
Japanese (ja)
Other versions
JP4983664B2 (en
Inventor
Miyo Mochizuki
美代 望月
Kenji Kaneda
謙治 金田
Gentaro Yamanaka
玄太郎 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008067345A priority Critical patent/JP4983664B2/en
Publication of JP2009224557A publication Critical patent/JP2009224557A/en
Application granted granted Critical
Publication of JP4983664B2 publication Critical patent/JP4983664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device that is improved in cooling capability while reducing pressure loss of a cooling medium. <P>SOLUTION: Partition plates 20-1 and 20-2 connecting upstream cooling fins 14 and downstream cooling fins 15 form communication flow passages 18 making upstream cooling medium flow passages 16 and downstream cooling medium flow passages 17 communicate with each other between a reverse surface 12b of a cooling plate 12 and the partition plates 20-1 and 20-2. A pair of partition plates 20-1 and 20-2 which gradually increase in interval from an upstream cooling fin 14 to a downstream cooling fin 15 is coupled to the upstream cooling fin 14, and the pair of partition plates 20-1 and 20-2 which gradually increase in interval from a downstream cooling fin 15 to an upstream cooling fin 14 is coupled to the downstream cooling fin 15. The upstream cooling fin 14 to which the pair of partition plates 20-1 and 20-2 are coupled gradually decreases in thickness from the upstream side to the downstream side of a cooling medium flow. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発熱体で発生した熱を除熱するための冷却装置に関する。   The present invention relates to a cooling device for removing heat generated by a heating element.

発熱体で発生した熱を除熱するための冷却装置の一例として、マイクロチャンネル型冷却装置が知られている(例えば特許文献1,2及び非特許文献1)。マイクロチャンネル型冷却装置においては、冷却液の流れる微小流路(マイクロチャンネル)を内部に多数形成することで、伝熱面積の拡大及び熱伝達率の増加を図っている。特許文献1では、複数のマイクロチャンネルの各々は、重ねられた少なくとも第1及び第2のプレート状積層体によって形成され、第1のプレート状積層体のマイクロチャンネル用流路部分と第2のプレート状積層体のマイクロチャンネル用流路部分とは、冷却液の流通方向にて連続通路を作るように位置をずらして形成されている。これによって、蛇行流路構造を利用して微小渦流を作り、熱交換能力の向上を図っている。   As an example of a cooling device for removing heat generated by a heating element, a microchannel type cooling device is known (for example, Patent Documents 1 and 2 and Non-Patent Document 1). In the microchannel cooling device, a large number of micro flow channels (microchannels) through which a coolant flows are formed inside, thereby increasing the heat transfer area and increasing the heat transfer coefficient. In Patent Document 1, each of the plurality of microchannels is formed by overlapping at least a first and second plate-like laminate, and a microchannel channel portion and a second plate of the first plate-like laminate. The microchannel channel portion of the laminated laminate is formed so as to be shifted in position so as to form a continuous passage in the coolant flow direction. In this way, a micro vortex is created using the meandering channel structure to improve the heat exchange capability.

また、特許文献2及び非特許文献1では、長さの短いマイクロチャンネルを集積化しており、冷媒は、図26に示すように、フィン間流路1→フィン上流路3→フィン間流路2の順に流れることで、冷却フィン4との間で熱交換を行う。   Further, in Patent Document 2 and Non-Patent Document 1, short-length microchannels are integrated, and the refrigerant is, as shown in FIG. 26, the inter-fin flow path 1 → the fin upper flow path 3 → the inter-fin flow path 2. The heat exchange with the cooling fin 4 is performed by flowing in this order.

特開2007−12719号公報JP 2007-12719 A 国際公開第07/065705号パンフレットInternational Publication No. 07/065705 Pamphlet Jurgen J. Brandner他,"A new Enhanced Microstructure Heat Exchanger with Reduced Pressure Drop",4th International Workshop on Micro Chemical Process Technology,Forschungszentrum Karlsruhe,January 26,2006Jurgen J. Brandner et al., "A new Enhanced Microstructure Heat Exchanger with Reduced Pressure Drop", 4th International Workshop on Micro Chemical Process Technology, Forschungszentrum Karlsruhe, January 26,2006

マイクロチャンネル型冷却装置では、マイクロチャンネルを多数形成して伝熱面積の拡大及び熱伝達率の増加を図っているが、冷媒の流れる冷媒流路(マイクロチャンネル)の流路面積が小さいため、冷媒の圧力損失が増大する。圧力損失が増大すると、マイクロチャンネルにおける冷媒流量を増やせなくなり、マイクロチャンネルを流れる冷媒の温度上昇量が増加する。その結果、発熱体を均一に冷却することが困難となり、冷却能力の低下を招くことになる。   In the microchannel cooling device, a large number of microchannels are formed to increase the heat transfer area and increase the heat transfer coefficient. However, since the flow area of the refrigerant flow path (microchannel) through which the refrigerant flows is small, The pressure loss increases. When the pressure loss increases, the refrigerant flow rate in the microchannel cannot be increased, and the temperature rise amount of the refrigerant flowing through the microchannel increases. As a result, it becomes difficult to cool the heating element uniformly, leading to a decrease in cooling capacity.

前述の特許文献2及び非特許文献1では、フィン上流路3の流路長さを短くすることで、マイクロチャンネルとしては圧力損失を比較的小さくしているものの、フィン間流路1の入口間に壁面(図26中B)があり、この壁面Bはフィン間流路2と冷却フィン4の厚み分の面積があるため、冷媒がフィン間流路1に流入する際に生じる圧力損失が増大する。同様に、フィン間流路2の出口間に、フィン間流路1と冷却フィン4の厚み分の面積を有する壁面(図26中C)があるため、冷媒がフィン間流路2から流出する際に生じる圧力損失が増大する。また、冷媒がフィン間流路1からフィン上流路3へ流れる際には、図26中のEで示す領域にて冷媒流れのよどみが発生することで、圧力損失が増大する。同様に、冷媒がフィン上流路3からフィン間流路2へ流れる際には、図26中のDで示す領域にて冷媒流れのよどみが発生することで、圧力損失が増大する。   In the above-mentioned Patent Document 2 and Non-Patent Document 1, although the pressure loss is relatively small as a microchannel by shortening the flow path length of the fin upper flow path 3, it is between the inlets of the inter-fin flow path 1. There is a wall surface (B in FIG. 26), and this wall surface B has an area corresponding to the thickness of the inter-fin flow path 2 and the cooling fin 4, so that the pressure loss generated when the refrigerant flows into the inter-fin flow path 1 increases. To do. Similarly, since there is a wall surface (C in FIG. 26) having an area corresponding to the thickness of the inter-fin channel 1 and the cooling fin 4 between the outlets of the inter-fin channel 2, the refrigerant flows out from the inter-fin channel 2. The pressure loss that occurs is increased. Further, when the refrigerant flows from the inter-fin flow path 1 to the fin upper flow path 3, stagnation of the refrigerant flow occurs in a region indicated by E in FIG. Similarly, when the refrigerant flows from the fin upper flow path 3 to the inter-fin flow path 2, the stagnation of the refrigerant flow occurs in the region indicated by D in FIG. 26, thereby increasing the pressure loss.

本発明は、冷媒の圧力損失を低減しながら冷却能力を向上させることができる冷却装置を提供することを目的とする。   An object of this invention is to provide the cooling device which can improve a cooling capability, reducing the pressure loss of a refrigerant | coolant.

本発明に係る冷却装置は、上述した目的を達成するために以下の手段を採った。   The cooling device according to the present invention employs the following means in order to achieve the above-described object.

本発明に係る冷却装置は、一主面に発熱体が載置される冷却板と、冷却板の一主面の裏面と間隔をおいて対向配置され、冷却板の裏面との間に冷媒流路が形成される底部材と、冷却板の裏面に立設され、互いに間隔をおいて配列された複数の上流側冷却フィンであって、互いに隣接する上流側冷却フィン間に上流側冷媒流路が形成される複数の上流側冷却フィンと、冷却板の裏面に立設され、上流側冷却フィンの配列方向と略平行方向に互いに間隔をおいて配列された複数の下流側冷却フィンであって、互いに隣接する下流側冷却フィン間に下流側冷媒流路が形成される複数の下流側冷却フィンと、底部材上に立てられた状態で配置され、上流側冷却フィンと下流側冷却フィンとを連結する複数の仕切板であって、上流側冷媒流路と下流側冷媒流路とを連通させる連通流路が冷却板の裏面との間に形成される複数の仕切板と、を備え、少なくとも一部の上流側冷却フィンには、上流側冷却フィンから下流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、少なくとも一部の下流側冷却フィンには、下流側冷却フィンから上流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、前記仕切板が連結された上流側冷却フィンは、冷媒流れ方向に直交する断面の面積が冷媒流れ方向の下流側から上流側へ向かうにつれて徐々に減少するフィンであることを要旨とする。   The cooling device according to the present invention is arranged so as to face the cooling plate on which the heating element is placed on one main surface and the back surface of the one main surface of the cooling plate at an interval, and the refrigerant flow between the back surface of the cooling plate. A plurality of upstream cooling fins standing on the back surface of the cooling plate and arranged at intervals from each other, and between the upstream cooling fins adjacent to each other. A plurality of upstream cooling fins formed on the back surface of the cooling plate, and a plurality of downstream cooling fins arranged at intervals from each other in a direction substantially parallel to the arrangement direction of the upstream cooling fins. A plurality of downstream cooling fins in which a downstream refrigerant flow path is formed between adjacent downstream cooling fins, and an upright cooling fin and a downstream cooling fin arranged in a standing state on the bottom member. A plurality of partition plates to be connected, the upstream refrigerant flow path and the downstream cooling A plurality of partition plates formed between the back surface of the cooling plate and a communication flow channel that communicates with the flow channel, and at least some of the upstream cooling fins include the upstream cooling fins and the downstream cooling fins. The partition plates that are gradually increased in distance from each other are connected to each other, and at least some of the downstream cooling fins are gradually increased from the downstream cooling fins toward the upstream cooling fins. The upstream cooling fin to which the partition plates are connected is a fin whose area of a cross section perpendicular to the refrigerant flow direction gradually decreases from the downstream side to the upstream side in the refrigerant flow direction. To do.

この本発明においては、連通流路を流れる冷媒が冷却板の裏面に衝突することで、冷却板との熱交換を促進させることができ、冷却能力を向上させることができる。さらに、上流側冷却フィンにおける冷媒流れ方向に直交する断面の面積を冷媒流れ方向の下流側から上流側へ向かうにつれて徐々に減少させることで、上流側冷却フィンの上流側先端部付近にて冷媒流れのよどみ域が発生するのを抑制することができ、冷媒が上流側冷媒流路に流入する際に生じる圧力損失を低減することができる。   In the present invention, the refrigerant flowing through the communication channel collides with the back surface of the cooling plate, whereby heat exchange with the cooling plate can be promoted, and the cooling capacity can be improved. Further, by gradually decreasing the area of the cross section orthogonal to the refrigerant flow direction in the upstream cooling fin from the downstream side to the upstream side in the refrigerant flow direction, the refrigerant flow near the upstream end of the upstream cooling fin. It is possible to suppress the occurrence of a stagnation region, and it is possible to reduce pressure loss that occurs when the refrigerant flows into the upstream refrigerant flow path.

また、本発明に係る冷却装置は、一主面に発熱体が載置される冷却板と、冷却板の一主面の裏面と間隔をおいて対向配置され、冷却板の裏面との間に冷媒流路が形成される底部材と、冷却板の裏面に立設され、互いに間隔をおいて配列された複数の上流側冷却フィンであって、互いに隣接する上流側冷却フィン間に上流側冷媒流路が形成される複数の上流側冷却フィンと、冷却板の裏面に立設され、上流側冷却フィンの配列方向と略平行方向に互いに間隔をおいて配列された複数の下流側冷却フィンであって、互いに隣接する下流側冷却フィン間に下流側冷媒流路が形成される複数の下流側冷却フィンと、底部材上に立てられた状態で配置され、上流側冷却フィンと下流側冷却フィンとを連結する複数の仕切板であって、上流側冷媒流路と下流側冷媒流路とを連通させる連通流路が冷却板の裏面との間に形成される複数の仕切板と、を備え、少なくとも一部の上流側冷却フィンには、上流側冷却フィンから下流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、少なくとも一部の下流側冷却フィンには、下流側冷却フィンから上流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、前記上流側冷却フィンに連結された仕切板は、当該上流側冷却フィンとの連結部分またはその付近にて互いに結合され、前記仕切板が連結された上流側冷却フィンは、薄板形状のフィンであることを要旨とする。   Further, the cooling device according to the present invention is disposed between the cooling plate on which the heating element is placed on one main surface, and the back surface of the one main surface of the cooling plate with a space therebetween, and between the back surface of the cooling plate. A plurality of upstream cooling fins standing on the back surface of the cooling plate and arranged on the back surface of the cooling plate and spaced apart from each other, and between the upstream cooling fins adjacent to each other. A plurality of upstream cooling fins in which flow paths are formed, and a plurality of downstream cooling fins standing on the back surface of the cooling plate and arranged at intervals from each other in a direction substantially parallel to the arrangement direction of the upstream cooling fins A plurality of downstream cooling fins in which a downstream refrigerant flow path is formed between adjacent downstream cooling fins, and an upstream cooling fin and a downstream cooling fin arranged in a standing state on the bottom member. A plurality of partition plates connecting the upstream refrigerant flow path and the lower A plurality of partition plates formed between the back surface of the cooling plate and a communication channel that communicates with the side refrigerant channel, and at least some of the upstream cooling fins are located downstream from the upstream cooling fins. Partition plates that gradually increase in distance from each other toward the cooling fins are connected, and at least some of the downstream cooling fins gradually increase from each other toward the upstream cooling fins. Partition plates are connected, and the partition plates connected to the upstream side cooling fins are coupled to each other at or near the connection portion with the upstream side cooling fins, and the upstream side cooling fins to which the partition plates are connected are The gist is that the fin is a thin plate.

