JP2020125524A - Method for producing aluminum alloy member - Google Patents

Method for producing aluminum alloy member Download PDF

Info

Publication number
JP2020125524A
JP2020125524A JP2019019440A JP2019019440A JP2020125524A JP 2020125524 A JP2020125524 A JP 2020125524A JP 2019019440 A JP2019019440 A JP 2019019440A JP 2019019440 A JP2019019440 A JP 2019019440A JP 2020125524 A JP2020125524 A JP 2020125524A
Authority
JP
Japan
Prior art keywords
aluminum alloy
cooling rate
cooling
surface layer
layer portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019019440A
Other languages
Japanese (ja)
Other versions
JP7366553B2 (en
Inventor
宏昭 松井
Hiroaki Matsui
宏昭 松井
新村 仁
Hitoshi Niimura
仁 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Keikinzoku Co Ltd
Original Assignee
Aisin Keikinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Keikinzoku Co Ltd filed Critical Aisin Keikinzoku Co Ltd
Priority to JP2019019440A priority Critical patent/JP7366553B2/en
Publication of JP2020125524A publication Critical patent/JP2020125524A/en
Application granted granted Critical
Publication of JP7366553B2 publication Critical patent/JP7366553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method for producing an aluminum alloy member having excellent resistance to stress corrosion cracking while having high strength.SOLUTION: The method includes the steps of: subjecting a member composed of a 7000-series aluminum alloy to solid solution treatment at 400-500°C; and performing air cooling at a cooling rate of 0.1-2.0°C/seconds. After that, artificial aging treatment is performed.SELECTED DRAWING: Figure 1

Description

本発明は、高強度で耐応力腐食割れ性に優れたアルミニウム合金製の構造部材等に関する。 TECHNICAL FIELD The present invention relates to a structural member and the like made of an aluminum alloy, which has high strength and excellent resistance to stress corrosion cracking.

Al−Zn−Mg系及びAl−Zn−Mg−Cu系等のJIS7000系のアルミニウム合金は、高い強度が得られることから、自動車,鉄道車両等の車両構造部材として、あるいは船舶や航空機等の輸送機の構造部材等に採用されている。
しかし、これらの構造部材にあっては、応力が負荷された状態で使用されることが多く、応力腐食割れに対する対策が必要となる。
例えば特許文献1には、0.4℃/秒以上の昇温速度で加熱し、200〜550℃の温度範囲に0秒を超えて保持し、次いで0.5℃/秒以上の冷却速度で冷却する復元処理を行い、さらに72時間以内に拡管加工を行うことで、残留応力を低減する製造方法が開示されている。
しかし、同公報に開示するプロセスは、合金成分に大きな制限があるとともに、高強度を得るにはMn,Cr,Zr等の遷移元素を多く添加する必要があり、冷却速度の影響が大きくなる。
Since JIS 7000 series aluminum alloys such as Al-Zn-Mg series and Al-Zn-Mg-Cu series obtain high strength, they are used as vehicle structural members such as automobiles and railway cars, or as transportation of ships and aircraft. It is used as a structural member of machines.
However, these structural members are often used in a state where stress is applied, and countermeasures against stress corrosion cracking are necessary.
For example, in Patent Document 1, heating is performed at a rate of temperature increase of 0.4° C./sec or more, holding in a temperature range of 200 to 550° C. for more than 0 seconds, and then at a cooling rate of 0.5° C./sec or more. A manufacturing method is disclosed in which the residual stress is reduced by performing a restoration process of cooling and then expanding the pipe within 72 hours.
However, in the process disclosed in the publication, alloy components are largely limited, and in order to obtain high strength, it is necessary to add a large amount of transition elements such as Mn, Cr and Zr, so that the influence of the cooling rate becomes large.

特許文献2には、溶体化処理後に150〜350℃の範囲で5分〜30分の焼入れをした後に水冷し、時効させる製造技術を開示する。
しかし、同公報に開示するプロセスでは、結晶粒界におけるミクロ組織を制御する必要があり、高強度を得るには高濃度のCu成分を添加する必要がある。
Patent Document 2 discloses a manufacturing technique in which after solution treatment, quenching is performed in the range of 150 to 350° C. for 5 minutes to 30 minutes, followed by water cooling and aging.
However, in the process disclosed in the publication, it is necessary to control the microstructure at the crystal grain boundaries, and it is necessary to add a high concentration of Cu component to obtain high strength.

