JP2009222073A - Two layer bearing and its manufacturing method - Google Patents

Two layer bearing and its manufacturing method Download PDF

Info

Publication number
JP2009222073A
JP2009222073A JP2008064047A JP2008064047A JP2009222073A JP 2009222073 A JP2009222073 A JP 2009222073A JP 2008064047 A JP2008064047 A JP 2008064047A JP 2008064047 A JP2008064047 A JP 2008064047A JP 2009222073 A JP2009222073 A JP 2009222073A
Authority
JP
Japan
Prior art keywords
layer
bearing
sliding surface
surface layer
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008064047A
Other languages
Japanese (ja)
Inventor
Kenta Onishi
健太 大西
Junji Toyoda
純二 豊田
Shinichi Ozaki
伸一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotanKako Co Ltd
Original Assignee
TotanKako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TotanKako Co Ltd filed Critical TotanKako Co Ltd
Priority to JP2008064047A priority Critical patent/JP2009222073A/en
Publication of JP2009222073A publication Critical patent/JP2009222073A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two layer bearing having improved performance and productivity, enabling to suppress a great change in the inner diameter size of a sliding face layer during press-in by suppressing great outer force on the sliding face layer, and to provide its manufacturing method. <P>SOLUTION: The two layer bearing 21 includes the sliding face layer 23 formed mainly of carbon, and a sintered body layer 22 joined to the sliding face layer 23. The sintered body layer 22 has alloy particles and/or metal particles, and cavity portions existing between the alloy particles and/or the metal particles. When a press-in allowance is 0.10 mm during press-in, an inner diameter change rate C (%) of the sliding face layer 23, shown by an expression (1): the inner diameter change rate C of the sliding face layer=[(the inner diameter of the sliding face layer after press-in-the inner diameter of the sliding face layer before press-in)/the inner diameter of the sliding face layer before press-in]×100(%), is restricted to be 0≥C≥-0.12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、摺動部に用いる2層軸受に関し、さらに詳しくいえば、主にカーボンからなる摺動面層と、この摺動面層の周囲に結合された焼結体層とで構成される2層軸受及びその製造方法に関する。   The present invention relates to a two-layer bearing used for a sliding portion. More specifically, the present invention comprises a sliding surface layer mainly made of carbon and a sintered body layer bonded around the sliding surface layer. The present invention relates to a two-layer bearing and a manufacturing method thereof.

従来から、下記特許文献1に開示される複層構造を有する軸受がある。この特許文献1には、主にカーボンからなる摺接層と、主にカーボンおよび金属からなり該摺接層に結合して該摺接層を支持する支持層とで構成される燃料ポンプ用軸受が開示されている。   Conventionally, there is a bearing having a multilayer structure disclosed in Patent Document 1 below. Patent Document 1 discloses a fuel pump bearing comprising a sliding contact layer mainly made of carbon and a support layer mainly made of carbon and metal and bonded to the sliding contact layer to support the sliding contact layer. Is disclosed.

しかし、特許文献1のものは、支持層が主にカーボンおよび金属からなるため、支持層が金属単独の場合よりも軸受の強度が低く、支持層を後加工した際の寸法精度が悪くなる。また、摺接層を粗形成した後に支持層を結合させるため、摺接層と支持層の界面が明確にできてしまい、充分な界面の接着力が得られず、後加工時に摺接層にクラックが発生するといった問題がある。さらに、特許文献1のものは、2回加圧成形しなければならず、生産性が悪いといった問題がある。   However, since the support layer is mainly composed of carbon and metal in Patent Document 1, the strength of the bearing is lower than when the support layer is made of metal alone, and the dimensional accuracy when the support layer is post-processed is deteriorated. Further, since the support layer is bonded after the slidable contact layer is roughly formed, the interface between the slidable contact layer and the support layer can be clearly defined, and sufficient adhesive force cannot be obtained. There is a problem that cracks occur. Furthermore, the thing of patent document 1 has to press-mold twice, and there exists a problem that productivity is bad.

そこで、本願出願人は、下記特許文献2に開示される複層構造を有する軸受を提案した。具体的には、自己潤滑性、耐蝕性に優れるが、強度が弱いカーボンと、強度は強いが、自己潤滑性がなく、耐蝕性に問題がある金属及び/又はセラミックスの両者の長所を活かすべく、カーボン層と金属及び/又はセラミックス層を別々に作製し一体化させるのではなく、カーボン層と金属及び/又はセラミックス層を同時に形成する一体成形により、カーボン層と金属及び/又はセラミックス層からなり、両層の界面が不明瞭である構造とするような構成である。   Therefore, the applicant of the present application has proposed a bearing having a multilayer structure disclosed in Patent Document 2 below. Specifically, to make use of the advantages of both carbon and ceramics, which are excellent in self-lubricating and corrosion resistance, but weak in strength, and strong in strength, but not self-lubricating and have problems with corrosion resistance. Instead of separately preparing and integrating the carbon layer and the metal and / or ceramic layer, the carbon layer and the metal and / or ceramic layer are formed by integral molding that simultaneously forms the carbon layer and the metal and / or ceramic layer. The structure is such that the interface between the two layers is unclear.

上記構成により、摺動面層は自己潤滑性、耐蝕性に優れたカーボンの特性が活かせ、金属及び/又はセラミックスからなる焼結体層により複合材料の強度を高くでき、良好な寸法精度の後加工が可能となる複合材料を提供できる。また、カーボン層と金属及び/又はセラミックス層を一体成形することにより、成形時における生産性向上を図ることができる。   With the above configuration, the sliding surface layer can take advantage of the characteristics of carbon with excellent self-lubrication and corrosion resistance, and the sintered body layer made of metal and / or ceramic can increase the strength of the composite material, and after good dimensional accuracy. A composite material that can be processed can be provided. Further, by integrally forming the carbon layer and the metal and / or ceramic layer, it is possible to improve productivity at the time of forming.

特開2003−286922号公報JP 2003-286922 A 特開2006−57138号公報JP 2006-57138 A

しかしながら、上記特許文献2の提案は、金属及び/又はセラミックス層の加圧力が300MPaと大きいため、2層軸受を軸受装置に圧入した場合に、金属及び/又はセラミックス層が十分に圧縮変形せず(特に、セラミックを用いた場合には顕著である)、カーボン層に大きな外力が加わるため、カーボン層の内径寸法が大きく変化するという問題が生じる場合がある。したがって、改良の余地がある。尚、このようなことを考慮して、カーボン層の内径減少量を予め計算しておいて、これを前提にして圧入することも考えられるが、カーボン軸受の公差は極めて小さいので、事前の計算通りとならない場合が生じる。このような場合には、所望の内径となるように、軸受の圧入後にカーボン層を削る必要が生じるため、軸受の生産性が低下する等の問題がある。   However, since the proposal of the above-mentioned Patent Document 2 has a large pressing force of the metal and / or ceramic layer as 300 MPa, the metal and / or ceramic layer is not sufficiently compressed and deformed when the two-layer bearing is press-fitted into the bearing device. (Especially when ceramic is used) Since a large external force is applied to the carbon layer, there may be a problem that the inner diameter of the carbon layer changes greatly. Therefore, there is room for improvement. In consideration of this, it is conceivable to calculate the amount of decrease in the inner diameter of the carbon layer in advance and press-fit under this assumption. However, since the tolerance of the carbon bearing is extremely small, There are cases where it does not pass. In such a case, it is necessary to cut the carbon layer after press-fitting the bearing so as to obtain a desired inner diameter, and thus there is a problem that the productivity of the bearing is lowered.

そこで、本発明の目的は、生産性向上を図りつつ、摺動面層に大きな外力が加わるのを抑制して、圧入時に摺動面層の内径寸法が大きく変化するのを抑えることができる2層軸受及びその製造方法を提供することである。   Accordingly, an object of the present invention is to suppress a large external force from being applied to the sliding surface layer while improving productivity, and to suppress a large change in the inner diameter of the sliding surface layer during press-fitting. It is to provide a layer bearing and a manufacturing method thereof.