この本発明においては、連通流路を流れる冷媒が冷却板の裏面に衝突することで、冷却板との熱交換を促進させることができ、冷却能力を向上させることができる。さらに、上流側冷却フィンに連結された仕切板は、この上流側冷却フィンとの連結部分またはその付近にて互いに結合され、この仕切板が連結された上流側冷却フィンは、薄板形状のフィンであることで、上流側冷却フィンの上流側先端部付近にて冷媒流れのよどみ域が発生するのを抑制することができ、冷媒が上流側冷媒流路に流入する際に生じる圧力損失を低減することができる。   In the present invention, the refrigerant flowing through the communication channel collides with the back surface of the cooling plate, whereby heat exchange with the cooling plate can be promoted, and the cooling capacity can be improved. Further, the partition plates connected to the upstream side cooling fins are coupled to each other at or near the connection portion with the upstream side cooling fins, and the upstream side cooling fins connected to the partition plates are thin plate-shaped fins. As a result, it is possible to suppress the occurrence of a stagnation region of the refrigerant flow in the vicinity of the upstream end of the upstream cooling fin, and to reduce the pressure loss that occurs when the refrigerant flows into the upstream refrigerant flow path. be able to.

本発明の一態様では、前記仕切板が連結された下流側冷却フィンは、冷媒流れ方向に直交する断面の面積が冷媒流れ方向の上流側から下流側へ向かうにつれて徐々に減少するフィンであることが好適である。また、本発明の一態様では、前記下流側冷却フィンに連結された仕切板は、当該下流側冷却フィンとの連結部分またはその付近にて互いに結合され、前記仕切板が連結された下流側冷却フィンは、薄板形状のフィンであることが好適である。   In one aspect of the present invention, the downstream cooling fin to which the partition plate is connected is a fin whose area of a cross section perpendicular to the refrigerant flow direction gradually decreases from the upstream side to the downstream side in the refrigerant flow direction. Is preferred. In one aspect of the present invention, the partition plates connected to the downstream cooling fins are coupled to each other at or near the connection portion with the downstream cooling fin, and the downstream cooling to which the partition plates are connected. The fins are preferably thin plate-shaped fins.

また、本発明に係る冷却装置は、一主面に発熱体が載置される冷却板と、冷却板の一主面の裏面と間隔をおいて対向配置され、冷却板の裏面との間に冷媒流路が形成される底部材と、冷却板の裏面に立設され、互いに間隔をおいて配列された複数の上流側冷却フィンであって、互いに隣接する上流側冷却フィン間に上流側冷媒流路が形成される複数の上流側冷却フィンと、冷却板の裏面に立設され、上流側冷却フィンの配列方向と略平行方向に互いに間隔をおいて配列された複数の下流側冷却フィンであって、互いに隣接する下流側冷却フィン間に下流側冷媒流路が形成される複数の下流側冷却フィンと、底部材上に立てられた状態で配置され、上流側冷却フィンと下流側冷却フィンとを連結する複数の仕切板であって、上流側冷媒流路と下流側冷媒流路とを連通させる連通流路が冷却板の裏面との間に形成される複数の仕切板と、を備え、少なくとも一部の上流側冷却フィンには、上流側冷却フィンから下流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、少なくとも一部の下流側冷却フィンには、下流側冷却フィンから上流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、前記仕切板が連結された下流側冷却フィンは、冷媒流れ方向に直交する断面の面積が冷媒流れ方向の上流側から下流側へ向かうにつれて徐々に減少するフィンであることを要旨とする。   Further, the cooling device according to the present invention is disposed between the cooling plate on which the heating element is placed on one main surface, and the back surface of the one main surface of the cooling plate with a space therebetween, and between the back surface of the cooling plate. A plurality of upstream cooling fins standing on the back surface of the cooling plate and arranged on the back surface of the cooling plate and spaced apart from each other, and between the upstream cooling fins adjacent to each other. A plurality of upstream cooling fins in which flow paths are formed, and a plurality of downstream cooling fins standing on the back surface of the cooling plate and arranged at intervals from each other in a direction substantially parallel to the arrangement direction of the upstream cooling fins A plurality of downstream cooling fins in which a downstream refrigerant flow path is formed between adjacent downstream cooling fins, and an upstream cooling fin and a downstream cooling fin arranged in a standing state on the bottom member. A plurality of partition plates connecting the upstream refrigerant flow path and the lower A plurality of partition plates formed between the back surface of the cooling plate and a communication channel that communicates with the side refrigerant channel, and at least some of the upstream cooling fins are located downstream from the upstream cooling fins. Partition plates that gradually increase in distance from each other toward the cooling fins are connected, and at least some of the downstream cooling fins gradually increase from each other toward the upstream cooling fins. The partition plate is connected, and the downstream side cooling fin to which the partition plate is connected is a fin whose area of a cross section perpendicular to the refrigerant flow direction gradually decreases from the upstream side to the downstream side in the refrigerant flow direction. The gist.

この本発明においては、連通流路を流れる冷媒が冷却板の裏面に衝突することで、冷却板との熱交換を促進させることができ、冷却能力を向上させることができる。さらに、下流側冷却フィンにおける冷媒流れ方向に直交する断面の面積を冷媒流れの上流側から下流側へ向かうにつれて徐々に減少させることで、下流側冷却フィンの下流側先端部付近にて冷媒流れのよどみ域が発生するのを抑制することができ、冷媒が下流側冷媒流路から流出する際に生じる圧力損失を低減することができる。   In the present invention, the refrigerant flowing through the communication channel collides with the back surface of the cooling plate, whereby heat exchange with the cooling plate can be promoted, and the cooling capacity can be improved. Further, the area of the cross section perpendicular to the refrigerant flow direction in the downstream cooling fin is gradually reduced from the upstream side to the downstream side of the refrigerant flow, so that the refrigerant flow is reduced in the vicinity of the downstream end of the downstream cooling fin. Occurrence of a stagnation region can be suppressed, and pressure loss that occurs when the refrigerant flows out of the downstream refrigerant flow path can be reduced.

また、本発明に係る冷却装置は、一主面に発熱体が載置される冷却板と、冷却板の一主面の裏面と間隔をおいて対向配置され、冷却板の裏面との間に冷媒流路が形成される底部材と、冷却板の裏面に立設され、互いに間隔をおいて配列された複数の上流側冷却フィンであって、互いに隣接する上流側冷却フィン間に上流側冷媒流路が形成される複数の上流側冷却フィンと、冷却板の裏面に立設され、上流側冷却フィンの配列方向と略平行方向に互いに間隔をおいて配列された複数の下流側冷却フィンであって、互いに隣接する下流側冷却フィン間に下流側冷媒流路が形成される複数の下流側冷却フィンと、底部材上に立てられた状態で配置され、上流側冷却フィンと下流側冷却フィンとを連結する複数の仕切板であって、上流側冷媒流路と下流側冷媒流路とを連通させる連通流路が冷却板の裏面との間に形成される複数の仕切板と、を備え、少なくとも一部の上流側冷却フィンには、上流側冷却フィンから下流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、少なくとも一部の下流側冷却フィンには、下流側冷却フィンから上流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、前記下流側冷却フィンに連結された仕切板は、当該下流側冷却フィンとの連結部分またはその付近にて互いに結合され、前記仕切板が連結された下流側冷却フィンは、薄板形状のフィンであることを要旨とする。   Further, the cooling device according to the present invention is disposed between the cooling plate on which the heating element is placed on one main surface, and the back surface of the one main surface of the cooling plate with a space therebetween, and between the back surface of the cooling plate. A plurality of upstream cooling fins standing on the back surface of the cooling plate and arranged on the back surface of the cooling plate and spaced apart from each other, and between the upstream cooling fins adjacent to each other. A plurality of upstream cooling fins in which flow paths are formed, and a plurality of downstream cooling fins standing on the back surface of the cooling plate and arranged at intervals from each other in a direction substantially parallel to the arrangement direction of the upstream cooling fins A plurality of downstream cooling fins in which a downstream refrigerant flow path is formed between adjacent downstream cooling fins, and an upstream cooling fin and a downstream cooling fin arranged in a standing state on the bottom member. A plurality of partition plates connecting the upstream refrigerant flow path and the lower A plurality of partition plates formed between the back surface of the cooling plate and a communication channel that communicates with the side refrigerant channel, and at least some of the upstream cooling fins are located downstream from the upstream cooling fins. Partition plates that gradually increase each other toward the cooling fins are connected, and at least some of the downstream cooling fins gradually increase each other as they go from the downstream cooling fins to the upstream cooling fins. Partition plates are connected, and the partition plates connected to the downstream cooling fins are connected to each other at or near the connection portion with the downstream cooling fins, and the downstream cooling fins connected to the partition plates are The gist is that the fin is a thin plate.

この本発明においては、連通流路を流れる冷媒が冷却板の裏面に衝突することで、冷却板との熱交換を促進させることができ、冷却能力を向上させることができる。さらに、下流側冷却フィンに連結された仕切板は、この下流側冷却フィンとの連結部分またはその付近にて互いに結合され、この仕切板が連結された下流側冷却フィンは、薄板形状のフィンであることで、下流側冷却フィンの下流側先端部付近にて冷媒流れのよどみ域が発生するのを抑制することができ、冷媒が下流側冷媒流路から流出する際に生じる圧力損失を低減することができる。   In the present invention, the refrigerant flowing through the communication channel collides with the back surface of the cooling plate, whereby heat exchange with the cooling plate can be promoted, and the cooling capacity can be improved. Further, the partition plates connected to the downstream cooling fins are coupled to each other at or near the connection portion with the downstream cooling fins, and the downstream cooling fins connected to the partition plates are thin plate-shaped fins. As a result, it is possible to suppress the occurrence of a stagnation region of the refrigerant flow in the vicinity of the downstream end of the downstream side cooling fin, and to reduce the pressure loss that occurs when the refrigerant flows out of the downstream side refrigerant flow path. be able to.

本発明の一態様では、底部材には、上流側冷媒流路から連通流路へ向かうにつれて冷却板の裏面との間隔が徐々に減少する上流側傾斜部が設けられていることが好適である。また、本発明の一態様では、底部材には、連通流路から下流側冷媒流路へ向かうにつれて冷却板の裏面との間隔が徐々に増大する下流側傾斜部が設けられていることが好適である。   In one aspect of the present invention, it is preferable that the bottom member is provided with an upstream inclined portion in which the distance from the back surface of the cooling plate gradually decreases as it goes from the upstream refrigerant flow path to the communication flow path. . In one aspect of the present invention, the bottom member is preferably provided with a downstream inclined portion in which the distance from the back surface of the cooling plate gradually increases as it goes from the communication flow path to the downstream refrigerant flow path. It is.

また、本発明に係る冷却装置は、一主面に発熱体が載置される冷却板と、冷却板の一主面の裏面と間隔をおいて対向配置され、冷却板の裏面との間に冷媒流路が形成される底部材と、冷却板の裏面に立設され、互いに間隔をおいて配列された複数の上流側冷却フィンであって、互いに隣接する上流側冷却フィン間に上流側冷媒流路が形成される複数の上流側冷却フィンと、冷却板の裏面に立設され、上流側冷却フィンの配列方向と略平行方向に互いに間隔をおいて配列された複数の下流側冷却フィンであって、互いに隣接する下流側冷却フィン間に下流側冷媒流路が形成される複数の下流側冷却フィンと、底部材上に立てられた状態で配置され、上流側冷却フィンと下流側冷却フィンとを連結する複数の仕切板であって、上流側冷媒流路と下流側冷媒流路とを連通させる連通流路が冷却板の裏面との間に形成される複数の仕切板と、を備え、少なくとも一部の上流側冷却フィンには、上流側冷却フィンから下流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、少なくとも一部の下流側冷却フィンには、下流側冷却フィンから上流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、底部材には、上流側冷媒流路から連通流路へ向かうにつれて冷却板の裏面との間隔が徐々に減少する上流側傾斜部が設けられていることを要旨とする。   Further, the cooling device according to the present invention is disposed between the cooling plate on which the heating element is placed on one main surface, and the back surface of the one main surface of the cooling plate with a space therebetween, and between the back surface of the cooling plate. A plurality of upstream cooling fins standing on the back surface of the cooling plate and arranged on the back surface of the cooling plate and spaced apart from each other, and between the upstream cooling fins adjacent to each other. A plurality of upstream cooling fins in which flow paths are formed, and a plurality of downstream cooling fins standing on the back surface of the cooling plate and arranged at intervals from each other in a direction substantially parallel to the arrangement direction of the upstream cooling fins A plurality of downstream cooling fins in which a downstream refrigerant flow path is formed between adjacent downstream cooling fins, and an upstream cooling fin and a downstream cooling fin arranged in a standing state on the bottom member. A plurality of partition plates connecting the upstream refrigerant flow path and the lower A plurality of partition plates formed between the back surface of the cooling plate and a communication channel that communicates with the side refrigerant channel, and at least some of the upstream cooling fins are located downstream from the upstream cooling fins. Partition plates that gradually increase in distance from each other toward the cooling fins are connected, and at least some of the downstream cooling fins gradually increase from each other toward the upstream cooling fins. The gist is that the partition plate is connected, and the bottom member is provided with an upstream inclined portion in which the distance from the back surface of the cooling plate gradually decreases as it goes from the upstream refrigerant flow path to the communication flow path.

この本発明においては、連通流路を流れる冷媒が冷却板の裏面に衝突することで、冷却板との熱交換を促進させることができ、冷却能力を向上させることができる。さらに、上流側冷媒流路から連通流路へ向かうにつれて冷却板の裏面との間隔が徐々に減少する上流側傾斜部を底部材に設けることで、冷媒流れが上流側冷媒流路から連通流路に移行する際によどみ域が発生するのを抑制することができ、冷媒が上流側冷媒流路から連通流路に流入する際に生じる圧力損失を低減することができる。上流側傾斜部を設けることで、冷却板の裏面への冷媒の衝突をさらに強化することができ、冷却板との熱交換をさらに促進させることができる。   In the present invention, the refrigerant flowing through the communication channel collides with the back surface of the cooling plate, whereby heat exchange with the cooling plate can be promoted, and the cooling capacity can be improved. Further, by providing an upstream inclined portion in the bottom member in which the distance from the back surface of the cooling plate gradually decreases from the upstream refrigerant flow path to the communication flow path, the refrigerant flow is communicated from the upstream refrigerant flow path to the communication flow path. It is possible to suppress the occurrence of a stagnation region when shifting to, and to reduce the pressure loss that occurs when the refrigerant flows from the upstream refrigerant flow path into the communication flow path. By providing the upstream inclined portion, the collision of the refrigerant with the back surface of the cooling plate can be further strengthened, and heat exchange with the cooling plate can be further promoted.