特許文献3には、結晶粒の平均厚さ25μm以下、アスペクト比を4以上にすることで、耐応力腐食割れ性を改善する方法が開示されている。
本技術は、ミクロ組織の制御が難しい問題がある。
Patent Document 3 discloses a method of improving stress corrosion cracking resistance by setting the average thickness of crystal grains to 25 μm or less and the aspect ratio to 4 or more.
This technique has a problem that it is difficult to control the microstructure.

特開2014−141728号公報JP, 2014-141728, A 特許第5343333号公報Japanese Patent No. 5343333 特許第4229307号公報Japanese Patent No. 4229307

本発明は、高強度でありながら耐応力腐食割れ性に優れたアルミニウム合金部材の製造方法の提供を目的とする。 An object of the present invention is to provide a method for producing an aluminum alloy member having high strength and excellent stress corrosion cracking resistance.

本発明に係るアルミニウム合金部材の製造方法は、7000系のアルミニウム合金からなる部材を400〜500℃の温度で溶体化処理するステップと、冷却速度0.1〜2.0℃/秒の空冷を行うステップとを有し、その後に人工時効処理するものであることを特徴とする。
この場合に、溶体化処理を押出成形における加工熱を利用してもよく、7000系のアルミニウム合金を用いて部材を押出加工し、その後直に、冷却速度0.1〜2.0℃/秒の空冷を行うステップを有し、その後に人工時効処理するものであってもよい。
The method for producing an aluminum alloy member according to the present invention comprises the steps of solution treatment of a member made of a 7000 series aluminum alloy at a temperature of 400 to 500° C. and air cooling at a cooling rate of 0.1 to 2.0° C./sec. It is characterized in that it has a step to be carried out, and then an artificial aging treatment is carried out.
In this case, the solution heat treatment may utilize processing heat in extrusion molding, the member is extruded using a 7000 series aluminum alloy, and immediately thereafter, the cooling rate is 0.1 to 2.0° C./sec. It may have a step of performing air cooling, and then perform artificial aging treatment.

従来の7000系のアルミニウム合金においては、高い強度を得る方法として、溶体化処理後の焼入れに水冷を用いた水焼入れがT6処理として、一般的に採用されている。
しかし、水焼入れは急速に冷却できるものの、部材の表層部と内部との冷却速度に大きな差が生じやすく、構造部材のように相対的に肉厚の厚い部材においては、その差が大きく、表層部に大きな残留応力が生じやすい問題あった。
そこで本発明は、冷却速度を所定の範囲に制御することで、表層部の焼入れを内部に対して、やや弱くした点に特徴がある。
In conventional 7000 series aluminum alloys, as a method for obtaining high strength, water quenching using water cooling for quenching after solution treatment is generally adopted as T6 treatment.
However, although water quenching can cool rapidly, a large difference is likely to occur in the cooling rate between the surface layer and the inside of the member, and in the case of a member having a relatively thick wall such as a structural member, the difference is large. There was a problem that large residual stress was likely to occur in the part.
Therefore, the present invention is characterized in that the quenching of the surface layer portion is slightly weakened relative to the inside by controlling the cooling rate within a predetermined range.

本発明者らの調査では、7000系アルミニウム合金からなる部材においては、400〜500℃の範囲で溶体化し、初期の段階を所定の速度で冷却すれば、その後の冷却により大きな強度低下がなかった。
そこで、部材の温度が約300℃〜200℃以下になるまでは、冷却速度0.1〜2.0℃/秒の空冷を行うのが望ましい。
According to the investigation by the present inventors, in the member made of the 7000 series aluminum alloy, if it was solution-treated in the range of 400 to 500° C. and was cooled at a predetermined rate in the initial stage, the strength was not significantly reduced by the subsequent cooling. ..
Therefore, it is desirable to perform air cooling at a cooling rate of 0.1 to 2.0° C./sec until the temperature of the member falls to about 300° C. to 200° C. or less.

