JP2009221566A - Aluminum alloy material for high pressure gas vessel having excellent hydrogen embrittlement resistance - Google Patents

Aluminum alloy material for high pressure gas vessel having excellent hydrogen embrittlement resistance Download PDF

Info

Publication number
JP2009221566A
JP2009221566A JP2008069683A JP2008069683A JP2009221566A JP 2009221566 A JP2009221566 A JP 2009221566A JP 2008069683 A JP2008069683 A JP 2008069683A JP 2008069683 A JP2008069683 A JP 2008069683A JP 2009221566 A JP2009221566 A JP 2009221566A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy material
hydrogen embrittlement
pressure gas
embrittlement resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008069683A
Other languages
Japanese (ja)
Other versions
JP5276341B2 (en
Inventor
Manabu Nakai
学 中井
Tadayuki Minoura
忠行 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Nippon Light Metal Co Ltd
Furukawa Sky Aluminum Corp
Sumitomo Light Metal Industries Ltd
Resonac Holdings Corp
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Showa Denko KK
Kobe Steel Ltd
Nippon Light Metal Co Ltd
Furukawa Sky Aluminum Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Showa Denko KK, Kobe Steel Ltd, Nippon Light Metal Co Ltd, Furukawa Sky Aluminum Corp, Sumitomo Light Metal Industries Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2008069683A priority Critical patent/JP5276341B2/en
Publication of JP2009221566A publication Critical patent/JP2009221566A/en
Application granted granted Critical
Publication of JP5276341B2 publication Critical patent/JP5276341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a 7,000 series aluminum alloy material for a high pressure gas vessel jointly having hydrogen embrittlement resistance, mechanical properties or the like. <P>SOLUTION: An aluminum alloy material for a high pressure gas vessel is composed of a 7,000 series alloy material having a specific composition, and whose strength is made high, and while dispersed grains in the aluminum alloy material structure thereof are secured by a fixed amount as the trap site of hydrogen, a proof stress of ≥275 MPa is set as members such as a liner, a nozzle and a gas pipe, and then its hydrogen embrittlement resistance is improved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、耐水素脆化特性に優れ、高圧ガス容器のライナーや、口金あるいはガス管などの周辺部材用に適した、Al−Zn−Mg系合金材ならびにAl−Zn−Mg−Cu系合金材(以下、7000系アルミニウム合金材)に関するものである。本発明では、ライナーなどの高圧ガス容器部材や、口金あるいはガス管などの高圧ガス容器周辺部材の用途を全て含めて、高圧ガス容器用と一括して言う。   The present invention has excellent hydrogen embrittlement resistance and is suitable for peripheral members such as liners of high-pressure gas containers, caps or gas pipes, and Al-Zn-Mg-Cu alloys. Material (hereinafter referred to as 7000 series aluminum alloy material). In the present invention, the term “for a high-pressure gas container” is used collectively, including all uses of a high-pressure gas container member such as a liner and a high-pressure gas container peripheral member such as a base or a gas pipe.

高圧ガス容器としては、例えば、自動車などに搭載される天然ガス等のガスボンベがある。これらのガスボンベとしては、鉄製のものが主流であるが、軽量化のために、アルミニウム製ライナーの外面に強化用繊維を巻き付けたもの(フィラメントワインディング)や、プラスチック製ライナーの外面に強化用繊維を巻き付けたものが種々提案されている。   As a high-pressure gas container, for example, there is a gas cylinder such as natural gas mounted in an automobile or the like. These gas cylinders are mainly made of iron, but in order to reduce weight, reinforcing fibers are wrapped around the outer surface of an aluminum liner (filament winding), and reinforcing fibers are applied to the outer surface of a plastic liner. Various wraps have been proposed.

例えば、特許文献1には、このようなアルミニウム製ライナーを用いた高圧ガス容器を、アルミニウム合金押出材から製造する方法が開示されている。即ち、7000系アルミニウム合金押出材に抽伸加工を施し、この抽伸加工材を溶体化処理し、その後インパクト加工を施すことにより、有底円筒体に成形する。その後冷間型鍛造によりガス取出口を形成し、時効処理して、小型高圧ガス容器を製造する。   For example, Patent Document 1 discloses a method for manufacturing a high-pressure gas container using such an aluminum liner from an aluminum alloy extruded material. That is, a 7000 series aluminum alloy extruded material is subjected to a drawing process, the drawn material is subjected to a solution treatment, and then an impact process is performed to form a bottomed cylindrical body. Thereafter, a gas outlet is formed by cold die forging and aging treatment is performed to manufacture a small high-pressure gas container.

また、この特許文献1に開示されるようなアルミニウム製ライナーの耐力を更に向上させ、かつ前記した製造方法をも改善することが、特許文献2、3などで提案されている。特許文献2では、7000系などの析出硬化型アルミニウム合金からなるアルミニウム素材に溶体化処理を施し、しかる後円筒部と該円筒部の両端の半球部からなる形状をもつ素材の前記円筒部または全部をしごき加工して塑性ひずみを付与し、その後端口部をスピニング加工により成形してライナー形状にし、溶体化処理後における時効処理を除去することが提案されている。   Further, Patent Documents 2 and 3 propose that the proof stress of an aluminum liner as disclosed in Patent Document 1 is further improved and the manufacturing method described above is also improved. In Patent Document 2, an aluminum material made of a precipitation hardening type aluminum alloy such as 7000 series is subjected to a solution treatment, and then the cylindrical portion or all of the material having a shape made up of a cylindrical portion and hemispherical portions at both ends of the cylindrical portion. It has been proposed to apply a plastic strain by squeezing and then forming a liner shape by spinning the end opening to remove the aging treatment after the solution treatment.

更に、特許文献3では、耐力を向上できるとともに、時効処理を廃止でき、溶体化処理による容器の変形を残さずに高精度に加工できるアルミニウム製ライナーの製造方法が開示されている。この特許文献3は、7000系も含むが、望ましくは6061などの6000系のような析出硬化型のアルミニウム合金からなるシームレスパイプ等のアルミニウム押出素材を意図している。そして、このアルミニウム押出素材に溶体化処理を施した後に、しごき加工などで塑性ひずみを付与し、その後に端口部を成形してライナー形状にする。
特開平6−63681号公報 特許第3750449号公報 特開2000−233245公報
Furthermore, Patent Document 3 discloses a method for producing an aluminum liner that can improve the yield strength, can eliminate the aging treatment, and can be processed with high accuracy without leaving the deformation of the container due to the solution treatment. Although this patent document 3 also includes 7000 series, it desirably intends an aluminum extrusion material such as a seamless pipe made of a precipitation hardening type aluminum alloy such as 6061 series such as 6061. And after giving solution treatment to this aluminum extrusion raw material, plastic strain is provided by ironing etc., and an end mouth part is shape | molded after that and it is made a liner shape.
JP-A-6-63681 Japanese Patent No. 3750449 JP 2000-233245 A

近年、クリーンなエネルギーとして、燃料電池の燃料となる水素が注目されている。しかし、この水素は、鉄やアルミニウムなどの金属材料の水素脆化をもたらすので、高圧ガス容器による、高圧化での効率的な貯蔵が難しい。この点は、一般的な素材である鉄製の高圧ガス容器だけではなく、アルミニウム製ライナーを用いた高圧ガス容器でも同様であって、高圧ガス容器としての信頼性から、耐水素脆化特性に優れることが要求される。   In recent years, hydrogen as a fuel for fuel cells has attracted attention as clean energy. However, since this hydrogen causes hydrogen embrittlement of metal materials such as iron and aluminum, it is difficult to efficiently store at high pressure using a high-pressure gas container. This point is the same not only for high-pressure gas containers made of iron, which is a general material, but also for high-pressure gas containers using an aluminum liner, and is excellent in hydrogen embrittlement resistance due to its reliability as a high-pressure gas container. Is required.

ただ、アルミニウム製ライナーを用いた高圧ガス容器において、耐水素脆化特性に優れるための提案は、これまであまり無く、現状は6061等のアルミニウム6000系合金が主として使用されている。これは、アルミニウム6000系合金材には水素脆化はないと言われ、これが技術常識化していることとも関連している。   However, in the high-pressure gas container using an aluminum liner, there are not so many proposals for excellent hydrogen embrittlement resistance, and an aluminum 6000 series alloy such as 6061 is mainly used at present. This is also related to the fact that the aluminum 6000 series alloy material does not have hydrogen embrittlement, and this has become common technical knowledge.

