JP2009143772A - Slide member and method of manufacturing the same - Google Patents

Slide member and method of manufacturing the same Download PDF

Info

Publication number
JP2009143772A
JP2009143772A JP2007323618A JP2007323618A JP2009143772A JP 2009143772 A JP2009143772 A JP 2009143772A JP 2007323618 A JP2007323618 A JP 2007323618A JP 2007323618 A JP2007323618 A JP 2007323618A JP 2009143772 A JP2009143772 A JP 2009143772A
Authority
JP
Japan
Prior art keywords
metal
carbon
sliding member
base material
carbon base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007323618A
Other languages
Japanese (ja)
Inventor
Shoichi Nakajima
昌一 中島
Katsunori Suzuki
勝則 鈴木
Koichi Ueda
浩一 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007323618A priority Critical patent/JP2009143772A/en
Publication of JP2009143772A publication Critical patent/JP2009143772A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon slide member superior in abrasion resistance and load bearing property. <P>SOLUTION: The slide member 4 contains a carbon base material 1 and a metal, also a carbide or an oxide, and is characterised in that, in the sliding surface, the metal is dispersed insularly and the metal is surrounded by the carbide or the oxide. Also, it is characterised in that the surface layer part containing the abrasion surface has a three-dimensional network structure, in which mutually connected metal skeletons are included, and the surfaces thereof are covered by the carbide or the oxide, and the other parts are formed of carbon. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、摺動部材に関し、これを用いる軸受または機械製品の摺動部品に関する。   The present invention relates to a sliding member, and relates to a sliding part of a bearing or a machine product using the sliding member.

潤滑油を供給しないで稼動する軸受や摺動部、あるいは起動時などに潤滑油が少なくなる摺動部に用いられる摺動部材は、金属同士の接触や、潤滑油の枯渇した条件における焼付きを回避するために、一部でカーボン焼成材が採用されてきた。カーボン焼成材は、黒鉛成分を適度に配合することで、黒鉛の自己潤滑性により無給油でも焼付きを起こしにくい。   Sliding members used in bearings and sliding parts that operate without supplying lubricating oil, or sliding parts that use less lubricating oil during startup, etc., are seized under conditions where metal is in contact with each other or when the lubricating oil is depleted. In order to avoid this, carbon fired materials have been used in some cases. The carbon fired material is less likely to cause seizure even without oil supply due to the self-lubricating property of graphite by appropriately blending the graphite component.

一方、一般に、カーボン焼成材には内部に開気孔が残存するため、潤滑油や潤滑液による流体潤滑が得られにくいという欠点がある。また、カーボン焼成材は、カーボン同士の焼成結合が弱いこと、および気孔が存在することによって強度が低く、圧縮強度で280MPa程度が限界とされていた。   On the other hand, generally, since the open pores remain in the carbon fired material, there is a drawback that it is difficult to obtain fluid lubrication with a lubricating oil or a lubricating liquid. Moreover, the carbon fired material has a low strength due to weak bonding between carbons and the presence of pores, and the compressive strength is limited to about 280 MPa.

特許文献1には、圧縮機の軸受部の摩耗や焼付きを防止するため、軸受として、炭素質基材を用い、その気孔に、IB族、Feを除くVIII族およびSnから選ばれる金属を含浸した部材を用いることが開示されている。   In Patent Document 1, in order to prevent wear and seizure of a bearing portion of a compressor, a carbonaceous base material is used as a bearing, and a metal selected from Group VIII, Group VIII excluding Fe, and Sn is used for the pores. The use of impregnated members is disclosed.

特許文献2には、黒鉛粉末からなる圧粉成型体に珪素が組成比の大部分を占める共晶合金を加圧溶浸して反応させる、黒鉛−炭化珪素系複合材料の製造方法が開示されている。   Patent Document 2 discloses a method for producing a graphite-silicon carbide composite material, in which a eutectic alloy in which silicon accounts for the majority of the composition ratio is pressure-infiltrated and reacted with a green compact made of graphite powder. Yes.

特許文献3には、カーボン材の気孔に酸化ケイ素と金属リン酸化合物とを含む混合化合物の含有層を設けた摺動部品が開示されている。   Patent Document 3 discloses a sliding component in which a carbon compound pore is provided with a mixed compound containing layer containing silicon oxide and a metal phosphate compound.

特許文献4には、炭化珪素質焼結体に存在する気孔部に炭化物、窒化物、酸化物、硫化物、水酸化物、炭酸塩および比較的低融点の金属のいずれか一種または二種以上の溶融物が含浸された摺動部材が開示されている。   In Patent Document 4, any one or two or more of carbide, nitride, oxide, sulfide, hydroxide, carbonate and relatively low melting point metal are present in the pores present in the silicon carbide sintered body. A sliding member impregnated with a molten material is disclosed.

特許文献5には、炭素基材の摺動部分の表層部を珪化処理し、さらに該炭素基材全体に金属を含浸した、炭素−炭化珪素−金属複合材料が開示されている。ここで、含浸する金属として、アンチモン、銀、錫、銅が記載されている。   Patent Document 5 discloses a carbon-silicon carbide-metal composite material in which a surface layer portion of a sliding portion of a carbon base material is silicified, and the entire carbon base material is impregnated with metal. Here, antimony, silver, tin, and copper are described as the metal to be impregnated.

特許文献6には、カーボン基材にSbおよびCuを含む合金を含浸した金属含有カーボン摺動材が開示されている。   Patent Document 6 discloses a metal-containing carbon sliding material in which a carbon base material is impregnated with an alloy containing Sb and Cu.

特許文献7には、カーボン基材に、Al、Cu、Mg、Ti、Beおよび残部Znを含む合金を含浸した金属含有カーボン摺動材が開示されている。   Patent Document 7 discloses a metal-containing carbon sliding material in which a carbon base material is impregnated with an alloy containing Al, Cu, Mg, Ti, Be and the balance Zn.

特許文献8には、摺動面の少なくとも一部に炭素と窒素を含む被覆を具え、この被覆は、他の化合物として、さらに周期律表第IVa、Va、VIa族元素、鉄族金属、AlおよびSi、ならびにこれらの炭化物、窒化物および炭窒化物から選択された少なくとも一種を含み、この他の化合物が非晶質である摺動部材が開示されている。   Patent Document 8 includes a coating containing carbon and nitrogen on at least a part of a sliding surface, and this coating may be used as another compound as well as elements IVa, Va, VIa group elements, iron group metals, Al in the periodic table. And a sliding member containing Si and at least one selected from carbides, nitrides, and carbonitrides thereof, and other compounds being amorphous.

特許文献9には、固体潤滑剤を配合したカーボン基材に、Zn、Cuおよび残部Snを含む合金を含浸した金属含浸カーボン軸受材が開示されている。   Patent Document 9 discloses a metal-impregnated carbon bearing material in which a carbon base material containing a solid lubricant is impregnated with an alloy containing Zn, Cu, and the remaining Sn.

特許文献10には、黒鉛を含む炭素質基材の気孔に、IB族、Feを除くVIII族およびSnから選ばれる一種の金属またはこれらの金属を主にした合金を含浸した圧縮機用軸受が開示されている。   Patent Document 10 discloses a compressor bearing in which pores of a carbonaceous substrate containing graphite are impregnated with one kind of metal selected from Group IB, Group VIII excluding Fe, and Sn, or an alloy mainly composed of these metals. It is disclosed.

特開2002−213356号公報JP 2002-213356 A 特開平3−290367号公報JP-A-3-290367 特開2002−323141号公報JP 2002-323141 A 特開昭60−141689号公報Japanese Patent Application Laid-Open No. 60-141689 特開平8−109083号公報JP-A-8-109083 特開2007−162111号公報JP 2007-162111 A 特開2005−187288号公報JP 2005-187288 A 特開2000−192183号公報JP 2000-192183 A 特開2003−322153号公報JP 2003-322153 A 特開2003−314448号公報JP 2003-314448 A

摩擦により表面を変形させる力がカーボンに作用した場合、カーボン同士の結合が破壊し、カーボン粒子を脱落させて摩耗に至る。金属に摩擦力が作用した場合は、金属部は、金属の変形あるいは相手材と金属が凝着して、変形・破断して摩耗に至る。従来材では、カーボン部と金属部との結合が弱いため、カーボンおよび金属それぞれが単独で脱落して摩耗することが多かった。   When a force that deforms the surface by friction acts on the carbon, the bond between the carbons breaks, causing the carbon particles to fall off, leading to wear. When a frictional force is applied to the metal, the metal part is deformed or affixed with the counterpart material and deforms and breaks, resulting in wear. In the conventional material, since the bond between the carbon part and the metal part is weak, the carbon and the metal often fall off alone and wear.

摺動部材としての金属含浸カーボンの強度は、カーボン焼成材の基材強度に依存し、高強度を得るためにはカーボン基材の高強度化が必要である。一方で、金属含浸材の耐摩耗性は、圧縮強度が高くなるほど向上するが、300MPa以上になると強度向上による耐摩耗性改善効果は小さくなる。耐摩耗性の向上には強度以外に材料組織を改善する必要がある。   The strength of the metal-impregnated carbon as the sliding member depends on the strength of the base material of the carbon fired material, and it is necessary to increase the strength of the carbon base material in order to obtain high strength. On the other hand, the wear resistance of the metal-impregnated material is improved as the compressive strength is increased. However, when the pressure is 300 MPa or more, the effect of improving the wear resistance due to the strength is reduced. In order to improve the wear resistance, it is necessary to improve the material structure in addition to the strength.

高負荷になる場合、カーボン基材の摩擦面表面層のカーボン粒子が座屈・脱落により摩耗が急増する。部品全体の強度は金属含浸により向上するが、カーボンと含浸金属との結合が弱いため、カーボン粒子の脱落が置きやすかったと考えている。耐摩耗性の向上には、少なくとも摩擦面近傍の強度を向上させる必要である。   When the load is high, the wear of the carbon particles on the surface of the friction surface of the carbon base material increases rapidly due to buckling and dropping. Although the strength of the whole part is improved by metal impregnation, it is considered that carbon particles are easy to drop off because the bond between carbon and impregnated metal is weak. In order to improve the wear resistance, it is necessary to improve at least the strength near the friction surface.

さらに、金属含浸には10MPa以上の高圧雰囲気でカーボン基材の気孔に金属溶湯を圧入することが必要で、熱間当方圧プレスなどの大型装置を用いるため製造コストが高い。   Furthermore, the metal impregnation requires pressing the molten metal into the pores of the carbon base material in a high-pressure atmosphere of 10 MPa or more, and the manufacturing cost is high because a large apparatus such as a hot hot pressure press is used.

本発明の目的は、耐摩耗性および耐荷重性に優れた摺動部材を提供することにある。   An object of the present invention is to provide a sliding member having excellent wear resistance and load resistance.

本発明の摺動部材は、カーボン基材および金属を含み、炭化物または酸化物を含む摺動部材であって、摩擦面は島状に該金属が分散し、該金属の周囲が該炭化物または該酸化物で囲まれていることを特徴とする。   The sliding member of the present invention is a sliding member containing a carbon base material and a metal, and containing a carbide or an oxide, wherein the metal is dispersed in an island shape on the friction surface, and the periphery of the metal is the carbide or the metal. It is characterized by being surrounded by an oxide.

本発明によれば、潤滑雰囲気だけでなく、無給油、無潤滑雰囲気においても、耐摩耗性および耐荷重性に優れ、かつ軽量の摺動部材を提供することができる。   According to the present invention, it is possible to provide a lightweight sliding member that is excellent in wear resistance and load resistance not only in a lubricating atmosphere but also in an oil-free and non-lubricating atmosphere.

本発明によるカーボン摺動部材の摩擦面の組織は、カーボン基材、金属部および炭化物または酸化物の三相を含む。   The structure of the friction surface of the carbon sliding member according to the present invention includes a carbon base material, a metal part, and a three-phase of carbide or oxide.

一般に、カーボン基材は、これに含まれる黒鉛質が相手材との摩擦により薄い結晶格子間滑りを起こすため、低摩擦である。金属は、カーボン基材に不可避的に生じる気孔に充填され、カーボンの変形や脱落を阻止するとともに、金属自体もカーボン基材により過度な変形が抑制される。ただし、カーボン基材とその気孔に充填された金属とは接触しているのみで化学的に結合していない場合がある。   In general, the carbon base material has low friction because the graphite contained therein causes slipping between thin crystal lattices due to friction with the counterpart material. The metal is filled in pores that are inevitably generated in the carbon base material to prevent the deformation and dropping of the carbon, and the metal itself is also prevented from excessive deformation by the carbon base material. However, the carbon substrate and the metal filled in the pores may be in contact with each other and not chemically bonded.

そこで、本発明においては、カーボン基材と金属との間に、カーボン基材および金属の両方と結合しやすい炭化物層を配置した。これにより、摩擦面の強度を向上することができる。   Therefore, in the present invention, a carbide layer that is easily bonded to both the carbon base material and the metal is disposed between the carbon base material and the metal. Thereby, the strength of the friction surface can be improved.

炭化物はカーボン基材および金属より硬く、摩擦に際しては相手材の押付荷重を支え、カーボン基材および金属部の荷重負荷を軽減することができるため、耐摩耗性が向上する。また、摩擦面において炭化物は金属部を取り囲んでおり、相手材と金属部との凝着による金属部の塑性流動を抑制するため、金属部の摩耗を防止することができる。   The carbide is harder than the carbon base material and the metal, and supports the pressing load of the counterpart material during friction and can reduce the load load of the carbon base material and the metal part, thereby improving the wear resistance. In addition, the carbide surrounds the metal part on the friction surface, and suppresses plastic flow of the metal part due to adhesion between the counterpart material and the metal part, so that wear of the metal part can be prevented.

金属部を取り囲むように形成した酸化物は、炭化物と同様に、カーボン基材や金属より硬く、カーボン基材および金属部の荷重負荷軽減と相手材との凝着による金属部の塑性変形とを防止し、耐摩耗性が向上する。   The oxide formed so as to surround the metal part is harder than the carbon base material and metal like the carbide, and reduces the load load of the carbon base material and the metal part and plastic deformation of the metal part due to adhesion with the counterpart material. Prevent and improve wear resistance.

摺動部に加わる応力は、荷重と摩擦力との合力であり、摩擦表面だけでなく内部にも及ぶことが知られている。摩擦表面層は摩擦によって内部に加わる応力によって引き剥がされ、摩耗、破壊に至る。したがって、前述の摩擦面に露出している金属部は、引き剥がされる力に対抗するために、表層部において網目状に互いに結合していることが重要である。   It is known that the stress applied to the sliding portion is the resultant force of the load and the frictional force and extends not only to the friction surface but also to the inside. The friction surface layer is peeled off by the stress applied to the inside due to friction, leading to wear and destruction. Therefore, it is important that the metal portions exposed on the friction surface are bonded to each other in a mesh form in the surface layer portion in order to resist the force to be peeled off.

カーボン基材はあらかじめ焼成することで互いに結合しており、かつ、互いに連結した開気孔を有している。この開気孔を金属で充填することで、網目状の金属を形成することができる。さらに、該金属とカーボン基材との境界面は、カーボンと金属との結合力を増すための炭化物あるいは酸化物とすることで、表面に露出する金属が相手材に凝着したとしても、内部のアンカー効果により脱落を阻止し、摩擦面の大きな破壊あるいは摩耗を防止することができる。   The carbon base materials are bonded to each other by firing in advance, and have open pores connected to each other. By filling the open pores with metal, a mesh-like metal can be formed. Furthermore, the boundary surface between the metal and the carbon base material is a carbide or oxide for increasing the bonding force between the carbon and the metal, so that even if the metal exposed on the surface adheres to the counterpart material, It is possible to prevent the falling off due to the anchor effect, and to prevent the friction surface from being largely broken or worn.

本発明による摺動部材は、カーボン基材および金属を含み、炭化物または酸化物を含む摺動部材であって、その摩擦面には該金属が島状に分散し、該金属の周囲が該炭化物または該酸化物で囲まれていることを特徴とする。また、本発明による摺動部材は、摩擦面を含む表層部が、三次元網目構造を有し、互いに連結した金属骨格を内在し、該金属骨格の表面は炭化物あるいは酸化物で覆われ、その他の部分はカーボンで形成されていることを特徴とする。さらに、本発明による摺動部材は、カーボン基材がカーボン焼成材で構成され、摩擦面を含む表層部が、カーボン焼成材の気孔に金属が含浸され、かつ、カーボン焼成材と金属との境界部に炭化物層もしくは酸化物層が形成されていることを特徴とする。   The sliding member according to the present invention is a sliding member containing a carbon base material and a metal, and containing a carbide or an oxide. The metal is dispersed in an island shape on the friction surface, and the periphery of the metal is the carbide. Alternatively, it is characterized by being surrounded by the oxide. Further, in the sliding member according to the present invention, the surface layer portion including the friction surface has a three-dimensional network structure, and includes metal skeletons connected to each other, and the surface of the metal skeleton is covered with carbide or oxide. The portion is made of carbon. Further, in the sliding member according to the present invention, the carbon base material is composed of a carbon fired material, the surface layer portion including the friction surface is impregnated with metal in the pores of the carbon fired material, and the boundary between the carbon fired material and the metal A carbide layer or an oxide layer is formed in the part.

ここで、摺動部材の摩擦面を含む表層部が、三次元網目構造を有し、互いに連結した金属骨格を内在するため、その摩擦面に三次元網目構造の断面が露出し、島状に分散して見える。   Here, since the surface layer portion including the friction surface of the sliding member has a three-dimensional network structure and has a metal skeleton connected to each other, a cross section of the three-dimensional network structure is exposed on the friction surface, and is formed in an island shape. Looks scattered.

以上により、摩耗が進行した際も保たれ、継続的に耐摩耗性が向上する。   As described above, the wear is maintained even when the wear progresses, and the wear resistance is continuously improved.

本発明によるカーボン基材は、炭素および黒鉛から選ばれる少なくとも一種を主成分とするカーボン材である。特に、摩擦係数の低減、耐摩耗性を向上させる観点から、黒鉛を30〜70重量%とすることが好ましい。また、黒鉛としては、黒鉛結晶化度の異なる黒鉛を二種類以上組み合わせて使用してもよく、摺動相手材の強度に合わせて硬度を調整することが好ましく、その場合の黒鉛範囲は10〜100%である。硬度が低いと耐荷重性が損なわれて摩耗量が増加する傾向がある。一方、硬度が高いと、摺動相手材を傷つけて摺動性を悪化させる傾向にある。   The carbon substrate according to the present invention is a carbon material mainly composed of at least one selected from carbon and graphite. In particular, from the viewpoint of reducing the friction coefficient and improving the wear resistance, it is preferable to make the graphite 30 to 70% by weight. Further, as the graphite, two or more types of graphite having different crystallinity degrees of crystallinity may be used in combination, and it is preferable to adjust the hardness according to the strength of the sliding partner material, in which case the graphite range is 10 to 10 100%. If the hardness is low, the load resistance is impaired and the wear amount tends to increase. On the other hand, when the hardness is high, there is a tendency that the sliding partner material is damaged and the sliding property is deteriorated.

本発明によるカーボン摺動部材のカーボン基材を製造するための原料としては、黒鉛粉、コークス粉等を骨材として使用し、必要に応じて固体潤滑剤としてタルク、二硫化モリブデン等を使用し、さらに結合剤としてタールピッチ、コールタール等が使用する。   As raw materials for producing the carbon base material of the carbon sliding member according to the present invention, graphite powder, coke powder or the like is used as an aggregate, and talc, molybdenum disulfide or the like is used as a solid lubricant as necessary. Further, tar pitch, coal tar and the like are used as binders.

本発明に用いるカーボン基材は、前記各原料を用い、加熱混練、粉砕、成形した後、焼成することにより得ることができる。加熱混練は、双腕型ニーダーなどを用いて、各原料を好ましくは230〜270℃の温度で混練する。混練温度が高いと機械的強度が低下する傾向があり、低いと混練時間が長くなる傾向がある。なお混練時間については、混練物の量、骨材、結合剤の配合割合により変化するので、その都度適宜選定する。   The carbon substrate used in the present invention can be obtained by using the above-mentioned raw materials, heating and kneading, pulverizing and molding, followed by firing. In the heat-kneading, each raw material is preferably kneaded at a temperature of 230 to 270 ° C. using a double-arm kneader or the like. If the kneading temperature is high, the mechanical strength tends to decrease, and if it is low, the kneading time tends to be long. The kneading time varies depending on the amount of the kneaded material, the blending ratio of the aggregate, and the binder, and is appropriately selected each time.

粉砕は、加熱混練で得られたものを、各種粉砕機を用いて、平均粒径が20〜30μmになるように粉砕することにより行われる。平均粒径が大きいと緻密性が損なわれる傾向があり、平均粒径が小さいと機械的強度が低下する傾向がある。   The pulverization is performed by pulverizing the material obtained by heat-kneading using various pulverizers so that the average particle diameter becomes 20 to 30 μm. When the average particle size is large, the denseness tends to be impaired, and when the average particle size is small, the mechanical strength tends to decrease.

成形は、粉砕して得られた粉体を、ブロック形状に金型プレスなどの方法で成形することにより行われる。成形圧力が低いと機械的強度が低下する傾向があり、高いと焼成中に割れる傾向がある。   The molding is performed by molding the powder obtained by pulverization into a block shape by a method such as a die press. When the molding pressure is low, the mechanical strength tends to decrease, and when the molding pressure is high, there is a tendency to crack during firing.

焼成は、不活性雰囲気下で、好ましくは800〜1000℃に昇温して行う。焼成時間は、300〜500時間が好ましい。不活性雰囲気下で焼成する方法としては、成形品のまわりに炭素粉などを詰めて焼成するなどの方法がある。   Firing is preferably performed at a temperature of 800 to 1000 ° C. in an inert atmosphere. The firing time is preferably 300 to 500 hours. As a method for firing in an inert atmosphere, there is a method of filling a molded product with carbon powder or the like and firing.

このようにして得られたカーボン焼成材の見掛け密度は1600〜1850kg/mである。 The apparent density of the carbon fired material thus obtained is 1600 to 1850 kg / m 3 .

金属部は、アルミニウム(Al)、亜鉛(Zn)、銅(Cu)、銀(Ag)、金(Au)、スズ(Sn)などの炭化物を形成しにくい元素を主成分とし、炭化物あるいは酸化物を介してカーボン基材と金属の結合を高めるために、炭化物を形成しやすいクロム(Cr)などの元素を添加するか、酸化物と結合しやすいチタン(Ti)などの元素を添加する。炭化物を容易に形成する元素は、カーボン基材への充填を容易にすることができる。酸化物と結合しやすい元素を用いる場合は、カーボン基材の気孔にあらかじめ金属酸化物を薄く(50nm以上)形成しておくことが有効である。   The metal part is mainly composed of an element that is difficult to form carbides such as aluminum (Al), zinc (Zn), copper (Cu), silver (Ag), gold (Au), tin (Sn), and the like. In order to enhance the bond between the carbon substrate and the metal via the element, an element such as chromium (Cr) that easily forms a carbide is added, or an element such as titanium (Ti) that easily bonds to an oxide is added. Elements that easily form carbides can facilitate filling into the carbon substrate. When using an element that easily binds to an oxide, it is effective to previously form a thin metal oxide (50 nm or more) in the pores of the carbon substrate.

金属酸化物は、アルミナ、チタニア、カルシア、イットリア、ジルコニア、マグネシアから選ばれる少なくとも一種を含むゾル液を溶剤で希釈した液をカーボン基材の気孔に充填し、大気中で加熱して揮発成分を除去することで得られる。   The metal oxide is filled in the pores of the carbon substrate with a solution obtained by diluting a sol solution containing at least one selected from alumina, titania, calcia, yttria, zirconia, and magnesia with a solvent, and heated in the air to remove volatile components. It is obtained by removing.

銅を主成分とした合金の場合、炭化物形成を目的としたクロムや、酸化物との結合を目的としたチタンの添加量は、0.2重量%以上が望ましい。これは合金溶湯に含まれるクロムやチタンの拡散、およびカーボン基材の表面での反応を利用するためである。   In the case of an alloy containing copper as a main component, the addition amount of chromium for the purpose of carbide formation and titanium for the purpose of bonding with an oxide is preferably 0.2% by weight or more. This is to utilize the diffusion of chromium and titanium contained in the molten alloy and the reaction on the surface of the carbon substrate.

また、銅を主成分とした合金のクロム添加量は、1.25重量%を超えると含浸前に溶湯中のクロム析出が起こるため、1.25重量%未満が望ましい。さらに、銅を主成分とした合金のチタン添加量は、銅にチタンが固溶する部分が生じること、および、同時に銅とチタンとの金属間化合物による銅合金の延性低下が相手材への攻撃性を高めるため、10重量%以下が望ましい。以下、合金は金属に含まれるものとする。   Further, if the amount of chromium added to the alloy containing copper as a main component exceeds 1.25% by weight, chromium precipitation in the molten metal occurs before the impregnation, so that it is preferably less than 1.25% by weight. Furthermore, the amount of titanium added to the alloy containing copper as a main component is that the titanium is partly dissolved in copper, and at the same time, the ductility of the copper alloy is reduced by the intermetallic compound of copper and titanium. In order to improve the properties, the content is preferably 10% by weight or less. Hereinafter, an alloy shall be contained in a metal.

本発明においては、カーボン基材と金属、あるいはカーボン基材と酸化物相を介した金属との結合が促進するため、真空減圧下でカーボン基材の表面近傍の気孔への溶湯の含浸を行う。複雑な形状や高強度を要求される部品において、内部まで含浸することが必要な場合には、真空減圧下で基材を溶湯に浸漬して加圧する、いわゆる加圧含浸が有効である。   In the present invention, since the bonding between the carbon base material and the metal or between the carbon base material and the metal via the oxide phase is promoted, the molten metal is impregnated into the pores near the surface of the carbon base material under a vacuum. . When it is necessary to impregnate the inside of a component that requires a complicated shape and high strength, so-called pressure impregnation, in which a base material is immersed in a molten metal under a vacuum and reduced pressure, is effective.

金属の加圧含浸は、加熱含浸釜を用いて、カーボン基材を真空度1.4kPa以下まで真空脱気を行った状態で、金属の溶融温度まで加熱した後、溶融した金属に浸漬し、浸漬した状態で、不活性雰囲気下において0.9〜10.0MPaの圧力で1〜2時間加圧保持した後、カーボン基材を取り出して冷却することで本発明によるカーボン摺動部材が得られる。不活性雰囲気下で加圧する方法としては、窒素等の不活性ガスを用いて加圧するなどの方法がある。真空度が1.4kPaに達していない場合や加圧力が0.9MPa未満である場合は、カーボン基材内に金属が均一に含浸されず、部分的に気孔が残ってしまう。   The pressure impregnation of the metal is performed by heating the carbon base material to a melting temperature of the metal in a state where vacuum degassing is performed to a vacuum degree of 1.4 kPa or less using a heating impregnation pot, and then immersing in the molten metal. In the immersed state, the carbon sliding member according to the present invention is obtained by holding under pressure at a pressure of 0.9 to 10.0 MPa for 1 to 2 hours under an inert atmosphere and then taking out and cooling the carbon base material. . As a method of pressurizing in an inert atmosphere, there is a method of pressurizing using an inert gas such as nitrogen. When the degree of vacuum does not reach 1.4 kPa or when the applied pressure is less than 0.9 MPa, the metal is not uniformly impregnated in the carbon base material, and pores remain partially.

本発明の摺動部材は、カーボン基材に配合する結晶質黒鉛粒子により、潤滑油、特に鉱物油の供給は必須ではないため、潤滑油を供給しないことが望まれるような、液体の搬送ポンプや気体の圧縮ポンプの摺動部品に適している。さらに、気体雰囲気や液体雰囲気における高速摺動を行う場合、カーボン基材の気孔を炭化物あるいは酸化物と金属で封孔しているため、気体や液体が圧力流体として摩擦面に作用する流体潤滑状態を得ることができる。   Since the sliding member of the present invention is not required to supply lubricating oil, particularly mineral oil, due to the crystalline graphite particles blended in the carbon base material, a liquid conveying pump that does not need to supply lubricating oil is desired. And suitable for sliding parts of gas compression pumps. Furthermore, when performing high-speed sliding in a gas atmosphere or liquid atmosphere, the pores of the carbon substrate are sealed with carbides or oxides and metals, so that the fluid lubrication state where the gas or liquid acts on the friction surface as a pressure fluid Can be obtained.

位置決め搬送装置では、本発明による摺動部材を部品として用いることで、強度および耐摩耗性が高く、潤滑剤を不要とし、環境に優しい部品を用いることができるため、高信頼性および高精度を実現することができる。   In the positioning and conveying device, since the sliding member according to the present invention is used as a component, the strength and wear resistance are high, a lubricant is unnecessary, and an environmentally friendly component can be used. Therefore, high reliability and high accuracy can be achieved. Can be realized.

カーボン基材は、カーボン粉末粒子をバインダと混合し、加圧成形した後、高温度で焼成して形成した。   The carbon base material was formed by mixing carbon powder particles with a binder, pressure forming, and then firing at a high temperature.

コークス粉砕生成物76重量%に、結合剤としてタールピッチ20重量%およびコールタール4重量%を配合し、双腕型ニーダーを用いて温度250℃で5時間加熱混練し、この混練物を冷却後、平均粒径50μmに粉砕し、粉砕生成物を寸法150×250×50mmの金型に入れて成形面圧力112MPaで成形した。そして、得られた成形品を不活性雰囲気下で900℃まで400時間かけて昇温して得た炭化ブロックを、不活性雰囲気下で3000℃まで96時間かけて昇温した後、冷却してから粉砕して得た自家製人造黒鉛粉23重量%、市販の油煙(商品名:SUNBLACK #35、旭カーボン社製)15重量%および市販の人造黒鉛粉(商品名:TIMREX KS44 Graphite、TIMCAL社製)3重量%をそれぞれ骨材とし、結合剤としてタールピッチ54重量%およびコールタール5重量%を配合し、双腕型ニーダーを用いて温度280℃で8時間加熱混練した。   After blending 76% by weight of the coke pulverized product with 20% by weight of tar pitch and 4% by weight of coal tar, the mixture is heated and kneaded at a temperature of 250 ° C. for 5 hours using a double-arm kneader. The pulverized product was placed in a mold having a size of 150 × 250 × 50 mm and molded at a molding surface pressure of 112 MPa. The obtained molded article was heated to 900 ° C. over 400 hours in an inert atmosphere over 400 hours. The carbonized block was heated up to 3000 ° C. over 96 hours under an inert atmosphere, then cooled. 23% by weight of homemade artificial graphite powder obtained by pulverization from 15%, commercially available oil smoke (trade name: SUNBLACK # 35, manufactured by Asahi Carbon Co., Ltd.), and commercially available artificial graphite powder (trade name: TIMREX KS44 Graphite, manufactured by TIMCAL) ) 3% by weight of each aggregate, 54% by weight of tar pitch and 5% by weight of coal tar were blended as binders, and kneaded by heating at a temperature of 280 ° C. for 8 hours using a double-arm kneader.

この混練物を平均粒径25μmに粉砕し、粉砕生成物を寸法150×250×50mmの金型に入れ、成形面圧力123MPaで成形した。得られた成形品を不活性雰囲気下で900℃まで400時間かけて昇温した後、冷却してカーボン基材を得た。得られたカーボン基材の黒鉛量は、X線回折によりグラファイト(200)面の回折ピークプロファイルを黒鉛成分と炭素成分に分離解析したところ、積分強度比で45.9%であった。   The kneaded product was pulverized to an average particle size of 25 μm, and the pulverized product was placed in a mold having a size of 150 × 250 × 50 mm and molded at a molding surface pressure of 123 MPa. The obtained molded product was heated to 900 ° C. over 400 hours under an inert atmosphere and then cooled to obtain a carbon substrate. The amount of graphite in the obtained carbon base material was 45.9% in terms of the integrated intensity ratio when the diffraction peak profile of the graphite (200) plane was separated and analyzed into a graphite component and a carbon component by X-ray diffraction.

この後、上記カーボン基材に充填する金属は、銅を主成分としてクロムを0.4重量%添加した銅合金を用いた。   Thereafter, the metal to be filled in the carbon base material was a copper alloy containing copper as a main component and 0.4% by weight of chromium.

上記カーボン基材を加熱含浸釜により真空度1.2kPaまで真空脱気した後、1150℃まで加熱して溶融した前記銅合金に浸漬し、浸漬した状態で9.5MPaの圧力で加圧した後、取り出し冷却してカーボン摺動部材を得た。得られたカーボン摺動部材について、かさ密度、曲げ強さ、硬さおよび開気孔率を測定した。その測定結果を表1に示す。   After the above carbon base material is vacuum degassed to a vacuum degree of 1.2 kPa with a heat impregnation kettle, heated to 1150 ° C., immersed in the molten copper alloy, and pressurized under a pressure of 9.5 MPa in the immersed state Then, it was taken out and cooled to obtain a carbon sliding member. The resulting carbon sliding member was measured for bulk density, bending strength, hardness, and open porosity. The measurement results are shown in Table 1.

ここで、かさ密度は日本工業規格JIS R 7212に準拠し、試験片の寸法(概略10×10×50mm)をマイクロメーターで測定して体積を求め、試験片の重量を天秤で測定して次式により算出する。   Here, the bulk density is in accordance with Japanese Industrial Standard JIS R 7212, the size of the test piece (approximately 10 × 10 × 50 mm) is measured with a micrometer to determine the volume, and the weight of the test piece is measured with a balance. Calculated by the formula.

d=(W/V)×1000
(d:かさ密度(kg/m)、W:重量(g)、V:体積(cm))
曲げ強さは日本工業規格JIS R 7212に準拠し、試験片の厚さ(試験片概略寸法10×10×50mm)をマイクロメーターで測定する。つぎに、40mm支点間距離で試験片を下方から支え、その中央上方から加圧クサビで荷重を加え、試験片が折れた時の荷重を測定する。曲げ強さは次式により算出する。試験片の採取においては、成形の際の厚み方向を試験片の厚さ方向とする。
d = (W / V) × 1000
(D: bulk density (kg / m 3 ), W: weight (g), V: volume (cm 3 ))
The bending strength is based on Japanese Industrial Standard JIS R 7212 and the thickness of the test piece (test piece approximate dimensions 10 × 10 × 50 mm) is measured with a micrometer. Next, the test piece is supported from below by a distance between fulcrums of 40 mm, a load is applied from above the center with a pressure wedge, and the load when the test piece is broken is measured. The bending strength is calculated by the following formula. In collecting the test piece, the thickness direction at the time of molding is taken as the thickness direction of the test piece.

Sa=(3PL/2ab)×0.098
(Sa:曲げ強さ(MPa)、P:試片が折れた時の荷重(kg)、a:試片の厚さ(cm)、b:試片の幅、(cm)、L:支点間距離(cm))
硬さは日本工業規格JIS Z 2246に準拠し、D型ショア硬度計で概略寸法10×10×50mmの試験片の成型加圧面を3点以上測定し、その平均値をもって硬度とする。ただし、極端に高い値および低い値は除くものとする。
Sa = (3PL / 2a 2 b) × 0.098
(Sa: bending strength (MPa), P: load when the specimen is broken (kg), a: specimen thickness (cm), b: specimen width, (cm), L: between fulcrums Distance (cm)
The hardness is in accordance with Japanese Industrial Standard JIS Z 2246, and three or more molding pressure surfaces of a test piece having an approximate size of 10 × 10 × 50 mm are measured with a D-type shore hardness meter, and the average value is taken as the hardness. However, extremely high and low values are excluded.

開気孔率は、水銀ポロシメータを用いて水銀圧入法に基づいて測定する。測定装置としては、例えばQUANTA CHRME社製のAUTO SCAN−33型水銀ポロシメータが挙げられる。この方法にて採取した細孔分布曲線から累積気孔容積を算出し、「累積気孔容積」×「カーボン摺動材の比重」×100(%)により開気孔率を求める。   The open porosity is measured based on the mercury intrusion method using a mercury porosimeter. Examples of the measuring device include an AUTO SCAN-33 type mercury porosimeter manufactured by QUANTA CHRME. The cumulative pore volume is calculated from the pore distribution curve collected by this method, and the open porosity is obtained by “cumulative pore volume” × “specific gravity of the carbon sliding material” × 100 (%).

図1に得られた摺動部材内部の断面組織の模式図を示す。摺動部材4の内部は、カーボン基材1の気孔に銅合金21および炭化物31が充填され、炭化物31は基材1と銅合金21との境界で銅合金21を囲んで形成されている。本実施例では、炭化物31の厚さは平均約3μmであった。でき上がったカーボン基材1の最外表面はクロム炭化物で覆われているため、摺動部材表面の炭化物層は機械加工により除去し、摺動面はカーボン基材1を露出させ、かつ銅合金21およびクロム炭化物が表れるように調整した。表1には、後述する油中摩耗試験の結果も併せて示してある。   The schematic diagram of the cross-sectional structure | tissue inside the sliding member obtained in FIG. 1 is shown. Inside the sliding member 4, the pores of the carbon base material 1 are filled with the copper alloy 21 and the carbide 31, and the carbide 31 is formed so as to surround the copper alloy 21 at the boundary between the base material 1 and the copper alloy 21. In this example, the thickness of the carbide 31 was about 3 μm on average. Since the outermost surface of the completed carbon base material 1 is covered with chromium carbide, the carbide layer on the surface of the sliding member is removed by machining, the sliding surface exposes the carbon base material 1, and the copper alloy 21 And it adjusted so that chromium carbide might appear. Table 1 also shows the results of an in-oil wear test which will be described later.

本実施例のカーボン基材1中の黒鉛量は、X線回折による積分強度比で45.9%であったが、黒鉛量は、X線回折による積分強度比で少なくとも10%以上であることが必要である。そして、望ましい黒鉛量は20%以上、更に望ましい黒鉛量は40%以上である。
〔比較例1〕
コークス粉砕生成物76重量%に、結合剤としてタールピッチ20重量%およびコールタール4重量%を配合し、双腕型ニーダーを用いて温度250℃で5時間加熱混練し、この混練物を冷却後平均粒径50μmに粉砕し、粉砕生成物を寸法150×250×50mmの金型に入れ、成形面圧力112MPaで成形し、得られた成形品を不活性雰囲気下で900℃まで400時間かけて昇温して得た炭化ブロックを、不活性雰囲気下で3000℃まで96時間で昇温した後、冷却してから粉砕して得た自家製人造黒鉛粉23重量%、市販の油煙(商品名:SUNBLACK #35、旭カーボン社製)15重量%および市販の人造黒鉛粉(商品名:TIMREX KS44 Graphite、TIMCAL社製)3重量%をそれぞれ骨材とし、結合剤としてタールピッチ54重量%およびコールタール5重量%を配合し、双腕型ニーダーを用いて温度280℃で8時間加熱混練した。
The amount of graphite in the carbon substrate 1 of this example was 45.9% in terms of the integrated intensity ratio by X-ray diffraction, but the amount of graphite should be at least 10% in terms of the integrated intensity ratio by X-ray diffraction. is required. A desirable graphite amount is 20% or more, and a more desirable graphite amount is 40% or more.
[Comparative Example 1]
After blending 76% by weight of the coke pulverized product with 20% by weight of tar pitch and 4% by weight of coal tar, the mixture is heated and kneaded at a temperature of 250 ° C. for 5 hours using a double-arm kneader. The powder is pulverized to an average particle size of 50 μm, and the pulverized product is put into a mold having a size of 150 × 250 × 50 mm and molded at a molding surface pressure of 112 MPa. The resulting molded product is heated to 900 ° C. in an inert atmosphere over 400 hours. The carbonized block obtained by raising the temperature was heated to 3000 ° C. in an inert atmosphere for 96 hours, cooled and then pulverized, and 23% by weight of homemade artificial graphite powder, commercially available oil smoke (trade name: 15% by weight of SUNBLACK # 35, manufactured by Asahi Carbon Co., Ltd. and 3% by weight of commercially available artificial graphite powder (trade name: TIMREX KS44 Graphite, manufactured by TIMCAL) are used as an aggregate, Then, 54% by weight of tar pitch and 5% by weight of coal tar were blended and heated and kneaded at a temperature of 280 ° C. for 8 hours using a double-arm kneader.

この混練物を平均粒径25μmに粉砕し、粉砕生成物を寸法150×250×50mmの金型に入れ、成形面圧力123MPaで成形した。得られた成形品を不活性雰囲気下で900℃まで400時間かけて昇温した後、冷却してカーボン基材を得た。   The kneaded product was pulverized to an average particle size of 25 μm, and the pulverized product was placed in a mold having a size of 150 × 250 × 50 mm and molded at a molding surface pressure of 123 MPa. The obtained molded product was heated to 900 ° C. over 400 hours under an inert atmosphere and then cooled to obtain a carbon substrate.

図4に得られたカーボン基材の断面組織の模式図を示す。カーボン基材1には気孔7が分散している。   The schematic diagram of the cross-sectional structure | tissue of the carbon base material obtained in FIG. 4 is shown. The carbon substrate 1 has pores 7 dispersed therein.

得られたカーボン摺動部材について、かさ密度、曲げ強さ、硬さおよび開気孔率を測定した。その測定結果を表1に示す。また、後述する油中摩耗試験の結果も併せて表1に示す。
〔比較例2〕
上記比較例1のカーボン基材を用いてクロムを添加しない銅合金(青銅CAC403(BC3))を含浸した摺動部材について、かさ密度、曲げ強さ、硬さと開気孔率を測定した。その測定結果を表1に示す。ここで、銅合金を含浸したときの条件は、実施例1の場合と同様であり、加熱含浸釜により真空度1.2kPaまで真空脱気した後、1150℃まで加熱して溶融した前記銅合金に浸漬し、浸漬した状態で9.5MPaの圧力で加圧した。
The resulting carbon sliding member was measured for bulk density, bending strength, hardness, and open porosity. The measurement results are shown in Table 1. Table 1 also shows the results of the in-oil wear test described later.
[Comparative Example 2]
The bulk density, bending strength, hardness, and open porosity of the sliding member impregnated with a copper alloy (bronze CAC403 (BC3)) not added with chromium using the carbon base material of Comparative Example 1 were measured. The measurement results are shown in Table 1. Here, the conditions when the copper alloy was impregnated were the same as in the case of Example 1, and after the vacuum deaeration to a vacuum degree of 1.2 kPa with a heating impregnation pot, the copper alloy was heated to 1150 ° C. and melted. And was pressurized at a pressure of 9.5 MPa.

この比較例の場合、カーボン基材の気孔であった部分には銅が侵入している。図2は比較例2の摺動部材5の断面組織を示す模式図である。クロムを添加しない銅合金は炭化物を形成しにくく、カーボン基材1と銅合金22の二相で構成される複合材となっている。また、後述する油中摩耗試験結果も併せて表1に示す。   In the case of this comparative example, copper has penetrated into the pores of the carbon substrate. FIG. 2 is a schematic diagram showing a cross-sectional structure of the sliding member 5 of Comparative Example 2. The copper alloy to which chromium is not added hardly forms carbides, and is a composite material composed of two phases of the carbon base material 1 and the copper alloy 22. Table 1 also shows the results of the in-oil wear test described below.

コークスを粉砕した粉砕生成物76重量%に、結合剤としてタールピッチ20重量%およびコールタール4重量%を配合し、双腕型ニーダーを用いて温度250℃で5時間加熱混練し、この混練物を冷却した後、平均粒径50μmに粉砕し、粉砕生成物を寸法150×250×50mmの金型に入れて成形面圧力112MPaで成形した。得られた成形品を不活性雰囲気下で900℃まで400時間かけて昇温させ、得られた炭化ブロックを不活性雰囲気下で3000℃まで96時間で昇温した後、冷却してから粉砕した。これにより得られた自家製人造黒鉛粉23重量%、市販の油煙(商品名:SUNBLACK #35、旭カーボン社製)15重量%および市販の人造黒鉛粉(商品名:TIMREX KS44 Graphite、TIMCAL社製)3重量%を骨材とし、結合剤としてタールピッチ54重量%およびコールタール5重量%を配合し、双腕型ニーダーを用いて温度280℃で8時間加熱混練した。   A mixture of 76% by weight of the coke pulverized product, 20% by weight of tar pitch and 4% by weight of coal tar as a binder, and heat-kneaded at a temperature of 250 ° C. for 5 hours using a double-arm kneader. After cooling, the powder was pulverized to an average particle size of 50 μm, and the pulverized product was put into a mold having dimensions of 150 × 250 × 50 mm and molded at a molding surface pressure of 112 MPa. The obtained molded product was heated to 900 ° C. in an inert atmosphere over 400 hours, and the resulting carbonized block was heated to 3000 ° C. in an inert atmosphere in 96 hours, cooled, and then pulverized. . 23% by weight of homemade artificial graphite powder thus obtained, 15% by weight of commercially available oil smoke (trade name: SUNBLACK # 35, manufactured by Asahi Carbon Co., Ltd.) and commercially available artificial graphite powder (trade name: TIMREX KS44 Graphite, manufactured by TIMCAL) 3% by weight was aggregated, 54% by weight of tar pitch and 5% by weight of coal tar were blended as binders, and the mixture was heat-kneaded at a temperature of 280 ° C. for 8 hours using a double-arm kneader.

この混練物を平均粒径25μmに粉砕し、粉砕生成物を寸法150×250×50mmの金型に入れ、成形面圧力123MPaで成形した。得られた成形品を不活性雰囲気下で900℃まで400時間かけて昇温した後、冷却してカーボン基材を得た。   The kneaded product was pulverized to an average particle size of 25 μm, and the pulverized product was placed in a mold having a size of 150 × 250 × 50 mm and molded at a molding surface pressure of 123 MPa. The obtained molded product was heated to 900 ° C. over 400 hours under an inert atmosphere and then cooled to obtain a carbon substrate.

この後、上記カーボン基材に充填する金属は、銅を主成分としてクロムを0.4重量%添加した銅合金を用いた。   Thereafter, the metal to be filled in the carbon base material was a copper alloy containing copper as a main component and 0.4% by weight of chromium.

上記カーボン基材を加熱含浸釜により真空度1.2kPaまで真空脱気した後、1150℃まで加熱して溶融した上記銅合金に浸漬した後、取り出して冷却し、大気圧に開放してカーボン摺動部材を得た。得られた摺動部材の表層付近における断面組織の模式図を図3に示す。   The carbon base material is vacuum degassed to a vacuum degree of 1.2 kPa with a heat impregnation pot, then heated to 1150 ° C. and immersed in the molten copper alloy, then taken out, cooled, released to atmospheric pressure, and carbon slides. A moving member was obtained. FIG. 3 shows a schematic diagram of a cross-sectional structure in the vicinity of the surface layer of the obtained sliding member.

本実施例では、カーボン基材1の最外表面はクロム炭化物31で覆われており、内部はカーボン基材1の表面6側から深さ約30μmの基材気孔まで銅合金21が浸入しており、銅合金21とカーボン基材1の境界部にクロム炭化物31が形成されている。カーボン基材1の最外表面のクロム炭化物31は機械加工により除去し、摺動面はカーボン基材1を露出させ、かつ銅合金21およびクロム炭化物31が表れるように調整した。後述する油中摩耗試験結果を表1に示す。   In this embodiment, the outermost surface of the carbon base material 1 is covered with chromium carbide 31, and the inside is penetrated by the copper alloy 21 from the surface 6 side of the carbon base material 1 to the base pores having a depth of about 30 μm. A chromium carbide 31 is formed at the boundary between the copper alloy 21 and the carbon substrate 1. The chromium carbide 31 on the outermost surface of the carbon substrate 1 was removed by machining, and the sliding surface was adjusted so that the carbon substrate 1 was exposed and the copper alloy 21 and the chromium carbide 31 appeared. Table 1 shows the results of the in-oil wear test described below.

コークス粉砕生成物76重量%に、結合剤としてタールピッチ20重量%およびコールタール4重量%を配合し、双腕型ニーダーを用いて温度250℃で5時間加熱混練し、この混練物を冷却した後、平均粒径50μmに粉砕した。得られた粉砕生成物を寸法150×250×50mmの金型に入れて成形面圧力112MPaで成形した。得られた成形品を不活性雰囲気下で900℃まで400時間かけて昇温して得た炭化ブロックを、不活性雰囲気下で3000℃まで96時間で昇温した後、冷却してから粉砕した。得られた自家製人造黒鉛粉23重量%、市販の油煙(商品名:SUNBLACK #35、旭カーボン社製)15重量%および市販の人造黒鉛粉(商品名:TIMREX KS44 Graphite、TIMCAL社製)3重量%をそれぞれ骨材とし、結合剤としてタールピッチ54重量%およびコールタール5重量%を配合し、双腕型ニーダーを用いて温度280℃で8時間加熱混練した。   20% by weight of tar pitch and 4% by weight of coal tar were combined with 76% by weight of the coke pulverized product, and the mixture was heated and kneaded at a temperature of 250 ° C. for 5 hours using a double-arm kneader, and the kneaded product was cooled. Then, it grind | pulverized to the average particle diameter of 50 micrometers. The obtained pulverized product was put into a mold having dimensions of 150 × 250 × 50 mm and molded at a molding surface pressure of 112 MPa. The obtained molded article was heated to 900 ° C. in an inert atmosphere over 400 hours, and the carbonized block was heated to 3000 ° C. in an inert atmosphere in 96 hours, cooled, and then pulverized. . 23% by weight of homemade artificial graphite powder obtained, 15% by weight of commercially available smoke (trade name: SUNBLACK # 35, manufactured by Asahi Carbon Co., Ltd.) and 3% by weight of commercially available artificial graphite powder (trade name: TIMREX KS44 Graphite, manufactured by TIMCAL) % Was aggregated, 54% by weight of tar pitch and 5% by weight of coal tar were blended as binders, and kneaded by heating at a temperature of 280 ° C. for 8 hours using a double-arm kneader.

この混練物を平均粒径25μmに粉砕し、粉砕生成物を寸法150×250×50mmの金型に入れ、成形面圧力123MPaで成形した。得られた成形品を不活性雰囲気下で900℃まで400時間かけて昇温した後、冷却してカーボン基材を得た。   The kneaded product was pulverized to an average particle size of 25 μm, and the pulverized product was placed in a mold having a size of 150 × 250 × 50 mm and molded at a molding surface pressure of 123 MPa. The obtained molded product was heated to 900 ° C. over 400 hours under an inert atmosphere and then cooled to obtain a carbon substrate.

得られたカーボン基材の気孔の内壁表面に、イットリア(酸化物、Y)の被膜を形成した。酸化物被膜の形成は、カーボン基材を、イットリアのゾルを溶剤で3%に希釈した液に浸漬し、大気中に室温で4時間以上放置、予備乾燥した。さらに、大気中常圧で100℃、1時間加熱後、150℃まで昇温して2時間の熱処理を行い、気孔の内壁表面に平均約50nmの厚さの酸化物被膜を形成した。 A film of yttria (oxide, Y 2 O 3 ) was formed on the inner wall surface of the pores of the obtained carbon substrate. The oxide film was formed by immersing a carbon base material in a solution obtained by diluting yttria sol to 3% with a solvent, and standing in the atmosphere at room temperature for 4 hours or more and pre-drying. Furthermore, after heating at 100 ° C. for 1 hour in atmospheric pressure, the temperature was raised to 150 ° C. and heat treatment was performed for 2 hours to form an oxide film having an average thickness of about 50 nm on the inner wall surface of the pores.

図5は酸化物を形成したものの断面組織を示す。カーボン基材1の気孔307の内壁表面に酸化物33が形成されている。   FIG. 5 shows a cross-sectional structure of the oxide formed. An oxide 33 is formed on the inner wall surfaces of the pores 307 of the carbon substrate 1.

ここで、イットリアゾル液の製造方法は次に示す通りである。   Here, the production method of the yttria sol liquid is as follows.

塩化イットリウム六水和物(YCl・6HO)0.013モルを99.5%エタノール1.268モル中に溶解した。そして、水0.263モルと60%硝酸0.079モルとの混合液を添加した後、40℃、2時間加熱した。得られた液をエタノールで希釈し、気孔に浸透させるために好適な、3%イットリアゾル液を調製した。 Was dissolved yttrium chloride hexahydrate (YCl 3 · 6H 2 O) 0.013 mol in 99.5% ethanol 1.268 mol. And after adding the liquid mixture of 0.263 mol of water and 0.079 mol of 60% nitric acid, it heated at 40 degreeC for 2 hours. The obtained solution was diluted with ethanol, and a 3% yttria sol solution suitable for permeating into the pores was prepared.

ここでは述べないが、イットリアゾル液の他の製造方法としては、酢酸イットリウムを出発物質として用いる方法もある。   Although not described here, as another method for producing the yttria sol solution, there is a method using yttrium acetate as a starting material.

また、ここではイットリアについてのみ説明したが、アルミナ、チタニア、カルシア、ジルコニア、マグネシアなど、複数の酸化物を組み合わせた複合酸化膜でもよい。   Although only yttria has been described here, a composite oxide film in which a plurality of oxides such as alumina, titania, calcia, zirconia, and magnesia are combined may be used.

この後、上記カーボン基材に充填する金属としては、銅を主成分としてチタンを0.2重量%添加した銅合金を用いた。   Thereafter, as the metal filled in the carbon base material, a copper alloy containing copper as a main component and adding 0.2% by weight of titanium was used.

上記カーボン基材を加熱含浸釜により真空度1.2kPaまで真空脱気した後、1150℃まで加熱して溶融した前記銅合金に浸漬し、浸漬した状態で9.5MPaの圧力で加圧し、取り出して冷却し、カーボン摺動部材を得た。得られたカーボン摺動部材について、かさ密度、曲げ強さ、硬さおよび開気孔率を測定した。その測定結果を表1に示す。   The above carbon base material is vacuum degassed to a vacuum degree of 1.2 kPa with a heat impregnation kettle, then heated to 1150 ° C., immersed in the molten copper alloy, pressurized with a pressure of 9.5 MPa in the immersed state, and taken out. And cooled to obtain a carbon sliding member. The resulting carbon sliding member was measured for bulk density, bending strength, hardness, and open porosity. The measurement results are shown in Table 1.

図6に得られた摺動部材内部の断面組織の模式図を示す。摺動部材5の内部はカーボン基材1の気孔に銅合金23および酸化物33が充填され、酸化物33は、カーボン基材1と銅合金23との境界で銅合金23を囲む形で形成されている。酸化物33の厚さは平均約40nmであった。カーボン基材1の最外表面は酸化物で覆われているため、カーボン基材1の最外表面の酸化物層は機械加工により除去し、摺動面はカーボン基材1を露出させ、かつ銅およびイットリア(酸化物)が表れるように調整した。また、後述する油中摩耗試験の結果も併せて表1に示す。   The schematic diagram of the cross-sectional structure | tissue inside the sliding member obtained in FIG. 6 is shown. The inside of the sliding member 5 is filled with the copper alloy 23 and the oxide 33 in the pores of the carbon base material 1, and the oxide 33 is formed so as to surround the copper alloy 23 at the boundary between the carbon base material 1 and the copper alloy 23. Has been. The average thickness of the oxide 33 was about 40 nm. Since the outermost surface of the carbon substrate 1 is covered with an oxide, the oxide layer on the outermost surface of the carbon substrate 1 is removed by machining, the sliding surface exposes the carbon substrate 1, and Adjustment was performed so that copper and yttria (oxide) appeared. Table 1 also shows the results of the in-oil wear test described later.

Figure 2009143772
Figure 2009143772

図7に摩耗試験機の概略を示す。本発明の実施例の試験片100または比較例の試験片100は、上部の試験片ホルダ102に固定され、試験片100はホルダ102を介してバネ103により相手材リング101に押し付けられる。リング101を回転させることで摩擦し、摩擦トルクはロードセル104により測定する。   FIG. 7 shows an outline of the wear tester. The test piece 100 of the embodiment of the present invention or the test piece 100 of the comparative example is fixed to the upper test piece holder 102, and the test piece 100 is pressed against the mating member ring 101 by the spring 103 through the holder 102. Friction is caused by rotating the ring 101, and the friction torque is measured by the load cell 104.

油中摩耗試験は、市販の自動車エンジンオイル(商品名:epro‐extra 10w‐30、日野自動車純正オイル)中において、5×10×36mmの試験片を10×36mmの面を下にして、試験機の上部ホルダに固定し、内径26mm(Ф)外径30mm(Ф)のリング(材質FH‐15)を、周速2.1m/sで回転させながら、面圧16.5MPaの圧力で上部より被せる状態で押し付けて、1時間の試験を行い、リングが摺動した部分の試験片の寸法変化を摩耗量として測定した。   The in-oil wear test was performed by placing a 5 × 10 × 36 mm test piece on a 10 × 36 mm side down in a commercially available car engine oil (trade name: epro-extra 10w-30, Hino Motors genuine oil). The ring (material FH-15) with an inner diameter of 26 mm (Ф) and an outer diameter of 30 mm (Ф) is rotated at a peripheral speed of 2.1 m / s while the surface pressure is 16.5 MPa. The test was carried out for 1 hour by pressing in a more covered state, and the dimensional change of the test piece at the portion where the ring slid was measured as the amount of wear.

比較例1、2および実施例1〜3の結果を表1に示す。実施例1の摩耗量は、比較例1の無含浸材に対して1/15まで改善し、さらに、炭化物のない比較例2の1/7であることから、含浸金属と炭化物とが共存することで耐摩耗性を飛躍的に向上できることは明らかである。   The results of Comparative Examples 1 and 2 and Examples 1 to 3 are shown in Table 1. The amount of wear in Example 1 was improved to 1/15 of the non-impregnated material of Comparative Example 1 and further 1/7 of Comparative Example 2 without carbide, so that the impregnated metal and carbide coexisted. It is clear that the wear resistance can be dramatically improved.

実施例2の摩耗量は1時間の試験で10μmであり、摩擦表面のみが金属、炭化物およびカーボン基材であれば耐摩耗性が確保される。しかし、2時間以上摩擦すると、金属および炭化物が存在する部分が摩滅して、摩擦面はカーボン基材のみとなるため、摩耗が加速する。しかし、荷重を軽減するなど、摩耗速度を遅くなる条件にすれば、実用に供することができ、比較材よりも摩耗が少なく、しかも実施例1よりも部品を軽量化できる。部品に必要な本発明の表面層の厚さは、含浸圧力を高めることにより厚く形成することが可能である。   The amount of wear in Example 2 is 10 μm in a one-hour test, and wear resistance is ensured if only the friction surface is a metal, carbide and carbon substrate. However, when friction is made for 2 hours or more, the portion where the metal and carbide are present is worn away, and the friction surface becomes only the carbon base material, so that wear is accelerated. However, if the wear rate is reduced, such as by reducing the load, it can be put to practical use, wear is less than that of the comparative material, and the parts can be made lighter than the first embodiment. The thickness of the surface layer of the present invention required for the parts can be increased by increasing the impregnation pressure.

図8は本発明による摺動部材の断面組織の模式図を示す。摺動部材4はカーボン基材1の気孔が炭化物または酸化物3および金属2で充填されており、炭化物または酸化物3は金属2とカーボン基材1との境界にある。   FIG. 8 shows a schematic diagram of a cross-sectional structure of the sliding member according to the present invention. In the sliding member 4, the pores of the carbon substrate 1 are filled with the carbide or oxide 3 and the metal 2, and the carbide or oxide 3 is at the boundary between the metal 2 and the carbon substrate 1.

本発明による摺動部材を軸受ブッシュに適用した例を図9に示す。カーボン基材で中空の軸受ブッシュ201を成形し、内面202を本発明の実施例2と同様の方法を用いて、金属および炭化物が共存する層を表面から約30μmの深さまで形成した。軸受ブッシュ201を水中ポンプの軸受として用いたところ、シール性ならびに耐摩耗性が向上した。   An example in which the sliding member according to the present invention is applied to a bearing bush is shown in FIG. A hollow bearing bush 201 was formed with a carbon base material, and a layer in which a metal and carbide coexisted was formed from the surface to a depth of about 30 μm on the inner surface 202 using the same method as in Example 2 of the present invention. When the bearing bush 201 was used as a bearing for a submersible pump, the sealing performance and wear resistance were improved.

図10に本発明による摺動部材を位置決め用摺動ガイド機構203に用いた例を示す。往復直線運動するピン部205に接するガイドレール204を炭素鋼で形成し、ピン205との接触面206を本発明の実施例1と同様の摺動部材にすることで、ガイドレールの耐久性を約10倍向上させることができた。   FIG. 10 shows an example in which the sliding member according to the present invention is used for the positioning slide guide mechanism 203. The guide rail 204 in contact with the pin portion 205 that reciprocates linearly is formed of carbon steel, and the contact surface 206 with the pin 205 is a sliding member similar to that of the first embodiment of the present invention, thereby improving the durability of the guide rail. The improvement was about 10 times.

これらの軸受やガイドレール、あるいはその相手材に相当する部品を、本発明の摺動部材で構成することにより、装置の軽量化および耐摩耗信頼性の向上を図ることができる。さらに、摺動部の低摩擦化も実現できる。本発明による摺動部材は、同様の摩擦形態をとる他の部品にも適用可能で、例えばカム機構部品、転がり軸受、歯車、スライダなどにおいて、軽量化、耐摩耗性の向上および低摩擦ロスを図ることができる。   By configuring these bearings, guide rails, or parts corresponding to the counterpart material with the sliding member of the present invention, it is possible to reduce the weight of the apparatus and improve the wear resistance reliability. Furthermore, the friction of the sliding portion can be reduced. The sliding member according to the present invention can be applied to other parts having the same frictional form. For example, in a cam mechanism part, a rolling bearing, a gear, a slider, etc., weight reduction, improved wear resistance, and low friction loss are achieved. Can be planned.

本発明による実施例1を示す炭化物を形成した金属含浸摺動部材の断面組織の模式図である。It is a schematic diagram of the cross-sectional structure | tissue of the metal impregnation sliding member which formed the carbide | carbonized_material which shows Example 1 by this invention. 比較例2の摺動部材の断面組織を示す模式図である。6 is a schematic diagram showing a cross-sectional structure of a sliding member of Comparative Example 2. FIG. 本発明による実施例2を示す炭化物を形成した金属含浸摺動部材の表面近傍における断面組織の模式図である。It is a schematic diagram of the cross-sectional structure | tissue in the surface vicinity of the metal impregnation sliding member which formed the carbide | carbonized_material which shows Example 2 by this invention. カーボン基材の断面組織を示す模式図である。It is a schematic diagram which shows the cross-sectional structure | tissue of a carbon base material. 気孔の内壁表面に酸化物皮膜を形成したカーボン基材の断面組織を示す模式図である。It is a schematic diagram which shows the cross-sectional structure | tissue of the carbon base material which formed the oxide film in the inner wall surface of a pore. 本発明による実施例3を示す酸化物を形成した金属含浸摺動部材の表面近傍における断面組織の模式図である。It is a schematic diagram of the cross-sectional structure | tissue in the surface vicinity of the metal impregnation sliding member which formed the oxide which shows Example 3 by this invention. 比較試験で使用した摩耗試験機の概略図である。It is the schematic of the abrasion testing machine used by the comparative test. 本発明による摺動部材の断面組織の模式図である。It is a schematic diagram of the cross-sectional structure | tissue of the sliding member by this invention. 本発明による摺動部材を軸受ブッシュに適用した例を示す斜視図である。It is a perspective view which shows the example which applied the sliding member by this invention to the bearing bush. 本発明による摺動部材を位置決め用摺動ガイド機構に用いた例を示す斜視図である。It is a perspective view which shows the example which used the sliding member by this invention for the sliding guide mechanism for positioning.

符号の説明Explanation of symbols

1…カーボン基材、2…金属、3…炭化物または酸化物、4…摺動部材、6…基材表面、7…気孔、31…クロム炭化物、33…イットリア。 DESCRIPTION OF SYMBOLS 1 ... Carbon base material, 2 ... Metal, 3 ... Carbide or oxide, 4 ... Sliding member, 6 ... Base material surface, 7 ... Pore, 31 ... Chromium carbide, 33 ... Yttria.

Claims (16)

カーボン基材および金属を含み、炭化物または酸化物を含む摺動部材であって、その摩擦面には該金属が島状に分散し、該金属の周囲が該炭化物または該酸化物で囲まれていることを特徴とする摺動部材。   A sliding member including a carbon base material and a metal, and including a carbide or an oxide, wherein the metal is dispersed in an island shape on the friction surface, and the periphery of the metal is surrounded by the carbide or the oxide A sliding member characterized by comprising: 摩擦面を含む表層部が、三次元網目構造を有し、互いに連結した金属骨格を内在し、該金属骨格の表面は炭化物あるいは酸化物で覆われ、その他の部分はカーボンで形成されていることを特徴とする請求項1記載の摺動部材。   The surface layer portion including the friction surface has a three-dimensional network structure, includes a metal skeleton connected to each other, the surface of the metal skeleton is covered with carbide or oxide, and other portions are formed of carbon. The sliding member according to claim 1. 前記カーボン基材がカーボン焼成材で構成され、摩擦面を含む表層部が、該カーボン焼成材の気孔に前記金属が含浸され、かつ、該カーボン焼成材と前記金属との境界部に炭化物層もしくは酸化物層が形成されていることを特徴とする請求項1記載の摺動部材。   The carbon base material is composed of a carbon fired material, a surface layer portion including a friction surface is impregnated with the metal in pores of the carbon fired material, and a carbide layer or a boundary portion between the carbon fired material and the metal. The sliding member according to claim 1, wherein an oxide layer is formed. 前記カーボン基材の結晶質黒鉛量が、X線回折による積分強度比で10〜100%であることを特徴とする請求項1記載の摺動部材。   The sliding member according to claim 1, wherein the amount of crystalline graphite of the carbon base material is 10 to 100% in terms of an integrated intensity ratio by X-ray diffraction. 前記カーボン焼成材の見掛け密度が1600〜1850kg/mであることを特徴とする請求項4記載の摺動部材。 The sliding member according to claim 4, wherein an apparent density of the carbon fired material is 1600 to 1850 kg / m 3 . 前記金属がAl、Zn、Cu、Ag、Au、Snのうち少なくとも1つを含むことを特徴とする請求項1〜3のいずれかに記載の摺動部材。   The sliding member according to claim 1, wherein the metal includes at least one of Al, Zn, Cu, Ag, Au, and Sn. 前記炭化物層が、前記カーボン基材の気孔に含浸される前記金属の成分と前記カーボン基材の炭素との化合物であることを特徴とする請求項6記載の摺動部材。   The sliding member according to claim 6, wherein the carbide layer is a compound of a component of the metal impregnated in pores of the carbon base material and carbon of the carbon base material. 前記金属が、CrまたはTiを含むことを特徴とする請求項6記載の摺動部材。   The sliding member according to claim 6, wherein the metal includes Cr or Ti. 前記金属が、Cuを主成分としてCrまたはTiを0.2重量%以上含むことを特徴とする請求項8記載の摺動部材。   The sliding member according to claim 8, wherein the metal contains Cu as a main component and Cr or Ti in an amount of 0.2 wt% or more. 請求項1〜9のいずれかに記載の摺動部材を用いたことを特徴とする軸受。   A bearing using the sliding member according to claim 1. 請求項1〜9のいずれかに記載の摺動部材を用いたことを特徴とするポンプ用摺動部品。   A sliding part for a pump, wherein the sliding member according to claim 1 is used. 請求項1〜9のいずれかに記載の摺動部材を用いたことを特徴とする圧縮機用摺動部品。   A sliding part for a compressor, wherein the sliding member according to claim 1 is used. 請求項1〜9のいずれかに記載の摺動部材を用いたことを特徴とする搬送装置用摺動部品。   A sliding part for a conveying device, wherein the sliding member according to claim 1 is used. 請求項1〜9のいずれかに記載の摺動部材を用いたことを特徴とする位置決め装置用摺動部品。   A sliding component for a positioning device, wherein the sliding member according to claim 1 is used. カーボン基材および金属を含み、炭化物または酸化物を含む摺動部材の製造方法であって、該カーボン基材の気孔の内壁表面に該酸化物を形成した後、該カーボン基材の気孔に該金属を含浸する工程とを含むことを特徴とする摺動部材の製造方法。   A method of manufacturing a sliding member containing a carbon base material and a metal, and containing carbide or oxide, wherein the oxide is formed on the inner wall surface of the pores of the carbon base material, and then the pores of the carbon base material And a step of impregnating the metal. 前記カーボン基材の気孔に前記金属を含浸する工程は、前記カーボン基材を真空減圧した後、前記カーボン基材を溶湯に浸漬して加圧することにより行うことを特徴とする請求項15記載の摺動部材の製造方法。   The step of impregnating the pores of the carbon base material with the metal is performed by evacuating the carbon base material and then immersing the carbon base material in a molten metal and pressurizing the carbon base material. Manufacturing method of sliding member.
JP2007323618A 2007-12-14 2007-12-14 Slide member and method of manufacturing the same Pending JP2009143772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007323618A JP2009143772A (en) 2007-12-14 2007-12-14 Slide member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007323618A JP2009143772A (en) 2007-12-14 2007-12-14 Slide member and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009143772A true JP2009143772A (en) 2009-07-02

Family

ID=40914849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007323618A Pending JP2009143772A (en) 2007-12-14 2007-12-14 Slide member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009143772A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024941A2 (en) * 2009-08-31 2011-03-03 株式会社ダイヤメット Copper-based sintered sliding member
JP2017186612A (en) * 2016-04-05 2017-10-12 日立化成株式会社 Slide material, slide member and manufacturing method of slide material
JP7138826B1 (en) * 2022-03-08 2022-09-16 三菱電機株式会社 Sealed metal composite and mold, and method for producing sealed metal composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830609A (en) * 1971-08-24 1973-04-23
JPS49116109A (en) * 1973-03-12 1974-11-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830609A (en) * 1971-08-24 1973-04-23
JPS49116109A (en) * 1973-03-12 1974-11-06

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024941A2 (en) * 2009-08-31 2011-03-03 株式会社ダイヤメット Copper-based sintered sliding member
JP2011052252A (en) * 2009-08-31 2011-03-17 Diamet:Kk Cu-BASED SINTERED SLIDING MEMBER
WO2011024941A3 (en) * 2009-08-31 2011-04-28 株式会社ダイヤメット Copper-based sintered sliding member
US9849511B2 (en) 2009-08-31 2017-12-26 Diamet Corporation Method of producing a Cu-based sintered sliding member
JP2017186612A (en) * 2016-04-05 2017-10-12 日立化成株式会社 Slide material, slide member and manufacturing method of slide material
JP7138826B1 (en) * 2022-03-08 2022-09-16 三菱電機株式会社 Sealed metal composite and mold, and method for producing sealed metal composite

Similar Documents

Publication Publication Date Title
JP5247329B2 (en) Iron-based sintered bearing and manufacturing method thereof
JP5580882B2 (en) Slide bearing material
CN102149833B (en) Sliding component consisting of Pb-free Cu-Bi type sintered material
US10247271B2 (en) Sintered friction material for a friction lining
WO1999043963A1 (en) Sliding bearing for internal combustion engine
JP2001271129A (en) Sintering material and composite sintered sliding part
JP7078359B2 (en) Manufacturing method of sintered friction material and sintered friction material
EP2918692B1 (en) Sintered alloy superior in wear resistance
JP2010533756A (en) Lead-free sintered lubricating material and sintered powder for its production
JP2009143772A (en) Slide member and method of manufacturing the same
JP4743565B2 (en) Graphite-dispersed Cu-based sintered alloy bearing for motor-type fuel pump that exhibits excellent wear resistance under high-pressure and high-speed circulation of gasoline, and motor-type fuel pump using the same
BR112020014828A2 (en) SINTERED BEARING AND METHOD FOR MANUFACTURING A SINTERIZED BEARING
JP4236665B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
JP2021009788A (en) Metal graphite brush
JP2007107067A (en) Copper based sintered friction material
JP2020097766A (en) Slide member
JP2002180162A (en) BEARING MADE OF GRAPHITE DISPERSED Cu BASED SINTERED ALLOY FOR MOTOR TYPE FUEL PUMP
JP5566394B2 (en) Bearing material
JP5073925B2 (en) Lead-free copper-based sliding material
JP5642414B2 (en) Side plate made of sintered sliding member fixed to the base metal
JP6347733B2 (en) Sliding member
JP6536866B1 (en) Sintered bearing, sintered bearing device and rotating device
WO2004063409A1 (en) Iron base sintered alloy, iron base sintered alloy member, method for production thereof, and oil pump rotor
JP2517675B2 (en) Sintered copper alloy for high load sliding
KR100940117B1 (en) Fe based alloy for self-lubricating bearing, manufacturing method for the same and self-lubricating bearing manufactured therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100319

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Effective date: 20120703

Free format text: JAPANESE INTERMEDIATE CODE: A02