本発明において、部材の表層部とは、部材の肉厚全体の寸法に対して、その20%以内の表面側の深さを表層部と表現する。
従って、それよりも内側の部分が内部となる。
本発明は、人工時効処理後において表層部の0.2%耐力又は、引張強さが内部のそれよりも相対的に4%以上低いのがよく、好ましくは6%以上低いのがよい。
硬さHRBで示すと、表層部の硬さが内部の硬さより3%以上、さらには5%以上低いのが好ましい。
また、電気伝導度にて比較すると、IACS値で表層部が内部よりも2%以上高いのが好ましい。
In the present invention, the surface layer portion of the member is expressed as a surface layer portion within 20% of the total thickness of the member, on the surface side.
Therefore, the portion inside thereof is the inside.
In the present invention, 0.2% proof stress or tensile strength of the surface layer portion after the artificial aging treatment is preferably 4% or more lower than that of the inside, and preferably 6% or more.
In terms of hardness HRB, the hardness of the surface layer portion is preferably 3% or more, more preferably 5% or more lower than the internal hardness.
Further, when compared in terms of electric conductivity, it is preferable that the surface layer portion has an IACS value higher than that of the inside by 2% or more.

人工時効処理は、その材料の有する最高強度が得られる条件が好ましい。
例えば、1段目:90〜120℃で1〜24時間,2段目:130〜180℃で1〜24時間の二段時効処理条件が例として挙げられる。
The artificial aging treatment is preferably performed under the condition that the maximum strength of the material can be obtained.
For example, the second stage aging treatment condition of the first stage: 90 to 120° C. for 1 to 24 hours and the second stage: 130 to 180° C. for 1 to 24 hours can be mentioned as an example.

本発明にて用いることができるアルミニウム合金は、Al−Zn−Mg系,Al−Zn−Mg−Cu系の一般的なJIS7000系合金を用いることができる。
例えば、JIS7075材の場合に以下全て質量%にて、Zn:6.40〜6.90%,Mg:2.1〜2.9%,Cu:1.20〜2.20%,Mn:0.3%以下,Cr:0.18〜0.28%,Fe:0.5%以下,Si:0.4%以下,Ti:0.005〜0.05%,残部がAlと不純物となっている。
特に好ましい高強度材としては、下記のアルミニウム合金(A)が例として挙げられる。
合金(A):Zn:6.40〜6.90%,Mg:1.60〜1.80%,Cu:0.20〜0.30,Mn:0.20〜0.30%,Zr:0.17〜0.23%,Cr:0.20%以下,Ti:0.005〜0.05%,Fe:0.20%以下,Si:0.10%以下,残部がAlと不純物である。
As the aluminum alloy that can be used in the present invention, general JIS-7000 series alloys of Al-Zn-Mg type and Al-Zn-Mg-Cu type can be used.
For example, in the case of JIS 7075 material, Zn: 6.40 to 6.90%, Mg: 2.1 to 2.9%, Cu: 1.20 to 2.20%, Mn: 0 in all mass% below. 0.3% or less, Cr: 0.18 to 0.28%, Fe: 0.5% or less, Si: 0.4% or less, Ti: 0.005 to 0.05%, the balance being Al and impurities. ing.
As a particularly preferable high-strength material, the following aluminum alloy (A) can be given as an example.
Alloy (A): Zn: 6.40 to 6.90%, Mg: 1.60 to 1.80%, Cu: 0.20 to 0.30, Mn: 0.20 to 0.30%, Zr: 0.17 to 0.23%, Cr: 0.20% or less, Ti: 0.005 to 0.05%, Fe: 0.20% or less, Si: 0.10% or less, and the balance being Al and impurities. is there.

本発明に係るアルミニウム合金部材の製造方法にあっては、溶体化処理後に、部材の温度が約300℃〜200℃以下になるまでの冷却速度を0.1〜2.0℃/秒の範囲に制御することで、表層部と内部とで物性値に傾斜を生じさせることができ、耐応力腐食割れ性に優れた高強度部材が得られる。 In the method for manufacturing an aluminum alloy member according to the present invention, after the solution treatment, the cooling rate until the temperature of the member becomes about 300°C to 200°C or less is in the range of 0.1 to 2.0°C/sec. By controlling so that the physical property values can be inclined between the surface layer portion and the inside, a high strength member excellent in stress corrosion cracking resistance can be obtained.