しかし、水素燃料電池を搭載した燃料電池自動車において、水素充填1回当たりの航続距離増大要求に対応するため、水素充填圧力は高くなりつつある。従来材の適用では、水素容器材ならびにその周辺部材の肉厚は大きくなり、重量増をもたらす。このため、水素容器材ならびにその周辺部材には、薄肉軽量化を目的に、より高強度な材料が求められている。6000系合金に対してより高強度な材料として7000系合金がある。ただし、高強度な7000系合金においては、水素脆化も関与する応力腐食割れ(SCC)が問題となることが一般的に知られている。Zn、Mgなどの他の主要元素含有量が多く、過時効処理に対するピーク時効処理などで強度を高くした、高強度な7000系合金においては、耐水素脆化性がより低下することが明白である。   However, in a fuel cell vehicle equipped with a hydrogen fuel cell, the hydrogen filling pressure is increasing in order to meet the demand for increasing the cruising distance per hydrogen filling. In the application of the conventional material, the thickness of the hydrogen container material and its peripheral members are increased, resulting in an increase in weight. For this reason, higher strength materials are required for the hydrogen container material and its peripheral members in order to reduce the thickness and weight. As a material having higher strength than a 6000 series alloy, there is a 7000 series alloy. However, it is generally known that stress corrosion cracking (SCC) involving hydrogen embrittlement is a problem in high-strength 7000 series alloys. It is obvious that the hydrogen embrittlement resistance is further lowered in the high-strength 7000 series alloys that have a high content of other main elements such as Zn and Mg and have increased the strength by the peak aging treatment or the like against the overaging treatment. is there.

したがって、高強度化させた7000系合金アルミニウム材を、高圧ガス容器ならびにその周辺部材に用いる場合には、高圧水素中での耐水素脆化特性を向上させないと、高圧ガス容器、その周辺部材、また水素貯蔵用の高圧ガス容器としての信頼性が高まらない。これは、前記したアルミニウム合金ライナーだけでなく、プラスチック製ライナーの外面に強化用繊維を巻き付けた高圧ガス容器であっても、口金あるいはガス管をアルミニウム7000系合金材とした場合でも同様である。   Therefore, when the 7000 series alloy aluminum material with increased strength is used for the high-pressure gas container and its peripheral members, the high-pressure gas container, its peripheral members, Moreover, the reliability as a high-pressure gas container for hydrogen storage is not increased. This applies not only to the above-described aluminum alloy liner but also to a high-pressure gas container in which reinforcing fibers are wound around the outer surface of a plastic liner, or when the base or gas pipe is made of an aluminum 7000 series alloy material.

本発明は、かかる問題に鑑みなされたもので、耐水素脆化特性および強度などの機械的性質を兼備した高圧ガス容器用7000系アルミニウム合金材を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a 7000 series aluminum alloy material for high-pressure gas containers that has mechanical properties such as hydrogen embrittlement resistance and strength.

この目的を達成するために、本発明の耐水素脆化特性に優れた高圧ガス容器用アルミニウム合金材の要旨は、質量%にて、Zn:4.0〜6.7%、Mg:0.75〜2.9%、Cu:0.001〜2.6%、Si:0.05〜0.40%、Ti:0.005〜0.20%、Fe:0.01〜0.5%を各々含み、更に、Mn:0.01〜0.7%、Cr:0.02〜0.3%、Zr:0.01〜0.25%、V:0.01〜0.10%の一種または二種以上を、1.0%≧Fe+Mn+Cr+Zr+V≧0.1%の関係を満足した上で含み、残部がAlおよび不可避不純物からなるアルミニウム合金組成を有するとともに、導電率(%IACS)が、前記Fe、Mn、Cr、Zr、Vの合計含有量との関係で、導電率(%)≧−4.9×(Fe+Mn+Cr+Zr+V)+40.0の関係を満足し、かつ、0.2%耐力が275MPa以上であることとする。   In order to achieve this object, the gist of the aluminum alloy material for high-pressure gas containers excellent in hydrogen embrittlement resistance according to the present invention is, in mass%, Zn: 4.0 to 6.7%, Mg: 0.00. 75 to 2.9%, Cu: 0.001 to 2.6%, Si: 0.05 to 0.40%, Ti: 0.005 to 0.20%, Fe: 0.01 to 0.5% Further, Mn: 0.01-0.7%, Cr: 0.02-0.3%, Zr: 0.01-0.25%, V: 0.01-0.10% One type or two or more types are included after satisfying the relationship of 1.0% ≧ Fe + Mn + Cr + Zr + V ≧ 0.1%, and the balance has an aluminum alloy composition composed of Al and inevitable impurities, and the conductivity (% IACS) is In relation to the total content of Fe, Mn, Cr, Zr and V, conductivity (%) ≧ −4.9 × ( Satisfy the relation of e + Mn + Cr + Zr + V) +40.0, and assumed that 0.2% proof stress is not less than 275 MPa.

ここで、前記アルミニウム合金材が、ピーク時効処理、過時効処理から選択された調質が施されていることが好ましい。また、前記アルミニウム合金材の導電率が、前記Fe、Mn、Cr、Zr、Vの合計含有量との関係で、導電率(%)≧−4.9×(Fe+Mn+Cr+Zr+V)+41.5の関係を満足することが好ましい。また、前記アルミニウム合金材の耐水素脆化特性が、歪み速度を1.0×10-6-1以下として雰囲気条件のみを変えて、このアルミニウム合金材を引張変形させた場合の、10%RH以下の乾燥雰囲気中での伸び値δ1に対する、90%RH以上の高湿潤雰囲気中での伸び値δ2の低下率として、[(δ1−δ2)/δ1]×100%で示される脆化感受性指標が10%以下であることが好ましい。また、前記アルミニウム合金材が水素貯蔵用の高圧ガス容器用であることが好ましい。 Here, it is preferable that the aluminum alloy material is subjected to a tempering selected from a peak aging treatment and an overaging treatment. Further, the electrical conductivity of the aluminum alloy material is related to the total content of Fe, Mn, Cr, Zr, and V, and the relationship of electrical conductivity (%) ≧ −4.9 × (Fe + Mn + Cr + Zr + V) +41.5 It is preferable to satisfy. Further, the hydrogen embrittlement resistance of the aluminum alloy material is 10% when the strain rate is 1.0 × 10 −6 s −1 or less and only the atmospheric conditions are changed and the aluminum alloy material is tensile deformed. Embrittlement susceptibility represented by [(δ1-δ2) / δ1] × 100% as the rate of decrease of the elongation value δ2 in a highly humid atmosphere of 90% RH or higher with respect to the elongation value δ1 in a dry atmosphere of RH or lower. The index is preferably 10% or less. Moreover, it is preferable that the said aluminum alloy material is for high pressure gas containers for hydrogen storage.

本発明では、耐水素脆化特性を向上させるために、7000系アルミニウム合金材の分散粒子に注目した。そして、この粒内の分散粒子を、水素のトラップ(捕捉)サイトとして活用するために、本発明では、これら粒内の分散粒子を一定量だけ確保する。   In the present invention, in order to improve the hydrogen embrittlement resistance, attention was paid to dispersed particles of a 7000 series aluminum alloy material. In order to use the dispersed particles in the grains as hydrogen trapping sites, the present invention secures a certain amount of dispersed particles in the grains.

従来から、Ni合金材料や鉄鋼材料などでは、析出物は、水素脆化やクラック発生の起点として規制されたり、逆に、有効な水素のトラップ(捕捉)サイトとして扱われたりしている。   Conventionally, in Ni alloy materials, steel materials, and the like, precipitates are regulated as a starting point of hydrogen embrittlement and crack generation, or conversely, they are treated as effective hydrogen trapping (capturing) sites.

しかし、アルミニウム7000系合金材の分野では、このような分散粒子について、耐水素脆化特性との関係はあまり知られていなかった。これは、アルミニウム7000系合金製ライナーを用いた高圧ガス容器(ガスボンベ)が、水素の高圧貯蔵用容器としては、これまで、あまり注目されていなかったことにもよると推考される。   However, in the field of aluminum 7000 series alloy materials, the relationship between such dispersed particles and the resistance to hydrogen embrittlement has not been well known. This is presumably due to the fact that high-pressure gas containers (gas cylinders) using an aluminum 7000 series alloy liner have not received much attention as high-pressure hydrogen storage containers.

これに対して、本発明によれば、粒内の分散粒子の量を制御することによって、高圧ガス容器のライナーや口金あるいはガス管などの部材として用いられる7000系アルミニウム合金材の耐水素脆化特性を著しく向上させることができる。   On the other hand, according to the present invention, hydrogen embrittlement resistance of a 7000 series aluminum alloy material used as a member such as a liner, a base or a gas pipe of a high-pressure gas container is controlled by controlling the amount of dispersed particles in the grain. The characteristics can be remarkably improved.