また、本発明に係る冷却装置は、一主面に発熱体が載置される冷却板と、冷却板の一主面の裏面と間隔をおいて対向配置され、冷却板の裏面との間に冷媒流路が形成される底部材と、冷却板の裏面に立設され、互いに間隔をおいて配列された複数の上流側冷却フィンであって、互いに隣接する上流側冷却フィン間に上流側冷媒流路が形成される複数の上流側冷却フィンと、冷却板の裏面に立設され、上流側冷却フィンの配列方向と略平行方向に互いに間隔をおいて配列された複数の下流側冷却フィンであって、互いに隣接する下流側冷却フィン間に下流側冷媒流路が形成される複数の下流側冷却フィンと、底部材上に立てられた状態で配置され、上流側冷却フィンと下流側冷却フィンとを連結する複数の仕切板であって、上流側冷媒流路と下流側冷媒流路とを連通させる連通流路が冷却板の裏面との間に形成される複数の仕切板と、を備え、少なくとも一部の上流側冷却フィンには、上流側冷却フィンから下流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、少なくとも一部の下流側冷却フィンには、下流側冷却フィンから上流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、底部材には、連通流路から下流側冷媒流路へ向かうにつれて冷却板の裏面との間隔が徐々に増大する下流側傾斜部が設けられていることを要旨とする。   Further, the cooling device according to the present invention is disposed between the cooling plate on which the heating element is placed on one main surface, and the back surface of the one main surface of the cooling plate with a space therebetween, and between the back surface of the cooling plate. A plurality of upstream cooling fins standing on the back surface of the cooling plate and arranged on the back surface of the cooling plate and spaced apart from each other, and between the upstream cooling fins adjacent to each other. A plurality of upstream cooling fins in which flow paths are formed, and a plurality of downstream cooling fins standing on the back surface of the cooling plate and arranged at intervals from each other in a direction substantially parallel to the arrangement direction of the upstream cooling fins A plurality of downstream cooling fins in which a downstream refrigerant flow path is formed between adjacent downstream cooling fins, and an upstream cooling fin and a downstream cooling fin arranged in a standing state on the bottom member. A plurality of partition plates connecting the upstream refrigerant flow path and the lower A plurality of partition plates formed between the back surface of the cooling plate and a communication channel that communicates with the side refrigerant channel, and at least some of the upstream cooling fins are located downstream from the upstream cooling fins. Partition plates that gradually increase in distance from each other toward the cooling fins are connected, and at least some of the downstream cooling fins gradually increase from each other toward the upstream cooling fins. The gist is that the partition plates are connected, and the bottom member is provided with a downstream inclined portion in which the distance from the back surface of the cooling plate gradually increases as it goes from the communication channel toward the downstream refrigerant channel.

この本発明においては、連通流路を流れる冷媒が冷却板の裏面に衝突することで、冷却板との熱交換を促進させることができ、冷却能力を向上させることができる。さらに、連通流路から下流側冷媒流路へ向かうにつれて冷却板の裏面との間隔が徐々に増大する下流側傾斜部を底部材に設けることで、冷媒流れが連通流路から下流側冷媒流路に移行する際によどみ域が発生するのを抑制することができ、冷媒が連通流路から下流側冷媒流路に流入する際に生じる圧力損失を低減することができる。   In the present invention, the refrigerant flowing through the communication channel collides with the back surface of the cooling plate, whereby heat exchange with the cooling plate can be promoted, and the cooling capacity can be improved. Further, by providing the bottom member with a downstream inclined portion that gradually increases in distance from the back surface of the cooling plate as it goes from the communication channel toward the downstream refrigerant channel, the refrigerant flow is changed from the communication channel to the downstream refrigerant channel. It is possible to suppress the occurrence of a stagnation region when shifting to, and to reduce the pressure loss that occurs when the refrigerant flows from the communication channel into the downstream refrigerant channel.

本発明によれば、冷媒の圧力損失を低減しながら冷却能力を向上させることができる。   According to the present invention, the cooling capacity can be improved while reducing the pressure loss of the refrigerant.

以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1〜4は、本発明の実施形態に係る冷却装置10の概略構成を示す図である。図1は上面側から見た内部の概略構成を示し、図2は側面側から見た内部の概略構成を示し、図3,4は内部の概略構成の斜視図を示す。冷却板12の表面(一主面)12a上には発熱体30が載置されている。冷却板12の表面積(表面12aの面積)は、発熱体30の面積より大きく設定されている。冷却板12の裏面(一主面の裏面)12b側には、底部材として底板22が冷却板12の裏面12bと間隔をおいて対向配置されている。冷却板12と底板22とは、互いに間隔をおいて対向配置された一対の側板24を介して連結されており、冷却板12の裏面12bと底板22との間、より具体的には、冷却板12の裏面12bと底板22と一対の側板24とに囲まれた空間に、冷媒の流れる冷媒流路が形成される。側板長手方向(図1の左右方向)に関する冷却装置10の両端部には、冷媒流入口36及び冷媒流出口46がそれぞれ形成されており、冷媒は冷媒流入口36から冷媒流路に流入して冷媒流出口46から流出する。なお、ここでの発熱体30の具体例としては、例えばIGBTやパワーMOSFET等の半導体素子(パワーデバイス)を挙げることができるが、他の電子部品であってもよい。また、ここでの冷媒の具体例としては、例えば水やフロン等の液体冷媒を挙げることができる。   1-4 is a figure which shows schematic structure of the cooling device 10 which concerns on embodiment of this invention. 1 shows an internal schematic configuration viewed from the upper surface side, FIG. 2 shows an internal schematic configuration viewed from the side surface side, and FIGS. 3 and 4 show perspective views of the internal schematic configuration. A heating element 30 is placed on the surface (one main surface) 12 a of the cooling plate 12. The surface area of the cooling plate 12 (the area of the surface 12a) is set larger than the area of the heating element 30. On the back surface (back surface of one main surface) 12b side of the cooling plate 12, a bottom plate 22 is disposed as a bottom member so as to face the back surface 12b of the cooling plate 12 with a gap. The cooling plate 12 and the bottom plate 22 are connected to each other via a pair of side plates 24 arranged to face each other with a space therebetween, and more specifically between the back surface 12b of the cooling plate 12 and the bottom plate 22. In the space surrounded by the back surface 12 b of the plate 12, the bottom plate 22, and the pair of side plates 24, a refrigerant flow path through which the refrigerant flows is formed. A refrigerant inlet 36 and a refrigerant outlet 46 are respectively formed at both ends of the cooling device 10 in the longitudinal direction of the side plate (left and right direction in FIG. 1). The refrigerant flows into the refrigerant flow path from the refrigerant inlet 36. It flows out from the refrigerant outlet 46. In addition, as a specific example of the heat generating body 30 here, for example, a semiconductor element (power device) such as an IGBT or a power MOSFET can be cited, but other electronic components may be used. Moreover, as a specific example of a refrigerant | coolant here, liquid refrigerants, such as water and a fluorocarbon, can be mentioned, for example.

冷却板12の裏面12bにおける発熱体30の裏側(直下)の位置には、複数の上流側冷却フィン14が立設されており、各上流側冷却フィン14の先端部は底板22に接合されている。図1〜4に示す例では、各上流側冷却フィン14の立設方向(図2の上下方向)は冷却板12の裏面12bと垂直方向であり、各上流側冷却フィン14の厚さ方向(図1の上下方向)は側板24の板面と垂直方向である。複数の上流側冷却フィン14は、その厚さ方向に関して互いに間隔をおいて配列されており、側板長手方向に関して冷媒流入口36と対向配置されている。厚さ方向に互いに隣接する上流側冷却フィン14間には、冷媒の流れる上流側冷媒流路16が形成されている。   A plurality of upstream cooling fins 14 are provided upright on the back surface 12 b of the cooling plate 12 on the back side (directly below) of the heating element 30, and the leading end portions of the upstream cooling fins 14 are joined to the bottom plate 22. Yes. In the example shown in FIGS. 1-4, the standing direction (up-down direction of FIG. 2) of each upstream cooling fin 14 is perpendicular to the back surface 12b of the cooling plate 12, and the thickness direction of each upstream cooling fin 14 ( The vertical direction in FIG. 1 is perpendicular to the plate surface of the side plate 24. The plurality of upstream cooling fins 14 are arranged at intervals with respect to the thickness direction, and are arranged to face the refrigerant inlet 36 in the longitudinal direction of the side plate. Between the upstream side cooling fins 14 adjacent to each other in the thickness direction, an upstream side refrigerant flow path 16 through which the refrigerant flows is formed.

さらに、冷却板12の裏面12bにおける発熱体30の裏側(直下)の位置には、複数の下流側冷却フィン15が立設されており、各下流側冷却フィン15の先端部も底板22に接合されている。図1〜4に示す例では、各下流側冷却フィン15の立設方向(図2の上下方向)も冷却板12の裏面12bと垂直方向であり、各下流側冷却フィン15の厚さ方向(図1の上下方向)も側板24の板面と垂直方向である。複数の下流側冷却フィン15も、その厚さ方向に関して互いに間隔をおいて配列されており、下流側冷却フィン15の配列方向は、上流側冷却フィン14の配列方向と平行(あるいはほぼ平行)である。複数の下流側冷却フィン15は、冷媒流れ方向(図1の左右方向)に関して複数の上流側冷却フィン14よりも下流側の位置に配置されており、側板長手方向に関して冷媒流出口46と対向配置されている。厚さ方向に互いに隣接する下流側冷却フィン15間には、冷媒の流れる下流側冷媒流路17が形成されている。図1〜4に示す例では、下流側冷却フィン15間の間隔が上流側冷却フィン14間の間隔と等しく設定されており、下流側冷媒流路17の流路断面積が上流側冷媒流路16の流路断面積と等しく設定されている。なお、上流側冷却フィン14及び下流側冷却フィン15については、冷却板12と一体で形成することもできるし、冷却板12と別体で形成して接合することもできる。   In addition, a plurality of downstream cooling fins 15 are erected on the back surface (directly below) of the heating element 30 on the back surface 12 b of the cooling plate 12, and the front ends of the respective downstream cooling fins 15 are also joined to the bottom plate 22. Has been. In the example shown in FIGS. 1-4, the standing direction (up-down direction of FIG. 2) of each downstream side cooling fin 15 is also a perpendicular | vertical direction with the back surface 12b of the cooling plate 12, and the thickness direction ( The vertical direction in FIG. 1 is also perpendicular to the plate surface of the side plate 24. The plurality of downstream cooling fins 15 are also arranged at intervals with respect to the thickness direction, and the arrangement direction of the downstream cooling fins 15 is parallel (or substantially parallel) to the arrangement direction of the upstream cooling fins 14. is there. The plurality of downstream cooling fins 15 are disposed at positions downstream of the plurality of upstream cooling fins 14 in the refrigerant flow direction (left-right direction in FIG. 1), and are disposed opposite to the refrigerant outlet 46 in the side plate longitudinal direction. Has been. Between the downstream cooling fins 15 adjacent to each other in the thickness direction, a downstream refrigerant flow path 17 through which the refrigerant flows is formed. In the example shown in FIGS. 1-4, the space | interval between the downstream cooling fins 15 is set equal to the space | interval between the upstream cooling fins 14, and the flow-path cross-sectional area of the downstream refrigerant flow path 17 is an upstream refrigerant flow path. It is set equal to 16 channel cross-sectional areas. The upstream cooling fins 14 and the downstream cooling fins 15 can be formed integrally with the cooling plate 12 or can be formed separately from the cooling plate 12 and joined together.

さらに、底板22における発熱体30の裏側(直下)の位置には、複数の仕切板20−1,20−2が立設されている。底板22上に立てられた複数の仕切板20−1,20−2は、冷媒流れ方向に関して上流側冷却フィン14と下流側冷却フィン15との間の位置に配置されており、上流側冷却フィン14及び下流側冷却フィン15の厚さ方向(図1の上下方向、以下フィン厚さ方向とする)に互いに間隔をおいて配置されている。各仕切板20−1,20−2は、その一端部が上流側冷却フィン14に連結され、その他端部が下流側冷却フィン15に連結されていることで、上流側冷却フィン14と下流側冷却フィン15とを連結する。各仕切板20−1,20−2と冷却板12の裏面12bとの間には、上流側冷媒流路16と下流側冷媒流路17とを連通させる連通流路18が形成されている。図1〜4に示す例では、仕切板20−1,20−2は冷却板12の裏面12bに直接接触しておらず、仕切板20−1(または仕切板20−2)と冷却板12の裏面12bと上流側冷却フィン14と下流側冷却フィン15とに囲まれた空間に連通流路18が形成されている。つまり、図1〜4に示す例では、連通流路18は、仕切板20−1(または仕切板20−2)の一端部から他端部にかけて(上流側冷却フィン14から下流側冷却フィン15にかけて)形成されている。そして、図1〜4に示す例では、仕切板20−1,20−2の高さが一端部から他端部にかけて一定であり、連通流路18の高さが一端部から他端部にかけて一定である。なお、仕切板20−1,20−2については、上流側冷却フィン14及び下流側冷却フィン15と一体で形成することもできるし、上流側冷却フィン14及び下流側冷却フィン15と別体で形成して接合することもできる。また、仕切板20−1,20−2については、底板22と一体で形成することもできるし、底板22と別体で形成して接合することもできる。   Further, a plurality of partition plates 20-1 and 20-2 are erected at a position on the bottom plate 22 on the back side (directly below) of the heating element 30. The plurality of partition plates 20-1 and 20-2 standing on the bottom plate 22 are arranged at positions between the upstream side cooling fins 14 and the downstream side cooling fins 15 with respect to the refrigerant flow direction. 14 and the downstream cooling fins 15 are arranged at a distance from each other in the thickness direction (vertical direction in FIG. 1, hereinafter referred to as fin thickness direction). Each of the partition plates 20-1 and 20-2 is connected to the upstream side cooling fin 14 at one end and is connected to the downstream side cooling fin 15 at the other end. The cooling fin 15 is connected. Between each partition plate 20-1, 20-2 and the back surface 12 b of the cooling plate 12, a communication channel 18 that connects the upstream refrigerant channel 16 and the downstream refrigerant channel 17 is formed. 1-4, the partition plates 20-1 and 20-2 are not in direct contact with the back surface 12b of the cooling plate 12, and the partition plate 20-1 (or the partition plate 20-2) and the cooling plate 12 are not in contact with each other. A communication flow path 18 is formed in a space surrounded by the back surface 12b of the first, the upstream cooling fins 14, and the downstream cooling fins 15. That is, in the example shown in FIGS. 1 to 4, the communication flow path 18 extends from one end of the partition plate 20-1 (or the partition plate 20-2) to the other end (from the upstream side cooling fin 14 to the downstream side cooling fin 15. Is formed). 1-4, the height of the partition plates 20-1 and 20-2 is constant from one end to the other end, and the height of the communication channel 18 is from one end to the other end. It is constant. The partition plates 20-1 and 20-2 can be formed integrally with the upstream cooling fins 14 and the downstream cooling fins 15, or separately from the upstream cooling fins 14 and the downstream cooling fins 15. It can also be formed and joined. Further, the partition plates 20-1 and 20-2 can be formed integrally with the bottom plate 22, or can be formed separately from the bottom plate 22 and joined.