本発明に係る製造方法は、厚肉の部材に適用するのが効果的であり、肉厚が3mm以上、例えば3〜20mm,5〜15mmの範囲であってよい。
これにより、各種車両,輸送機のアルミニウム合金製の構造部材が得られる。
The production method according to the present invention is effectively applied to a thick member, and the thickness may be 3 mm or more, for example, 3 to 20 mm or 5 to 15 mm.
As a result, structural members made of aluminum alloy for various vehicles and transport aircraft can be obtained.

アルミニウム合金部材の評価結果を表に示す。The evaluation results of the aluminum alloy members are shown in the table.

本発明に係る製造方法と従来のT6処理とを比較評価したので、以下説明する。
図1の表中、実施例1〜5は上記で説明した合金(A)を用いて、溶体化後に表中の冷却速度にて焼入れをしたものである。
比較例1は、合金(A)を用いて従来の水冷(T6処理)をしたものである。
比較例2は、7075合金を用いて従来の水冷をしたものである。
以下、具体的に説明する。
The manufacturing method according to the present invention and the conventional T6 treatment were compared and evaluated, and will be described below.
In the table of FIG. 1, Examples 1 to 5 are obtained by quenching the alloy (A) described above at the cooling rate in the table after solution treatment.
In Comparative Example 1, the alloy (A) was used for conventional water cooling (T6 treatment).
In Comparative Example 2, 7075 alloy was used for conventional water cooling.
The details will be described below.

実施例1〜5及び比較例1,2は、いずれも肉厚10mmの押出材(部材)を用いた。
実施例1〜5は、約450℃で溶体化後にそれぞれ0.16,0.47,0.77,1.30,2.02℃/秒の平均冷却速度にて冷却した。
その後の90℃〜120℃+130〜180℃の二段人工時効処理した。
比較例1,2は、溶体化後に直に水冷したものである。
機械的性質は、評価部位を切り出し、JIS−Z2241に基づいて評価した。
電気伝導度は、ASTM E1004に基づいて、International Annealed Copper Standard(IACS)の値を100%として比較評価した。
耐SCC性は、ASTM G47に基づいて評価し、腐食性の試験はASTM G34に基づいて試験評価した。
In each of Examples 1 to 5 and Comparative Examples 1 and 2, an extruded material (member) having a thickness of 10 mm was used.
In Examples 1 to 5, after solution treatment at about 450° C., cooling was performed at average cooling rates of 0.16, 0.47, 0.77, 1.30, and 2.02° C./sec, respectively.
Thereafter, a two-stage artificial aging treatment of 90°C to 120°C + 130 to 180°C was performed.
Comparative Examples 1 and 2 are water-cooled directly after solution heat treatment.
The mechanical properties were evaluated based on JIS-Z2241 after cutting out the evaluation site.
The electrical conductivity was comparatively evaluated based on ASTM E1004 with the value of International Annealed Copper Standard (IACS) being 100%.
The SCC resistance was evaluated based on ASTM G47, and the corrosion test was evaluated based on ASTM G34.