(アルミニウム合金材組成)
先ず、本発明アルミニウム合金材の化学成分組成について、各元素の限定理由を含めて、以下に説明する。なお、元素の含有量の%表示は全て質量%の意味である。本発明アルミニウム合金材の化学成分組成は、Al−Zn−Mg系合金材ならびにAl−Zn−Mg−Cu系合金材である7000系アルミニウム合金材として、高圧ガス容器のライナーや口金あるいはガス管などの部材として要求される、強度や延性などの機械的な特性を保証するために決定される。また、主要元素の含有量が多い場合や、調質としての過時効処理(T7)に対して、ピーク時効処理(T6)を施した場合では、強度がより高くなる。そして、耐水素脆化性を向上させるには、後述する通り、Fe、Mn、Cr、Zr、Vなどの含有量と調質とによって定まり、導電率によって測定され、水素のトラップ(捕捉)サイトとなる、分散粒子の量をより正確に制御する必要がある。
(Aluminum alloy material composition)
First, the chemical component composition of the aluminum alloy material of the present invention will be described below, including reasons for limiting each element. In addition,% display of element content means the mass% altogether. The chemical composition of the aluminum alloy material of the present invention is as follows: Al—Zn—Mg alloy material and 7000 series aluminum alloy material, which is an Al—Zn—Mg—Cu alloy material, such as liners, caps or gas pipes of high pressure gas containers It is determined in order to guarantee mechanical properties such as strength and ductility that are required for the members. Further, when the content of the main element is large, or when the peak aging treatment (T6) is applied to the overaging treatment (T7) as the tempering, the strength becomes higher. In order to improve hydrogen embrittlement resistance, as will be described later, it is determined by the content and tempering of Fe, Mn, Cr, Zr, V, etc., measured by conductivity, and a hydrogen trapping site. It is necessary to control the amount of dispersed particles more accurately.

これらの観点から、本発明アルミニウム合金材の化学成分組成は、質量%にて、Zn:4.0〜6.7%、Mg:0.75〜2.9%、Cu:0.001〜2.6%、Si:0.05〜0.40%、Ti:0.005〜0.20%、Fe:0.01〜0.5%を各々含み、更に、Mn:0.01〜0.7%、Cr:0.02〜0.3%、Zr:0.01〜0.25%、V:0.01〜0.10%の一種または二種以上を、1.0%≧Fe+Mn+Cr+Zr+V≧0.1%の関係を満足した上で含み、残部がAlおよび不可避不純物からなるアルミニウム合金組成とする。   From these viewpoints, the chemical composition of the aluminum alloy material of the present invention is, in mass%, Zn: 4.0 to 6.7%, Mg: 0.75 to 2.9%, Cu: 0.001 to 2 .6%, Si: 0.05-0.40%, Ti: 0.005-0.20%, Fe: 0.01-0.5%, and Mn: 0.01-0. 1% or more of 7%, Cr: 0.02-0.3%, Zr: 0.01-0.25%, V: 0.01-0.10%, 1.0% ≧ Fe + Mn + Cr + Zr + V ≧ An aluminum alloy composition containing 0.1% of the relationship and the balance of Al and inevitable impurities is included.

(Zn、Mg)
必須の合金元素であるZn、Mgは、合金材の人工時効処理によって、GPゾーンあるいは中間析出相と呼ばれるη’相、T’相などの微細分散相を形成して強度を向上させる。特にZnは強度−延性のバランス向上効果が高い。Znが4.0未満、Mgが0.75%未満など、Zn、Mgの含有量が少な過ぎると、これら微細分散相が不足して、強度が低下する。
(Zn, Mg)
The essential alloy elements Zn and Mg improve the strength by forming fine dispersed phases such as η ′ phase and T ′ phase called GP zone or intermediate precipitation phase by artificial aging treatment of the alloy material. In particular, Zn has a high effect of improving the balance between strength and ductility. If the Zn and Mg contents are too small, such as Zn less than 4.0 and Mg less than 0.75%, the fine dispersed phase becomes insufficient and the strength decreases.

一方、Znが6.7%超え、Mgが2.9%超えなど、Zn、Mgの含有量が多過ぎると、強度が高くなり過ぎ、耐食性や耐水素脆化特性が低下する。また、Zn、Mgの含有量が多過ぎると、アルミニウム中に固溶できないため、粗大な晶出物を形成し、アルミニウム合金材の強度、伸びなどの低下の原因となり、また加工性も低下する。したがって、Zn、Mgの含有量は、Zn:4.0〜6.7%、Mg:0.75〜2.9%の範囲と各々する。   On the other hand, if the Zn and Mg contents are too high, such as Zn exceeding 6.7% and Mg exceeding 2.9%, the strength becomes too high, and the corrosion resistance and hydrogen embrittlement resistance deteriorate. Further, if the Zn and Mg contents are too large, they cannot be dissolved in aluminum, so that coarse crystallized products are formed, which causes a decrease in the strength and elongation of the aluminum alloy material, and the workability also decreases. . Therefore, the contents of Zn and Mg are set to Zn: 4.0 to 6.7% and Mg: 0.75 to 2.9%, respectively.

(Cu)
Cuの含有は、強度の向上、耐食性の向上をもたらす。但し、Cuが2.6%を超えて添加されると、強度が高くなり過ぎ、また粗大な晶出物の形成により加工性の低下をもたらす。また、Cu含有量が0.001%未満となると、強度の向上、耐食性の向上の効果は小さくなる。したがって、Cu含有量は0.001〜2.6%の範囲とする。
(Cu)
Inclusion of Cu brings about improvement in strength and corrosion resistance. However, if Cu is added in excess of 2.6%, the strength becomes too high, and the workability is lowered due to the formation of coarse crystals. On the other hand, when the Cu content is less than 0.001%, the effects of improving strength and corrosion resistance are reduced. Therefore, the Cu content is in the range of 0.001 to 2.6%.

(Ti)
Tiには、鋳塊の結晶粒を微細化し、鋳造時の割れ防止、熱間加工時の加工性を向上、製品加工時に割れ防止、表面の外観の改善に効果がある。含有量が少なすぎると、このような効果が期待できず、これらの含有量が多すぎると、粗大なTi化合物が形成され、割れ発生、加工性の低下、表面の外観の不良をもたらす。したがって、Tiは0.005〜0.20%の範囲で含有させる。
(Ti)
Ti has the effect of reducing the crystal grains of the ingot, preventing cracking during casting, improving workability during hot working, preventing cracking during product processing, and improving the surface appearance. If the content is too small, such an effect cannot be expected. If the content is too large, a coarse Ti compound is formed, resulting in cracking, deterioration of workability, and poor surface appearance. Therefore, Ti is contained in the range of 0.005 to 0.20%.

(Si)
Siは、鋳造時にAl−Fe−Si系の晶出物を形成し易い。0.40%を超
えるSiの添加は、破壊の起点となる粗大な晶出物の原因となり、加工性、伸び、疲労特性、靱性、耐水素脆化性の低下をもたらす。一方、Siの一部は分散粒子を形成することも期待されるため、0.05%以上の添加が望ましい。したがって、Siは0.05〜0.40%の範囲で含有させる。
(Si)
Si easily forms an Al-Fe-Si-based crystallized product during casting. Addition of Si exceeding 0.40% causes a coarse crystallized substance that becomes a starting point of fracture, and causes deterioration in workability, elongation, fatigue characteristics, toughness, and hydrogen embrittlement resistance. On the other hand, since part of Si is also expected to form dispersed particles, addition of 0.05% or more is desirable. Therefore, Si is contained in the range of 0.05 to 0.40%.

(Fe、Mn、Cr、Zr、V)
Feは0.01〜0.5%の含有を必須とし、更に、Mn:0.01〜0.7%、Cr:0.02〜0.3%、Zr:0.01〜0.25%、V:0.01〜0.10%の一種または二種以上を含有させる。これらFe、Mn、Cr、Zr、Vは、均熱処理時の加熱中に、保持中に水素のトラップサイトとなる分散粒子を形成する。これら分散粒子は、粒界の移動を抑制する作用があり、未再結晶化や再結晶粒の微細化に効果がある。また、これら分散粒子は、ミクロ組織のファイバー化に寄与し、強度を向上させる効果もある。
(Fe, Mn, Cr, Zr, V)
Fe is essential to contain 0.01 to 0.5%, Mn: 0.01 to 0.7%, Cr: 0.02 to 0.3%, Zr: 0.01 to 0.25% V: 0.01 to 0.10% of one kind or two or more kinds are contained. These Fe, Mn, Cr, Zr, and V form dispersed particles that serve as hydrogen trap sites during holding during heating during soaking. These dispersed particles have an effect of suppressing the movement of grain boundaries, and are effective in non-recrystallization and refinement of recrystallized grains. Moreover, these dispersed particles contribute to the formation of fibers in the microstructure and have the effect of improving the strength.