上流側冷却フィン14及び下流側冷却フィン15は、フィン厚さ方向に関する位置を互いにずらして配置されており、側板長手方向に関して、上流側冷却フィン14が下流側冷媒流路17と対向配置され、下流側冷却フィン15が上流側冷媒流路16と対向配置されている。各上流側冷却フィン14(あるいは少なくとも一部の上流側冷却フィン14)には、フィン厚さ方向に互いに隣接する一対の仕切板20−1,20−2が連結されている。この上流側冷却フィン14に連結された一対の仕切板20−1,20−2は、上流側冷却フィン14から下流側冷却フィン15へ向かうにつれて互いの間隔が徐々に増大するように所定の角度を成して互いに傾斜しており、フィン厚さ方向に互いに隣接する一対の下流側冷却フィン15にそれぞれ連結されている。そして、この一対の仕切板20−1,20−2と冷却板12の裏面12bとの間にそれぞれ形成された一対の連通流路18が、この一対の仕切板20−1,20−2にそれぞれ連結された一対の下流側冷却フィン15間に形成された下流側冷媒流路17と連通している。また、各下流側冷却フィン15(あるいは少なくとも一部の下流側冷却フィン15)にも、フィン厚さ方向に互いに隣接する一対の仕切板20−1,20−2が連結されている。この下流側冷却フィン15に連結された一対の仕切板20−1,20−2は、下流側冷却フィン15から上流側冷却フィン14へ向かうにつれて互いの間隔が徐々に増大するように所定の角度を成して互いに傾斜しており、フィン厚さ方向に互いに隣接する一対の上流側冷却フィン14にそれぞれ連結されている。そして、この一対の仕切板20−1,20−2と冷却板12の裏面12bとの間にそれぞれ形成された一対の連通流路18が、この一対の仕切板20−1,20−2にそれぞれ連結された一対の上流側冷却フィン14間に形成された上流側冷媒流路16と連通している。   The upstream side cooling fins 14 and the downstream side cooling fins 15 are arranged so that the positions in the fin thickness direction are shifted from each other, and the upstream side cooling fins 14 are arranged to face the downstream side refrigerant flow path 17 with respect to the side plate longitudinal direction. The downstream side cooling fins 15 are arranged to face the upstream side refrigerant flow path 16. A pair of partition plates 20-1 and 20-2 adjacent to each other in the fin thickness direction is connected to each upstream cooling fin 14 (or at least a part of the upstream cooling fins 14). The pair of partition plates 20-1 and 20-2 connected to the upstream side cooling fins 14 has a predetermined angle so that the distance between them increases gradually from the upstream side cooling fins 14 toward the downstream side cooling fins 15. And are connected to a pair of downstream cooling fins 15 adjacent to each other in the fin thickness direction. A pair of communication channels 18 formed between the pair of partition plates 20-1 and 20-2 and the back surface 12 b of the cooling plate 12 are connected to the pair of partition plates 20-1 and 20-2. It communicates with a downstream refrigerant passage 17 formed between a pair of downstream cooling fins 15 connected to each other. In addition, a pair of partition plates 20-1 and 20-2 adjacent to each other in the fin thickness direction is also connected to each downstream cooling fin 15 (or at least a part of the downstream cooling fins 15). The pair of partition plates 20-1 and 20-2 connected to the downstream side cooling fins 15 have a predetermined angle so that the distance between them gradually increases from the downstream side cooling fins 15 toward the upstream side cooling fins 14. Are connected to a pair of upstream cooling fins 14 adjacent to each other in the fin thickness direction. A pair of communication channels 18 formed between the pair of partition plates 20-1 and 20-2 and the back surface 12 b of the cooling plate 12 are connected to the pair of partition plates 20-1 and 20-2. It communicates with an upstream refrigerant flow path 16 formed between a pair of upstream cooling fins 14 connected to each other.

本実施形態では、一対の仕切板20−1,20−2が連結された各上流側冷却フィン14は、その厚さが冷媒流れ方向の下流側から上流側へ向かうにつれて徐々に減少する形状を呈している。各上流側冷却フィン14は、この形状によって、冷媒流れ方向に直交する断面の面積が冷媒流れ方向の下流側から上流側へ向かうにつれて徐々に減少する。そして、一対の仕切板20−1,20−2が連結された各下流側冷却フィン15は、その厚さが冷媒流れ方向の上流側から下流側へ向かうにつれて徐々に減少する形状を呈している。各下流側冷却フィン15は、この形状によって、冷媒流れ方向に直交する断面の面積が冷媒流れ方向の上流側から下流側へ向かうにつれて徐々に減少する。図1〜4に示す例では、各上流側冷却フィン14は、冷媒流入口36と対向する上流側の先端部が鋭角となるくさび形状を呈しており、各下流側冷却フィン15は、冷媒流出口46と対向する下流側の先端部が鋭角となるくさび形状を呈している。   In this embodiment, each upstream side cooling fin 14 to which the pair of partition plates 20-1 and 20-2 is connected has a shape in which the thickness gradually decreases from the downstream side to the upstream side in the refrigerant flow direction. Presents. Due to this shape, each upstream-side cooling fin 14 gradually decreases in area from the cross section perpendicular to the refrigerant flow direction from the downstream side to the upstream side in the refrigerant flow direction. And each downstream side cooling fin 15 with which a pair of partition plates 20-1 and 20-2 was connected is exhibiting the shape which the thickness decreases gradually as it goes to the downstream from the upstream in a refrigerant | coolant flow direction. . Due to this shape, each downstream cooling fin 15 gradually decreases in area from the cross section perpendicular to the refrigerant flow direction from the upstream side to the downstream side in the refrigerant flow direction. In the example shown in FIGS. 1 to 4, each upstream cooling fin 14 has a wedge shape with an acute tip at the upstream side facing the refrigerant inlet 36, and each downstream cooling fin 15 has a refrigerant flow The downstream end facing the outlet 46 has a wedge shape with an acute angle.

さらに、本実施形態では、底板22における発熱体30の裏側(直下)の位置には、上流側冷媒流路16から連通流路18へ向かうにつれて冷却板12の裏面12bとの間隔が徐々に減少するように冷却板12の裏面12bに対し傾斜した上流側傾斜面26aを有する上流側傾斜部26が設けられている。上流側傾斜部26は、その上流側端部が隣接する上流側冷却フィン14に連結され、その下流側端部が下流側冷却フィン15に連結され、その上流側端部と下流側端部との間の部分が隣接する仕切板20−1,20−2に連結されている。上流側傾斜部26(上流側傾斜面26a)の高さは、その上流側端部から下流側端部へ向かうにつれて徐々に高くなっており、その下流側端部の高さが仕切板20−1,20−2の高さと等しく(あるいはほぼ等しく)設定されている。そして、底板22における発熱体30の裏側(直下)の位置には、連通流路18から下流側冷媒流路17へ向かうにつれて冷却板12の裏面12bとの間隔が徐々に増大するように冷却板12の裏面12bに対し傾斜した下流側傾斜面27aを有する下流側傾斜部27が設けられている。下流側傾斜部27は、その上流側端部が上流側冷却フィン14に連結され、その下流側端部が隣接する下流側冷却フィン15に連結され、その上流側端部と下流側端部との間の部分が隣接する仕切板20−1,20−2に連結されている。下流側傾斜部27(下流側傾斜面27a)の高さは、その上流側端部から下流側端部へ向かうにつれて徐々に低くなっており、その上流側端部の高さが仕切板20−1,20−2の高さと等しく(あるいはほぼ等しく)設定されている。図1〜4は、上流側傾斜面26a及び下流側傾斜面27aが平面形状である例を示している。なお、上流側傾斜部26及び下流側傾斜部27については、底板22と一体で形成することもできるし、底板22と別体で形成して接合することもできる。   Furthermore, in the present embodiment, at the position on the back side (directly below) of the heating element 30 in the bottom plate 22, the distance from the back surface 12 b of the cooling plate 12 gradually decreases as it goes from the upstream refrigerant flow path 16 to the communication flow path 18. Thus, an upstream inclined portion 26 having an upstream inclined surface 26 a inclined with respect to the back surface 12 b of the cooling plate 12 is provided. The upstream inclined portion 26 has an upstream end connected to the adjacent upstream cooling fin 14, a downstream end connected to the downstream cooling fin 15, and an upstream end and a downstream end The part between is connected to the adjacent partition plates 20-1 and 20-2. The height of the upstream inclined portion 26 (upstream inclined surface 26a) gradually increases from the upstream end to the downstream end, and the height of the downstream end is the partition plate 20-. It is set equal to (or substantially equal to) the height of 1,20-2. Then, at the position on the back side (directly below) of the heating element 30 in the bottom plate 22, the cooling plate is such that the distance from the back surface 12 b of the cooling plate 12 gradually increases from the communication flow path 18 toward the downstream refrigerant flow path 17. A downstream inclined portion 27 having a downstream inclined surface 27 a that is inclined with respect to the back surface 12 b of 12 is provided. The downstream inclined portion 27 has an upstream end connected to the upstream cooling fin 14, a downstream end connected to the adjacent downstream cooling fin 15, and an upstream end and a downstream end The part between is connected to the adjacent partition plates 20-1 and 20-2. The height of the downstream inclined portion 27 (downstream inclined surface 27a) gradually decreases from the upstream end to the downstream end, and the height of the upstream end is the partition plate 20-. It is set equal to (or substantially equal to) the height of 1,20-2. 1-4 shows an example in which the upstream inclined surface 26a and the downstream inclined surface 27a are planar. The upstream inclined portion 26 and the downstream inclined portion 27 can be formed integrally with the bottom plate 22 or can be formed separately from the bottom plate 22 and joined.

本実施形態に係る冷却装置10において、発熱体30で発生した熱は、冷却板12に伝えられ、さらに、上流側冷却フィン14及び下流側冷却フィン15に伝えられる。冷媒流入口36から供給された冷媒(液体冷媒)は、図5,6に示すように、上流側冷媒流路16に流入し、この上流側冷媒流路16を形成する上流側冷却フィン14との間で熱交換を行うことで、発熱体30からの除熱が行われる。本実施形態では、上流側冷媒流路16を形成する上流側冷却フィン14の厚さを下流側から上流側へ向かうにつれて徐々に薄くすることで、冷媒流入口36の流路断面積と上流側冷媒流路16の入口部の流路断面積との差を小さくすることができ、冷媒流れが冷媒流入口36から上流側冷媒流路16に流入する際に流路断面積が急激に縮小し冷媒流れが上流側冷媒流路16の壁面から剥離することを抑制することができる。これによって、上流側冷却フィン14の上流側先端部付近にて冷媒流れのよどみ域が発生するのを抑制し、液体冷媒が上流側冷媒流路16に流入する際に生じる圧力損失を低減することができる。   In the cooling device 10 according to the present embodiment, the heat generated in the heating element 30 is transmitted to the cooling plate 12 and further transmitted to the upstream cooling fins 14 and the downstream cooling fins 15. As shown in FIGS. 5 and 6, the refrigerant (liquid refrigerant) supplied from the refrigerant inlet 36 flows into the upstream refrigerant flow path 16, and the upstream cooling fins 14 that form the upstream refrigerant flow path 16. The heat is removed from the heating element 30 by exchanging heat between the two. In this embodiment, the thickness of the upstream cooling fins 14 forming the upstream refrigerant flow path 16 is gradually reduced from the downstream side toward the upstream side, whereby the flow path cross-sectional area of the refrigerant inlet 36 and the upstream side are increased. The difference from the flow path cross-sectional area of the inlet of the refrigerant flow path 16 can be reduced, and the flow path cross-sectional area rapidly decreases when the refrigerant flow flows from the refrigerant flow inlet 36 into the upstream refrigerant flow path 16. It is possible to prevent the refrigerant flow from being separated from the wall surface of the upstream side refrigerant flow path 16. This suppresses the occurrence of a stagnation region of the refrigerant flow in the vicinity of the upstream end of the upstream cooling fin 14 and reduces the pressure loss that occurs when the liquid refrigerant flows into the upstream refrigerant flow path 16. Can do.