表に示す評価結果から、比較例1,2のように水冷による焼入れを行うと、耐力及び引張り強度のいずれも表面(表層部)と内部とで2%以下の差しかない分だけ、表層部の残留応力が大きいことが推定され、耐SCC性,腐食性が劣っていた。
これに対して実施例1〜5は、焼入れ初期の冷却速度を順次速くしたものである。
実施例5の冷却速度2.02℃/秒では、表層部が内部より耐力4%低いものの、引張り強度が2%しか差がなく、耐SCC性が目標ぎりぎりであったことから、焼入れ初期の冷却速度は2.0℃/秒以下が好ましいことが明らかになった。
実施例1のように冷却速度を0.16℃/秒にすると、表層部が内部よりも耐力で9%低く、引張強度で10%低くなり、耐SCC性及び腐食性に優れる。
なお、冷却速度0.1〜2.0℃/秒の範囲にて焼入れ初期の冷却速度が遅い方が、耐SCC性,腐食性が改善されるものの、機械的性質がやや低下する傾向が認められる。
アルミニウム合金(A)を用いた場合に、部材全体の耐力420MPa,引張強度470MPa以上を確保しつつ、優れた耐SCC性,腐食性を得るには、冷却速度0.5〜2.0℃/秒の範囲が好ましいことも明らかになった。
また、本発明は焼入れ初期の冷却速度を所定の範囲に制御することで、表層部の残留応力を抑えたものであり、部材の温度が300℃以下になると、20℃/秒以上の高速冷却を用いた二段冷却であってもよい。
その方が焼入れ品質が安定する。
From the evaluation results shown in the table, when quenching by water cooling is performed as in Comparative Examples 1 and 2, both the yield strength and the tensile strength of the surface (surface layer portion) and the inside are equal to or less than 2% of the surface layer portion. It was estimated that the residual stress was large, and the SCC resistance and corrosion resistance were poor.
On the other hand, in Examples 1 to 5, the cooling rate in the initial stage of quenching was sequentially increased.
At the cooling rate of 2.02° C./sec in Example 5, the surface layer portion had a yield strength of 4% lower than that of the inside, but the tensile strength had a difference of only 2%, and the SCC resistance was barely the target. It has been clarified that the cooling rate is preferably 2.0° C./second or less.
When the cooling rate was set to 0.16° C./sec as in Example 1, the surface layer portion had a yield strength of 9% lower and a tensile strength of 10% lower than the interior, and was excellent in SCC resistance and corrosion resistance.
It should be noted that the slower the cooling rate in the initial stage of quenching within the cooling rate range of 0.1 to 2.0° C./second, the SCC resistance and the corrosion resistance are improved, but the mechanical properties tend to be slightly lowered. To be
When an aluminum alloy (A) is used, in order to obtain excellent SCC resistance and corrosion resistance while securing a proof stress of 420 MPa and a tensile strength of 470 MPa or more for the entire member, a cooling rate of 0.5 to 2.0° C./ It has also become clear that a range of seconds is preferred.
In addition, the present invention suppresses the residual stress in the surface layer portion by controlling the cooling rate in the initial stage of quenching within a predetermined range. When the temperature of the member becomes 300°C or lower, high-speed cooling of 20°C/sec or more is performed. It may be two-stage cooling using.
In that case, quenching quality is more stable.

Claims (4)

7000系のアルミニウム合金からなる部材を400〜500℃の温度で溶体化処理するステップと、
冷却速度0.1〜2.0℃/秒の空冷を行うステップとを有し、
その後に人工時効処理するものであることを特徴とするアルミニウム合金部材の製造方法。
A step of subjecting a member made of a 7000 series aluminum alloy to a solution treatment at a temperature of 400 to 500° C.;
A step of performing air cooling at a cooling rate of 0.1 to 2.0° C./second,
A method for manufacturing an aluminum alloy member, characterized in that the artificial aging treatment is performed thereafter.
7000系のアルミニウム合金を用いて部材を押出加工し、
その後直に、冷却速度0.1〜2.0℃/秒の空冷を行うステップを有し、
その後に人工時効処理するものであることを特徴とするアルミニウム合金部材の製造方法。
Extruding the member using 7000 series aluminum alloy,
Immediately thereafter, there is a step of performing air cooling at a cooling rate of 0.1 to 2.0° C./second,
A method for manufacturing an aluminum alloy member, characterized in that the artificial aging treatment is performed thereafter.
前記人工時効処理後の部材は表層部の方が内部よりも強度が低いことを特徴とする請求項1又は2記載のアルミニウム合金部材の製造方法。 The method for producing an aluminum alloy member according to claim 1 or 2, wherein the surface layer portion of the member after the artificial aging treatment has a lower strength than the inside thereof. 前記人工時効処理後の部材は表層部の方が内部よりも電気伝導度が高いことを特徴とする請求項1又は2記載のアルミニウム合金部材の製造方法。 The method for producing an aluminum alloy member according to claim 1, wherein the surface layer portion of the member after the artificial aging treatment has higher electrical conductivity than the inside thereof.
JP2019019440A 2019-02-06 2019-02-06 Method for manufacturing aluminum alloy parts Active JP7366553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019019440A JP7366553B2 (en) 2019-02-06 2019-02-06 Method for manufacturing aluminum alloy parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019019440A JP7366553B2 (en) 2019-02-06 2019-02-06 Method for manufacturing aluminum alloy parts

Publications (2)

Publication Number Publication Date
JP2020125524A true JP2020125524A (en) 2020-08-20
JP7366553B2 JP7366553B2 (en) 2023-10-23

Family

ID=72084736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019440A Active JP7366553B2 (en) 2019-02-06 2019-02-06 Method for manufacturing aluminum alloy parts

Country Status (1)

Country Link
JP (1) JP7366553B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255823A (en) * 1992-03-09 1993-10-05 Furukawa Electric Co Ltd:The Method for heat treating high tensile strength aluminum alloy
JPH09310141A (en) * 1996-05-16 1997-12-02 Nippon Light Metal Co Ltd High strength al-zn-mg alloy extruded member for structural material excellent in extrudability and its production
JP2007119904A (en) * 2005-09-27 2007-05-17 Aisin Keikinzoku Co Ltd High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
JP2009221566A (en) * 2008-03-18 2009-10-01 Kobe Steel Ltd Aluminum alloy material for high pressure gas vessel having excellent hydrogen embrittlement resistance
JP2009542912A (en) * 2006-06-30 2009-12-03 アルカン ロールド プロダクツ−レイヴンズウッド,エルエルシー Heat-treatable high-strength aluminum alloy
JP2010275611A (en) * 2009-05-29 2010-12-09 Aisin Keikinzoku Co Ltd 7,000 series aluminum alloy extruded material having excellent scc resistance and method for producing the same
JP2011001563A (en) * 2007-09-06 2011-01-06 Aisin Keikinzoku Co Ltd Aluminum alloy extruded product exhibiting excellent impact cracking resistance
JP2012207302A (en) * 2011-03-16 2012-10-25 Kobe Steel Ltd METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY
JP2012246555A (en) * 2011-05-30 2012-12-13 Kobe Steel Ltd 7000-based aluminum alloy extruded material for case-type
JP2013518184A (en) * 2010-01-29 2013-05-20 北京有色金属研究総院 Aluminum alloy product for manufacturing structural member and method for manufacturing the same
JP2013108131A (en) * 2011-11-21 2013-06-06 Sumitomo Light Metal Ind Ltd Aluminum alloy expanded product and method for producing the same
JP2014234527A (en) * 2013-05-31 2014-12-15 アイシン軽金属株式会社 Aluminum alloy extrusion material
JP2015140460A (en) * 2014-01-29 2015-08-03 株式会社Uacj High strength aluminum alloy and manufacturing method therefor
JP2018090839A (en) * 2016-11-30 2018-06-14 アイシン軽金属株式会社 Extrusion material aluminium alloy, extrusion material using the same and method for manufacturing extrusion material
CN108265246A (en) * 2018-01-25 2018-07-10 湖南大学 A kind of method for improving intensity non-uniformity after 7 line aluminium alloy of large scale quenches

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255823A (en) * 1992-03-09 1993-10-05 Furukawa Electric Co Ltd:The Method for heat treating high tensile strength aluminum alloy
JPH09310141A (en) * 1996-05-16 1997-12-02 Nippon Light Metal Co Ltd High strength al-zn-mg alloy extruded member for structural material excellent in extrudability and its production
JP2007119904A (en) * 2005-09-27 2007-05-17 Aisin Keikinzoku Co Ltd High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
JP2009542912A (en) * 2006-06-30 2009-12-03 アルカン ロールド プロダクツ−レイヴンズウッド,エルエルシー Heat-treatable high-strength aluminum alloy
JP2011001563A (en) * 2007-09-06 2011-01-06 Aisin Keikinzoku Co Ltd Aluminum alloy extruded product exhibiting excellent impact cracking resistance
JP2009221566A (en) * 2008-03-18 2009-10-01 Kobe Steel Ltd Aluminum alloy material for high pressure gas vessel having excellent hydrogen embrittlement resistance
JP2010275611A (en) * 2009-05-29 2010-12-09 Aisin Keikinzoku Co Ltd 7,000 series aluminum alloy extruded material having excellent scc resistance and method for producing the same
JP2013518184A (en) * 2010-01-29 2013-05-20 北京有色金属研究総院 Aluminum alloy product for manufacturing structural member and method for manufacturing the same
JP2012207302A (en) * 2011-03-16 2012-10-25 Kobe Steel Ltd METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY
JP2012246555A (en) * 2011-05-30 2012-12-13 Kobe Steel Ltd 7000-based aluminum alloy extruded material for case-type
JP2013108131A (en) * 2011-11-21 2013-06-06 Sumitomo Light Metal Ind Ltd Aluminum alloy expanded product and method for producing the same
JP2014234527A (en) * 2013-05-31 2014-12-15 アイシン軽金属株式会社 Aluminum alloy extrusion material
JP2015140460A (en) * 2014-01-29 2015-08-03 株式会社Uacj High strength aluminum alloy and manufacturing method therefor
JP2018090839A (en) * 2016-11-30 2018-06-14 アイシン軽金属株式会社 Extrusion material aluminium alloy, extrusion material using the same and method for manufacturing extrusion material
CN108265246A (en) * 2018-01-25 2018-07-10 湖南大学 A kind of method for improving intensity non-uniformity after 7 line aluminium alloy of large scale quenches

Also Published As

Publication number Publication date
JP7366553B2 (en) 2023-10-23

Similar Documents

Publication Publication Date Title
JP7321828B2 (en) High-strength 6xxx aluminum alloy and method for making same
EP2728026A1 (en) Damage tolerant aluminium material having a layered microstructure
WO2017169962A1 (en) High strength extruded aluminum alloy material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
JP7044863B2 (en) Al-Mg-Si based aluminum alloy material
US20140166165A1 (en) High-strength aluminum alloy extruded shape exhibiting excellent corrosion resistance, ductility, and hardenability, and method for producing the same
EP3135790B1 (en) Method for manufacturing an aluminum alloy member and aluminum alloy member manufactured by the same
WO2016060117A1 (en) Method for producing aluminum alloy member, and aluminum alloy member obtained by same
JP7093611B2 (en) Aluminum alloy for extruded material and method for manufacturing extruded material and extruded material using it
US20220364213A1 (en) Method for Producing Aluminum Alloy Extrusion
JP3485577B2 (en) Diffusion bonded sputter target assembly having a precipitation hardened backing plate and method of making same
JP2007009273A (en) Plastic-worked article made from aluminum alloy, manufacturing method therefor, automotive parts, aging treatment furnace, and system for manufacturing plastic-worked article made from aluminum alloy
JP5275321B2 (en) Manufacturing method of plastic products made of aluminum alloy
US20230357902A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability
KR101820012B1 (en) High-strength aluminum alloy plate with superior bake-hardenability and manufacturing method thereof
JPH10298691A (en) Aluminum extruded shape, and manufacture of the extruded shape and structural member
JP5532462B2 (en) Manufacturing method of plastic products made of aluminum alloy
JP7366553B2 (en) Method for manufacturing aluminum alloy parts
EP2354263B1 (en) Connector made of an aluminium alloy extrusion, excellent in extrudability and sacrificial anode property.
US11827967B2 (en) Method for producing aluminum alloy extruded material
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
KR20190030296A (en) Methods of treating aluminum alloy
WO2012060359A1 (en) Copper alloy hot-forged part and process for producing copper alloy hot-forged part
KR102012952B1 (en) Aluminium alloy and manufacturing method thereof
CN114555844A (en) Welded structural member having excellent stress corrosion cracking resistance and method for producing same
Totten et al. Heat treatment practices of age-hardenable aluminum alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231011

R150 Certificate of patent or registration of utility model

Ref document number: 7366553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150