通常、Zn、Mgなどの他の主要元素量が大きい場合や、過時効処理に対するピーク時効処理で強度を高くした場合には、耐水素脆化性は低下する。しかし、このような場合であっても、これらFe、Mn、Cr、Zr、Vの元素が形成する分散粒子の量を多くすることにより、水素のトラップ(捕捉)サイトとして機能し、耐水素脆化性を向上させることが出来る。   Usually, when the amount of other main elements such as Zn and Mg is large, or when the strength is increased by the peak aging treatment relative to the overaging treatment, the hydrogen embrittlement resistance decreases. However, even in such a case, by increasing the amount of dispersed particles formed by these Fe, Mn, Cr, Zr, and V elements, it functions as a hydrogen trapping (trapping) site, and is resistant to hydrogen embrittlement. The chemical property can be improved.

この効果を確実に発揮させるために、Feの含有は必須として、Mn、Cr、Zr、Vは選択的な含有とし、これら各々の元素の前記下限値以上含有させる。また、各々含有量が多過ぎると、却って、破壊の起点となる粗大な晶出物の原因となり、加工性、伸び、疲労特性、靱性、耐水素脆化性の低下をもたらし、また、多量の分散粒子は焼入感受性をも高くする。このため、これら各々の元素の前記上限値以下含有させる。   In order to exhibit this effect reliably, the inclusion of Fe is essential, and Mn, Cr, Zr, and V are selectively contained, and the elements are contained in the above lower limit values or more. On the other hand, if each content is too large, it may cause coarse crystallized substances that become the starting point of fracture, resulting in deterioration of workability, elongation, fatigue properties, toughness, hydrogen embrittlement resistance, and a large amount. The dispersed particles also increase the quenching sensitivity. For this reason, it is made to contain below the said upper limit of each of these elements.

但し、耐水素脆化性を確実に向上させるためには、前記した通り、各元素の含有量と調質とによって定まり、導電率によって測定され、水素のトラップ(捕捉)サイトとなる、分散粒子の量をより正確に制御する必要がある。   However, in order to improve the hydrogen embrittlement resistance with certainty, as described above, the dispersed particles are determined by the content and tempering of each element, measured by conductivity, and become hydrogen trapping sites. There is a need to control the amount of more accurately.

このため、これらの元素の合計含有量(総量)が多過ぎると、却って耐水素脆化性の低下をもたらすので、Fe+Mn+Cr+Zr+Vの合計含有量は1.0%以下とする。また、一方で、これらの元素の合計含有量(総量:%)が少な過ぎると、耐水素脆化性向上の効果が見込まれないため、Fe+Mn+Cr+Zr+Vの合計含有量は0.1%以上とする。   For this reason, if the total content (total amount) of these elements is too large, the hydrogen embrittlement resistance is lowered, so the total content of Fe + Mn + Cr + Zr + V is 1.0% or less. On the other hand, if the total content (total amount:%) of these elements is too small, the effect of improving hydrogen embrittlement resistance is not expected, so the total content of Fe + Mn + Cr + Zr + V is 0.1% or more.

更に、耐水素脆化性を確実に向上させるために、各元素の含有量と調質の状態とを、導電率(%IACS)との関係で最適化する。即ち、Fe、Mn、Cr、Zr、Vの合計含有量[(Fe+Mn+Cr+Zr+V)で示す、これらの元素の総量(%)]は、前記個別の含有量とともに、下記の関係(式)を満足させる。即ち、導電率(%)≧−4.9×(Fe+Mn+Cr+Zr+V)+40.5を満足させるようにする。また、耐水素脆化性をより確実に向上させるためには、好ましくは、導電率(%)≧−4.9×(Fe+Mn+Cr+Zr+V)+41.5を満足させるようにする。   Furthermore, in order to improve the hydrogen embrittlement resistance with certainty, the content of each element and the tempered state are optimized in relation to the conductivity (% IACS). That is, the total content of Fe, Mn, Cr, Zr, and V [total amount (%) of these elements indicated by (Fe + Mn + Cr + Zr + V)] satisfies the following relationship (formula) together with the individual contents. That is, the electrical conductivity (%) ≧ −4.9 × (Fe + Mn + Cr + Zr + V) +40.5 is satisfied. In order to improve the hydrogen embrittlement resistance more reliably, it is preferable that the electrical conductivity (%) ≧ −4.9 × (Fe + Mn + Cr + Zr + V) +41.5 is satisfied.

(不純物)
以上記載した元素以外のその他の元素は不純物であり、本発明の意図する特性を阻害しない範囲において、Al−Zn−Mg系、Al−Zn−Mg−Cu系の7000系アルミニウム合金材に通常含まれる範囲までは許容する。ただ、酸素など、特に介在物を生じやすい不純物元素は、アルミニウム合金材組織中に介在物を生じて、破壊の起点となり、強度や伸びを低下させる可能性が高い。したがって、これらの不純物はできるだけ少なくすることが好ましい。
(impurities)
Other elements other than the elements described above are impurities and are usually included in Al-Zn-Mg and Al-Zn-Mg-Cu-based 7000 series aluminum alloy materials as long as they do not impair the intended characteristics of the present invention. To the extent allowed. However, an impurity element such as oxygen, which tends to cause inclusions, is likely to cause inclusions in the aluminum alloy material structure and become a starting point of destruction, thereby reducing strength and elongation. Therefore, it is preferable to reduce these impurities as much as possible.

(ミクロ組織)
以上のような7000系アルミニウム合金材組成を前提として、本発明では、特徴的には、耐水素脆化特性を向上させるために、7000系アルミニウム合金材のミクロ組織における、分散粒子の量を制御し、水素のトラップ(捕捉)サイトとして一定量確保する。
(Micro structure)
Based on the above 7000 series aluminum alloy material composition, in the present invention, characteristically, in order to improve the hydrogen embrittlement resistance, the amount of dispersed particles in the microstructure of the 7000 series aluminum alloy material is controlled. A certain amount is secured as a hydrogen trapping site.

前記した通り、分散粒子(粒内析出物)は、水素のトラップサイトとして耐水素脆化特性を向上させる。しかし、この分散粒子の量を、耐水素脆化特性を向上させる量(水素のトラップサイトとしての機能を発揮する量)だけ、直接定量的に規定することは難しい。分散粒子は、SEMやTEMなどによって組織分析可能な大きさから、これらによる組織分析が難しい微細なものまで含めて、水素のトラップサイトとして耐水素脆化特性を向上させると推考されるからである。言い換えると、組織分析が難しい微細な粒内析出物が、水素のトラップサイトとして耐水素脆化特性を向上させない理由が何も無いからである。   As described above, the dispersed particles (intragranular precipitates) improve the hydrogen embrittlement resistance as hydrogen trap sites. However, it is difficult to quantitatively define the amount of the dispersed particles by an amount that improves the hydrogen embrittlement resistance (an amount that functions as a hydrogen trap site). This is because it is assumed that the dispersed particles improve the hydrogen embrittlement resistance as hydrogen trap sites, including sizes that can be analyzed by SEM, TEM, etc., and fine particles that are difficult to analyze. . In other words, there is no reason why fine intragranular precipitates that are difficult to analyze the structure do not improve the hydrogen embrittlement resistance as hydrogen trap sites.

(導電率)
したがって、本発明では、水素のトラップサイトとして耐水素脆化特性を向上させる粒内析出物量を、その成分である前記各元素の含有量や合計量、そして7000系アルミニウム合金材の導電率(%IACS)で規定する。また、主要組成の添加量が大きい場合や、過時効処理に対するピーク時効処理で、強度が高い場合で、耐水素脆化性を向上させるには、より多くの分散粒子が必要となる。したがって、規定する導電率も、導電率単独で規定するのではなく、前記した通り、Fe、Mn、Cr、Zr、Vの合計含有量[(Fe+Mn+Cr+Zr+V)で示す、これらの元素の総量(%)]との関係で、導電率(%)≧−4.9×(Fe+Mn+Cr+Zr+V)+40.5を満足させるようにする。また、耐水素脆化性をより確実に向上させるためには、好ましくは、導電率(%)≧−4.9×(Fe+Mn+Cr+Zr+V)+41.5を満足させるようにする。
(conductivity)
Therefore, in the present invention, the amount of intragranular precipitate that improves the hydrogen embrittlement resistance as a hydrogen trap site, the content and total amount of each element as the component, and the conductivity (% of 7000 series aluminum alloy material) IACS). Further, when the amount of the main composition is large, or when the strength is high in the peak aging treatment relative to the overaging treatment, more dispersed particles are required to improve the hydrogen embrittlement resistance. Therefore, the electrical conductivity to be defined is not limited to the electrical conductivity alone, but as described above, the total content of Fe, Mn, Cr, Zr, and V [(Fe + Mn + Cr + Zr + V)] (total amount of these elements (%)) ], The electric conductivity (%) ≧ −4.9 × (Fe + Mn + Cr + Zr + V) +40.5 is satisfied. In order to improve the hydrogen embrittlement resistance more reliably, it is preferable that the electrical conductivity (%) ≧ −4.9 × (Fe + Mn + Cr + Zr + V) +41.5 is satisfied.