上流側冷媒流路16に供給された(上流側冷却フィン14との間で熱交換を行った)冷媒は、図5,6に示すように、冷却板12の裏面12bに面し且つこの上流側冷媒流路16と連通する一対の連通流路18に分かれて流入する。この一対の連通流路18をそれぞれ通る冷媒は、冷却板12との間で熱交換を行う。この熱交換によっても、発熱体30からの除熱が行われる。本実施形態では、上流側冷媒流路16から連通流路18へ向かうにつれて高さが徐々に高くなる上流側傾斜部26を底板22に設けることで、上流側冷媒流路16に流入した冷媒の流れ方向を冷却板12の裏面12b側へ向けて傾斜させることができ、液体冷媒を冷却板12の裏面12bに衝突させて冷却板12との熱交換を促進させることができる。そして、液体冷媒が上流側冷媒流路16から連通流路18へ流れる際に、仕切板20−1,20−2間の流路28にて冷媒流れのよどみ域が発生するのを抑制することができる。さらに、本実施形態では、連通流路18を仕切板20−1(または仕切板20−2)の一端部から他端部に渡って形成することで、液体冷媒が連通流路18に流入する際に、連通流路18の入口付近にて冷媒流れのよどみ域が発生するのを抑制することができる。   As shown in FIGS. 5 and 6, the refrigerant supplied to the upstream refrigerant flow path 16 (having exchanged heat with the upstream cooling fins 14) faces the back surface 12b of the cooling plate 12 and this upstream side. The refrigerant flows into a pair of communication channels 18 communicating with the side refrigerant channel 16. The refrigerant passing through each of the pair of communication channels 18 exchanges heat with the cooling plate 12. This heat exchange also removes heat from the heating element 30. In the present embodiment, by providing the bottom plate 22 with the upstream inclined portion 26 whose height gradually increases from the upstream refrigerant flow path 16 toward the communication flow path 18, the refrigerant flowing into the upstream refrigerant flow path 16 is The flow direction can be inclined toward the back surface 12 b side of the cooling plate 12, and the liquid refrigerant can collide with the back surface 12 b of the cooling plate 12 to promote heat exchange with the cooling plate 12. When the liquid refrigerant flows from the upstream refrigerant flow path 16 to the communication flow path 18, the occurrence of a stagnation region of the refrigerant flow in the flow path 28 between the partition plates 20-1 and 20-2 is suppressed. Can do. Furthermore, in this embodiment, the liquid refrigerant flows into the communication channel 18 by forming the communication channel 18 from one end of the partition plate 20-1 (or the partition plate 20-2) to the other end. At this time, it is possible to suppress the occurrence of a stagnation region of the refrigerant flow in the vicinity of the inlet of the communication flow path 18.

連通流路18に供給された(冷却板12との間で熱交換を行った)冷媒は、図5に示すように、下流側冷媒流路17に流入し、この下流側冷媒流路17を形成する下流側冷却フィン15との間で熱交換を行うことで、発熱体30からの除熱が行われる。その際には、下流側冷媒流路17と連通する一対の連通流路18からの冷媒が合流してこの下流側冷媒流路17に流入する。本実施形態では、連通流路18から下流側冷媒流路17へ向かうにつれて高さが徐々に低くなる下流側傾斜部27を底板22に設けることで、液体冷媒が連通流路18から下流側冷媒流路17へ流れる際に、仕切板20−1,20−2間の流路29にて冷媒流れのよどみ域が発生するのを抑制することができる。   As shown in FIG. 5, the refrigerant supplied to the communication flow path 18 (heat exchanged with the cooling plate 12) flows into the downstream refrigerant flow path 17, and the downstream refrigerant flow path 17 is Heat is removed from the heating element 30 by exchanging heat with the downstream cooling fins 15 to be formed. In that case, the refrigerant | coolant from a pair of communicating flow path 18 connected with the downstream refrigerant flow path 17 joins, and flows in into this downstream refrigerant flow path 17. In the present embodiment, the bottom plate 22 is provided with the downstream inclined portion 27 whose height gradually decreases from the communication flow path 18 toward the downstream refrigerant flow path 17, so that the liquid refrigerant flows from the communication flow path 18 to the downstream refrigerant. When flowing to the flow path 17, it is possible to suppress the occurrence of a stagnation region of the refrigerant flow in the flow path 29 between the partition plates 20-1 and 20-2.

下流側冷媒流路17を通過した(下流側冷却フィン15との間で熱交換を行った)冷媒は、冷媒流出口46から流出する。本実施形態では、下流側冷媒流路17を形成する下流側冷却フィン15の厚さを上流側から下流側へ向かうにつれて徐々に薄くすることで、冷媒流出口46の流路断面積と下流側冷媒流路17の出口部の流路断面積との差を少なくすることができ、冷媒流れが下流側冷媒流路17から冷媒流出口46へ流出する際に流路断面積が急激に拡大するのを抑制して、下流側冷却フィン15の下流側先端部付近にて液体冷媒流れのよどみ域が発生するのを抑制することができる。これによって、液体冷媒が下流側冷媒流路17から流出する際に生じる圧力損失を低減することができる。   The refrigerant that has passed through the downstream refrigerant flow path 17 (heat exchanged with the downstream cooling fins 15) flows out from the refrigerant outlet 46. In the present embodiment, the thickness of the downstream cooling fins 15 forming the downstream refrigerant flow path 17 is gradually reduced from the upstream side toward the downstream side, whereby the flow path cross-sectional area of the refrigerant outlet 46 and the downstream side are reduced. The difference from the channel cross-sectional area of the outlet portion of the refrigerant channel 17 can be reduced, and the channel cross-sectional area rapidly increases when the refrigerant flow flows out of the downstream refrigerant channel 17 to the refrigerant outlet 46. It is possible to suppress the occurrence of a stagnation region of the liquid refrigerant flow in the vicinity of the downstream end portion of the downstream cooling fin 15. Thereby, the pressure loss generated when the liquid refrigerant flows out of the downstream refrigerant flow path 17 can be reduced.

以上説明した本実施形態では、発熱体30直下に、上流側冷却フィン14及び下流側冷却フィン15をそれぞれ複数設置し、上流側冷媒流路16及び下流側冷媒流路17をそれぞれ複数形成することで、発熱体30を均一に冷却することが可能となる。さらに、冷却板12の裏面12bに面する連通流路18を発熱体30直下に形成することで、連通流路18を流れる冷媒が冷却板12の裏面12bに衝突し、冷却板12との熱交換を促進させることができる。   In the present embodiment described above, a plurality of upstream cooling fins 14 and a plurality of downstream cooling fins 15 are installed immediately below the heating element 30 to form a plurality of upstream refrigerant channels 16 and downstream refrigerant channels 17 respectively. Thus, the heating element 30 can be cooled uniformly. Further, the communication flow path 18 facing the back surface 12b of the cooling plate 12 is formed directly below the heating element 30, so that the refrigerant flowing through the communication flow path 18 collides with the back surface 12b of the cooling plate 12, and heat with the cooling plate 12 is reached. Exchange can be promoted.

そして、本実施形態では、上流側冷却フィン14における冷媒流れ方向に直交する断面の面積を冷媒流れ方向の下流側から上流側へ向かうにつれて徐々に減少させることで、冷媒流れが冷媒流入口36から上流側冷媒流路16に流入する際に冷媒流れがフィン壁面から剥離することを抑制することができ、上流側冷却フィン14の上流側先端部付近にてよどみ域が発生するのを抑制することができる。したがって、液体冷媒が上流側冷媒流路16に流入する際に生じる圧力損失を低減することができる。また、本実施形態では、下流側冷却フィン15における冷媒流れ方向に直交する断面の面積を冷媒流れ方向の上流側から下流側へ向かうにつれて徐々に減少させることで、冷媒流れが下流側冷媒流路17から冷媒流出口46へ流出する際に下流側冷却フィン15の下流側先端部付近にてよどみ域が発生するのを抑制することができ、液体冷媒が下流側冷媒流路17から流出する際に生じる圧力損失を低減することができる。   In the present embodiment, the area of the cross section perpendicular to the refrigerant flow direction in the upstream cooling fin 14 is gradually reduced from the downstream side to the upstream side in the refrigerant flow direction, so that the refrigerant flow is from the refrigerant inlet 36. The refrigerant flow can be prevented from peeling from the fin wall surface when flowing into the upstream refrigerant flow path 16, and the occurrence of a stagnation region in the vicinity of the upstream end of the upstream cooling fin 14 can be suppressed. Can do. Therefore, it is possible to reduce the pressure loss that occurs when the liquid refrigerant flows into the upstream refrigerant flow path 16. In the present embodiment, the area of the cross section perpendicular to the refrigerant flow direction in the downstream cooling fins 15 is gradually decreased from the upstream side to the downstream side in the refrigerant flow direction, so that the refrigerant flow is in the downstream refrigerant flow path. When the refrigerant flows out from the refrigerant outlet 46 to the refrigerant outlet 46, it is possible to suppress the occurrence of a stagnation region in the vicinity of the downstream end of the downstream cooling fin 15, and when the liquid refrigerant flows out from the downstream refrigerant flow path 17. Can be reduced.

また、本実施形態では、上流側傾斜部26(上流側傾斜面26a)の高さを上流側冷媒流路16から連通流路18へ向かうにつれて徐々に高くすることで、冷媒流れが上流側冷媒流路16から連通流路18に流入する際に仕切板20−1,20−2間の流路28にてよどみ域が発生するのを抑制することができ、液体冷媒が上流側冷媒流路16から連通流路18に流入する際に生じる圧力損失を低減することができる。さらに、冷却板12の裏面12bに衝突する冷媒の流速を増大させることができ、冷却板12との熱交換をより促進させることができる。また、本実施形態では、下流側傾斜部27(下流側傾斜面27a)の高さを連通流路18から下流側冷媒流路17へ向かうにつれて徐々に低くすることで、冷媒流れが連通流路18から下流側冷媒流路17へ流出する際に仕切板20−1,20−2間の流路29にてよどみ域が発生するのを抑制することができ、液体冷媒が連通流路18から下流側冷媒流路17へ流出する際に生じる圧力損失を低減することができる。   In the present embodiment, the upstream side inclined portion 26 (upstream side inclined surface 26 a) is gradually increased from the upstream side refrigerant flow path 16 toward the communication flow path 18, so that the refrigerant flow becomes the upstream side refrigerant. When the flow path 16 flows into the communication flow path 18, it is possible to suppress the occurrence of a stagnation region in the flow path 28 between the partition plates 20-1 and 20-2, and the liquid refrigerant flows into the upstream side refrigerant flow path. It is possible to reduce the pressure loss that occurs when the gas flows from 16 into the communication flow path 18. Furthermore, the flow rate of the refrigerant that collides with the back surface 12b of the cooling plate 12 can be increased, and heat exchange with the cooling plate 12 can be further promoted. Further, in the present embodiment, the refrigerant flow is reduced by gradually decreasing the height of the downstream inclined portion 27 (downstream inclined surface 27a) from the communication flow path 18 toward the downstream refrigerant flow path 17. It is possible to suppress the occurrence of a stagnation region in the flow path 29 between the partition plates 20-1 and 20-2 when flowing out from the downstream refrigerant flow path 17 from 18, so that the liquid refrigerant flows from the communication flow path 18. It is possible to reduce pressure loss that occurs when the refrigerant flows out to the downstream side refrigerant flow path 17.

したがって、本実施形態によれば、冷媒の圧力損失を低減しながら冷却能力を向上させることができる。   Therefore, according to this embodiment, the cooling capacity can be improved while reducing the pressure loss of the refrigerant.

なお、本実施形態において、冷媒が上流側冷媒流路16から連通流路18へ流れる際に生じる圧力損失をさらに低減するためには、上流側冷媒流路16の入口部の流路断面積を、この上流側冷媒流路16に連通する(この上流側冷媒流路16からの冷媒が供給される)一対の連通流路18の流路断面積の和と等しく(あるいはほぼ等しく)することが好ましい。さらに、図7,8A〜8Cに示すように、冷媒の流線31A〜31Cに直交する断面における面積がほぼ一定となるように、上流側冷媒流路16、仕切板20−1,20−2間の流路28、及び連通流路18の形状(上流側冷却フィン14、上流側傾斜部26、及び仕切板20−1,20−2の形状)を設計することが好ましい。ここで、図8Aは図7のA−A断面図(上流側冷媒流路16の入口部の断面図)を示し、図8Bは図7のB−B断面図を示し、図8Cは図7のC−C断面図(連通流路18の断面図)を示す。また、本実施形態において、冷媒が連通流路18から下流側冷媒流路17へ流れる際に生じる圧力損失をさらに低減するためには、下流側冷媒流路17の出口部の流路断面積を、この下流側冷媒流路17に連通する(この下流側冷媒流路17へ冷媒を供給する)一対の連通流路18の流路断面積の和と等しく(あるいはほぼ等しく)することが好ましい。さらに、図7,8C〜8Eに示すように、冷媒の流線31C〜31Eに直交する断面における面積がほぼ一定となるように、連通流路18、仕切板20−1,20−2間の流路29、及び下流側冷媒流路17の形状(下流側冷却フィン15、下流側傾斜部27、及び仕切板20−1,20−2の形状)を設計することが好ましい。ここで、図8Dは図7のD−D断面図を示し、図8Eは図7のE−E断面図(下流側冷媒流路17の出口部の断面図)を示す。なお、ここでの流線31A〜31Eは設計上の流線を表す。   In this embodiment, in order to further reduce the pressure loss that occurs when the refrigerant flows from the upstream refrigerant flow path 16 to the communication flow path 18, the flow path cross-sectional area of the inlet portion of the upstream refrigerant flow path 16 is reduced. The flow path cross-sectional area of the pair of communication flow paths 18 communicating with the upstream refrigerant flow path 16 (the refrigerant from the upstream refrigerant flow path 16 is supplied) may be equal (or substantially equal). preferable. Further, as shown in FIGS. 7 and 8A to 8C, the upstream side refrigerant flow path 16 and the partition plates 20-1 and 20-2 are arranged so that the areas in the cross sections orthogonal to the refrigerant flow lines 31A to 31C are substantially constant. It is preferable to design the shape of the flow path 28 and the communication flow path 18 (the shapes of the upstream cooling fin 14, the upstream inclined portion 26, and the partition plates 20-1 and 20-2). 8A is a cross-sectional view taken along the line AA of FIG. 7 (cross-sectional view of the inlet portion of the upstream refrigerant flow path 16), FIG. 8B is a cross-sectional view taken along the line BB of FIG. 7, and FIG. CC sectional drawing (sectional drawing of the communication flow path 18) is shown. In this embodiment, in order to further reduce the pressure loss that occurs when the refrigerant flows from the communication flow path 18 to the downstream refrigerant flow path 17, the flow path cross-sectional area of the outlet portion of the downstream refrigerant flow path 17 is set. It is preferable that the flow rate is equal to (or substantially equal to) the sum of the cross-sectional areas of the pair of communication flow paths 18 communicating with the downstream refrigerant flow path 17 (supplying refrigerant to the downstream refrigerant flow path 17). Further, as shown in FIGS. 7 and 8C to 8E, between the communication flow path 18 and the partition plates 20-1 and 20-2 so that the area in the cross section orthogonal to the coolant flow lines 31C to 31E is substantially constant. It is preferable to design the shape of the flow path 29 and the downstream refrigerant flow path 17 (the shape of the downstream cooling fin 15, the downstream inclined portion 27, and the partition plates 20-1 and 20-2). Here, FIG. 8D shows a DD sectional view of FIG. 7, and FIG. 8E shows an EE sectional view of FIG. 7 (a sectional view of the outlet portion of the downstream refrigerant flow path 17). Here, the streamlines 31A to 31E represent design streamlines.