本発明者は、上記目的を達成するために、主にカーボンからなる円筒状の摺動面層と、上記摺動面層に結合された焼結体層とで構成され、且つ、軸受装置に圧入される構造の2層軸受であって、上記焼結体層は、合金粒子及び/又は金属粒子と、これら合金粒子及び/又は金属粒子間に存在する空隙部とを有し、且つ、上記圧入時における圧入代が0.10mmであるときに、下記(1)式で示す上記摺動面層の内径変化率C(%)が、0≧C≧−0.12に規制されることを特徴とする。
摺動面層の内径変化率C=[(圧入後の摺動面層の内径−圧入前の摺動面層の内径)/圧入前の摺動面層の内径]×100(%)・・・(1)
In order to achieve the above object, the present inventor is constituted by a cylindrical sliding surface layer mainly made of carbon and a sintered body layer bonded to the sliding surface layer, and the bearing device includes A two-layer bearing having a press-fit structure, wherein the sintered body layer has alloy particles and / or metal particles, and voids existing between the alloy particles and / or metal particles, and When the press-fitting allowance at the time of press-fitting is 0.10 mm, the inner diameter change rate C (%) of the sliding surface layer expressed by the following equation (1) is regulated to 0 ≧ C ≧ −0.12. Features.
Change rate of inner diameter of sliding surface layer C = [(inner diameter of sliding surface layer after press-fitting-inner diameter of sliding surface layer before press-fitting) / inner diameter of sliding surface layer before press-fitting] × 100 (%) ..・ (1)

上記構成の如く、焼結体層内に空隙部を有していれば、軸受装置に2層軸受が圧入されて合金粒子及び/又は金属粒子(以下、合金粒子等と称するときがある)に外力が加わった際、合金粒子等が容易に変形することができるので、当該変形により外力が吸収されることになる。したがって、摺動面層に加わる外力が低減するため、摺動面層の内径寸法が所定値より小さくなるのを抑えることができる。この結果、軸受の圧入後にカーボン層を削る必要がなくなって、軸受の生産性が向上する。   If the sintered body layer has a gap as in the above configuration, a two-layer bearing is press-fitted into the bearing device to form alloy particles and / or metal particles (hereinafter sometimes referred to as alloy particles). When an external force is applied, the alloy particles and the like can be easily deformed, so that the external force is absorbed by the deformation. Accordingly, since the external force applied to the sliding surface layer is reduced, it is possible to suppress the inner diameter dimension of the sliding surface layer from becoming smaller than a predetermined value. As a result, it is not necessary to cut the carbon layer after press-fitting the bearing, and the productivity of the bearing is improved.

但し、焼結体層が、合金粒子等と、合金粒子等の間に存在する空隙部とを有しているだけでは、上記作用効果を十分に発揮することができないので、圧入時における圧入代が0.10mmであるときに、(1)式で示す上記摺動面層の内径変化率C(%)が、0≧C≧−0.12に規制する必要がある。   However, if the sintered body layer has alloy particles or the like and voids existing between the alloy particles or the like, the above effect cannot be sufficiently exhibited. Is 0.10 mm, the inner diameter change rate C (%) of the sliding surface layer expressed by the equation (1) needs to be regulated to 0 ≧ C ≧ −0.12.

尚、圧入代が0.10mmの場合を基準として、摺動面層の内径変化率Cを規制する理由としては、圧入代が余り小さいと、軸受装置に対する軸受の固定力が小さくなって、軸受が抜けることがある一方、圧入代が余り大きいと、摺動面層に対する加圧力が大きくなって、摺動面層に欠け等が生じるからである。
また、主にカーボンからなるとは、摺動面層の総重量に対するカーボンの重量の割合が50%以上の場合をいう。
更に、本発明の明細書中において、「層」と表現しているが、これは界面が明瞭であるもののみならず、界面が若干不明瞭であるものをも含む広い概念である。
The reason for regulating the inner diameter change rate C of the sliding surface layer on the basis of the case where the press-fitting allowance is 0.10 mm is that if the press-fitting allowance is too small, the fixing force of the bearing with respect to the bearing device becomes small, and the bearing On the other hand, if the press-fitting allowance is too large, the pressure applied to the sliding surface layer increases, and the sliding surface layer is chipped.
Further, “mainly composed of carbon” means that the ratio of the weight of carbon to the total weight of the sliding surface layer is 50% or more.
Furthermore, in the specification of the present invention, it is expressed as “layer”, but this is a wide concept including not only a clear interface but also a slightly unclear interface.

上記合金粒子としては、鉄系のもの、銅系のもの、ステンレス系のもの、或いは、タングステン系のものが用いられ、上記金属粒子として、銅、鉄、亜鉛、錫が用いられることが望ましい。
コスト面等を考慮すれば、合金粒子等として上述したものを用いるのが望ましいが、本発明はこれらのものに限定するものではない。
As the alloy particles, iron-based, copper-based, stainless-based, or tungsten-based particles are preferably used, and copper, iron, zinc, and tin are preferably used as the metal particles.
In view of cost and the like, it is desirable to use the above-mentioned alloy particles and the like, but the present invention is not limited to these.

上記摺動面層には、二酸化ケイ素(SiO2)、酸化第二鉄(Fe23)、及び酸化アルミニウム(Al23)から成る酸化物群から選択される少なくとも1種の酸化物が含まれていることが望ましい。
このように、摺動面層に二酸化ケイ素等の酸化物が含まれていれば、二酸化ケイ素等は自己潤滑性を有し、且つ、磨耗し難い物質であるため、挿通された軸が円滑に回転できると共に、摺動面層における磨耗が抑制される。尚、黒鉛粉末100重量部に対する二酸化ケイ素等の添加割合は、3〜6重量部であることが望ましい。なぜなら、当該割合が3重量部未満であると、酸化物の添加効果が十分に発揮されないことがある一方、当該割合が6重量部を超えると、相対的にカーボンの量が減少するため、軸の円滑な回転を阻害することがあるという理由による。
The sliding surface layer includes at least one oxide selected from an oxide group consisting of silicon dioxide (SiO 2 ), ferric oxide (Fe 2 O 3 ), and aluminum oxide (Al 2 O 3 ). Is desirable.
As described above, if the sliding surface layer contains an oxide such as silicon dioxide, the silicon dioxide or the like has a self-lubricating property and is difficult to wear. While being able to rotate, the wear in the sliding surface layer is suppressed. In addition, as for the addition ratio of silicon dioxide etc. with respect to 100 weight part of graphite powders, it is desirable that it is 3-6 weight part. This is because if the proportion is less than 3 parts by weight, the effect of adding an oxide may not be sufficiently exerted. On the other hand, if the proportion exceeds 6 parts by weight, the amount of carbon is relatively reduced. This is because the smooth rotation of the motor may be hindered.

上記摺動面層と上記焼結体層との厚みの比が5:95〜70:30であることが望ましい。
このように規制するのは、摺動面層と焼結体層との厚みの比が5:95未満になると、摺動面層が薄いため摺動材料としての寿命が短くなって実用上の問題が生じることがある。一方、摺動面層と焼結体層との厚みの比が70:30を越えると、焼結体層の割合が小さくなり過ぎて、軸受装置に2層軸受を圧入する際、合金粒子及び/又は金属粒子の変形量が少なくなる。このため、摺動面層に加わる外力を余り低減できないことがあり、しかも、焼結体層の補強効果が小さくなるという問題が生じることがあるためである。
The thickness ratio between the sliding surface layer and the sintered body layer is preferably 5:95 to 70:30.
In this way, when the ratio of the thickness of the sliding surface layer to the sintered body layer is less than 5:95, the sliding surface layer is thin, so the life as a sliding material is shortened and practically used. Problems can arise. On the other hand, when the ratio of the thickness of the sliding surface layer to the sintered body layer exceeds 70:30, the ratio of the sintered body layer becomes too small, and when the two-layer bearing is press-fitted into the bearing device, the alloy particles and / Or the deformation amount of the metal particles is reduced. For this reason, the external force applied to the sliding surface layer may not be reduced much, and the reinforcing effect of the sintered body layer may be reduced.

主にカーボンからなる円筒状の摺動面層と、上記摺動面層に結合された焼結体層とで構成され、且つ、軸受装置に圧入される構造の2層軸受であって、上記焼結体層は、銅−ニッケル−亜鉛系の合金粒子と、この合金粒子間に存在する空隙部とから成り、且つ、上記合金の理論密度に対する上記焼結体層の密度の割合が、63%〜72%に規制されることを特徴とする。   A two-layer bearing composed of a cylindrical sliding surface layer mainly made of carbon and a sintered body layer bonded to the sliding surface layer, and having a structure press-fitted into a bearing device, The sintered body layer is composed of copper-nickel-zinc alloy particles and voids existing between the alloy particles, and the ratio of the density of the sintered body layer to the theoretical density of the alloy is 63. % To 72%.

また、主にカーボンからなる円筒状の摺動面層と、上記摺動面層に結合された焼結体層とで構成され、且つ、軸受装置に圧入される構造の2層軸受であって、上記焼結体層は、銅−錫系の合金粒子と、この合金粒子間に存在する空隙部とから成り、且つ、上記合金粒子の理論密度に対する上記焼結体層の密度の割合が、63%〜69%に規制されることを特徴とする。
これらの構成であれば、上記摺動面層の内径変化率Cが、確実に上記(1)式の範囲内におさまる。
Further, a two-layer bearing composed of a cylindrical sliding surface layer mainly made of carbon and a sintered body layer bonded to the sliding surface layer and having a structure press-fitted into a bearing device. The sintered body layer is composed of copper-tin alloy particles and voids existing between the alloy particles, and the ratio of the density of the sintered body layer to the theoretical density of the alloy particles is as follows. It is characterized by being restricted to 63% to 69%.
With these configurations, the inner diameter change rate C of the sliding surface layer is surely within the range of the above formula (1).