(製造方法)
次ぎに、本発明の、高圧ガス容器用7000系アルミニウム合金材の製造方法について以下に説明する。7000系アルミニウム合金材は、通常の溶解鋳造法により製作した鋳塊を、各々常法により、押出、圧延(熱間、冷間)、鍛造などした、押出材、圧延板材、鍛造材などが適宜選択できる。即ち、高圧ガス容器におけるライナーや口金あるいはガス管などの部材形状や特性を得るために適した製造方法、加工方法が適宜選択できる。ここでは、ライナーの製造方法として汎用的な製造につき、好適な条件を含めて以下に説明する。
(Production method)
Next, a method for producing a 7000 series aluminum alloy material for high-pressure gas containers according to the present invention will be described below. For 7000 series aluminum alloy materials, extrudates, rolled plate materials, forged materials, etc. are appropriately obtained by extruding, rolling (hot, cold), forging, etc., each of the ingots produced by the usual melt casting method. You can choose. That is, a manufacturing method and a processing method suitable for obtaining the shape and characteristics of a member such as a liner, a die, or a gas pipe in a high-pressure gas container can be appropriately selected. Here, general-purpose production as a production method of the liner will be described below including preferable conditions.

溶解、鋳造:
先ず、上記7000系成分組成のアルミニウム合金鋳塊をスラブに鋳造する。この溶解、鋳造工程では、上記7000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、連続鋳造法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
Melting and casting:
First, an aluminum alloy ingot having the above 7000 series component composition is cast into a slab. In this melting and casting process, the molten aluminum alloy melt-adjusted within the above-mentioned 7000 series component composition range is cast by appropriately selecting a normal melting casting method such as a continuous casting method or a semi-continuous casting method (DC casting method). To do.

均質化熱処理:
次いで、鋳塊(スラブ)を均質化熱処理する。均質化熱処理の温度自体は、常法通り、400℃以上で融点未満の均質化温度範囲、最適には420〜520℃の温度範囲から選択される。この均質化熱処理(均熱処理)は、組織の均質化、すなわち、鋳塊組織中の結晶粒内の偏析をなくし、合金元素や粗大な化合物を十分に固溶させることを目的とする。この均熱処理温度が低いと結晶粒内の偏析を十分に無くすことができず、これが破壊の起点として作用するために、加工性などが低下する。
Homogenization heat treatment:
Next, the ingot (slab) is subjected to a homogenization heat treatment. The temperature of the homogenization heat treatment itself is selected from a homogenization temperature range of 400 ° C. or higher and lower than the melting point, and optimally a temperature range of 420 to 520 ° C., as usual. The purpose of this homogenization heat treatment (soaking) is to homogenize the structure, that is, to eliminate segregation in the crystal grains in the ingot structure and to sufficiently dissolve the alloy elements and coarse compounds. When this soaking temperature is low, segregation in the crystal grains cannot be sufficiently eliminated, and this acts as a starting point of fracture, so that workability and the like are lowered.

圧延材の場合、均質化熱処理後の鋳塊を、熱間圧延温度まで冷却するか、一旦室温まで冷却後に熱間圧延温度まで再加熱して、熱間圧延し、所定の板厚の板材とし、その後、必要に応じて加熱処理し軟質材とする。なお、熱間圧延と焼鈍の間には、必要に応じて焼鈍、冷間圧延を行ってもよい。   In the case of a rolled material, the ingot after the homogenization heat treatment is cooled to the hot rolling temperature, or once cooled to room temperature and then reheated to the hot rolling temperature, hot rolled to obtain a plate material having a predetermined thickness. Thereafter, heat treatment is performed as necessary to obtain a soft material. In addition, between hot rolling and annealing, you may perform annealing and cold rolling as needed.

押出材の場合、均質化熱処理後の鋳塊を再加熱し、熱間押出で所定の形状に押出し、その後必要に応じて加熱処理し軟質材とする。なお、熱間押出と焼鈍の間には、必要に応じて抽芯、焼鈍を行ってもよい。   In the case of an extruded material, the ingot after the homogenization heat treatment is reheated, extruded into a predetermined shape by hot extrusion, and then heat-treated as necessary to obtain a soft material. In addition, you may perform a core extraction and annealing between hot extrusion and annealing as needed.

鍛造材の場合、均質化熱処理後の鋳塊を再加熱し、熱間鍛造で所定の形状に鍛造し、その後必要に応じて加熱処理し軟質材とする。なお、熱間鍛造と焼鈍の間には、必要に応じて再加熱、熱間鍛造、冷間鍛造を行ってもよい。   In the case of a forged material, the ingot after the homogenization heat treatment is reheated, forged into a predetermined shape by hot forging, and then heat-treated as necessary to obtain a soft material. In addition, between a hot forging and annealing, you may perform reheating, hot forging, and cold forging as needed.

これら圧延材、押出材、鍛造材から、高圧ガス容器用の、ライナー等の容器材や、周辺部材を作製する場合には、前記した軟質材を、必要に応じて加熱を行いながら、絞り、しごき、スピニング、切削、孔開けなどの必要な加工を行う。但し、これら容器材、周辺部材を作製後に、調質を、高圧ガス容器の前記各部材の各々の要求特性に応じて、各々選択して行うことが望ましい。この調質は、例えばJIS−H−0001に記載の熱処理条件内にて、調質記号で、T6(溶体化処理および焼入処理+ピーク時効処理)、T7(溶体化処理および焼入処理+過時効処理)と称される調質を各々選択して行う。   When producing a container material such as a liner for a high-pressure gas container or a peripheral member from these rolled material, extruded material, or forged material, the above-mentioned soft material is squeezed while being heated as necessary. Perform necessary processing such as ironing, spinning, cutting, drilling. However, it is desirable to select and perform tempering according to the required characteristics of each member of the high-pressure gas container after the container material and peripheral members are manufactured. This tempering is performed by, for example, T6 (solution treatment and quenching treatment + peak aging treatment), T7 (solution treatment and quenching treatment +) within the heat treatment conditions described in JIS-H-0001. Each tempering is called “overaging treatment”.

なお、前記焼入処理とピーク時効処理や過時効処理などの高温時効処理との間に、必要に応じて室温時効、歪み矯正を行ってもよい。また、溶体化処理に使用される熱処理炉は、バッチ炉、連続炉、溶融塩浴炉のいずれを用いてもよい。また、溶体化処理後の焼入れ処理は、水浸漬、水噴射、ミスト噴射、空気噴射、空気中放冷のいずれを用いてもよい。更に、溶体化及び焼入れ処理後に行われる高温時効処理も、バッチ炉、連続炉、オイルバス、温湯浴槽等のいずれを用いてもよい。   In addition, you may perform room temperature aging and distortion correction as needed between the said quenching process and high temperature aging processes, such as a peak aging process and an overaging process. Moreover, any of a batch furnace, a continuous furnace, and a molten salt bath furnace may be used as the heat treatment furnace used for the solution treatment. The quenching treatment after the solution treatment may be any of water immersion, water jetting, mist jetting, air jetting, and air cooling. Furthermore, any of a batch furnace, a continuous furnace, an oil bath, a hot water bath, etc. may be used for the high temperature aging treatment performed after the solution treatment and the quenching treatment.

また、これら板材、押出材、鍛造材に対して、予め、高圧ガス容器用の部材を作製する前に、前記した調質を各々選択して行っても良い。押出材の場合には、押出出口側の押出材温度が溶体化温度域になるように、前記鋳造ビレットを再加熱して熱間押出し、引き続き、押出直後から押出材を室温近傍の温度まで水噴射、ミスト噴射、空気噴射等で強制冷却し焼入れ処理を行う。その後、必要に応じて必要に応じて室温時効、歪み矯正した後、高温時効処理を行う(T6、T7)。また、必要に応じて抽芯加工を行った後、たとえばJIS−H−0001に記載の熱処理条件内にて、溶体化処理、焼入し、必要に応じて室温時効、歪み矯正した後、高温時効処理(T6、T7)を行ってもよい。
Moreover, before preparing the member for high-pressure gas containers with respect to these plate material, extruded material, and forged material, the above-described tempering may be selected and performed. In the case of an extruded material, the cast billet is reheated and hot extruded so that the temperature of the extruded material on the extrusion outlet side is in the solution temperature range. Quenching is performed by forced cooling by injection, mist injection, air injection, or the like. Thereafter, if necessary, after room temperature aging and distortion correction, high temperature aging treatment is performed (T6, T7). Moreover, after performing the drawing process as necessary, for example, in the heat treatment conditions described in JIS-H-0001, solution treatment, quenching, if necessary, room temperature aging, distortion correction, high temperature An aging treatment (T6, T7) may be performed.

次に、本発明の実施例を説明する。高圧ガス容器におけるライナーを想定して、表1に示す各成分組成で、7000系アルミニウム合金板(圧延板)を、表2に示す条件で製造し、表2に示すように、機械的特性、導電率、耐水素脆化特性を調査、評価した。なお、表2において、導電率の項目におけるFe、Mn、Cr、Zr、Vの合計含有量(総量:質量%)は(Fe〜V)と略記している。   Next, examples of the present invention will be described. Assuming a liner in a high-pressure gas container, a 7000 series aluminum alloy plate (rolled plate) is manufactured under the conditions shown in Table 2 with each component composition shown in Table 1, and as shown in Table 2, mechanical properties, Conductivity and hydrogen embrittlement resistance were investigated and evaluated. In Table 2, the total content (total amount: mass%) of Fe, Mn, Cr, Zr, and V in the item of conductivity is abbreviated as (Fe to V).

より具体的に、板材の製造は、先ず、表1に示す各成分組成の各アルミニウム合金溶湯から、各々スラブを鋳造した。このスラブを表2に示す各温度(℃)×各時間(hr)で均質化熱処理後、一旦、室温まで冷却した。そして、50mm厚さに面削した後、再加熱して、2mmの板厚へ400℃の開始温度で熱間圧延して、その後、冷間圧延にて1.0mmの板厚の板とした。そして、表2示す各温度(℃)×各時間(hr)で溶体化処理後に、水焼入や強制空冷にて焼入を行い、3日間の室温時効(15〜35℃)後、レベラーで板の歪みを矯正した後、ピーク時効処理、過時効処理し、調質記号で、T6(溶体化処理および焼入後にピーク時効処理)、T7(溶体化処理および焼入後に過時効処理)の各調質材を作製した。均熱処理、熱延温度への加熱、高温時効処理には空気炉を用いた。表2に示す溶体化処理直後からの焼入の冷却手段で、水焼入の場合(表2にはWQと記載)の冷却速度は約250℃/秒程度であり、ファンによる強制空冷(表2には強制空冷と記載)の場合の冷却速度は50℃/分程度である。なお、発明例3、5〜9、比較例12、16は、高温時効処理を、表2に記載の温度、時間条件にて、2段階で行っている。なお、表2において、各熱処理の温度×時間の「×」表示は「*」にて記載している。   More specifically, in the production of the plate material, first, each slab was cast from each molten aluminum alloy having each component composition shown in Table 1. This slab was cooled to room temperature after homogenizing heat treatment at each temperature (° C.) × each time (hr) shown in Table 2. Then, after chamfering to a thickness of 50 mm, reheating, hot rolling to a thickness of 2 mm at a starting temperature of 400 ° C., and then a plate having a thickness of 1.0 mm by cold rolling. . And after solution treatment at each temperature (° C.) × each time (hr) shown in Table 2, quenching is performed by water quenching or forced air cooling, and after aging for 3 days at room temperature (15 to 35 ° C.), a leveler is used. After correcting the distortion of the plate, peak aging treatment, overaging treatment, tempering symbols, T6 (peak aging treatment after solution treatment and quenching), T7 (solution treatment and overaging treatment after quenching) Each tempered material was produced. An air furnace was used for soaking, heating to hot rolling temperature, and high temperature aging treatment. Cooling means for quenching immediately after solution treatment shown in Table 2 and cooling rate in the case of water quenching (described as WQ in Table 2) is about 250 ° C./second, and forced air cooling with a fan (Table 2 is described as forced air cooling), the cooling rate is about 50 ° C./min. Inventive Examples 3, 5 to 9, and Comparative Examples 12 and 16 are subjected to high temperature aging treatment in two stages under the temperature and time conditions described in Table 2. In Table 2, the “×” notation of the temperature × time of each heat treatment is indicated by “*”.

(供試材特性)
これら製作した調質後の板材の外寸形状は、各例とも共通して、厚さ1.0mm、幅200mmとした。そして、これら高温時効処理後30日間の室温時効後の板材から、供試材(板状試験片)を切り出し、これら各供試材の導電率、引張特性、耐水素脆化特性を測定、評価した。これらの結果を表2に示す。
(Sample material properties)
The external dimensions of the prepared tempered plate materials were 1.0 mm in thickness and 200 mm in width in common with each example. Then, from the plate materials after room temperature aging for 30 days after these high temperature aging treatments, the test materials (plate-like test pieces) are cut out, and the conductivity, tensile properties, and hydrogen embrittlement resistance properties of these test materials are measured and evaluated. did. These results are shown in Table 2.

導電率:
前記供試材の板両面の導電率(%IACS)を、市販の渦電流式導電率測定装置により、片面づつそれぞれ5点、計10点測定し、それらの平均値を各供試材の導電率とした。
conductivity:
The electrical conductivity (% IACS) on both sides of the test material was measured by a commercially available eddy current type conductivity measuring device, 5 points for each side, 10 points in total, and the average value of these was measured for the conductivity of each test material. Rate.

引張試験:
引張試験は、前記供試材からJISZ2201の号試験片(平行部25mm幅×50mm長さ)を圧延方向に対して試験片長手方向が直角となるように採取し、室温大気中で、クロスヘッド速度5mm/分で引張試験を行った。測定N数は5として、各機械的性質はこれらの平均値とした。
Tensile test:
In the tensile test, a JISZ2201 No. test piece (parallel portion 25 mm width × 50 mm length) was taken from the test material so that the longitudinal direction of the test piece was perpendicular to the rolling direction, and the crosshead A tensile test was performed at a speed of 5 mm / min. The measured N number was 5, and each mechanical property was an average of these values.

耐水素脆化特性試験:
前記供試材の耐水素脆化特性は、歪み速度を1.0×10-6-1以下として雰囲気条件のみを変えて、このアルミニウム合金材を引張変形させた場合の、10%RH以下の乾燥雰囲気中での伸び値δ1に対する、90%RH以上の高湿潤雰囲気中での伸び値δ2の低下率として、[(δ1−δ2)/δ1]×100%で示されるものを、脆化感受性指標(%)とした。具体的には、前記供試材から幅5mm、長さ12mmの平行部、肩部半径7.5mmの小型引張試験片を、板の圧延方向に対して試験片長手方向が直角となるように採取し、初期歪速度1.4×10−6s−1で、雰囲気条件を10%RH以下の乾燥雰囲気中、90%RH以上の高湿潤雰囲気中との2つの条件で、各々破断まで引張試験を行った。そして、10%RH以下の乾燥雰囲気中の伸び値δ1に対する、90%RH以上の高湿潤雰囲気中の伸び値δ2の低下率を上記式にて算出した。これら伸び値の低下率が10%以下、より好ましくは5%以下と小さいほど、耐水素脆化特性が優れていると評価出来る。
Hydrogen embrittlement resistance test:
The hydrogen embrittlement resistance of the test material is 10% RH or less when the strain rate is 1.0 × 10 −6 s −1 or less and only the atmospheric conditions are changed and the aluminum alloy material is tensile deformed. As the rate of decrease of the elongation value δ2 in a high-humidity atmosphere of 90% RH or higher with respect to the elongation value δ1 in the dry atmosphere, [(δ1-δ2) / δ1] × 100% Sensitivity index (%) was used. Specifically, a small tensile test piece having a width of 5 mm, a length of 12 mm, and a shoulder radius of 7.5 mm from the test material is set so that the longitudinal direction of the test piece is perpendicular to the rolling direction of the plate. Tensile tests were performed until breakage at two initial strain rates of 1.4 × 10 −6 s-1 and atmospheric conditions in a dry atmosphere of 10% RH or less and a highly humid atmosphere of 90% RH or more. Went. The reduction rate of the elongation value δ2 in the high-humidity atmosphere of 90% RH or more relative to the elongation value δ1 in the dry atmosphere of 10% RH or less was calculated by the above formula. It can be evaluated that the hydrogen embrittlement resistance is excellent as the decrease rate of these elongation values is 10% or less, more preferably 5% or less.

ここで、この伸び値の低下率5%とは、水素容器部材で耐水素脆化特性が優れていると実績のある6061−T6材を、前記した同じ条件で耐水素脆化特性試験して求めた基準値である。また、この伸び値の低下率10%とは、水素容器部材ではないが、耐食性に優れた構造部材として実績のある7050−T7材を前記した同じ条件で耐水素脆化特性試験して求めた基準値である。   Here, the rate of decrease in elongation value of 5% means that a 6061-T6 material that has been proven to be excellent in hydrogen embrittlement resistance in a hydrogen container member was tested for hydrogen embrittlement resistance under the same conditions described above. The obtained reference value. Further, the elongation rate decrease rate of 10% is not a hydrogen container member, but was obtained by testing the hydrogen embrittlement resistance test under the same conditions as described above for a 7050-T7 material that has been proven as a structural member with excellent corrosion resistance. This is the reference value.

表1、2から分かる通り、発明例1〜11は、高強度と耐水素脆化特性とを兼備している。即ち、発明例は本発明アルミニウム合金組成を有するとともに、組成と調質とが適切で、導電率(%IACS)が、前記Fe、Mn、Cr、Zr、Vの含有量の組成との関係を満足している。この結果、0.2%耐力が275MPa以上の高強度と、脆化感受性指標が10%以下である優れた耐水素脆化特性とを兼備している。   As can be seen from Tables 1 and 2, Invention Examples 1 to 11 have both high strength and hydrogen embrittlement resistance. That is, the invention example has the composition of the aluminum alloy of the present invention, the composition and the tempering are appropriate, and the conductivity (% IACS) is related to the composition of the contents of Fe, Mn, Cr, Zr, and V. Is pleased. As a result, it has both high strength with 0.2% proof stress of 275 MPa or more and excellent hydrogen embrittlement resistance with an embrittlement susceptibility index of 10% or less.

なお、発明例1、2は脆化感受性指標がマイナスとなっているが、これは90%RH以上の高湿潤雰囲気中での伸び値δ2が、10%RH以下の乾燥雰囲気中での伸び値δ1よりも大きくなっているためで、耐水素脆化性に優れることを示す一つの特性と言える。   In Examples 1 and 2, the embrittlement susceptibility index is negative. This is because the elongation value δ2 in a highly humid atmosphere of 90% RH or more is 10% RH or less in a dry atmosphere. This is because it is larger than δ1, and it can be said that this is one characteristic that shows excellent resistance to hydrogen embrittlement.

これに対して、表1、2から分かる通り、比較例12〜15は、高強度と耐水素脆化特性とを兼備できていない。比較例12、15はMg含有量が少なすぎる。比較例13、14は、導電率(%)が、導電率(%)≧−4.9×(Fe+Mn+Cr+Zr+V)+40.5の関係を満足していない。   On the other hand, as can be seen from Tables 1 and 2, Comparative Examples 12 to 15 do not have both high strength and hydrogen embrittlement resistance. In Comparative Examples 12 and 15, the Mg content is too small. In Comparative Examples 13 and 14, the conductivity (%) does not satisfy the relationship of conductivity (%) ≧ −4.9 × (Fe + Mn + Cr + Zr + V) +40.5.

したがって、以上の実施例の結果から、本発明における成分や組織の各要件、あるいは好ましい製造条件の、耐水素脆化特性および機械的性質などを兼備するための臨界的な意義乃至効果が裏付けられる。   Therefore, the results of the above examples support the critical significance or effect of combining the requirements of the components and structures in the present invention, or the preferable production conditions, such as hydrogen embrittlement resistance and mechanical properties. .

Figure 2009221566
Figure 2009221566

Figure 2009221566
Figure 2009221566

以上説明したように、本発明によれば、耐水素脆化特性に優れる高圧ガス容器用7000系アルミニウム合金材を提供することができる。したがって、アルミニウム合金製やプラスチック製ライナーの外面に強化用繊維を巻き付けた高圧ガス容器へ、7000系アルミニウム合金材をライナー、口金あるいはガス管などの部材として適用することができる。   As described above, according to the present invention, it is possible to provide a 7000 series aluminum alloy material for high-pressure gas containers that has excellent hydrogen embrittlement resistance. Therefore, the 7000 series aluminum alloy material can be applied as a member such as a liner, a cap or a gas pipe to a high pressure gas container in which reinforcing fibers are wound around the outer surface of an aluminum alloy or plastic liner.

Claims (5)

質量%にて、Zn:4.0〜6.7%、Mg:0.75〜2.9%、Cu:0.001〜2.6%、Si:0.05〜0.40%、Ti:0.005〜0.20%、Fe:0.01〜0.5%を各々含み、更に、Mn:0.01〜0.7%、Cr:0.02〜0.3%、Zr:0.01〜0.25%、V:0.01〜0.10%の一種または二種以上を、1.0%≧Fe+Mn+Cr+Zr+V≧0.1%の関係を満足した上で含み、残部がAlおよび不可避不純物からなるアルミニウム合金組成を有するとともに、導電率(%IACS)が、前記Fe、Mn、Cr、Zr、Vの合計含有量との関係で、導電率(%)≧−4.9×(Fe+Mn+Cr+Zr+V)+40.0の関係を満足し、かつ、0.2%耐力が275MPa以上であることを特徴とする耐水素脆化特性に優れた高圧ガス容器用アルミニウム合金材。   In mass%, Zn: 4.0 to 6.7%, Mg: 0.75 to 2.9%, Cu: 0.001 to 2.6%, Si: 0.05 to 0.40%, Ti : 0.005 to 0.20%, Fe: 0.01 to 0.5%, respectively, Mn: 0.01 to 0.7%, Cr: 0.02 to 0.3%, Zr: One or two or more of 0.01 to 0.25%, V: 0.01 to 0.10% are satisfied while satisfying the relationship of 1.0% ≧ Fe + Mn + Cr + Zr + V ≧ 0.1%, and the balance is Al And an aluminum alloy composition composed of inevitable impurities, and the conductivity (% IACS) is related to the total content of Fe, Mn, Cr, Zr, and V in terms of conductivity (%) ≧ −4.9 ×. The relationship of (Fe + Mn + Cr + Zr + V) +40.0 is satisfied, and the 0.2% proof stress is 275 MPa or more. High-pressure gas container for an aluminum alloy material excellent in hydrogen embrittlement resistance characterized by. 前記アルミニウム合金材が、ピーク時効処理、過時効処理から選択された調質が施されている、請求項1に記載の耐水素脆化特性に優れた高圧ガス容器用アルミニウム合金材。   The aluminum alloy material for a high-pressure gas container excellent in hydrogen embrittlement resistance according to claim 1, wherein the aluminum alloy material is tempered selected from peak aging treatment and overaging treatment. 前記アルミニウム合金材の導電率が、前記Fe、Mn、Cr、Zr、Vの合計含有量との関係で、導電率(%)≧−4.9×(Fe+Mn+Cr+Zr+V)+41.5の関係を満足する請求項1または2に記載の耐水素脆化特性に優れた高圧ガス容器用アルミニウム合金材。   The electrical conductivity of the aluminum alloy material satisfies the relationship of electrical conductivity (%) ≧ −4.9 × (Fe + Mn + Cr + Zr + V) +41.5 in relation to the total content of Fe, Mn, Cr, Zr, and V. The aluminum alloy material for a high-pressure gas container excellent in hydrogen embrittlement resistance according to claim 1 or 2. 前記アルミニウム合金材の耐水素脆化特性が、歪み速度を1.0×10-6-1以下として雰囲気条件のみを変えて、このアルミニウム合金材を引張変形させた場合の、10%RH以下の乾燥雰囲気中での伸び値δ1に対する、90%RH以上の高湿潤雰囲気中での伸び値δ2の低下率として、[(δ1−δ2)/δ1]×100%で示される脆化感受性指標が10%以下である請求項1乃至3のいずれか1項に記載の耐水素脆化特性に優れた高圧ガス容器用アルミニウム合金材。 The hydrogen embrittlement resistance of the aluminum alloy material is 10% RH or less when the strain rate is 1.0 × 10 −6 s −1 or less and only the atmospheric conditions are changed and the aluminum alloy material is subjected to tensile deformation. As the rate of decrease of the elongation value δ2 in a high-humidity atmosphere of 90% RH or higher with respect to the elongation value δ1 in the dry atmosphere, an embrittlement susceptibility index represented by [(δ1-δ2) / δ1] × 100% is obtained. The aluminum alloy material for a high-pressure gas container excellent in hydrogen embrittlement resistance according to any one of claims 1 to 3, which is 10% or less. 前記アルミニウム合金材が水素貯蔵用の高圧ガス容器用である請求項1乃至4のいずれか1項に記載の耐水素脆化特性に優れた高圧ガス容器用アルミニウム合金材。   The aluminum alloy material for a high-pressure gas container excellent in hydrogen embrittlement resistance according to any one of claims 1 to 4, wherein the aluminum alloy material is for a high-pressure gas container for hydrogen storage.
JP2008069683A 2008-03-18 2008-03-18 Aluminum alloy material for high pressure gas containers with excellent hydrogen embrittlement resistance Active JP5276341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008069683A JP5276341B2 (en) 2008-03-18 2008-03-18 Aluminum alloy material for high pressure gas containers with excellent hydrogen embrittlement resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008069683A JP5276341B2 (en) 2008-03-18 2008-03-18 Aluminum alloy material for high pressure gas containers with excellent hydrogen embrittlement resistance

Publications (2)

Publication Number Publication Date
JP2009221566A true JP2009221566A (en) 2009-10-01
JP5276341B2 JP5276341B2 (en) 2013-08-28

Family

ID=41238640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008069683A Active JP5276341B2 (en) 2008-03-18 2008-03-18 Aluminum alloy material for high pressure gas containers with excellent hydrogen embrittlement resistance

Country Status (1)

Country Link
JP (1) JP5276341B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046046A1 (en) * 2012-09-20 2014-03-27 株式会社神戸製鋼所 Aluminum alloy automobile part
JP2014062284A (en) * 2012-09-20 2014-04-10 Kobe Steel Ltd Automotive member made of aluminum alloy
JP2014062283A (en) * 2012-09-20 2014-04-10 Kobe Steel Ltd Automotive member made of aluminum alloy
JP2014101541A (en) * 2012-11-19 2014-06-05 Kobe Steel Ltd Aluminum alloy material for high-pressure hydrogen gas container and method of producing the same
WO2014142199A1 (en) * 2013-03-14 2014-09-18 株式会社神戸製鋼所 Aluminum alloy plate for structural material
WO2015141647A1 (en) * 2014-03-17 2015-09-24 株式会社神戸製鋼所 Aluminum alloy sheet for structural material
JP2020125524A (en) * 2019-02-06 2020-08-20 アイシン軽金属株式会社 Method for producing aluminum alloy member
US11180835B2 (en) 2015-09-25 2021-11-23 Nippon Steel Corporation Steel sheet
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods
JP7140892B1 (en) 2021-06-28 2022-09-21 株式会社神戸製鋼所 Aluminum alloy extruded material and manufacturing method thereof
WO2022270483A1 (en) * 2021-06-22 2022-12-29 国立大学法人岩手大学 Hydrogen embrittlement prevention agent for aluminum alloy material
WO2023195480A1 (en) * 2022-04-06 2023-10-12 国立大学法人岩手大学 Method for inhibiting hydrogen embrittlement of aluminum alloy material, and hydrogen embrittlement inhibitor
CN117127065A (en) * 2023-10-23 2023-11-28 中铝材料应用研究院有限公司 Aluminum alloy material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110453121A (en) * 2019-09-09 2019-11-15 广西南南铝加工有限公司 A kind of 7xxx line aluminium alloy plate of high brightness and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256882A (en) * 1992-09-22 1994-09-13 Metallurg De Gerzat:Soc Aluminum alloy for pressured hollow body
JPH08509024A (en) * 1993-04-15 1996-09-24 アルキャン・インターナショナル・リミテッド Hollow body manufacturing method
JP2004324800A (en) * 2003-04-25 2004-11-18 Nippon Steel Corp Tank for high pressure hydrogen gas, and piping

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256882A (en) * 1992-09-22 1994-09-13 Metallurg De Gerzat:Soc Aluminum alloy for pressured hollow body
JPH08509024A (en) * 1993-04-15 1996-09-24 アルキャン・インターナショナル・リミテッド Hollow body manufacturing method
JP2004324800A (en) * 2003-04-25 2004-11-18 Nippon Steel Corp Tank for high pressure hydrogen gas, and piping

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062284A (en) * 2012-09-20 2014-04-10 Kobe Steel Ltd Automotive member made of aluminum alloy
JP2014062283A (en) * 2012-09-20 2014-04-10 Kobe Steel Ltd Automotive member made of aluminum alloy
WO2014046046A1 (en) * 2012-09-20 2014-03-27 株式会社神戸製鋼所 Aluminum alloy automobile part
JP2014101541A (en) * 2012-11-19 2014-06-05 Kobe Steel Ltd Aluminum alloy material for high-pressure hydrogen gas container and method of producing the same
WO2014142199A1 (en) * 2013-03-14 2014-09-18 株式会社神戸製鋼所 Aluminum alloy plate for structural material
WO2015141647A1 (en) * 2014-03-17 2015-09-24 株式会社神戸製鋼所 Aluminum alloy sheet for structural material
JP2015175045A (en) * 2014-03-17 2015-10-05 株式会社神戸製鋼所 Aluminum alloy sheet for constructional material
CN106062226A (en) * 2014-03-17 2016-10-26 株式会社神户制钢所 Aluminum alloy sheet for structural material
US11180835B2 (en) 2015-09-25 2021-11-23 Nippon Steel Corporation Steel sheet
JP7366553B2 (en) 2019-02-06 2023-10-23 アイシン軽金属株式会社 Method for manufacturing aluminum alloy parts
JP2020125524A (en) * 2019-02-06 2020-08-20 アイシン軽金属株式会社 Method for producing aluminum alloy member
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods
US11746400B2 (en) 2019-06-03 2023-09-05 Novelis Inc. Ultra-high strength aluminum alloy products and methods of making the same
WO2022270483A1 (en) * 2021-06-22 2022-12-29 国立大学法人岩手大学 Hydrogen embrittlement prevention agent for aluminum alloy material
WO2023276504A1 (en) * 2021-06-28 2023-01-05 株式会社神戸製鋼所 Aluminum alloy extruded material and method for manufacturing same
JP2023005182A (en) * 2021-06-28 2023-01-18 株式会社神戸製鋼所 Aluminum alloy extruded material and method for manufacturing the same
JP7140892B1 (en) 2021-06-28 2022-09-21 株式会社神戸製鋼所 Aluminum alloy extruded material and manufacturing method thereof
WO2023195480A1 (en) * 2022-04-06 2023-10-12 国立大学法人岩手大学 Method for inhibiting hydrogen embrittlement of aluminum alloy material, and hydrogen embrittlement inhibitor
CN117127065A (en) * 2023-10-23 2023-11-28 中铝材料应用研究院有限公司 Aluminum alloy material and preparation method thereof
CN117127065B (en) * 2023-10-23 2024-02-13 中铝材料应用研究院有限公司 Aluminum alloy material and preparation method thereof

Also Published As

Publication number Publication date
JP5276341B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5276341B2 (en) Aluminum alloy material for high pressure gas containers with excellent hydrogen embrittlement resistance
JP5925667B2 (en) Aluminum alloy material for high-pressure hydrogen gas container and manufacturing method thereof
US9249483B2 (en) Aluminum alloy material for storage container for high-pressure hydrogen gas
JP5335056B2 (en) Aluminum alloy wire for bolt, bolt and method for producing the same
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
WO2013114928A1 (en) Forged aluminum alloy material and method for producing same
JP2003027170A (en) Aluminum-alloy material with excellent room- temperature aging controllability and low-temperature age hardenability
JP2012097321A (en) High-strength aluminum alloy forged product excellent in stress corrosion cracking resistance and forging method for the same
CN111989415B (en) 6XXX aluminum alloys for extrusions having excellent impact properties and high yield strength, and methods of making the same
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2011144396A (en) High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP5846684B2 (en) Method for producing aluminum alloy material excellent in bending workability
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2018080355A (en) Aluminum alloy extrusion material
JP5802114B2 (en) Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt
JP2006316303A (en) Aluminum alloy extruded material for high temperature forming, and high temperature formed product
KR101680041B1 (en) Wrought magnesium alloy having high ductility and high toughness and method for preparing the same
JP2007270348A (en) Method for manufacturing body for automobile
JP2018178193A (en) Aluminum alloy-made processed product and manufacturing method therefor
JP2009221531A (en) Al-Mg BASED ALUMINUM ALLOY EXTRUDED MATERIAL FOR COLD WORKING, AND METHOD FOR PRODUCING THE SAME
KR101690156B1 (en) Preparation method of High-strength and high-ductility aluminum alloy
JP6345016B2 (en) Aluminum alloy plate for hot forming and manufacturing method thereof
JP2013234389A (en) Aluminum alloy wire for bolt, bolt and methods of manufacturing the same
JP2009138247A (en) EXTRUDED MATERIAL OF Al-Mg-BASED ALUMINUM ALLOY SUPERIOR IN WORK HARDENING CHARACTERISTICS FOR COLD WORKING

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5276341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250