次に、本実施形態の他の構成例について説明する。   Next, another configuration example of this embodiment will be described.

本実施形態では、仕切板20−1,20−2の高さ(連通流路18の高さ)は、必ずしも一端部から他端部にかけて一定である必要はなく、例えば図9〜12に示すように、仕切板20−1,20−2の高さを一端部から他端部にかけて変化させることで、連通流路18の高さを一端部から他端部にかけて変化させることもできる。また、例えば図12,13に示すように、仕切板20−1,20−2の一部分を冷却板12の裏面12bに接触させることで、連通流路18を複数の流路に分割して形成することも可能である。その場合は、分割された各流路は、必ずしも同じ形状である必要はない。   In the present embodiment, the height of the partition plates 20-1 and 20-2 (height of the communication flow path 18) does not necessarily have to be constant from one end to the other end, for example, as shown in FIGS. As described above, the height of the communication channel 18 can be changed from one end to the other end by changing the height of the partition plates 20-1 and 20-2 from the one end to the other end. For example, as shown in FIGS. 12 and 13, a part of the partition plates 20-1 and 20-2 is brought into contact with the back surface 12 b of the cooling plate 12 to divide the communication flow path 18 into a plurality of flow paths. It is also possible to do. In that case, the divided flow paths do not necessarily have the same shape.

また、本実施形態では、上流側傾斜部26の上流側傾斜面26aの形状は必ずしも平面である必要はなく、例えば図10に示すように上流側傾斜面26aの形状を曲面(凹曲面)にすることもできるし、例えば図12,13に示すように上流側傾斜面26aの形状を段階的に折り曲げた形状にすることもできる。また、例えば図9に示すように、必ずしも上流側冷媒流路16の入口部(上流側冷却フィン14の上流側先端部)から上流側傾斜部26を設ける必要はない。また、例えば図9,12に示すように、上流側傾斜部26(上流側傾斜面26a)の下流側端部の高さを必ずしも仕切板20−1,20−2の高さと等しくする必要はない。同様に、下流側傾斜部27の下流側傾斜面27aの形状も必ずしも平面である必要はなく、例えば、下流側傾斜面27aの形状を曲面(凹曲面)にすることもできるし、下流側傾斜面27aの形状を段階的に折り曲げた形状にすることもできる。また、必ずしも下流側冷媒流路17の出口部(下流側冷却フィン15の下流側先端部)まで下流側傾斜部27を設ける必要もないし、下流側傾斜部27(下流側傾斜面27a)の上流側端部の高さを必ずしも仕切板20−1,20−2の高さと等しくする必要もない。   In the present embodiment, the shape of the upstream inclined surface 26a of the upstream inclined portion 26 is not necessarily a flat surface. For example, as shown in FIG. 10, the shape of the upstream inclined surface 26a is a curved surface (concave surface). Alternatively, for example, as shown in FIGS. 12 and 13, the shape of the upstream inclined surface 26a may be bent stepwise. Further, for example, as shown in FIG. 9, it is not always necessary to provide the upstream inclined portion 26 from the inlet portion of the upstream refrigerant flow path 16 (upstream tip portion of the upstream cooling fin 14). For example, as shown in FIGS. 9 and 12, the height of the downstream end of the upstream inclined portion 26 (upstream inclined surface 26a) is not necessarily equal to the height of the partition plates 20-1 and 20-2. Absent. Similarly, the shape of the downstream inclined surface 27a of the downstream inclined portion 27 is not necessarily a flat surface. For example, the shape of the downstream inclined surface 27a can be a curved surface (concave surface), or the downstream inclined surface can be inclined. The shape of the surface 27a may be bent in a stepwise manner. Further, it is not always necessary to provide the downstream inclined portion 27 to the outlet portion of the downstream refrigerant flow path 17 (downstream tip portion of the downstream cooling fin 15), and upstream of the downstream inclined portion 27 (downstream inclined surface 27a). The height of the side end portion is not necessarily equal to the height of the partition plates 20-1 and 20-2.

また、本実施形態では、例えば図14,15に示すように、仕切板20−1,20−2と上流側冷却フィン14との連結面14a、及び仕切板20−1,20−2と下流側冷却フィン15との連結面15aは、必ずしもフィン厚さ方向に平行である必要はない。図14に示す例では、仕切板20−1,20−2と上流側冷却フィン14との連結面14a、及び仕切板20−1,20−2と下流側冷却フィン15との連結面15aを冷媒流れに沿って傾斜させている。また、例えば図15に示すように、仕切板20−1,20−2と上流側冷却フィン14との連結面14a、及び仕切板20−1,20−2と下流側冷却フィン15との連結面15aを冷媒流れに沿った曲面にすることも可能である。   Moreover, in this embodiment, as shown, for example in FIG. 14, 15, the connection surface 14a of the partition plates 20-1 and 20-2 and the upstream cooling fin 14, and the partition plates 20-1 and 20-2 and the downstream The connection surface 15a with the side cooling fin 15 does not necessarily have to be parallel to the fin thickness direction. In the example shown in FIG. 14, the connection surface 14 a between the partition plates 20-1 and 20-2 and the upstream cooling fin 14 and the connection surface 15 a between the partition plates 20-1 and 20-2 and the downstream cooling fin 15 are provided. It is inclined along the refrigerant flow. For example, as shown in FIG. 15, the connection surface 14 a between the partition plates 20-1 and 20-2 and the upstream cooling fin 14, and the connection between the partition plates 20-1 and 20-2 and the downstream cooling fin 15. It is also possible to make the surface 15a a curved surface along the refrigerant flow.

また、本実施形態では、上流側冷却フィン14の形状は必ずしも鋭角のくさび形状である必要はなく、例えば図16に示すように、上流側冷却フィン14の上流側先端部の形状を凸曲面形状にすることもできる。同様に、下流側冷却フィン15の形状も必ずしも鋭角のくさび形状である必要はなく、例えば図16に示すように、下流側冷却フィン15の下流側先端部の形状を凸曲面形状にすることもできる。また、例えば図17に示すように、上流側冷却フィン14の上流側先端部の形状を凸曲面形状にするとともに、下流側冷却フィン15の形状をくさび形状にすることもできる。同様に、上流側冷却フィン14の形状をくさび形状にするとともに、下流側冷却フィン15の下流側先端部の形状を凸曲面形状にすることもできる。   Further, in the present embodiment, the shape of the upstream cooling fin 14 is not necessarily an acute wedge shape. For example, as shown in FIG. 16, the shape of the upstream tip portion of the upstream cooling fin 14 is a convex curved surface shape. It can also be. Similarly, the shape of the downstream side cooling fin 15 is not necessarily an acute wedge shape. For example, as shown in FIG. 16, the shape of the downstream end of the downstream side cooling fin 15 may be a convex curved surface. it can. Further, for example, as shown in FIG. 17, the shape of the upstream end of the upstream cooling fin 14 can be a convex curved surface, and the shape of the downstream cooling fin 15 can be a wedge shape. Similarly, the shape of the upstream side cooling fin 14 can be a wedge shape, and the shape of the downstream end portion of the downstream side cooling fin 15 can be a convex curved surface.

また、本実施形態では、例えば図18に示すように、上流側冷却フィン14の形状及び下流側冷却フィン15の形状を薄板形状にすることもできる。図18に示す構成例では、図1〜4に示す構成例と比較して、上流側冷却フィン14に連結された一対の仕切板20−1,20−2は、この上流側冷却フィン14との連結部分(またはその付近)にて互いに結合されている。そして、冷媒流れ方向に沿って延びる薄板形状の上流側冷却フィン14の下流側端部が、仕切板20−1,20−2同士の結合部分(またはその付近)に連結されている。この構成によっても、冷媒流れが冷媒流入口36から上流側冷媒流路16に流入する際に冷媒流れがフィン壁面から剥離することを抑制することができ、上流側冷却フィン14の上流側先端部付近にてよどみ域が発生するのを抑制することができる。したがって、液体冷媒が上流側冷媒流路16に流入する際に生じる圧力損失を低減することができる。また、図18に示す構成例では、下流側冷却フィン15に連結された一対の仕切板20−1,20−2は、この下流側冷却フィン15との連結部分(またはその付近)にて互いに結合されている。そして、冷媒流れ方向に沿って延びる薄板形状の下流側冷却フィン15の上流側端部が、仕切板20−1,20−2同士の結合部分(またはその付近)に連結されている。この構成によっても、冷媒流れが下流側冷媒流路17から冷媒流出口46へ流出する際に下流側冷却フィン15の下流側先端部付近にてよどみ域が発生するのを抑制することができ、液体冷媒が下流側冷媒流路17から流出する際に生じる圧力損失を低減することができる。なお、本実施形態では、上流側冷却フィン14の形状を例えば図18に示す薄板形状にするとともに、下流側冷却フィン15の下流側先端部の形状を図1に示すくさび形状や図16に示す凸曲面形状にすることもできる。同様に、上流側冷却フィン14の上流側先端部の形状を図1に示すくさび形状や図16に示す凸曲面形状にするとともに、下流側冷却フィン15の形状を例えば図18に示す薄板形状にすることもできる。   Moreover, in this embodiment, as shown, for example in FIG. 18, the shape of the upstream side cooling fin 14 and the shape of the downstream side cooling fin 15 can also be made into a thin plate shape. In the configuration example shown in FIG. 18, compared to the configuration examples shown in FIGS. 1 to 4, the pair of partition plates 20-1 and 20-2 connected to the upstream cooling fins 14 are connected to the upstream cooling fins 14. Are connected to each other at (or near) the connecting portions. And the downstream edge part of the thin plate-shaped upstream cooling fin 14 extended along a refrigerant | coolant flow direction is connected with the coupling | bond part (or its vicinity) of partition plates 20-1 and 20-2. Even with this configuration, it is possible to suppress the separation of the refrigerant flow from the fin wall surface when the refrigerant flow flows into the upstream refrigerant flow path 16 from the refrigerant inlet 36, and the upstream end of the upstream cooling fin 14. Occurrence of a stagnation area in the vicinity can be suppressed. Therefore, it is possible to reduce the pressure loss that occurs when the liquid refrigerant flows into the upstream refrigerant flow path 16. Further, in the configuration example shown in FIG. 18, the pair of partition plates 20-1 and 20-2 connected to the downstream side cooling fin 15 are connected to each other at the connection portion (or the vicinity thereof) with the downstream side cooling fin 15. Are combined. And the upstream edge part of the downstream cooling fin 15 of the thin-plate shape extended along a refrigerant | coolant flow direction is connected with the coupling | bond part (or its vicinity) of partition plates 20-1 and 20-2. Even with this configuration, it is possible to suppress the occurrence of a stagnation region near the downstream end of the downstream cooling fin 15 when the refrigerant flow flows out from the downstream refrigerant flow path 17 to the refrigerant outlet 46. The pressure loss that occurs when the liquid refrigerant flows out of the downstream refrigerant flow path 17 can be reduced. In the present embodiment, the shape of the upstream cooling fin 14 is a thin plate as shown in FIG. 18, for example, and the shape of the downstream end of the downstream cooling fin 15 is a wedge shape shown in FIG. 1 or FIG. A convex curved surface shape can also be used. Similarly, the upstream tip of the upstream cooling fin 14 has a wedge shape as shown in FIG. 1 or a convex curved shape as shown in FIG. 16, and the downstream cooling fin 15 has a thin plate shape as shown in FIG. You can also

また、本実施形態では、例えば図19に示すように、上流側冷媒流路16の流路幅(上流側冷却フィン14間の間隔)をフィン厚さ方向の位置に応じて異ならせることもできる。その場合は、発熱体30の発熱量の大きい領域の裏側(直下)に位置する上流側冷媒流路16の流路幅(上流側冷却フィン14間の間隔)を狭くすることが好ましい。同様に、下流側冷媒流路17の流路幅(下流側冷却フィン15間の間隔)をフィン厚さ方向の位置に応じて異ならせることもできる。その場合は、発熱体30の発熱量の大きい領域の裏側(直下)に位置する下流側冷媒流路17の流路幅(下流側冷却フィン15間の間隔)を狭くすることが好ましい。なお、図19は、上流側冷却フィン14の形状及び下流側冷却フィン15の形状が薄板形状である例を示しているが、上流側冷却フィン14の上流側先端部の形状を図1に示すくさび形状や図16に示す凸曲面形状にすることもできるし、下流側冷却フィン15の下流側先端部の形状を図1に示すくさび形状や図16に示す凸曲面形状にすることもできる。   In the present embodiment, for example, as shown in FIG. 19, the flow width of the upstream refrigerant flow channel 16 (interval between the upstream cooling fins 14) can be varied according to the position in the fin thickness direction. . In that case, it is preferable to narrow the flow path width (interval between the upstream cooling fins 14) of the upstream refrigerant flow path 16 located on the back side (directly below) of the region where the heat generation amount of the heating element 30 is large. Similarly, the flow width of the downstream refrigerant flow channel 17 (interval between the downstream cooling fins 15) can be varied according to the position in the fin thickness direction. In that case, it is preferable to narrow the flow path width (interval between the downstream cooling fins 15) of the downstream refrigerant flow path 17 located on the back side (directly below) of the region where the heat generation amount of the heating element 30 is large. FIG. 19 shows an example in which the shape of the upstream cooling fin 14 and the shape of the downstream cooling fin 15 are thin plate shapes, but the shape of the upstream tip portion of the upstream cooling fin 14 is shown in FIG. The wedge shape or the convex curved surface shape shown in FIG. 16 can be used, and the downstream tip portion of the downstream cooling fin 15 can be the wedge shape shown in FIG. 1 or the convex curved surface shape shown in FIG.