上記摺動面層には、二酸化ケイ素、酸化第二鉄、及び酸化アルミニウムから成る酸化物群から選択される少なくとも1種の酸化物が含まれていることが望ましく、また、上記摺動面層と上記焼結体層との厚みの比が5:95〜70:30であることが望ましい。
このような構成とするのは、上述した理由と同様の理由による。
The sliding surface layer preferably contains at least one oxide selected from an oxide group consisting of silicon dioxide, ferric oxide, and aluminum oxide, and the sliding surface layer The ratio of the thickness of the sintered body layer is preferably 5:95 to 70:30.
The reason for this configuration is the same reason as described above.

金型内に銅−ニッケル−亜鉛系の合金粒子を充填し、更に、主にカーボンからなる成形用粉体を、上記合金粒子を充填した部位の内側に存在する金型内に充填する第1工程と、上記合金粒子と上記成形用粉体とを、127〜137MPaの圧力で加圧成形して成形体を作製する第2工程と、上記成形体を焼成する第3工程と、を有することを特徴とする。   First, copper-nickel-zinc alloy particles are filled into a mold, and further, a molding powder mainly composed of carbon is filled into a mold existing inside the portion filled with the alloy particles. And a second step of producing a molded body by press-molding the alloy particles and the molding powder at a pressure of 127 to 137 MPa, and a third step of firing the molded body. It is characterized by.

また、金型内に銅−錫系の合金粒子を充填し、更に、主にカーボンからなる成形用粉体を、上記合金粒子を充填した部位の内側に存在する金型内に充填する第1工程と、上記合金粒子と上記成形用粉体とを、147〜157MPaの圧力で加圧成形して成形体を作製する第2工程と、上記成形体を焼成する第3工程と、を有することを特徴とする。
これらの製造方法により、上述した2層軸受を作製することができる。
In addition, the mold is filled with copper-tin alloy particles, and further, a molding powder mainly composed of carbon is filled into a mold existing inside the portion filled with the alloy particles. And a second step of producing a molded body by press-molding the alloy particles and the molding powder at a pressure of 147 to 157 MPa, and a third step of firing the molded body. It is characterized by.
With these manufacturing methods, the above-described two-layer bearing can be manufactured.

本発明によれば、摺動部材としての性能改善と生産性向上を図りつつ、カーボン層に大きな外力が加わるのを抑制して、圧入時にカーボン層の内径寸法が大きく変化するのを抑えることができるという優れた効果を奏する。   According to the present invention, while improving performance and productivity as a sliding member, it is possible to suppress a large external force from being applied to the carbon layer, and to suppress a large change in the inner diameter of the carbon layer during press-fitting. There is an excellent effect of being able to.

次に、実施形態を挙げ、本発明をより詳しく説明する。なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、下記実施形態や後述の実施例に限定されるものではない。
本発明の2層軸受は、主にカーボンからなる摺動面層と、この摺動面層の周囲に結合された焼結体層とで構成される。
Next, the present invention will be described in more detail with reference to embodiments. The present invention can be changed in design without departing from the scope of the claims, and is not limited to the following embodiments or examples described later.
The two-layer bearing of the present invention comprises a sliding surface layer mainly made of carbon and a sintered body layer bonded around the sliding surface layer.

上記摺動面層は平均粒子径1〜200μmの黒鉛粉末(カーボン)100重量部に対して、バインダー5〜80重量部混合、焼成してなるものが好ましく、上記黒鉛粉末(カーボン)としては、人造黒鉛、天然黒鉛、スート等が挙げられるが、特に限定はされない。黒鉛粉末の平均粒子径が1〜200μmであることが好ましいのは、当該平均粒子径が1μm未満では、成形粉の流動性が悪くなって成形性が低下する一方、平均粒子径が200μmを越えると、強度が低下するばかりではなく、摺動面層の剥離が起こりやすくなるからである。このようなことを考慮すれば、黒鉛粉末の平均粒子径は10〜100μmであることがより好ましい。   The sliding surface layer is preferably obtained by mixing and baking 5 to 80 parts by weight of a binder with respect to 100 parts by weight of graphite powder (carbon) having an average particle diameter of 1 to 200 μm. As the graphite powder (carbon), Although artificial graphite, natural graphite, soot, etc. are mentioned, it does not specifically limit. The average particle size of the graphite powder is preferably 1 to 200 μm. If the average particle size is less than 1 μm, the fluidity of the molding powder is deteriorated and the moldability is lowered, while the average particle size exceeds 200 μm. This is because not only the strength is lowered but also the sliding surface layer is easily peeled off. Considering this, the average particle diameter of the graphite powder is more preferably 10 to 100 μm.

上記バインダーとしては、ピッチ、タール、合成樹脂等が挙げられる。合成樹脂としては、熱硬化性樹脂及び熱可塑性樹脂のいずれをも使用することができる。特に好適な合成樹脂としては、フェノール樹脂、エポキシ樹脂、フラン樹脂が挙げられる。   Examples of the binder include pitch, tar, and synthetic resin. As the synthetic resin, any of a thermosetting resin and a thermoplastic resin can be used. Particularly suitable synthetic resins include phenolic resins, epoxy resins, and furan resins.

本発明に用いられる金属粉末、合金粉末の種類については特に限定はされず、市販のものが使用できる。金属粉末としては、銅、鉄、亜鉛、錫等が好適に用いられ、合金粉末としては、銅系のもの、鉄系のもの、ステンレス系のもの、タングステン系のもの好適に用いられる。   There are no particular limitations on the type of metal powder or alloy powder used in the present invention, and commercially available powders can be used. As the metal powder, copper, iron, zinc, tin and the like are preferably used, and as the alloy powder, copper-based, iron-based, stainless-based and tungsten-based powders are preferably used.

次に、本発明の複合材料の製造工程を説明する。第1工程として、本発明の複合材料の摺動面層に用いる材料の作製工程について説明する。
まず、上記黒鉛粉末と上記バインダーとを混練する。黒鉛粉末とバインダーとの配合比は、黒鉛粉末100重量部に対して、バインダー5〜80重量部、好ましくはバインダー10〜50重量部である。バインダー量が5重量部未満では、摺動面層の剥離が起こりやすく、摺動時の摩耗量が増加する。また、バインダー量が80重量部を越えると、焼成時の収縮が大きく、割れが発生しやすい。また、黒鉛量が少なくなるため、摺動特性が悪くなる。なお、混練の際には必要に応じてアルコール類、アセトン類の有機溶剤を適量加えてもよい。また、必要に応じて黒鉛粉末に添加剤、例えば固体潤滑材、皮膜調整剤を加えてもよい。すなわち、二硫化モリブデン、二硫化タングステン等の固体潤滑材を加えてもよく、二酸化ケイ素、酸化第二鉄、酸化アルミニウム等の皮膜調整剤を黒鉛粉末100重量部に対して3〜6重量部加えてもよい。次に、混練した塊を粉砕して成形用の粉体(以下、成形用粉体という)に調整する。なお、得られた成形粉に離型剤、滑剤等の添加剤を加えてもよい。
Next, the manufacturing process of the composite material of this invention is demonstrated. As a first step, a production step of a material used for the sliding surface layer of the composite material of the present invention will be described.
First, the graphite powder and the binder are kneaded. The compounding ratio of the graphite powder and the binder is 5 to 80 parts by weight, preferably 10 to 50 parts by weight of the binder with respect to 100 parts by weight of the graphite powder. When the amount of the binder is less than 5 parts by weight, the sliding surface layer is easily peeled off, and the amount of wear during sliding increases. On the other hand, if the amount of the binder exceeds 80 parts by weight, the shrinkage during firing is large and cracking is likely to occur. Further, since the amount of graphite is reduced, the sliding characteristics are deteriorated. When kneading, an appropriate amount of an organic solvent such as alcohol or acetone may be added as necessary. Moreover, you may add an additive, such as a solid lubricant and a film | membrane regulator, to graphite powder as needed. That is, solid lubricants such as molybdenum disulfide and tungsten disulfide may be added, and a film modifier such as silicon dioxide, ferric oxide, aluminum oxide is added in an amount of 3 to 6 parts by weight based on 100 parts by weight of graphite powder. May be. Next, the kneaded mass is pulverized and adjusted to a molding powder (hereinafter referred to as a molding powder). In addition, you may add additives, such as a mold release agent and a lubricant, to the obtained shaping | molding powder.

次に、第2工程として、本発明の複合材料を製造するための成形工程について説明する。図1(a)に示す断面模式図のように、この成形工程で用いる金型11は、円筒状のダイス5と、ダイス5に下方から嵌装され、下方端に押圧用リングを有する円筒状の下パンチ2と、下パンチ2の筒内壁に沿って嵌装され、下方端に押圧用リングを有する円筒状のしきり部材6と、しきり部材6の筒内壁に沿って嵌装され、下方端に押圧用リングを有する円筒状の下パンチ3と、下パンチ3の筒内壁に沿って嵌装される棒状の下パンチ4と、ダイス5に上方から嵌装可能な上パンチ1とを備えてなる。   Next, a molding process for producing the composite material of the present invention will be described as a second process. As shown in the schematic cross-sectional view of FIG. 1A, a mold 11 used in this molding step is a cylindrical die 5 and a cylindrical shape that is fitted into the die 5 from below and has a pressing ring at the lower end. The lower punch 2 is fitted along the cylinder inner wall of the lower punch 2 and has a cylindrical threshold member 6 having a pressing ring at the lower end, and is fitted along the cylinder inner wall of the threshold member 6 at the lower end. A cylindrical lower punch 3 having a pressing ring, a rod-like lower punch 4 fitted along the cylinder inner wall of the lower punch 3, and an upper punch 1 that can be fitted to the die 5 from above. Become.

次に、金型11を用いて成形体を成形する工程について具体的に説明する。
まず、金型11のダイス5、下パンチ2及びしきり部材6で囲まれた空間に斜線で示す金属粉末及び/又は合金粉末9を充填する(図1(a)参照)。
次いで、下パンチ3の上端と下パンチ2の上端とが同位置になるまで下パンチ3を下方に移動させ、主にカーボンからなる成形用粉体10をしきり部材6と下パンチ3、4とに囲まれた空間に充填する(図1(b)参照)。
Next, the step of forming a molded body using the mold 11 will be specifically described.
First, a metal powder and / or alloy powder 9 indicated by oblique lines is filled in a space surrounded by the die 5, the lower punch 2 and the threshold member 6 of the mold 11 (see FIG. 1A).
Next, the lower punch 3 is moved downward until the upper end of the lower punch 3 and the upper end of the lower punch 2 are in the same position, and the molding powder 10 mainly made of carbon is cut into the cutting member 6 and the lower punches 3, 4. The space surrounded by is filled (see FIG. 1B).

そして、成形用粉体10と、金属粉末及び/又は合金粉末9との間のしきり部材6の上端を下パンチ3の上端及び下パンチ2の上端と同位置になるまでしきり部材6を下方に移動させる(図1(c)参照)。このように、しきり部材6が下降することにより、成形用粉体10と、金属粉末及び/又は合金粉末9とが一体成形可能となるとともに、両層の界面が生じなくなる。   Then, the threshold member 6 is moved downward until the upper end of the threshold member 6 between the molding powder 10 and the metal powder and / or alloy powder 9 is at the same position as the upper end of the lower punch 3 and the upper end of the lower punch 2. Move (see FIG. 1C). As described above, when the threshold member 6 is lowered, the molding powder 10 and the metal powder and / or the alloy powder 9 can be integrally molded, and the interface between the two layers does not occur.

その後、上パンチ1を上方からダイス5に嵌装し、かつ、下方へ押圧するとともに、下パンチ2、3及びしきり部材6各々の一端の位置がずれないようにしながら上方に各々の押圧用リングを押圧し、金属粉末及び/又は合金粉末9と成形用粉体10とを加圧成形する(図1(d)参照)。このようにして、金属粉末及び/又は合金粉末9、成形用粉体10の両層は強固に接着、成形され、金属及び/又は合金の層8、成形用粉体層7となる。
成形後、上パンチ1をダイス5から上方に取り外し、下パンチ2、3及びしきり部材6それぞれの一端の位置がずれないように上方に押し上げ、成形体から下パンチ4を下方に移動させて引き抜いて(図1(e)参照)、金属及び/又は合金の層8及び成形用粉体層7からなる円筒状の成形体を金型11から取り出す。このようにして成形体が得られる。
Thereafter, the upper punch 1 is fitted into the die 5 from above and pressed downward, and the respective press rings are pressed upward while preventing the positions of one end of each of the lower punches 2 and 3 and the threshold member 6 from being displaced. Is pressed and the metal powder and / or alloy powder 9 and the molding powder 10 are pressure-molded (see FIG. 1D). In this way, both layers of the metal powder and / or alloy powder 9 and the molding powder 10 are firmly bonded and molded to form a metal and / or alloy layer 8 and a molding powder layer 7.
After molding, the upper punch 1 is removed upward from the die 5 and pushed upward so that the positions of the lower punches 2 and 3 and the squeeze member 6 are not displaced, and the lower punch 4 is moved downward from the molded body and pulled out. (See FIG. 1 (e)), a cylindrical molded body composed of the metal and / or alloy layer 8 and the molding powder layer 7 is taken out from the mold 11. A molded body is thus obtained.

次に、第3工程として、上記成形体を焼成する。これにより、金属及び/又は合金の層8は焼結体層となり、成形用粉体層7は摺動面層となる。
ここで、成形体の焼成は、非酸化性雰囲気下あるいは還元雰囲気下で実施されることが好ましい。また、焼成温度は、金属や合金が溶融または分解しない温度であり、例えば、500〜2000℃である。非酸化性雰囲気下あるいは還元雰囲気下で焼成することによって、成形品の酸化劣化を防止する。焼成温度は、金属及び/又は合金の層8に使用した金属や合金の融点に応じて適宜選択することができる。なお、焼成された成形品には、酸化防止剤を塗布する等の防錆処理を施してもよい。
Next, the molded body is fired as a third step. Thereby, the metal and / or alloy layer 8 becomes a sintered body layer, and the molding powder layer 7 becomes a sliding surface layer.
Here, it is preferable that the compact is fired in a non-oxidizing atmosphere or a reducing atmosphere. The firing temperature is a temperature at which the metal or alloy does not melt or decompose, and is, for example, 500 to 2000 ° C. By calcination in a non-oxidizing atmosphere or a reducing atmosphere, oxidative deterioration of the molded product is prevented. The firing temperature can be appropriately selected according to the melting point of the metal or alloy used for the metal and / or alloy layer 8. The fired molded article may be subjected to a rust prevention treatment such as applying an antioxidant.

上記実施形態によれば、摺動面層は自己潤滑性、耐蝕性に優れたカーボンの特性が活かせ、金属及び/又は合金からなる焼結体層により複合材料の強度を高くでき、良好な寸法精度の後加工が可能となる複合材料を提供できる。また、摺動面層と焼結体層とを一体成形することにより、成形時における生産性向上を図ることができる。また、上記実施形態で得られた成形品の寸法出しを行う仕上げ工程において、優れた寸法精度を得ることができるサイジングの使用が可能である。さらに、サイジングによって摺動面層にクラックが発生しないため、効率的かつ安価に生産することできる。   According to the above embodiment, the sliding surface layer can make use of the characteristics of carbon excellent in self-lubricating and corrosion resistance, and the sintered body layer made of metal and / or alloy can increase the strength of the composite material, and has good dimensions. It is possible to provide a composite material that enables post-processing with accuracy. Further, by integrally molding the sliding surface layer and the sintered body layer, productivity can be improved during molding. Further, in the finishing process for dimensioning the molded product obtained in the above embodiment, it is possible to use sizing that can obtain excellent dimensional accuracy. Furthermore, since cracks do not occur in the sliding surface layer due to sizing, it can be produced efficiently and inexpensively.

ここで、上記第2工程における成形圧力は127〜200MPaであることが好ましく、特に、127〜157MPaであることが好ましい。なぜなら、成形圧力が127MPa未満であると、圧力不足による型くずれ等が生じ、十分に成形することができない場合が生じる。一方、成形圧力が200MPaを超えると、焼結体層中に存在する空間が小さくなって、軸受の圧入時に合金粒子及び/又は金属粒子が容易に変形することができず、摺動面層に加わる外力を十分に低減することができなくなる結果、摺動面層の内径寸法が所定値より小さくなることがあるという理由による。   Here, the molding pressure in the second step is preferably 127 to 200 MPa, and particularly preferably 127 to 157 MPa. This is because if the molding pressure is less than 127 MPa, the mold may be deformed due to insufficient pressure, and the molding may not be performed sufficiently. On the other hand, when the molding pressure exceeds 200 MPa, the space existing in the sintered body layer becomes small, and the alloy particles and / or metal particles cannot be easily deformed when the bearing is press-fitted. This is because the external force applied cannot be sufficiently reduced, and as a result, the inner diameter of the sliding surface layer may be smaller than a predetermined value.

なお、本発明の複合材料は、軸受に用いることができ、好ましくは、液体中、ガス雰囲気中、300℃程度までの高温大気中で使用される軸受に用いることができる。但し、図1で示した成形方法は焼結体層の内側に摺動面層が形成されるものであるが、焼結体層の外側に摺動面層が形成されるものであってもかまわない。   The composite material of the present invention can be used for a bearing, and preferably for a bearing used in a liquid, a gas atmosphere, and a high-temperature atmosphere up to about 300 ° C. However, the molding method shown in FIG. 1 is a method in which the sliding surface layer is formed inside the sintered body layer, but the sliding surface layer is formed outside the sintered body layer. It doesn't matter.

以下に、2つ実施例を挙げて、本発明を具体的に説明する。
[第1実施例]
(実施例1)
炭素黒鉛質粉末(カーボンが95質量%で、灰分が5質量%である。また、平均粒子径は10μmである。)100重量部に対して、フェノール樹脂25重量部を配合し、炭素黒鉛質粉末と樹脂とが均一に混合されるように、常温で混練した。得られた混練物を平均粒子径40μmに粉砕して成形用粉末とした。
Hereinafter, the present invention will be specifically described with reference to two examples.
[First embodiment]
Example 1
Carbon graphitic powder is blended with 25 parts by weight of phenolic resin with respect to 100 parts by weight of carbon graphite powder (carbon is 95% by mass, ash content is 5% by mass, and average particle size is 10 μm). The mixture was kneaded at room temperature so that the powder and the resin were uniformly mixed. The obtained kneaded product was pulverized to an average particle size of 40 μm to obtain a molding powder.

表1に示す組成の銅−ニッケル−亜鉛(Cu−Ni−Zn)系の合金粉末(平均粒子径40μm)を、図1(a)に示すように金型に充填した後、前記成形用粉体を図1(b)に示すように金型に充填し、上記実施形態で説明した成形工程により常温にて加圧力127MPaで圧縮成形した。その後、得られた成形品を、還元雰囲気下800℃で焼成し、更に、焼成された成形品にサイジングを施した。このとき、成形品の摺動面層にクラックは発生しなかった。   After the copper-nickel-zinc (Cu-Ni-Zn) -based alloy powder (average particle diameter 40 μm) having the composition shown in Table 1 is filled in a mold as shown in FIG. The body was filled into a mold as shown in FIG. 1B, and compression molded at a normal pressure of 127 MPa at a normal temperature by the molding process described in the above embodiment. Thereafter, the obtained molded product was fired at 800 ° C. in a reducing atmosphere, and the fired molded product was further sized. At this time, no crack occurred in the sliding surface layer of the molded product.

Figure 2009222073
Figure 2009222073

ここで、図2に示すように、得られた2層軸受21は、外径L1は10mm、高さL2は10mm、焼結体層22の内径L3は7mm、摺動面層23の内径L4は5mmとなっている。また、焼結体層22の密度は5.5g/cm3であり、Cu−Ni−Zn系の合金粉末の理論密度は8.73g/cm3であるということから、焼結体層22における理論密度に対する割合は、63%([5.5/8.73]×100)となった。尚、上記摺動面層23には鍔状部位23aが設けられているが、当該部位23aは無くても良い。
このようにして作製した2層軸受を、以下、本発明軸受A1と称する。
Here, as shown in FIG. 2, the obtained two-layer bearing 21 has an outer diameter L1 of 10 mm, a height L2 of 10 mm, an inner diameter L3 of the sintered body layer 22 of 7 mm, and an inner diameter L4 of the sliding surface layer 23. Is 5 mm. Further, since the density of the sintered body layer 22 is 5.5 g / cm 3 and the theoretical density of the Cu—Ni—Zn-based alloy powder is 8.73 g / cm 3 , The ratio to the theoretical density was 63% ([5.5 / 8.73] × 100). The sliding surface layer 23 is provided with the hook-shaped portion 23a, but the portion 23a may not be provided.
The two-layer bearing produced in this way is hereinafter referred to as the present invention bearing A1.

(実施例2)
成形工程における加圧力を137MPaとした他は、上記実施例1と同様にして2層軸受を作製した。
また、加圧力を変えたことから、焼結体層22の密度は6.3g/cm3となり、その結果、焼結体層22における理論密度に対する割合は、72%([6.3/8.73]×100)となった。尚、焼結体層22における気孔率は25.6%であった。
このようにして作製した2層軸受を、以下、本発明軸受A2と称する。
(Example 2)
A two-layer bearing was produced in the same manner as in Example 1 except that the pressing force in the molding step was 137 MPa.
Further, since the applied pressure was changed, the density of the sintered body layer 22 was 6.3 g / cm 3. As a result, the ratio of the sintered body layer 22 to the theoretical density was 72% ([6.3 / 8 .73] × 100). The porosity of the sintered body layer 22 was 25.6%.
The two-layer bearing produced in this way is hereinafter referred to as the present invention bearing A2.

(比較例1)
成形工程における加圧力を235MPaとした他は、上記実施例1と同様にして2層軸受を作製した。
また、加圧力を変えたことから、焼結体層22の密度は6.5g/cm3となり、その結果、焼結体層22における理論密度に対する割合は、75%([6.5/8.73]×100)となった。
このようにして作製した2層軸受を、以下、比較軸受Z1と称する。
(Comparative Example 1)
A two-layer bearing was produced in the same manner as in Example 1 except that the applied pressure in the molding step was 235 MPa.
Further, since the applied pressure was changed, the density of the sintered body layer 22 was 6.5 g / cm 3. As a result, the ratio of the sintered body layer 22 to the theoretical density was 75% ([6.5 / 8 .73] × 100).
The two-layer bearing produced in this way is hereinafter referred to as a comparative bearing Z1.

(比較例2)
成形工程における加圧力を343MPaとした他は、上記実施例1と同様にして2層軸受を作製した。
また、加圧力を変えたことから、焼結体層22の密度は7.0g/cm3となり、その結果、焼結体層22における理論密度に対する割合は、80%([7.0/8.73]×100)となった。尚、焼結体層22における気孔率は17.4%であった。
このようにして作製した2層軸受を、以下、比較軸受Z2と称する。
(Comparative Example 2)
A two-layer bearing was produced in the same manner as in Example 1 except that the pressing force in the molding step was 343 MPa.
Further, since the applied pressure was changed, the density of the sintered body layer 22 was 7.0 g / cm 3 , and as a result, the ratio of the sintered body layer 22 to the theoretical density was 80% ([7.0 / 8 .73] × 100). The porosity of the sintered body layer 22 was 17.4%.
The two-layer bearing produced in this way is hereinafter referred to as a comparative bearing Z2.

(比較例3)
焼結体層22を設けない(摺動面層23のみから成る)他は、上記実施例1と同様にして2層軸受を作製した。
尚、摺動面層23の形状は、外径が10mm、高さが10mm、内径L3が5mmとなっている。
このようにして作製した2層軸受を、以下、比較軸受Z3と称する。
(Comparative Example 3)
A two-layer bearing was produced in the same manner as in Example 1 except that the sintered body layer 22 was not provided (consisting only of the sliding surface layer 23).
The sliding surface layer 23 has an outer diameter of 10 mm, a height of 10 mm, and an inner diameter L3 of 5 mm.
The two-layer bearing produced in this way is hereinafter referred to as a comparative bearing Z3.

(実験)
上記本発明軸受A1、A2及び比較軸受Z1〜Z3を軸受装置に圧入したときの内径(摺動面層23の内径)減少量を調べたので、その結果を図5及び表2に示す。
尚、実験は、図3に示すように、内径がL1−α(αは圧入代であり、0.02〜0.18mmの範囲で変化させている)の被圧入部材24を用意し、図4に示すように、当該被圧入部材24に軸受21を圧入することによって行なった。
(Experiment)
FIG. 5 and Table 2 show the results of examining the amount of decrease in the inner diameter (the inner diameter of the sliding surface layer 23) when the bearings A1 and A2 and the comparative bearings Z1 to Z3 are pressed into the bearing device.
In the experiment, as shown in FIG. 3, a press-fit member 24 having an inner diameter of L1-α (α is a press-fit allowance and is changed in a range of 0.02 to 0.18 mm) is prepared. As shown in FIG. 4, the bearing 21 was press-fitted into the press-fitted member 24.



Figure 2009222073
Figure 2009222073

上記表2及び図5から明らかなように、圧入代が0.10mmの場合、本発明軸受A1、A2の内径減少量は、それぞれ0.002mm、0.004mmであって、下記(1)式で示す摺動面層の内径変化率C(%)が−0.04、−0.08となり、−0.12以上であることが認められる。したがって、2層軸受の圧入後に摺動面層を削る必要がなくなり、生産性が向上する。
摺動面層の内径変化率C=[(圧入後の摺動面層の内径−圧入前の摺動面層の内径)/圧入前の摺動面層の内径]×100(%)・・・(1)
As apparent from Table 2 and FIG. 5, when the press-fitting allowance is 0.10 mm, the inner diameter reduction amounts of the bearings A1 and A2 of the present invention are 0.002 mm and 0.004 mm, respectively. It is recognized that the inner diameter change rate C (%) of the sliding surface layer is -0.04 and -0.08, and is -0.12 or more. Therefore, it is not necessary to cut the sliding surface layer after the press-fitting of the two-layer bearing, and the productivity is improved.
Change rate of inner diameter of sliding surface layer C = [(inner diameter of sliding surface layer after press-fitting-inner diameter of sliding surface layer before press-fitting) / inner diameter of sliding surface layer before press-fitting] × 100 (%) ..・ (1)

これに対して、圧入代が0.10mmの場合、比較軸受Z1、Z2の内径減少量は、それぞれ0.010mm、0.018mmであって、上記(1)式で示す摺動面層の内径変化率C(%)が−0.20、−0.36となり、−0.12未満であることが認められる。したがって、2層軸受の圧入後に摺動面層を削る必要が生じ、生産性が低下する。尚、比較軸受Z3では圧入代が0.08mmを超えると、外周部に削れが生じたり、軸受に欠けが生じたりしたので、内径減少量の測定は行なわなかった。   On the other hand, when the press-fitting allowance is 0.10 mm, the inner diameter reduction amounts of the comparative bearings Z1 and Z2 are 0.010 mm and 0.018 mm, respectively, and the inner diameter of the sliding surface layer shown in the above equation (1) It is recognized that the rate of change C (%) is −0.20 and −0.36, and is less than −0.12. Therefore, it is necessary to cut the sliding surface layer after the press-fitting of the two-layer bearing, and the productivity is lowered. In the comparative bearing Z3, when the press-fitting allowance exceeded 0.08 mm, the outer peripheral portion was scraped or the bearing was chipped, so the inner diameter reduction amount was not measured.

尚、被圧入部材と軸受とには0.04mm程度の寸法誤差(最大では0.06mm程度の寸法誤差)が生じることがあるが、この場合でも内径減少量は0.02mm以下(最大でも0.03mm未満)であることが望ましい。そこで、表2において圧入代が0.14mm、及び、0.16mmの場合をみてみると、本発明軸受A1、A2では、圧入代が0.14mmの場合の内径減少量は0.005mm以下、圧入代が0.16mmの場合の内径減少量は0.007mm以下であることが認められるのに対して、比較軸受Z1、Z2では、圧入代が0.14mmの場合の内径減少量は0.021mm以上、圧入代が0.16mmの場合の内径減少量は0.030mm以上であることが認められる。したがって、被圧入部材と軸受とにある程度の寸法誤差が生じた場合に、本発明軸受A1、A2では内径変化を抑制しつつ(軸受内径公差[望ましくは0.02mmで、最大でも0.03mm]内におさめつつ)2層軸受を圧入できるが、比較軸受Z1〜Z3では内径変化を抑制しつつ2層軸受を圧入できないことがわかる。   Although a dimensional error of about 0.04 mm (maximum dimensional error of about 0.06 mm) may occur between the press-fitted member and the bearing, the inner diameter reduction amount is 0.02 mm or less (maximum 0). Less than 0.03 mm). Therefore, when looking at the case where the press-fit allowance is 0.14 mm and 0.16 mm in Table 2, in the bearings A1 and A2 of the present invention, the inner diameter reduction amount when the press-fit allowance is 0.14 mm is 0.005 mm or less, While it is recognized that the inner diameter reduction amount when the press-fitting allowance is 0.16 mm is 0.007 mm or less, in the comparative bearings Z1 and Z2, the inner diameter reduction amount when the press-fitting allowance is 0.14 mm is 0. It is recognized that the inner diameter reduction amount is 0.030 mm or more when 021 mm or more and the press-fitting allowance is 0.16 mm. Accordingly, when a dimensional error occurs to some extent between the press-fitted member and the bearing, the bearings A1 and A2 of the present invention suppress the change in the inner diameter (bearing inner diameter tolerance [preferably 0.02 mm, preferably 0.03 mm at the maximum]]. It can be seen that the two-layer bearing can be press-fitted (while keeping it inside), but the comparative bearings Z1 to Z3 cannot press-fit the two-layer bearing while suppressing changes in the inner diameter.

[第2実施例]
(実施例1)
合金粉末として、前記表1に示す組成の銅−錫(Cu−Sn)系の合金粉末(平均粒子径40μm)を用い、且つ、成形工程における加圧力を147MPaとした他は、上記第1実施例の実施例1と同様にして2層軸受を作成した。
尚、焼結体層22の密度は5.6g/cm3であり、Cu−Sn系の合金粉末の理論密度は8.83g/cm3であるということから、焼結体層22における理論密度に対する割合は、63%([5.6/8.83]×100)となった。
このようにして作製した2層軸受を、以下、本発明軸受B1と称する。
[Second Embodiment]
Example 1
The first embodiment described above except that the alloy powder is a copper-tin (Cu-Sn) -based alloy powder (average particle diameter of 40 μm) having the composition shown in Table 1 and the pressure in the forming step is 147 MPa. A two-layer bearing was prepared in the same manner as in Example 1 of the example.
The density of the sintered body layer 22 is 5.6 g / cm 3 , and the theoretical density of the Cu—Sn alloy powder is 8.83 g / cm 3. The ratio to was 63% ([5.6 / 8.83] × 100).
The two-layer bearing produced in this way is hereinafter referred to as the present invention bearing B1.

(実施例2)
成形工程における加圧力を157MPaとした他は、上記実施例1と同様にして2層軸受を作製した。
また、加圧力を変えたことから、焼結体層22の密度は6.1g/cm3となり、その結果、焼結体層22における理論密度に対する割合は、69%([6.1/8.83]×100)となった。尚、焼結体層22における気孔率は25.2%であった。
このようにして作製した2層軸受を、以下、本発明軸受B2と称する。
(Example 2)
A two-layer bearing was produced in the same manner as in Example 1 except that the pressing force in the molding step was 157 MPa.
Further, since the applied pressure was changed, the density of the sintered body layer 22 was 6.1 g / cm 3 , and as a result, the ratio of the sintered body layer 22 to the theoretical density was 69% ([6.1 / 8]. .83] × 100). The porosity of the sintered body layer 22 was 25.2%.
The two-layer bearing produced in this way is hereinafter referred to as the present invention bearing B2.

(比較例1)
成形工程における加圧力を225MPaとした他は、上記実施例1と同様にして2層軸受を作製した。
また、加圧力を変えたことから、焼結体層22の密度は6.3g/cm3となり、その結果、焼結体層22における理論密度に対する割合は、72%([6.3/8.83]×100)となった。
このようにして作製した2層軸受を、以下、比較軸受Y1と称する。
(Comparative Example 1)
A two-layer bearing was produced in the same manner as in Example 1 except that the pressing force in the molding step was 225 MPa.
Further, since the applied pressure was changed, the density of the sintered body layer 22 was 6.3 g / cm 3. As a result, the ratio of the sintered body layer 22 to the theoretical density was 72% ([6.3 / 8 .83] × 100).
The two-layer bearing produced in this way is hereinafter referred to as a comparative bearing Y1.

(比較例2)
成形工程における加圧力を265MPaとした他は、上記実施例1と同様にして2層軸受を作製した。
また、加圧力を変えたことから、焼結体層22の密度は6.7g/cm3となり、その結果、焼結体層22における理論密度に対する割合は、76%([6.7/8.83]×100)となった。尚、焼結体層22における気孔率は15.4%であった。
このようにして作製した2層軸受を、以下、比較軸受Y2と称する。
(Comparative Example 2)
A two-layer bearing was produced in the same manner as in Example 1 except that the applied pressure in the molding step was 265 MPa.
Further, since the applied pressure was changed, the density of the sintered body layer 22 was 6.7 g / cm 3. As a result, the ratio of the sintered body layer 22 to the theoretical density was 76% ([6.7 / 8 .83] × 100). The porosity of the sintered body layer 22 was 15.4%.
The two-layer bearing produced in this way is hereinafter referred to as a comparative bearing Y2.

(比較例3)
成形工程における加圧力を300MPaとした他は、上記実施例1と同様にして2層軸受を作製した。
また、加圧力を変えたことから、焼結体層22の密度は7.0g/cm3となり、その結果、焼結体層22における理論密度に対する割合は、79%([7.0/8.83]×100)となった。
このようにして作製した2層軸受を、以下、比較軸受Y3と称する。
(Comparative Example 3)
A two-layer bearing was produced in the same manner as in Example 1 except that the pressing force in the molding step was 300 MPa.
Further, since the applied pressure was changed, the density of the sintered body layer 22 was 7.0 g / cm 3 , and as a result, the ratio of the sintered body layer 22 to the theoretical density was 79% ([7.0 / 8 .83] × 100).
The two-layer bearing produced in this way is hereinafter referred to as a comparative bearing Y3.

(実験)
上記本発明軸受B1、B2及び比較軸受Y1〜Y3を軸受装置に圧入したときの内径(摺動面層23の内径)減少量を調べたので、その結果を図6及び表3に示す。尚、実験は、上記第1実施例の実験と同様にして行った。また、参考として、前記比較軸受Z3についての結果についても、図6及び表3に示す。
(Experiment)
FIG. 6 and Table 3 show the results of examining the amount of decrease in the inner diameter (the inner diameter of the sliding surface layer 23) when the bearings B1 and B2 and the comparative bearings Y1 to Y3 are pressed into the bearing device. The experiment was performed in the same manner as the experiment in the first embodiment. For reference, the results of the comparative bearing Z3 are also shown in FIG.

Figure 2009222073
Figure 2009222073

上記表3及び図6から明らかなように、圧入代が0.10mmの場合、本発明軸受B1、B2の内径減少量は、それぞれ0.002mm、0.006mmであって、上記(1)式で示す摺動面層の内径変化率C(%)が−0.04、−0.12となり、−0.12以上であることが認められる。したがって、2層軸受の圧入後に摺動面層を削る必要がなくなり、生産性が向上する。   As apparent from Table 3 and FIG. 6, when the press-fitting allowance is 0.10 mm, the inner diameter reduction amounts of the bearings B1 and B2 of the present invention are 0.002 mm and 0.006 mm, respectively. It is recognized that the change rate C (%) of the inner diameter of the sliding surface layer is −0.04 and −0.12, and is −0.12 or more. Therefore, it is not necessary to cut the sliding surface layer after the press-fitting of the two-layer bearing, and the productivity is improved.

これに対して、圧入代が0.10mmの場合、比較軸受Y1〜Y3の内径減少量は、それぞれ0.030mm、0.030mm、0.035mmであって、上記(1)式で示す摺動面層の内径変化率C(%)が、−0.12未満であることが認められる。したがって、2層軸受の圧入後に摺動面層を削る必要が生じ、生産性が低下する。   On the other hand, when the press-fitting allowance is 0.10 mm, the inner diameter reduction amounts of the comparative bearings Y1 to Y3 are 0.030 mm, 0.030 mm, and 0.035 mm, respectively, and the sliding shown in the above equation (1) It can be seen that the inner diameter change rate C (%) of the face layer is less than -0.12. Therefore, it is necessary to cut the sliding surface layer after the press-fitting of the two-layer bearing, and the productivity is lowered.

尚、上記第1実施例の実験と同様に、圧入代が0.14mm、及び、0.16mmの場合をみてみると、本発明軸受B1、B2では、圧入代が0.14mmの場合の内径減少量は0.015mm以下、圧入代が0.16mmの場合の内径減少量は0.023mm以下であることが認められるのに対して、比較軸受Y1〜Y3では、圧入代が0.14mmの場合の内径減少量は0.050mm以上、圧入代が0.16mmの場合の内径減少量は0.055mm以上であることが認められる。したがって、被圧入部材と軸受とにある程度の寸法誤差が生じた場合に、本発明軸受B1、B2では内径変化を抑制しつつ2層軸受を圧入できるが、比較軸受Y1〜Y3では内径変化を抑制しつつ2層軸受を圧入できないことがわかる。   As in the experiment of the first embodiment, when the press-fitting allowances are 0.14 mm and 0.16 mm, the bearings B1 and B2 of the present invention have an inner diameter when the press-fitting allowance is 0.14 mm. When the reduction amount is 0.015 mm or less and the press-fitting allowance is 0.16 mm, the inner diameter reduction amount is recognized to be 0.023 mm or less, whereas in the comparative bearings Y1 to Y3, the press-fitting allowance is 0.14 mm. In this case, the inner diameter reduction amount is 0.050 mm or more, and the inner diameter reduction amount when the press-fitting allowance is 0.16 mm is 0.055 mm or more. Therefore, when a certain dimensional error occurs between the press-fitted member and the bearing, the bearings B1 and B2 of the present invention can press-fit the two-layer bearing while suppressing the inner diameter change, but the comparative bearings Y1 to Y3 suppress the inner diameter change. However, it can be seen that the two-layer bearing cannot be press-fitted.

(その他の事項)
(1)合金粒子としては上記Cu−Ni−Znや上記Cu−Sn等の銅系のものに限定するものではなく、Fe−C、Fe−Cu−C等の鉄系のもの、Fe−Cr−Ni等のステンレス系のもの、或いは、W−Ni−Cr、W−Ni−Fe等タングステン系のものでも良い。また、本発明は合金粒子に限定するものではなく、Fe、Cu、Zn、Sn等の金属粒子であっても良い。更に、本発明は合金粒子と金属粒子とを混合して用いることもできる。
(2)2層軸受の直径としては10mmに限定するものではないが、本発明は1mm〜100mm程度の2層軸受、特に5mm〜20mm程度の2層軸受に適用するのが好ましい。
(Other matters)
(1) Alloy particles are not limited to copper-based particles such as Cu-Ni-Zn and Cu-Sn, but iron-based particles such as Fe-C and Fe-Cu-C, Fe-Cr A stainless steel material such as -Ni or a tungsten material such as W-Ni-Cr or W-Ni-Fe may be used. The present invention is not limited to alloy particles, and may be metal particles such as Fe, Cu, Zn, Sn. Furthermore, the present invention can also be used by mixing alloy particles and metal particles.
(2) Although the diameter of the two-layer bearing is not limited to 10 mm, the present invention is preferably applied to a two-layer bearing of about 1 mm to 100 mm, particularly a two-layer bearing of about 5 mm to 20 mm.

本発明は燃料ポンプの軸受等に用いることができる。   The present invention can be used for a bearing of a fuel pump.

図1(a)〜(e)は2層軸受の製造工程を示す図であって、同図(a)は、金型に金属及び/又は合金の粉体を充填したときの断面模式図、同図(b)は、次いで、成形用粉体を充填したときの断面模式図、同図(c)は、成形用粉体と、金属及び/又は合金の粉体との間のしきり部材が外されたときの断面模式図、同図(d)は、加圧成形時の断面模式図、同図(e)は、成形終了時の断面模式図である。FIGS. 1A to 1E are views showing a manufacturing process of a two-layer bearing, and FIG. 1A is a schematic cross-sectional view when a metal and / or alloy powder is filled in a mold; FIG. 6B is a schematic cross-sectional view when the molding powder is filled, and FIG. 5C shows a threshold member between the molding powder and the metal and / or alloy powder. FIG. 4D is a schematic cross-sectional view at the time of pressure molding, and FIG. 4E is a schematic cross-sectional view at the end of molding. 本発明の2層軸受の断面図である。It is sectional drawing of the two-layer bearing of this invention. 2層軸受と被圧入部材との関係を示す断面図である。It is sectional drawing which shows the relationship between a two-layer bearing and a press-fit member. 2層軸受を被圧入部材に圧入した状態を示す断面図である。It is sectional drawing which shows the state which press-fitted the two layer bearing to the to-be-fitted member. 本発明軸受A1、A2及び比較軸受Z1〜Z3を被圧入部材に圧入したときの圧入代と内径減少量との関係を示すグラフである。It is a graph which shows the relationship between the press-fitting allowance and internal-diameter reduction | decrease when this invention bearing A1, A2 and comparative bearing Z1-Z3 are press-fitted in a to-be-fitted member. 本発明軸受B1、B2及び比較軸受Y1〜Y3、Z3を被圧入部材に圧入したときの圧入代と内径減少量との関係を示すグラフである。It is a graph which shows the relationship between the press-fitting allowance when the present invention bearings B1 and B2 and the comparative bearings Y1 to Y3 and Z3 are press-fitted into the press-fitted member, and the inner diameter reduction amount.

符号の説明Explanation of symbols

1 上パンチ
2、3、4 下パンチ
5 ダイス
6 しきり部材
7 成形用粉体層
8 金属及び/又は合金の層
9 金属及び/又は合金の粉末
10 成形用粉末
11 金型
21 2層軸受
22 焼結体層
23 摺動面層
24 被圧入部材
DESCRIPTION OF SYMBOLS 1 Upper punch 2, 3, 4 Lower punch 5 Die 6 Cutting member 7 Molding powder layer 8 Metal and / or alloy layer 9 Metal and / or alloy powder 10 Molding powder 11 Mold 21 Two-layer bearing 22 Firing Bonded layer 23 Sliding surface layer 24 Press-fit member

Claims (10)

主にカーボンからなる円筒状の摺動面層と、上記摺動面層に結合された焼結体層とで構成され、且つ、軸受装置に圧入される構造の2層軸受であって、
上記焼結体層は、合金粒子及び/又は金属粒子と、これら合金粒子及び/又は金属粒子間に存在する空隙部とを有し、且つ、上記圧入時における圧入代が0.10mmであるときに、下記(1)式で示す上記摺動面層の内径変化率C(%)が、0≧C≧−0.12に規制されることを特徴とする2層軸受。
摺動面層の内径変化率C=[(圧入後の摺動面層の内径−圧入前の摺動面層の内径)/圧入前の摺動面層の内径]×100(%)・・・(1)
A two-layer bearing composed of a cylindrical sliding surface layer mainly made of carbon and a sintered body layer bonded to the sliding surface layer, and having a structure press-fitted into a bearing device,
The sintered body layer has alloy particles and / or metal particles, and voids existing between the alloy particles and / or metal particles, and the press-fitting allowance at the time of the press-fitting is 0.10 mm. Further, the inner diameter change rate C (%) of the sliding surface layer represented by the following formula (1) is regulated to 0 ≧ C ≧ −0.12, and the two-layer bearing is characterized in that:
Change rate of inner diameter of sliding surface layer C = [(inner diameter of sliding surface layer after press-fitting-inner diameter of sliding surface layer before press-fitting) / inner diameter of sliding surface layer before press-fitting] × 100 (%) ..・ (1)
上記合金粒子としては、鉄系のもの、銅系のもの、ステンレス系のもの、或いは、タングステン系のものが用いられ、上記金属粒子として、銅、鉄、亜鉛、錫が用いられる、請求項1に記載の2層軸受。   2. The alloy particles may be iron-based, copper-based, stainless-based, or tungsten-based, and the metal particles may be copper, iron, zinc, or tin. 2 layer bearing. 上記摺動面層には、二酸化ケイ素、酸化第二鉄、及び酸化アルミニウムから成る酸化物群から選択される少なくとも1種の酸化物が含まれている、請求項1又は2に記載の2層軸受。   3. The two-layered structure according to claim 1, wherein the sliding surface layer includes at least one oxide selected from an oxide group consisting of silicon dioxide, ferric oxide, and aluminum oxide. bearing. 上記摺動面層と上記焼結体層との厚みの比が5:95〜70:30である、請求項1〜3のいずれか1項に記載の2層軸受。   The two-layer bearing according to any one of claims 1 to 3, wherein a thickness ratio between the sliding surface layer and the sintered body layer is 5:95 to 70:30. 主にカーボンからなる円筒状の摺動面層と、上記摺動面層に結合された焼結体層とで構成され、且つ、軸受装置に圧入される構造の2層軸受であって、
上記焼結体層は、銅−ニッケル−亜鉛系の合金粒子と、この合金粒子間に存在する空隙部とから成り、且つ、上記合金の理論密度に対する上記焼結体層の密度の割合が、63%〜72%に規制されることを特徴とする2層軸受。
A two-layer bearing composed of a cylindrical sliding surface layer mainly made of carbon and a sintered body layer bonded to the sliding surface layer, and having a structure press-fitted into a bearing device,
The sintered body layer is composed of copper-nickel-zinc alloy particles and voids existing between the alloy particles, and the ratio of the density of the sintered body layer to the theoretical density of the alloy is as follows. A two-layer bearing characterized by being restricted to 63% to 72%.
主にカーボンからなる円筒状の摺動面層と、上記摺動面層に結合された焼結体層とで構成され、且つ、軸受装置に圧入される構造の2層軸受であって、
上記焼結体層は、銅−錫系の合金粒子と、この合金粒子間に存在する空隙部とから成り、且つ、上記合金粒子の理論密度に対する上記焼結体層の密度の割合が、63%〜69%に規制されることを特徴とする2層軸受。
A two-layer bearing composed of a cylindrical sliding surface layer mainly made of carbon and a sintered body layer bonded to the sliding surface layer, and having a structure press-fitted into a bearing device,
The sintered body layer is composed of copper-tin alloy particles and voids existing between the alloy particles, and the ratio of the density of the sintered body layer to the theoretical density of the alloy particles is 63. A two-layer bearing characterized by being restricted to% to 69%.
上記摺動面層には、二酸化ケイ素、酸化第二鉄、及び酸化アルミニウムから成る酸化物群から選択される少なくとも1種の酸化物が含まれている、請求項5又は6に記載の2層軸受。   The two-layered material according to claim 5 or 6, wherein the sliding surface layer contains at least one oxide selected from the group consisting of silicon dioxide, ferric oxide, and aluminum oxide. bearing. 上記摺動面層と上記焼結体層との厚みの比が5:95〜70:30である、請求項5〜7のいずれか1項に記載の2層軸受。   The two-layer bearing according to any one of claims 5 to 7, wherein a thickness ratio between the sliding surface layer and the sintered body layer is 5:95 to 70:30. 金型内に銅−ニッケル−亜鉛系の合金粒子を充填し、更に、主にカーボンからなる成形用粉体を、上記合金粒子を充填した部位の内側に存在する金型内に充填する第1工程と、
上記合金粒子と上記成形用粉体とを、127〜137MPaの圧力で加圧成形して成形体を作製する第2工程と、
上記成形体を焼成する第3工程と、
を有することを特徴とする2層軸受の製造方法。
First, copper-nickel-zinc alloy particles are filled into a mold, and further, a molding powder mainly composed of carbon is filled into a mold existing inside the portion filled with the alloy particles. Process,
A second step in which the alloy particles and the molding powder are pressure-molded at a pressure of 127 to 137 MPa to form a molded body;
A third step of firing the molded body;
A method for producing a two-layer bearing, comprising:
金型内に銅−錫系の合金粒子を充填し、更に、主にカーボンからなる成形用粉体を、上記合金粒子を充填した部位の内側に存在する金型内に充填する第1工程と、
上記合金粒子と上記成形用粉体とを、147〜157MPaの圧力で加圧成形して成形体を作製する第2工程と、
上記成形体を焼成する第3工程と、
を有することを特徴とする2層軸受の製造方法。
A first step of filling copper-tin-based alloy particles in a mold and further filling a molding powder mainly composed of carbon into a mold existing inside a portion filled with the alloy particles; ,
A second step in which the alloy particles and the molding powder are pressure-molded at a pressure of 147 to 157 MPa to form a molded body;
A third step of firing the molded body;
A method for producing a two-layer bearing, comprising:
JP2008064047A 2008-03-13 2008-03-13 Two layer bearing and its manufacturing method Pending JP2009222073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064047A JP2009222073A (en) 2008-03-13 2008-03-13 Two layer bearing and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064047A JP2009222073A (en) 2008-03-13 2008-03-13 Two layer bearing and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009222073A true JP2009222073A (en) 2009-10-01

Family

ID=41239076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064047A Pending JP2009222073A (en) 2008-03-13 2008-03-13 Two layer bearing and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009222073A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241728A (en) * 2011-05-16 2012-12-10 Ntn Corp Sintered bearing and fluid dynamic pressure bearing device including the same
KR101540036B1 (en) * 2013-09-17 2015-07-28 주식회사 티엠시 A Sintered Body having Dual Ring Structure and a Manufacturing Method for the same
JPWO2015025576A1 (en) * 2013-08-20 2017-03-02 日立オートモティブシステムズ株式会社 Electric air flow control device for internal combustion engine
CN106563800A (en) * 2016-11-09 2017-04-19 安徽孺子牛轴承有限公司 High performance bearing and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162741A (en) * 1981-03-31 1982-10-06 Taiho Kogyo Co Ltd Sliding material
JPH06207618A (en) * 1993-01-12 1994-07-26 Sankyo Seiki Mfg Co Ltd Oil impregnated metal powder sintered bearing
JP2006052757A (en) * 2004-08-10 2006-02-23 Mitsubishi Materials Corp Sliding member, powder molding system, and manufacturing method for compact
JP2006057138A (en) * 2004-08-20 2006-03-02 Totan Kako Kk Composite material and sliding member obtained by using the composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162741A (en) * 1981-03-31 1982-10-06 Taiho Kogyo Co Ltd Sliding material
JPH06207618A (en) * 1993-01-12 1994-07-26 Sankyo Seiki Mfg Co Ltd Oil impregnated metal powder sintered bearing
JP2006052757A (en) * 2004-08-10 2006-02-23 Mitsubishi Materials Corp Sliding member, powder molding system, and manufacturing method for compact
JP2006057138A (en) * 2004-08-20 2006-03-02 Totan Kako Kk Composite material and sliding member obtained by using the composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241728A (en) * 2011-05-16 2012-12-10 Ntn Corp Sintered bearing and fluid dynamic pressure bearing device including the same
JPWO2015025576A1 (en) * 2013-08-20 2017-03-02 日立オートモティブシステムズ株式会社 Electric air flow control device for internal combustion engine
KR101540036B1 (en) * 2013-09-17 2015-07-28 주식회사 티엠시 A Sintered Body having Dual Ring Structure and a Manufacturing Method for the same
CN106563800A (en) * 2016-11-09 2017-04-19 安徽孺子牛轴承有限公司 High performance bearing and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6119830B2 (en) Method for producing Cu-based sintered oil-impregnated bearing
JP5247329B2 (en) Iron-based sintered bearing and manufacturing method thereof
JP6741730B2 (en) Sintered bearing and manufacturing method thereof
JP5371182B2 (en) Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy
JP6921046B2 (en) Manufacturing method of sintered bearing
JP6816079B2 (en) Vibration motor
WO2013137347A1 (en) Sintered bearing and manufacturing method for same
JP2009222073A (en) Two layer bearing and its manufacturing method
JP2008069384A (en) Fe-BASED SINTERED METAL BEARING AND ITS MANUFACTURING METHOD
JP5496380B2 (en) Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy
JP2016053200A (en) Cu-BASED SINTER SHAFT BEARING AND MANUFACTURING METHOD OF Cu-BASED SINTER SHAFT BEARING
JP2016113658A (en) Method for producing sintered component, and sintered component
WO2016098525A1 (en) Green compact and method for producing same
JP5765490B2 (en) Sliding member and manufacturing method of sliding member
JP2009091661A (en) Composite material, manufacturing method of the composite material and slide member using the composite material
JP6675886B2 (en) Oil-impregnated bearing and its manufacturing method
JP6461626B2 (en) Manufacturing method of sliding member
JP2016065638A (en) Sliding member and method of manufacturing the same
WO2015050200A1 (en) Sintered bearing and manufacturing process therefor
JP6522301B2 (en) Sintered bearing for EGR valve and method of manufacturing the same
JP2016053210A (en) Exhaust valve device and gas cushion material
JP2006057138A (en) Composite material and sliding member obtained by using the composite material
JPS62253702A (en) Production of two-layered oil-impregnated bearing made of sintered fe base material
JPWO2017150271A1 (en) Cu-based sintered sliding material and manufacturing method thereof
JP2009143772A (en) Slide member and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A977 Report on retrieval

Effective date: 20111221

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120516

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121003

Free format text: JAPANESE INTERMEDIATE CODE: A02