また、本実施形態では、例えば図20,21に示すように、冷媒流入口36と冷媒流出口46との間には、上流側冷媒流路16と連通流路18と下流側冷媒流路17とによる冷媒流路を多段階に形成することもできる。その場合は、上流側冷媒流路16と連通流路18と下流側冷媒流路17とによる冷媒流路の形状は必ずしも同じ形状である必要はなく、発熱体30の発熱量の大きい領域の裏側(直下)に位置する上流側冷媒流路16、連通流路18、及び下流側冷媒流路17の形状を微細にすることが好ましい。   In the present embodiment, for example, as shown in FIGS. 20 and 21, the upstream side refrigerant flow path 16, the communication flow path 18, and the downstream side refrigerant flow path 17 are provided between the refrigerant inlet 36 and the refrigerant outlet 46. The refrigerant flow path can be formed in multiple stages. In that case, the shape of the refrigerant flow path by the upstream refrigerant flow path 16, the communication flow path 18, and the downstream refrigerant flow path 17 is not necessarily the same shape, and the back side of the region where the heat generation amount of the heating element 30 is large. It is preferable to make the shapes of the upstream refrigerant flow path 16, the communication flow path 18, and the downstream refrigerant flow path 17 positioned (directly below) fine.

また、本実施形態では、例えば図22,23に示すように、上流側冷却フィン14と下流側冷却フィン15とを連結する仕切板20−1,20−2を互いに交差させることで、冷媒流路を互いに重なり合わせることもできる。   Further, in the present embodiment, for example, as shown in FIGS. 22 and 23, the partition plates 20-1 and 20-2 that connect the upstream cooling fins 14 and the downstream cooling fins 15 cross each other, so that the refrigerant flow The roads can overlap each other.

本実施形態に係る冷却装置10の動作を熱流れ解析により確認した結果を図24,25に示す。熱流れ解析の際には、直線状の冷却フィンのみによる構成の動作も比較例として熱流れ解析を行った。図24(A)は、比較例における冷媒の流速分布を示し、図24(B)は、本実施形態に係る冷却装置10における冷媒の流速分布を示す。また、図25(A)は、比較例における温度分布を示し、図25(B)は、本実施形態に係る冷却装置10における温度分布を示す。図24に示すように、本実施形態に係る冷却装置10によれば、比較例よりも発熱体30直下での冷媒の流速を増大できていることがわかる。   24 and 25 show the results of confirming the operation of the cooling device 10 according to the present embodiment by heat flow analysis. In the heat flow analysis, the heat flow analysis was performed as a comparative example of the operation of the configuration using only the linear cooling fins. FIG. 24A shows the refrigerant flow velocity distribution in the comparative example, and FIG. 24B shows the refrigerant flow velocity distribution in the cooling device 10 according to the present embodiment. FIG. 25A shows the temperature distribution in the comparative example, and FIG. 25B shows the temperature distribution in the cooling device 10 according to the present embodiment. As shown in FIG. 24, according to the cooling device 10 according to the present embodiment, it can be seen that the flow rate of the refrigerant immediately below the heating element 30 can be increased as compared with the comparative example.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

本発明の実施形態に係る冷却装置の概略構成を示す図である。It is a figure which shows schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の概略構成を示す図である。It is a figure which shows schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の概略構成を示す図である。It is a figure which shows schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の概略構成を示す図である。It is a figure which shows schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置における冷媒の流れを説明する図である。It is a figure explaining the flow of the refrigerant in the cooling device concerning the embodiment of the present invention. 本発明の実施形態に係る冷却装置における冷媒の流れを説明する図である。It is a figure explaining the flow of the refrigerant in the cooling device concerning the embodiment of the present invention. 本発明の実施形態に係る冷却装置の概略構成を示す図である。It is a figure which shows schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の概略構成を示す図である。It is a figure which shows schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の概略構成を示す図である。It is a figure which shows schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の概略構成を示す図である。It is a figure which shows schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の概略構成を示す図である。It is a figure which shows schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の概略構成を示す図である。It is a figure which shows schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the cooling device which concerns on embodiment of this invention. 本実施形態に係る冷却装置における冷媒の流速分布を熱流れ解析により確認した結果を示す図である。It is a figure which shows the result of having confirmed the flow velocity distribution of the refrigerant | coolant in the cooling device which concerns on this embodiment by heat flow analysis. 本実施形態に係る冷却装置における温度分布を熱流れ解析により確認した結果を示す図である。It is a figure which shows the result which confirmed the temperature distribution in the cooling device which concerns on this embodiment by heat flow analysis. 関連技術に係る冷却装置の概略構成を示す図である。It is a figure which shows schematic structure of the cooling device which concerns on related technology.

符号の説明Explanation of symbols

10 冷却装置、12 冷却板、14 上流側冷却フィン、15 下流側冷却フィン、16 上流側冷媒流路、17 下流側冷媒流路、18 連通流路、20−1,20−2 仕切板、22 底板、24 側板、26 上流側傾斜部、27 下流側傾斜部、30 発熱体、36 冷媒流入口、46 冷媒流出口。   DESCRIPTION OF SYMBOLS 10 Cooling device, 12 Cooling plate, 14 Upstream cooling fin, 15 Downstream cooling fin, 16 Upstream refrigerant flow path, 17 Downstream refrigerant flow path, 18 Communication flow path, 20-1, 20-2 Partition plate, 22 Bottom plate, 24 side plate, 26 upstream inclined portion, 27 downstream inclined portion, 30 heating element, 36 refrigerant inlet, 46 refrigerant outlet.

Claims (11)

一主面に発熱体が載置される冷却板と、
冷却板の一主面の裏面と間隔をおいて対向配置され、冷却板の裏面との間に冷媒流路が形成される底部材と、
冷却板の裏面に立設され、互いに間隔をおいて配列された複数の上流側冷却フィンであって、互いに隣接する上流側冷却フィン間に上流側冷媒流路が形成される複数の上流側冷却フィンと、
冷却板の裏面に立設され、上流側冷却フィンの配列方向と略平行方向に互いに間隔をおいて配列された複数の下流側冷却フィンであって、互いに隣接する下流側冷却フィン間に下流側冷媒流路が形成される複数の下流側冷却フィンと、
底部材上に立てられた状態で配置され、上流側冷却フィンと下流側冷却フィンとを連結する複数の仕切板であって、上流側冷媒流路と下流側冷媒流路とを連通させる連通流路が冷却板の裏面との間に形成される複数の仕切板と、
を備え、
少なくとも一部の上流側冷却フィンには、上流側冷却フィンから下流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、
少なくとも一部の下流側冷却フィンには、下流側冷却フィンから上流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、
前記仕切板が連結された上流側冷却フィンは、冷媒流れ方向に直交する断面の面積が冷媒流れ方向の下流側から上流側へ向かうにつれて徐々に減少するフィンである、冷却装置。
A cooling plate on which a heating element is placed on one main surface;
A bottom member disposed opposite to the back surface of one main surface of the cooling plate at an interval, and a coolant channel is formed between the back surface of the cooling plate;
A plurality of upstream cooling fins standing on the back surface of the cooling plate and arranged at intervals from each other, wherein an upstream refrigerant flow path is formed between the adjacent upstream cooling fins. Fins,
A plurality of downstream cooling fins standing on the back surface of the cooling plate and arranged at a distance from each other in a direction substantially parallel to the arrangement direction of the upstream cooling fins, and downstream between adjacent downstream cooling fins A plurality of downstream cooling fins in which a refrigerant flow path is formed;
A plurality of partition plates arranged in a standing state on the bottom member and connecting the upstream side cooling fin and the downstream side cooling fin, the communication flow connecting the upstream side refrigerant channel and the downstream side refrigerant channel. A plurality of partition plates formed between the back surface of the cooling plate and the path;
With
At least some of the upstream cooling fins are connected to a partition plate that gradually increases in distance from the upstream cooling fins toward the downstream cooling fins,
At least some of the downstream cooling fins are connected to a partition plate that gradually increases in distance from the downstream cooling fins toward the upstream cooling fins,
The upstream side cooling fin connected to the partition plate is a cooling device in which the area of the cross section perpendicular to the refrigerant flow direction is gradually reduced from the downstream side to the upstream side in the refrigerant flow direction.
一主面に発熱体が載置される冷却板と、
冷却板の一主面の裏面と間隔をおいて対向配置され、冷却板の裏面との間に冷媒流路が形成される底部材と、
冷却板の裏面に立設され、互いに間隔をおいて配列された複数の上流側冷却フィンであって、互いに隣接する上流側冷却フィン間に上流側冷媒流路が形成される複数の上流側冷却フィンと、
冷却板の裏面に立設され、上流側冷却フィンの配列方向と略平行方向に互いに間隔をおいて配列された複数の下流側冷却フィンであって、互いに隣接する下流側冷却フィン間に下流側冷媒流路が形成される複数の下流側冷却フィンと、
底部材上に立てられた状態で配置され、上流側冷却フィンと下流側冷却フィンとを連結する複数の仕切板であって、上流側冷媒流路と下流側冷媒流路とを連通させる連通流路が冷却板の裏面との間に形成される複数の仕切板と、
を備え、
少なくとも一部の上流側冷却フィンには、上流側冷却フィンから下流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、
少なくとも一部の下流側冷却フィンには、下流側冷却フィンから上流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、
前記上流側冷却フィンに連結された仕切板は、当該上流側冷却フィンとの連結部分またはその付近にて互いに結合され、
前記仕切板が連結された上流側冷却フィンは、薄板形状のフィンである、冷却装置。
A cooling plate on which a heating element is placed on one main surface;
A bottom member disposed opposite to the back surface of one main surface of the cooling plate at an interval, and a coolant channel is formed between the back surface of the cooling plate;
A plurality of upstream cooling fins standing on the back surface of the cooling plate and arranged at intervals from each other, wherein an upstream refrigerant flow path is formed between the adjacent upstream cooling fins. Fins,
A plurality of downstream cooling fins standing on the back surface of the cooling plate and arranged at a distance from each other in a direction substantially parallel to the arrangement direction of the upstream cooling fins, and downstream between adjacent downstream cooling fins A plurality of downstream cooling fins in which a refrigerant flow path is formed;
A plurality of partition plates arranged in a standing state on the bottom member and connecting the upstream side cooling fin and the downstream side cooling fin, the communication flow connecting the upstream side refrigerant channel and the downstream side refrigerant channel. A plurality of partition plates formed between the back surface of the cooling plate and the path;
With
At least some of the upstream cooling fins are connected to a partition plate that gradually increases in distance from the upstream cooling fins toward the downstream cooling fins,
At least some of the downstream cooling fins are connected to a partition plate that gradually increases in distance from the downstream cooling fins toward the upstream cooling fins,
The partition plates connected to the upstream cooling fins are coupled to each other at or near the connection portion with the upstream cooling fin,
The upstream cooling fin to which the partition plate is connected is a cooling device that is a thin plate-shaped fin.
請求項1または2に記載の冷却装置であって、
前記仕切板が連結された下流側冷却フィンは、冷媒流れ方向に直交する断面の面積が冷媒流れ方向の上流側から下流側へ向かうにつれて徐々に減少するフィンである、冷却装置。
The cooling device according to claim 1 or 2,
The downstream cooling fin to which the partition plate is coupled is a cooling device in which an area of a cross section perpendicular to the refrigerant flow direction is gradually decreased from the upstream side to the downstream side in the refrigerant flow direction.
請求項1または2に記載の冷却装置であって、
前記下流側冷却フィンに連結された仕切板は、当該下流側冷却フィンとの連結部分またはその付近にて互いに結合され、
前記仕切板が連結された下流側冷却フィンは、薄板形状のフィンである、冷却装置。
The cooling device according to claim 1 or 2,
The partition plates connected to the downstream cooling fins are coupled to each other at or near the connection portion with the downstream cooling fins,
The downstream side cooling fin to which the partition plate is connected is a cooling device that is a thin plate-shaped fin.
一主面に発熱体が載置される冷却板と、
冷却板の一主面の裏面と間隔をおいて対向配置され、冷却板の裏面との間に冷媒流路が形成される底部材と、
冷却板の裏面に立設され、互いに間隔をおいて配列された複数の上流側冷却フィンであって、互いに隣接する上流側冷却フィン間に上流側冷媒流路が形成される複数の上流側冷却フィンと、
冷却板の裏面に立設され、上流側冷却フィンの配列方向と略平行方向に互いに間隔をおいて配列された複数の下流側冷却フィンであって、互いに隣接する下流側冷却フィン間に下流側冷媒流路が形成される複数の下流側冷却フィンと、
底部材上に立てられた状態で配置され、上流側冷却フィンと下流側冷却フィンとを連結する複数の仕切板であって、上流側冷媒流路と下流側冷媒流路とを連通させる連通流路が冷却板の裏面との間に形成される複数の仕切板と、
を備え、
少なくとも一部の上流側冷却フィンには、上流側冷却フィンから下流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、
少なくとも一部の下流側冷却フィンには、下流側冷却フィンから上流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、
前記仕切板が連結された下流側冷却フィンは、冷媒流れ方向に直交する断面の面積が冷媒流れ方向の上流側から下流側へ向かうにつれて徐々に減少するフィンである、冷却装置。
A cooling plate on which a heating element is placed on one main surface;
A bottom member disposed opposite to the back surface of one main surface of the cooling plate at an interval, and a coolant channel is formed between the back surface of the cooling plate;
A plurality of upstream cooling fins standing on the back surface of the cooling plate and arranged at intervals from each other, wherein an upstream refrigerant flow path is formed between the adjacent upstream cooling fins. Fins,
A plurality of downstream cooling fins standing on the back surface of the cooling plate and arranged at a distance from each other in a direction substantially parallel to the arrangement direction of the upstream cooling fins, and downstream between adjacent downstream cooling fins A plurality of downstream cooling fins in which a refrigerant flow path is formed;
A plurality of partition plates arranged in a standing state on the bottom member and connecting the upstream side cooling fin and the downstream side cooling fin, the communication flow connecting the upstream side refrigerant channel and the downstream side refrigerant channel. A plurality of partition plates formed between the back surface of the cooling plate and the path;
With
At least some of the upstream cooling fins are connected to a partition plate that gradually increases in distance from the upstream cooling fins toward the downstream cooling fins,
At least some of the downstream cooling fins are connected to a partition plate that gradually increases in distance from the downstream cooling fins toward the upstream cooling fins,
The downstream cooling fin to which the partition plate is coupled is a cooling device in which an area of a cross section perpendicular to the refrigerant flow direction is gradually decreased from the upstream side to the downstream side in the refrigerant flow direction.
一主面に発熱体が載置される冷却板と、
冷却板の一主面の裏面と間隔をおいて対向配置され、冷却板の裏面との間に冷媒流路が形成される底部材と、
冷却板の裏面に立設され、互いに間隔をおいて配列された複数の上流側冷却フィンであって、互いに隣接する上流側冷却フィン間に上流側冷媒流路が形成される複数の上流側冷却フィンと、
冷却板の裏面に立設され、上流側冷却フィンの配列方向と略平行方向に互いに間隔をおいて配列された複数の下流側冷却フィンであって、互いに隣接する下流側冷却フィン間に下流側冷媒流路が形成される複数の下流側冷却フィンと、
底部材上に立てられた状態で配置され、上流側冷却フィンと下流側冷却フィンとを連結する複数の仕切板であって、上流側冷媒流路と下流側冷媒流路とを連通させる連通流路が冷却板の裏面との間に形成される複数の仕切板と、
を備え、
少なくとも一部の上流側冷却フィンには、上流側冷却フィンから下流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、
少なくとも一部の下流側冷却フィンには、下流側冷却フィンから上流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、
前記下流側冷却フィンに連結された仕切板は、当該下流側冷却フィンとの連結部分またはその付近にて互いに結合され、
前記仕切板が連結された下流側冷却フィンは、薄板形状のフィンである、冷却装置。
A cooling plate on which a heating element is placed on one main surface;
A bottom member disposed opposite to the back surface of one main surface of the cooling plate at an interval, and a coolant channel is formed between the back surface of the cooling plate;
A plurality of upstream cooling fins standing on the back surface of the cooling plate and arranged at intervals from each other, wherein an upstream refrigerant flow path is formed between the adjacent upstream cooling fins. Fins,
A plurality of downstream cooling fins standing on the back surface of the cooling plate and arranged at a distance from each other in a direction substantially parallel to the arrangement direction of the upstream cooling fins, and downstream between adjacent downstream cooling fins A plurality of downstream cooling fins in which a refrigerant flow path is formed;
A plurality of partition plates arranged in a standing state on the bottom member and connecting the upstream side cooling fin and the downstream side cooling fin, the communication flow connecting the upstream side refrigerant channel and the downstream side refrigerant channel. A plurality of partition plates formed between the back surface of the cooling plate and the path;
With
At least some of the upstream cooling fins are connected to a partition plate that gradually increases in distance from the upstream cooling fins toward the downstream cooling fins,
At least some of the downstream cooling fins are connected to a partition plate that gradually increases in distance from the downstream cooling fins toward the upstream cooling fins,
The partition plates connected to the downstream cooling fins are coupled to each other at or near the connection portion with the downstream cooling fins,
The downstream side cooling fin to which the partition plate is connected is a cooling device that is a thin plate-shaped fin.
請求項1〜6のいずれか1に記載の冷却装置であって、
底部材には、上流側冷媒流路から連通流路へ向かうにつれて冷却板の裏面との間隔が徐々に減少する上流側傾斜部が設けられている、冷却装置。
The cooling device according to any one of claims 1 to 6,
The cooling device, wherein the bottom member is provided with an upstream inclined portion in which the distance from the back surface of the cooling plate gradually decreases as it goes from the upstream refrigerant flow path to the communication flow path.
請求項1〜7のいずれか1に記載の冷却装置であって、
底部材には、連通流路から下流側冷媒流路へ向かうにつれて冷却板の裏面との間隔が徐々に増大する下流側傾斜部が設けられている、冷却装置。
The cooling device according to any one of claims 1 to 7,
The cooling device, wherein the bottom member is provided with a downstream inclined portion in which the distance from the back surface of the cooling plate gradually increases as it goes from the communication channel to the downstream refrigerant channel.
一主面に発熱体が載置される冷却板と、
冷却板の一主面の裏面と間隔をおいて対向配置され、冷却板の裏面との間に冷媒流路が形成される底部材と、
冷却板の裏面に立設され、互いに間隔をおいて配列された複数の上流側冷却フィンであって、互いに隣接する上流側冷却フィン間に上流側冷媒流路が形成される複数の上流側冷却フィンと、
冷却板の裏面に立設され、上流側冷却フィンの配列方向と略平行方向に互いに間隔をおいて配列された複数の下流側冷却フィンであって、互いに隣接する下流側冷却フィン間に下流側冷媒流路が形成される複数の下流側冷却フィンと、
底部材上に立てられた状態で配置され、上流側冷却フィンと下流側冷却フィンとを連結する複数の仕切板であって、上流側冷媒流路と下流側冷媒流路とを連通させる連通流路が冷却板の裏面との間に形成される複数の仕切板と、
を備え、
少なくとも一部の上流側冷却フィンには、上流側冷却フィンから下流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、
少なくとも一部の下流側冷却フィンには、下流側冷却フィンから上流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、
底部材には、上流側冷媒流路から連通流路へ向かうにつれて冷却板の裏面との間隔が徐々に減少する上流側傾斜部が設けられている、冷却装置。
A cooling plate on which a heating element is placed on one main surface;
A bottom member disposed opposite to the back surface of one main surface of the cooling plate at an interval, and a coolant channel is formed between the back surface of the cooling plate;
A plurality of upstream cooling fins standing on the back surface of the cooling plate and arranged at intervals from each other, wherein an upstream refrigerant flow path is formed between the adjacent upstream cooling fins. Fins,
A plurality of downstream cooling fins standing on the back surface of the cooling plate and arranged at a distance from each other in a direction substantially parallel to the arrangement direction of the upstream cooling fins, and downstream between adjacent downstream cooling fins A plurality of downstream cooling fins in which a refrigerant flow path is formed;
A plurality of partition plates arranged in a standing state on the bottom member and connecting the upstream side cooling fin and the downstream side cooling fin, the communication flow connecting the upstream side refrigerant channel and the downstream side refrigerant channel. A plurality of partition plates formed between the back surface of the cooling plate and the path;
With
At least some of the upstream cooling fins are connected to a partition plate that gradually increases in distance from the upstream cooling fins toward the downstream cooling fins,
At least some of the downstream cooling fins are connected to a partition plate that gradually increases in distance from the downstream cooling fins toward the upstream cooling fins,
The cooling device, wherein the bottom member is provided with an upstream inclined portion in which the distance from the back surface of the cooling plate gradually decreases as it goes from the upstream refrigerant flow path to the communication flow path.
請求項9に記載の冷却装置であって、
底部材には、連通流路から下流側冷媒流路へ向かうにつれて冷却板の裏面との間隔が徐々に増大する下流側傾斜部が設けられている、冷却装置。
The cooling device according to claim 9,
The cooling device, wherein the bottom member is provided with a downstream inclined portion in which the distance from the back surface of the cooling plate gradually increases as it goes from the communication channel to the downstream refrigerant channel.
一主面に発熱体が載置される冷却板と、
冷却板の一主面の裏面と間隔をおいて対向配置され、冷却板の裏面との間に冷媒流路が形成される底部材と、
冷却板の裏面に立設され、互いに間隔をおいて配列された複数の上流側冷却フィンであって、互いに隣接する上流側冷却フィン間に上流側冷媒流路が形成される複数の上流側冷却フィンと、
冷却板の裏面に立設され、上流側冷却フィンの配列方向と略平行方向に互いに間隔をおいて配列された複数の下流側冷却フィンであって、互いに隣接する下流側冷却フィン間に下流側冷媒流路が形成される複数の下流側冷却フィンと、
底部材上に立てられた状態で配置され、上流側冷却フィンと下流側冷却フィンとを連結する複数の仕切板であって、上流側冷媒流路と下流側冷媒流路とを連通させる連通流路が冷却板の裏面との間に形成される複数の仕切板と、
を備え、
少なくとも一部の上流側冷却フィンには、上流側冷却フィンから下流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、
少なくとも一部の下流側冷却フィンには、下流側冷却フィンから上流側冷却フィンへ向かうにつれて互いの間隔が徐々に増大する仕切板が連結され、
底部材には、連通流路から下流側冷媒流路へ向かうにつれて冷却板の裏面との間隔が徐々に増大する下流側傾斜部が設けられている、冷却装置。
A cooling plate on which a heating element is placed on one main surface;
A bottom member disposed opposite to the back surface of one main surface of the cooling plate at an interval, and a coolant channel is formed between the back surface of the cooling plate;
A plurality of upstream cooling fins standing on the back surface of the cooling plate and arranged at intervals from each other, wherein an upstream refrigerant flow path is formed between the adjacent upstream cooling fins. Fins,
A plurality of downstream cooling fins standing on the back surface of the cooling plate and arranged at a distance from each other in a direction substantially parallel to the arrangement direction of the upstream cooling fins, and downstream between adjacent downstream cooling fins A plurality of downstream cooling fins in which a refrigerant flow path is formed;
A plurality of partition plates arranged in a standing state on the bottom member and connecting the upstream side cooling fin and the downstream side cooling fin, the communication flow connecting the upstream side refrigerant channel and the downstream side refrigerant channel. A plurality of partition plates formed between the back surface of the cooling plate and the path;
With
At least some of the upstream cooling fins are connected to a partition plate that gradually increases in distance from the upstream cooling fins toward the downstream cooling fins,
At least some of the downstream cooling fins are connected to a partition plate that gradually increases in distance from the downstream cooling fins toward the upstream cooling fins,
The cooling device, wherein the bottom member is provided with a downstream inclined portion in which the distance from the back surface of the cooling plate gradually increases as it goes from the communication channel to the downstream refrigerant channel.
JP2008067345A 2008-03-17 2008-03-17 Cooling system Expired - Fee Related JP4983664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067345A JP4983664B2 (en) 2008-03-17 2008-03-17 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067345A JP4983664B2 (en) 2008-03-17 2008-03-17 Cooling system

Publications (2)

Publication Number Publication Date
JP2009224557A true JP2009224557A (en) 2009-10-01
JP4983664B2 JP4983664B2 (en) 2012-07-25

Family

ID=41241031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067345A Expired - Fee Related JP4983664B2 (en) 2008-03-17 2008-03-17 Cooling system

Country Status (1)

Country Link
JP (1) JP4983664B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299871A (en) * 2001-01-24 2002-10-11 Mitsubishi Electric Corp Heat sink assembly
JP2003224238A (en) * 2002-01-31 2003-08-08 Hitachi Ltd Electronic circuit device equipped with cooling unit
JP2005123496A (en) * 2003-10-20 2005-05-12 Mitsubishi Electric Corp Heat exchanger
JP2006278735A (en) * 2005-03-29 2006-10-12 Toyota Motor Corp Cooling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299871A (en) * 2001-01-24 2002-10-11 Mitsubishi Electric Corp Heat sink assembly
JP2003224238A (en) * 2002-01-31 2003-08-08 Hitachi Ltd Electronic circuit device equipped with cooling unit
JP2005123496A (en) * 2003-10-20 2005-05-12 Mitsubishi Electric Corp Heat exchanger
JP2006278735A (en) * 2005-03-29 2006-10-12 Toyota Motor Corp Cooling device

Also Published As

Publication number Publication date
JP4983664B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP6327271B2 (en) Heat exchanger
KR101050326B1 (en) Liquid-cooled chillers
JP5342392B2 (en) Cooling system
JP2006125767A (en) Heat exchanger
JP2010203694A (en) Liquid cooling type cooling device
JPWO2019043801A1 (en) heatsink
JP2011071386A5 (en)
JPWO2018012558A1 (en) Stacked heat sink core
JP2013118153A (en) Battery module
KR20180060262A (en) Plate heat exchanger
JP5162538B2 (en) Liquid cooling system
JP2017106648A (en) Heat exchanger
JP2008300447A (en) Heat radiation device
JP4983664B2 (en) Cooling system
JP2018017424A (en) Manufacturing method of heat exchanger
JP6614068B2 (en) Heat exchanger
JP2006170549A (en) Heat exchanger
KR100594185B1 (en) Plate with three-dimensional microchannel and heat exchanger using the same
JP2015113983A (en) Heat exchanger
CN110199169B (en) Water heat exchanger
JP2016130625A (en) Heat exchanger and metal thin plate for the same
JP6429122B2 (en) Heat exchanger and intermediate plate for heat exchanger
KR20200065779A (en) Heat exchanger plate and plate heat exchanger including the same
JP4522725B2 (en) heatsink
JP2019079908A (en) Cooling device and semiconductor module including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R151 Written notification of patent or utility model registration

Ref document number: 4983664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees