JP2014062284A - Automotive member made of aluminum alloy - Google Patents

Automotive member made of aluminum alloy Download PDF

Info

Publication number
JP2014062284A
JP2014062284A JP2012207189A JP2012207189A JP2014062284A JP 2014062284 A JP2014062284 A JP 2014062284A JP 2012207189 A JP2012207189 A JP 2012207189A JP 2012207189 A JP2012207189 A JP 2012207189A JP 2014062284 A JP2014062284 A JP 2014062284A
Authority
JP
Japan
Prior art keywords
aluminum alloy
strength
size distribution
automobile
rolled sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012207189A
Other languages
Japanese (ja)
Other versions
JP5860372B2 (en
Inventor
Yasuhiro Ariga
康博 有賀
Hisao Shishido
久郎 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012207189A priority Critical patent/JP5860372B2/en
Priority to PCT/JP2013/074862 priority patent/WO2014046046A1/en
Priority to CN201811025447.9A priority patent/CN109055836A/en
Priority to CN201380047185.5A priority patent/CN104619872A/en
Priority to US14/425,405 priority patent/US20150218679A1/en
Publication of JP2014062284A publication Critical patent/JP2014062284A/en
Application granted granted Critical
Publication of JP5860372B2 publication Critical patent/JP5860372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an automotive member made of a 7000-based aluminum alloy rolled sheet and having the strength and stress corrosion cracking resistance.SOLUTION: An automotive member is made up of a 7000-based aluminum alloy rolled sheet with a specific composition and has high strength with a 0.2% proof stress of 350 MPa or more, high ductility, and SCC resistance by controlling a grain size distribution of fine grains evaluated by an X-ray small-angle scattering method and a normalized dispersion of the grain size distribution in a crystal grain of the aluminum alloy sheet after artificial aging treatment.

Description

本発明は高強度なアルミニウム合金製自動車部材に関するものである。   The present invention relates to a high-strength aluminum alloy automobile member.

近年、地球環境などへの配慮から、自動車車体の軽量化の社会的要求はますます高まってきている。かかる要求に答えるべく、自動車車体のうち、パネル(フード、ドア、ルーフなどのアウタパネル、インナパネル)や、バンパリーンフォ(バンパーR/F)やドアビームなどの補強材などを、部分的に鋼板等の鉄鋼材料に代えて、アルミニウム合金材料を適用することが行われている。   In recent years, due to consideration for the global environment, social demands for reducing the weight of automobile bodies are increasing. In order to meet such demands, panels (outer panels such as hoods, doors, and roofs, inner panels), bumper fountains (bumper R / F), door beams, and other reinforcing materials are partly made of steel, etc. Instead of the steel material, an aluminum alloy material is applied.

ただ、自動車車体のより軽量化のためには、自動車部材のうちでも特に軽量化に寄与する、フレーム、ピラーなどの自動車構造部材にも、アルミニウム合金材料の適用を拡大することが必要となる。ただ、これら自動車構造部材は、要求される0.2%耐力が350MPa以上であるなど、前記自動車パネルに比べた高強度化が必要である。この点で、前記自動車パネルに使用されている、成形性や強度、耐食性、そして低合金組成でリサイクル性に優れた、JIS乃至AA 6000系アルミニウム合金板では、組成や調質(溶体化処理および焼入れ処理、更には人工時効硬化処理)を制御しても、前記高強度化には大きな限界がある。   However, in order to reduce the weight of the automobile body, it is necessary to expand the application of the aluminum alloy material to automobile structural members such as frames and pillars that contribute particularly to weight reduction among the automobile members. However, these automobile structural members need to have higher strength than the automobile panel, such as the required 0.2% proof stress is 350 MPa or more. In this respect, in the JIS to AA 6000 series aluminum alloy plates, which are used in the above-mentioned automobile panels and have excellent formability, strength, corrosion resistance, low alloy composition and recyclability, composition and tempering (solution treatment and Even if the quenching process and further the artificial age hardening process) are controlled, there is a great limit to the increase in the strength.

したがって、このような高強度な自動車構造部材には、同じような高強度が要求される前記補強材として使用されているJIS乃至AA 7000系アルミニウム合金板を用いる必要がある。しかし、Al−Zn−Mg系アルミニウム合金である、7000系アルミニウム合金は、Zn及びMgからなる析出物MgZnを高密度に分布させることで高強度を達成する合金である。それゆえ、応力腐食割れ(以下、SCC)を起こす危険性があり、これを防止するため、やむを得ず過時効処理を行って、耐力300MPa程度で使用されているのが実情であり、高強度合金としての特徴が薄れている。 Therefore, it is necessary to use a JIS or AA 7000 series aluminum alloy plate used as the reinforcing material requiring the same high strength for such a high-strength automobile structural member. However, a 7000 series aluminum alloy, which is an Al—Zn—Mg series aluminum alloy, is an alloy that achieves high strength by distributing precipitates MgZn 2 composed of Zn and Mg at a high density. Therefore, there is a risk of causing stress corrosion cracking (hereinafter referred to as SCC), and in order to prevent this, it is unavoidable that it is over-aged and used at a proof stress of about 300 MPa. The characteristics of are fading.

このため、強度と耐SCC性の両方に優れた7000系アルミニウム合金の組成制御や、析出物などの組織制御が、従来から種々提案されている。   For this reason, various composition control of the 7000 series aluminum alloy excellent in both strength and SCC resistance and structure control of precipitates have been conventionally proposed.

組成制御の代表例として、例えば、特許文献1では、7000系アルミニウム合金押出材の、MgZnを過不足なく形成するZn及びMg量(MgZnの化学量論比)より過剰に添加されたMgが、高強度化に寄与することを利用し、MgをMgZnの化学量論比より過剰に添加することにより、MgZn量を抑えて、耐SCC性を低下させることなく、高強度化している。 As a typical example of composition control, for example, in Patent Document 1, Mg added in excess of Zn and Mg content (stoichiometry ratio of MgZn 2 ) of a 7000 series aluminum alloy extruded material that forms MgZn 2 without excess or deficiency. but by utilizing the fact that contributes to high strength by adding Mg to excess over stoichiometric ratio of MgZn 2, to suppress the MgZn 2 amount, without reducing the SCC resistance, and high strength Yes.

析出物などの組織制御の代表例として、例えば、特許文献2では、人工時効硬化処理後の7000系アルミニウム合金押出材の、結晶粒内における粒子径が1〜15nmの析出物を透過型電子顕微鏡(TEM)による観察結果で1000〜10000個/μmの密度で存在させて、粒内と粒界との電位差を小さくして、耐SCC性を向上させている。 As a representative example of the structure control of precipitates and the like, for example, in Patent Document 2, a 7000-series aluminum alloy extruded material after artificial age hardening treatment is used for a precipitate having a particle diameter of 1 to 15 nm in crystal grains. As a result of observation by (TEM), it is made to exist at a density of 1000 to 10000 / μm 2 to reduce the potential difference between the inside of the grain and the grain boundary, thereby improving the SCC resistance.

この他にも、全ては例示できないが、7000系アルミニウム合金押出材の強度と耐SCC性の両方に優れさせる組成制御例や析出物などの組織制御例は、押出材での実用化の多さに比例して多数存在する。これに対して、7000系アルミニウム合金板における、従来の組成制御や析出物などの組織制御例は、板での実用化の少なさに応じて、きわめて少ない。   In addition to this, although not all can be exemplified, examples of composition control to improve both the strength and SCC resistance of 7000 series aluminum alloy extruded materials and examples of structure control such as precipitates are many practical applications in extruded materials. There are many in proportion to On the other hand, there are very few examples of conventional structure control such as composition control and precipitates in a 7000 series aluminum alloy plate according to the small practical use of the plate.

例えば、特許文献3には、7000系アルミニウム合金板同士が溶接接合されたクラッド板からなる構造材において、強度向上のために、人工時効硬化処理後の時効析出物の直径を50Å(オングストローム)以下の球状として一定量存在させることが提案されている。しかし、耐SCC性の性能については全く開示が無く、実施例に耐食性のデータも無い。   For example, in Patent Document 3, in a structural material made of a clad plate in which 7000 series aluminum alloy plates are welded together, the diameter of an aging precipitate after artificial age hardening treatment is 50 mm (angstrom) or less in order to improve strength. It has been proposed that a certain amount exists as a spherical shape. However, there is no disclosure about the SCC resistance performance, and there is no corrosion resistance data in the examples.

また、特許文献4には、人工時効硬化処理後の7000系アルミニウム合金板の結晶粒内における晶析出物について、400倍の光学顕微鏡での測定によって、大きさ(面積が等価な円相当径に換算)を3.0μm以下とし、平均面積分率を4.5%以下として、強度や伸びを向上させている。しかし、耐SCC性の性能については全く開示が無く、実施例に耐食性のデータも無い。   Further, Patent Document 4 discloses that the crystal precipitates in the crystal grains of the 7000 series aluminum alloy plate after the artificial age hardening treatment are measured with a 400 times optical microscope to obtain a size (equivalent to an equivalent circle diameter in area). Conversion) is 3.0 μm or less, and the average area fraction is 4.5% or less to improve strength and elongation. However, there is no disclosure about the SCC resistance performance, and there is no corrosion resistance data in the examples.

特開2011−144396号公報JP 2011-144396 A 特開2010−275611号公報JP 2010-275611 A 特開平9−125184号公報JP-A-9-125184 特開2009−144190号公報JP 2009-144190 A

このように、強度と耐SCC性の両方に優れた7000系アルミニウム合金の組成制御や析出物などの組織制御などの提案は、従来から押出材については種々なされている。しかし、熱延板あるいは冷延板(熱延板が更に冷延された)のような7000系アルミニウム合金圧延板については、強度向上目的以外には、あまり提案がないのが実状である。   As described above, various proposals have been made for extruded materials such as composition control of a 7000 series aluminum alloy excellent in both strength and SCC resistance and structure control of precipitates. However, as for the 7000 series aluminum alloy rolled sheet such as a hot-rolled sheet or a cold-rolled sheet (the hot-rolled sheet is further cold-rolled), there is no actual proposal except for the purpose of improving the strength.

そして、押出材は、前記圧延板とは、その熱間加工工程などの製造過程が全く異なり、出来上がる結晶粒や析出物などの組織も、例えば結晶粒が押出方向に伸長した繊維状であるなど、結晶粒が基本的に等軸粒の圧延板とは大きく異なる。このため、前記押出材での組成制御や析出物などの組織制御などの提案が、7000系アルミニウム合金圧延板にも、そして、この7000系アルミニウム合金圧延板からなる自動車部材にも、そのまま適用でき、強度と耐SCC性の両方の向上に果たして有効であるかどうかは不明である。すなわち、実際に確認しない限りは、あくまで予想の域を出ない。   And, the extruded material is completely different from the rolled plate in its manufacturing process such as a hot working process, and the resulting structure of crystal grains and precipitates is, for example, a fibrous form in which the crystal grains are elongated in the extrusion direction. , The crystal grains are basically different from a rolled plate having equiaxed grains. For this reason, proposals such as composition control in the extruded material and structure control of precipitates can be applied to 7000 series aluminum alloy rolled sheets and also to automobile members made of these 7000 series aluminum alloy rolled sheets. It is unclear whether it is effective for improving both strength and SCC resistance. In other words, unless it is actually confirmed, it does not leave the expected range.

したがって、7000系アルミニウム合金圧延板からなる自動車部材の、強度と耐SCC性の両方に優れた組織制御技術については、未だ有効な手段がなく、不明な点が多く解明の余地があるというのが現状である。   Therefore, there is still no effective means for the structure control technology excellent in both strength and SCC resistance of an automobile member made of a 7000 series aluminum alloy rolled plate, and there are many unclear points and room for clarification. Currently.

以上述べた課題に鑑み、本発明の目的は、7000系アルミニウム合金圧延板からなる、強度と耐応力腐食割れ性とを兼備した自動車部材を提供することである。   In view of the problems described above, an object of the present invention is to provide an automobile member that is composed of a rolled 7000 series aluminum alloy sheet and has both strength and stress corrosion cracking resistance.

この目的を達成するために、本発明アルミニウム合金製自動車部材の要旨は、質量%で、Zn:3.0〜8.0%、Mg:0.5〜4.0%を含み、残部がAlおよび不可避的不純物からなる組成のAl−Zn−Mg系アルミニウム合金圧延板からなり、人工時効硬化処理が施された後の組織として、X線小角散乱法で測定された結晶粒内の微細粒子の粒度分布の平均粒子直径が1nm以上、7nm以下であるとともに、前記粒度分布の規格化分散が40%以下である組織を有するとともに、0.2%耐力が350MPa以上であることを特徴とする。   In order to achieve this object, the gist of the aluminum alloy automobile member of the present invention is, by mass%, Zn: 3.0-8.0%, Mg: 0.5-4.0%, with the balance being Al. And a structure of an Al—Zn—Mg based aluminum alloy rolled plate having an unavoidable impurity composition, and a fine grain in a crystal grain measured by an X-ray small angle scattering method as a structure after being subjected to artificial age hardening treatment. The average particle diameter of the particle size distribution is from 1 nm to 7 nm, the normalized dispersion of the particle size distribution is a structure of 40% or less, and the 0.2% proof stress is 350 MPa or more.

本発明で言うアルミニウム合金圧延板とは、熱間圧延された熱延板や冷間圧延された冷延板であって、更に溶体化処理および焼入れ処理などの調質が施された素材アルミニウム合金板のことを言う。そして、本発明は、このような素材アルミニウム合金圧延板が自動車部材に加工され、更に自動車部材として組み立てられ、人工時効硬化処理が施された後の自動車部材である。   The aluminum alloy rolled sheet referred to in the present invention is a hot-rolled sheet that has been hot-rolled or a cold-rolled sheet that has been cold-rolled, and is a material aluminum alloy that has undergone tempering such as solution treatment and quenching. Say the board. And this invention is a motor vehicle member after such a raw material aluminum alloy rolled sheet is processed into a motor vehicle member, is further assembled as a motor vehicle member, and the artificial age hardening process was performed.

したがって、本発明では、素材のアルミニウム合金圧延板での状態ではなく、最終的な使用状態である自動車部材としての組成、組織や強度を規定している。すなわち、素材アルミニウム合金圧延板が自動車部材として組み立てられ、更に自動車車体として人工時効硬化処理された後の組成、組織、強度を規定している。なお、本発明で言う人工時効硬化処理とは、人工的な加熱による時効硬化処理のことを言い、室温などでの自然時効硬化とは明確に区別される(以下、単に人工時効処理あるいは時効処理とも言う)。   Therefore, in the present invention, the composition, structure and strength as an automobile member which is the final use state are defined, not the state of the raw aluminum alloy rolled plate. That is, the composition, structure, and strength after the raw aluminum alloy rolled plate is assembled as an automobile member and further subjected to artificial age hardening treatment as an automobile body are defined. The artificial age hardening treatment referred to in the present invention refers to an age hardening treatment by artificial heating, and is clearly distinguished from natural age hardening at room temperature or the like (hereinafter simply referred to as artificial age treatment or age treatment). Also called).

本発明では、このようなアルミニウム合金製自動車部材の、前記X線小角散乱法で測定された結晶粒内の微細粒子の粒度分布を制御する。また、この制御によって、粒界に存在する析出物や結晶粒内に存在する粗大な析出物の析出も抑制しうる。   In the present invention, the particle size distribution of the fine particles in the crystal grains measured by the X-ray small angle scattering method of such an aluminum alloy automobile member is controlled. In addition, this control can also suppress the precipitation of precipitates existing at grain boundaries and coarse precipitates existing within crystal grains.

これによって、本発明は、アルミニウム合金製自動車部材の0.2%耐力が350MPa以上であるような高強度化が達成でき、このような高強度であるにも関わらず、耐SCC性の低下を抑制することができる。   As a result, the present invention can achieve an increase in strength such that the 0.2% proof stress of an aluminum alloy automobile member is 350 MPa or more, and despite this high strength, the SCC resistance is reduced. Can be suppressed.

以下に、本発明の実施の形態につき、要件ごとに具体的に説明する。
先ず、本発明自動車部材としての、あるいは素材アルミニウム合金圧延板の化学成分組成について、各元素の限定理由を含めて、以下に説明する。なお、各元素の含有量の%表示は全て質量%の意味である。
Hereinafter, embodiments of the present invention will be specifically described for each requirement.
First, the chemical composition of the automobile member of the present invention or the material aluminum alloy rolled sheet will be described below, including reasons for limiting each element. In addition,% display of content of each element means the mass% altogether.

本発明アルミニウム合金圧延板の化学成分組成は、Al−Zn−Mg−Cu系の7000系アルミニウム合金として、本発明で意図する自動車部材の強度や耐SCC性などの特性を保証するために決定される。この観点から、本発明アルミニウム合金圧延板の化学成分組成は、質量%で、Zn:3.0〜8.0%、Mg:0.5〜4.0%を含み、残部がAlおよび不可避的不純物からなるものとする。この組成に、更に、Cu:0.05〜0.6%、Ag:0.01〜0.15%の1種又は2種を選択的に含んでもよく、これに加えて、あるいはこれとは別に、Mn:0.05〜0.3%、Cr:0.03〜0.2%、Zr:0.03〜0.3%の1種又は2種以上を選択的に含んでも良い。   The chemical composition of the aluminum alloy rolled sheet of the present invention is determined as an Al—Zn—Mg—Cu based 7000 series aluminum alloy in order to guarantee the properties such as strength and SCC resistance of the automobile member intended in the present invention. The From this point of view, the chemical composition of the rolled aluminum alloy sheet of the present invention is, in mass%, Zn: 3.0-8.0%, Mg: 0.5-4.0%, the balance being Al and inevitable It shall consist of impurities. This composition may further optionally include one or two of Cu: 0.05 to 0.6% and Ag: 0.01 to 0.15%, in addition to or in addition to this. Separately, one or more of Mn: 0.05 to 0.3%, Cr: 0.03 to 0.2%, and Zr: 0.03 to 0.3% may be selectively included.

Zn:3.0〜8.0%:
必須の合金元素であるZnは、Mgとともに、人工時効硬化処理時に、本発明で規定するMgとZnとの金属間化合物である微細析出物を形成して強度と伸びを向上させる。Zn含有量が3.0%未満では強度が不足し、8.0%を超えると粒界析出物MgZnが増えてSCC感受性が鋭くなる。従って、Zn含有量は3.0〜8.0%の範囲とする。このZn含有量が高くなり、SCC感受性が鋭くなるのを抑えるために、後述するCuあるいはAgを添加することが望ましい。好ましくは4.0〜7.0%とする。
Zn: 3.0-8.0%:
Zn, which is an essential alloying element, together with Mg, forms fine precipitates, which are intermetallic compounds of Mg and Zn, defined in the present invention during artificial age hardening, thereby improving strength and elongation. If the Zn content is less than 3.0%, the strength is insufficient, and if it exceeds 8.0%, the grain boundary precipitate MgZn 2 increases and the SCC sensitivity becomes sharp. Therefore, the Zn content is in the range of 3.0 to 8.0%. In order to prevent the Zn content from increasing and the SCC sensitivity from becoming sharp, it is desirable to add Cu or Ag described later. Preferably it is 4.0 to 7.0%.

Mg:0.5〜4.0%
必須の合金元素であるMgは、Znとともに、人工時効硬化処理時に、本発明で規定するMgとZnとの金属間化合物である微細析出物(MgZnクラスタ)を形成して強度と伸びを向上させる。Mg含有量が0.5%未満では強度が不足し、4.0%を超えると、板の圧延性が低下し、SCC感受性も鋭くなる。従って、Mg含有量は0.5〜4.0%、好ましくは3.0%以下の範囲とする。
Mg: 0.5-4.0%
Mg, which is an essential alloying element, together with Zn, forms fine precipitates (MgZn clusters) that are intermetallic compounds of Mg and Zn as defined in the present invention during artificial age hardening treatment, thereby improving strength and elongation. . If the Mg content is less than 0.5%, the strength is insufficient, and if it exceeds 4.0%, the rollability of the plate is lowered and the SCC sensitivity becomes sharp. Therefore, the Mg content is in the range of 0.5 to 4.0%, preferably 3.0% or less.

Cu:0.05〜0.6%、Ag:0.01〜0.15%の1種又は2種:
Cu及びAgはAl−Zn−Mg系合金の耐SCC性を向上させる作用がある。これらをいずれか一方又は両方含有する場合、Cu含有量が0.05%未満、及びAg含有量が0.01%未満では、耐SCC性向上効果が小さい。一方、Cu含有量が0.6%を超えると、圧延性及び溶接性などの諸特性を却って低下させる。またAg含有量は0.15%を超えて含有させてもその効果が飽和し、高価となる。従って、Cu含有量は0.05〜0.6%、好ましくは0.4%以下、Ag含有量は0.01〜0.15%とする。
One or two of Cu: 0.05 to 0.6% and Ag: 0.01 to 0.15%:
Cu and Ag have the effect of improving the SCC resistance of the Al—Zn—Mg alloy. When one or both of these are contained, the effect of improving SCC resistance is small when the Cu content is less than 0.05% and the Ag content is less than 0.01%. On the other hand, if the Cu content exceeds 0.6%, various properties such as rollability and weldability are reduced. Moreover, even if it contains Ag content exceeding 0.15%, the effect will be saturated and it will become expensive. Therefore, the Cu content is 0.05 to 0.6%, preferably 0.4% or less, and the Ag content is 0.01 to 0.15%.

Mn:0.05〜0.3%、Cr:0.03〜0.2%、Zr:0.03〜0.3%の1種又は2種以上:
Mn、Cr及びZrは、鋳塊の結晶粒を微細化して強度向上に寄与する。これらをいずれか1種、又は2種あるいは3種を含有する場合、Mn、Cr、Zrの含有量がいずれも下限未満では、含有量が不足して、再結晶が促進され、耐SCC性が低下する。一方、Mn、Cr、Zrの含有量がそれぞれの上限を超えた場合には、粗大晶出物を形成するため伸びが低下する。従って、Mn:0.05〜0.3%、Cr:0.03〜0.2%、Zr:0.03〜0.3%の各範囲とする。
One or more of Mn: 0.05 to 0.3%, Cr: 0.03 to 0.2%, Zr: 0.03 to 0.3%:
Mn, Cr and Zr contribute to strength improvement by refining the crystal grains of the ingot. When any one, two or three of these are contained, if the content of Mn, Cr, or Zr is less than the lower limit, the content is insufficient, recrystallization is promoted, and SCC resistance is improved. descend. On the other hand, when the contents of Mn, Cr, and Zr exceed the respective upper limits, a coarse crystallized product is formed, resulting in a decrease in elongation. Therefore, the ranges are Mn: 0.05 to 0.3%, Cr: 0.03 to 0.2%, and Zr: 0.03 to 0.3%.

Ti、B:
Ti、Bは、圧延板としては不純物であるが、アルミニウム合金鋳塊の結晶粒を微細化する効果があるので、7000系合金としてJIS規格で規定する範囲での各々の含有を許容する。Tiの上限は0.2%、好ましくは0.1%、Bの上限は0.05%以下、好ましくは0.03%とする。
Ti, B:
Ti and B are impurities in the rolled plate, but have the effect of refining the crystal grains of the aluminum alloy ingot, so that each content in the range specified by the JIS standard is allowed as a 7000 series alloy. The upper limit of Ti is 0.2%, preferably 0.1%, and the upper limit of B is 0.05% or less, preferably 0.03%.

その他の元素:
また、これら記載した以外の、Fe、Siなどのその他の元素は不可避的な不純物である。溶解原料として、純アルミニウム地金以外に、アルミニウム合金スクラップの使用による、これら不純物元素の混入なども想定(許容)して、7000系合金のJIS規格で規定する範囲での各々の含有を許容する。例えば、Fe:0.5%以下、Si:0.5%以下であれば、本発明に係るアルミニウム合金圧延板の特性に影響せず、含有が許容される。
Other elements:
In addition to these elements, other elements such as Fe and Si are inevitable impurities. As a melting raw material, in addition to pure aluminum ingots, the inclusion of these impurity elements due to the use of aluminum alloy scrap is assumed (allowed), and each content within the range specified by the JIS standard of 7000 series alloys is allowed. . For example, if Fe: 0.5% or less and Si: 0.5% or less, inclusion is permitted without affecting the characteristics of the aluminum alloy rolled sheet according to the present invention.

(組織)
本発明では、自動車部材の7000系アルミニウム合金組織を、人工時効硬化処理が施された後の結晶粒(結晶粒内の)組織として、X線小角散乱法で結晶粒内で測定された微細粒子の粒度分布の平均粒子直径が1nm以上、7nm以下であるとともに、前記粒度分布の規格化分散が40%以下である組織と規定する。
(Organization)
In the present invention, 7000 series aluminum alloy structure of an automobile member is used as a crystal grain structure (within crystal grains) after being subjected to artificial age hardening treatment. Fine particles measured in the crystal grains by the X-ray small angle scattering method The average particle diameter of the particle size distribution is 1 nm to 7 nm, and the normalized dispersion of the particle size distribution is defined to be 40% or less.

この微細粒子とは、前記人工時効硬化処理時などに結晶粒内に生成する、前記MgとZnとの金属間化合物(組成はMgZnなど)であり、これに前記組成に応じて更にCu、Zrなどの含有元素が含まれる微細分散相である。なお、本発明で言う析出物のサイズとは、不定形である析出物の円相当直径を言う。 This fine particle is an intermetallic compound of Mg and Zn (composition is MgZn 2 or the like) that is generated in crystal grains during the artificial age hardening treatment or the like, and according to the composition, Cu, It is a finely dispersed phase containing a contained element such as Zr. In addition, the size of the precipitate referred to in the present invention refers to the equivalent circle diameter of the precipitate that is indefinite.

このように、X線小角散乱法で測定された微細粒子の粒度分布の平均粒子直径や、前記粒度分布の広がりを示す規格化分散を制御することによって、アルミニウム合金製自動車部材の0.2%耐力が350MPa以上であるような高強度化や伸びの向上が達成できる。また、同時に、粒界に存在する析出物や結晶粒内に存在する粗大な析出物の析出も抑制でき、このことも高強度化や伸びの向上に寄与している。そして、このような高強度であるにも関わらず、耐SCC性の低下を抑制できることにもつながっている。   Thus, by controlling the average particle diameter of the particle size distribution of fine particles measured by the X-ray small angle scattering method and the normalized dispersion indicating the spread of the particle size distribution, 0.2% of the aluminum alloy automobile member is controlled. It is possible to achieve an increase in strength and an improvement in elongation such that the yield strength is 350 MPa or more. At the same time, precipitation of precipitates existing at grain boundaries and coarse precipitates existing in crystal grains can be suppressed, which also contributes to increase in strength and improvement of elongation. And although it is such high intensity | strength, it has also led to being able to suppress a fall of SCC resistance.

この微細粒子の粒度分布の平均粒子直径が1nm未満の場合や、あるいは逆に7nmを超えた場合、あるいは前記粒度分布の規格化分散が40%を超えた場合には高強度化が達成できない。この理由は、高強度化に寄与する前記微細粒子が不足するからで、また、人工時効処理の際に、前記粒界に存在する析出物や結晶粒内に存在する粗大な析出物の生成が多くなっている可能性も高い。この結果、耐SCC性も低下する。ただ、前記粒度分布の規格化分散には、組成や熱処理の制御によっても製造限界があり、下限としては5%程度までしか小さくすることができない。   When the average particle diameter of the particle size distribution of the fine particles is less than 1 nm, or conversely exceeds 7 nm, or when the normalized dispersion of the particle size distribution exceeds 40%, high strength cannot be achieved. This is because the fine particles that contribute to high strength are insufficient, and during the artificial aging treatment, precipitates present at the grain boundaries and coarse precipitates present within the crystal grains are generated. There is a high possibility that it is increasing. As a result, the SCC resistance also decreases. However, the standardized dispersion of the particle size distribution has a production limit even by controlling the composition and heat treatment, and the lower limit can be reduced only to about 5%.

本発明では、この素材アルミニウム合金圧延板ではなく、この圧延板が加工され、更に人工時効硬化処理された後の自動車部材としての組織として規定する。本発明で規定するナノサイズの微細な析出物は、熱処理条件によって大きく変化し、前記素材のアルミニウム合金圧延板の溶体化および焼入れ処理後、また、その後の自動車車体の塗装焼付け処理や人工時効処理条件によって大きく変化するからである。   In the present invention, not the material aluminum alloy rolled sheet, but a structure as an automobile member after the rolled sheet is processed and further subjected to artificial age hardening. The nano-sized fine precipitates defined in the present invention vary greatly depending on the heat treatment conditions, and after the solution treatment and quenching treatment of the aluminum alloy rolled plate of the material, and the subsequent paint baking treatment and artificial aging treatment of the automobile body This is because it varies greatly depending on conditions.

本発明の粒子直径が1nm以上、7nm以下であるような微細粒子、あるいはその粒度分布の平均粒子直径や、粒度分布の規格化分散は、前記従来技術で用いている400倍程度の光学顕微鏡などでは、微細すぎて観察や測定ができず、規定しているX線小角散乱法によって評価しうる。   Fine particles having a particle diameter of 1 nm or more and 7 nm or less of the present invention, or an average particle diameter of the particle size distribution or a normalized dispersion of the particle size distribution is an optical microscope of about 400 times used in the prior art Then, it is too fine to be observed or measured, and can be evaluated by the prescribed X-ray small angle scattering method.

X線を用いた小角散乱法:
X線を用いた小角散乱法自体は、ナノメートルオーダの構造情報を調べる代表的な手法として古くから知られている。物質にX線を照射すると、入射X線が物質内部の電子密度分布の情報を反映して、入射X線の周囲に散乱X線が発生する。例えば、物質中に粒子や電子密度の不均一な領域が存在すると、結晶や非晶質等にかかわらず、X線は干渉して密度揺らぎ起因の散乱が発生する。これがアルミニウム合金などの金属であれば、アルミニウム合金組織中にナノメートルオーダの微小な粒子が存在すると、粒子に由来する散乱が観測される。この散乱X線が発生する領域は、Cuターゲットを用いた波長1.54ÅのX線の場合、測定角度2θは0.1〜10度程度以下である。前記X線小角散乱法では、この散乱X線を解析することで、ナノメートルオーダの微細な粒子の形状、大きさ、分布の情報等を得ることができる。
Small angle scattering method using X-ray:
The small-angle scattering method itself using X-rays has long been known as a representative method for examining structural information on the order of nanometers. When a substance is irradiated with X-rays, the incident X-rays reflect information on the electron density distribution inside the substance, and scattered X-rays are generated around the incident X-rays. For example, if a particle or a region having an uneven electron density exists in a substance, X-rays interfere with each other regardless of crystal or amorphous, and scattering due to density fluctuation occurs. If this is a metal such as an aluminum alloy, if fine particles of nanometer order exist in the aluminum alloy structure, scattering derived from the particles is observed. In the region where the scattered X-rays are generated, in the case of X-rays having a wavelength of 1.54 mm using a Cu target, the measurement angle 2θ is about 0.1 to 10 degrees or less. In the X-ray small angle scattering method, by analyzing the scattered X-rays, it is possible to obtain information on the shape, size, distribution, etc. of fine particles on the order of nanometers.

例えば、特開2011−38136号などで、5000系のAl−Mg系アルミニウム合金板のプレス成形時のストレッチャーストレインマークの発生に関連する、微細粒子の粒度分布の平均粒子直径や、この粒度分布のピークサイズの数密度を測定するためにも用いられている。   For example, in Japanese Patent Application Laid-Open No. 2011-38136, etc., the average particle diameter of the particle size distribution of fine particles related to the generation of stretcher strain marks at the time of press forming of a 5000 series Al—Mg series aluminum alloy plate, and this grain size distribution It is also used to measure the number density of the peak size.

アルミニウム合金組織の微細粒子の粒度分布の平均粒子直径や、この粒度分布のピークサイズの数密度を測定するためには、先ず、アルミニウム合金板の、X線小角散乱法で測定された、X線の散乱強度プロファイルを求める。X線の散乱強度プロファイルは、例えば、縦軸がX線の散乱強度(散乱X線の散乱強度)、横軸が測定角度2θと波長λに依存する波数ベクトルq(nm−1)として求められる。 In order to measure the average particle diameter of the particle size distribution of fine particles of the aluminum alloy structure and the number density of the peak size of this particle size distribution, first, X-rays measured by the X-ray small angle scattering method of the aluminum alloy plate were used. The scattering intensity profile is obtained. The X-ray scattering intensity profile is obtained, for example, as the X-ray scattering intensity (scattering X-ray scattering intensity) on the vertical axis and the wave number vector q (nm −1 ) depending on the measurement angle 2θ and the wavelength λ. .

本発明の1nm以上、7nm以下であるような微細粒子の粒度分布の平均粒子直径や、この粒度分布の広がりを示す規格化分散は、前記X線の散乱強度プロファイルから求めることができる。すなわち、測定したX線の散乱強度と、粒子直径とサイズ分布の関数で示される理論式から計算したX線散乱強度が近くなるように、非線形最小2乗法によってフィッティングを行うことで、粒子直径と規格化分散値を求めることが出来る。   The average particle diameter of the particle size distribution of fine particles such as 1 nm or more and 7 nm or less of the present invention and the normalized dispersion indicating the spread of the particle size distribution can be obtained from the X-ray scattering intensity profile. That is, by performing fitting by the nonlinear least square method so that the measured X-ray scattering intensity is close to the X-ray scattering intensity calculated from the theoretical expression represented by the function of the particle diameter and size distribution, the particle diameter and A normalized dispersion value can be obtained.

ちなみに、このようなX線の散乱強度プロファイルを解析して、微小析出物の粒度分布を求める解析方法(解析ソフト)は、例えばSchmidtらによる公知の解析方法を用いる(I.S.Fedorovaand P.Schmidt:J.Appl.Cryst.11、405、1978参照)。   Incidentally, as an analysis method (analysis software) for analyzing the X-ray scattering intensity profile and obtaining the particle size distribution of the fine precipitates, for example, a known analysis method by Schmidt et al. Is used (I.S. Schmidt: See J. Appl. Cryst. 11, 405, 1978).

X線小角散乱法の測定装置:
このようなX線小角散乱法の測定装置としては、例えば特開平9−119906号公報などに代表的な小角散乱装置が開示されており、試料に対してX線を微小角度(小角)で照射し、前記試料から散乱されるX線を2次元のマルチワイヤー型などの検出器を用いて測定する。
X-ray small angle scattering measurement device:
As a measuring apparatus of such an X-ray small angle scattering method, a typical small angle scattering apparatus is disclosed in, for example, Japanese Patent Laid-Open No. 9-119906, and X-rays are irradiated to a sample at a minute angle (small angle). Then, X-rays scattered from the sample are measured using a two-dimensional detector such as a multi-wire type.

この散乱X線が発生する領域は、波長1.54ÅのX線の場合、測定角度は0.1〜10度以下程度の小角度である。この散乱X線を前記した通りに解析することで、前記粒度分布など、粒子の形状、大きさ、分布の情報を得ることができる。   The region where the scattered X-rays are generated is a small angle of about 0.1 to 10 degrees or less in the case of X-rays having a wavelength of 1.54 mm. By analyzing the scattered X-rays as described above, information on the shape, size, and distribution of the particles such as the particle size distribution can be obtained.

(製造方法)
本発明における7000系アルミニウム合金圧延板の製造方法について、以下に具体的に説明する。
(Production method)
The manufacturing method of the 7000 series aluminum alloy rolled sheet in the present invention will be specifically described below.

本発明では、7000系アルミニウム合金圧延板の通常の製造工程による製造方法で製造可能である。即ち、鋳造(DC鋳造法や連続鋳造法)、均質化熱処理、熱間圧延の通常の各製造工程を経て製造され、板厚が1.5〜5.0mmであるアルミニウム合金熱延板とされる。この段階で製品板としても良く、また冷間圧延前もしくは冷間圧延の中途において1回または2回以上の中間焼鈍を選択的に行ないつつ、更に冷延して、板厚が3mm以下の冷延板の製品板としても良い。   In this invention, it can manufacture with the manufacturing method by the normal manufacturing process of a 7000 series aluminum alloy rolled sheet. That is, an aluminum alloy hot-rolled sheet having a thickness of 1.5 to 5.0 mm is manufactured through normal manufacturing processes such as casting (DC casting or continuous casting), homogenization heat treatment, and hot rolling. The At this stage, a product plate may be used. Further, it is further cold-rolled while selectively performing intermediate annealing once or twice before cold rolling or in the middle of cold rolling to obtain a cold plate having a thickness of 3 mm or less. It is good also as a product board of a rolled sheet.

(溶解、鋳造冷却速度)
先ず、溶解、鋳造工程では、上記7000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、連続鋳造法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
(Dissolution, casting cooling rate)
First, in the melting and casting process, an ordinary molten casting method such as a continuous casting method or a semi-continuous casting method (DC casting method) is appropriately selected for the aluminum alloy melt adjusted within the above-mentioned 7000-based component composition range. Cast.

(均質化熱処理)
次いで、前記鋳造されたアルミニウム合金鋳塊に、熱間圧延に先立って、均質化熱処理を施す。この均質化熱処理(均熱処理)は、組織の均質化、すなわち、鋳塊組織中の結晶粒内の偏析をなくすことを目的とする。均質化熱処理条件は、好ましくは400〜550℃程度の温度で、2時間以上の均質化時間の範囲から適宜選択される。
(Homogenization heat treatment)
Next, the cast aluminum alloy ingot is subjected to a homogenization heat treatment prior to hot rolling. The purpose of this homogenization heat treatment (soaking) is to homogenize the structure, that is, eliminate segregation in crystal grains in the ingot structure. The homogenization heat treatment conditions are suitably selected from a range of homogenization time of 2 hours or more, preferably at a temperature of about 400 to 550 ° C.

(熱間圧延)
熱間圧延は、熱延開始温度が固相線温度を超える条件では、バーニングが起こるため熱延自体が困難となる。また、熱延開始温度が350℃未満では熱延時の荷重が高くなりすぎ、熱延自体が困難となる。したがって、熱延開始温度は350℃〜固相線温度の範囲から選択して熱間圧延し、2〜7mm程度の板厚の熱延板とする。この熱延板の冷間圧延前の焼鈍 (荒鈍) は必ずしも必要ではないが実施しても良い。
(Hot rolling)
In the hot rolling, the hot rolling itself becomes difficult because burning occurs under conditions where the hot rolling start temperature exceeds the solidus temperature. On the other hand, when the hot rolling start temperature is less than 350 ° C., the load during hot rolling becomes too high, and the hot rolling itself becomes difficult. Therefore, the hot rolling start temperature is selected from the range of 350 ° C. to the solidus temperature and hot rolled to obtain a hot rolled sheet having a thickness of about 2 to 7 mm. Annealing (roughening) of the hot-rolled sheet before cold rolling is not necessarily required, but may be performed.

(冷間圧延)
冷間圧延では、上記熱延板を圧延して、1〜3mm程度の所望の最終板厚の冷延板 (コイルも含む) に製作する。冷間圧延パス間で中間焼鈍を行っても良い。
(Cold rolling)
In cold rolling, the hot rolled sheet is rolled to produce a cold rolled sheet (including a coil) having a desired final thickness of about 1 to 3 mm. Intermediate annealing may be performed between cold rolling passes.

(溶体化および焼入れ処理)
冷間圧延後、溶体化および焼入れ処理を行う。溶体化処理焼入れ処理については、一般的な加熱、冷却方法でよく、特に限定はされない。ただ、各元素の十分な固溶量を得ることや結晶粒の微細化のためには、450〜550℃の溶体化処理温度とすることが望ましい。
(Solution and quenching)
After cold rolling, solution treatment and quenching are performed. The solution treatment quenching process may be a general heating or cooling method and is not particularly limited. However, in order to obtain a sufficient solid solution amount of each element or to refine crystal grains, it is desirable to set a solution treatment temperature of 450 to 550 ° C.

また、強度や成形性を低下させる粗大な粒界析出物形成を抑制する観点から、溶体化処理後の焼入れ処理の平均冷却速度は5℃/s以上とすることが望ましい。この冷却速度が小さいと、冷却中に粗大な粒界析出物が生成し、また溶体化処理後の固溶量が低下し、塗装焼付け処理や予備時効処理での硬化量が低下してしまう。この冷却速度を確保するために、焼入れ処理は、ファンなどの空冷、ミスト、スプレー、浸漬等の水冷手段や条件を各々選択して用いる。   In addition, from the viewpoint of suppressing the formation of coarse grain boundary precipitates that reduce strength and formability, the average cooling rate of the quenching treatment after the solution treatment is preferably 5 ° C./s or more. When this cooling rate is low, coarse grain boundary precipitates are generated during cooling, the amount of solid solution after solution treatment is reduced, and the amount of curing in the coating baking process and preliminary aging process is reduced. In order to ensure this cooling rate, the quenching treatment is performed by selecting water cooling means and conditions such as air cooling such as a fan, mist, spray, and immersion, respectively.

人工時効硬化処理:
以上のように製造された素材板の、例えば自動車材への成形後の人工時効硬化処理の条件は、自動車材として要求される強度や伸びとなるように選択される。例えば、1段の時効処理であれば、100〜150℃での時効処理を12〜36時間(過時効領域を含む)行う。また、2段の工程においては、1段目の熱処理温度が70〜100℃の範囲で2時間以上、2段目の熱処理温度が100〜170℃の範囲で5時間以上の範囲(過時効領域を含む)から選択する。
Artificial age hardening treatment:
The conditions of the artificial age-hardening treatment of the raw material plate manufactured as described above, for example, after being formed into an automobile material, are selected so as to have the strength and elongation required for the automobile material. For example, in the case of one-stage aging treatment, aging treatment at 100 to 150 ° C. is performed for 12 to 36 hours (including an overaging region). In the two-stage process, the first-stage heat treatment temperature is in the range of 70 to 100 ° C. for 2 hours or longer, and the second-stage heat treatment temperature is in the range of 100 to 170 ° C. for five hours or longer (over-aged region). Select from).

下記表1に示す各成分組成の7000系アルミニウム合金冷延板を製造して、この調質された冷延板が自動車部材のうちでも特に高強度な自動車構造材に適用されることを模擬し、時効硬化処理後のこの板の組織と機械的特性を測定した評価した。これらの結果を下記表2に示す。   7000 series aluminum alloy cold-rolled sheets of each component composition shown in Table 1 below are manufactured, and this tempered cold-rolled sheet is simulated to be applied to a particularly high-strength automobile structure material among automobile members. The structure and mechanical properties of this plate after age hardening were measured and evaluated. These results are shown in Table 2 below.

具体的には、各例とも共通して、下記表1に示す各成分組成の7000系アルミニウム合金溶湯をDC鋳造し、45mm厚み×220mm幅×145mm長さの鋳塊を得た。この鋳塊を470℃×4時間の均質化熱処理後に、熱間圧延を行い、板厚5.0mmの熱延板を製造した。この熱延板を、荒鈍(焼鈍)することなしに、またパス間での中間焼鈍なしに、冷間圧延して、共通して、板厚2.0mmの冷延板とした。そして、この冷延板を、各例とも共通して、500℃×30秒の溶体化処理後に水冷した。最後に、表2に示す条件で、自動車構造材を模擬した人工時効硬化処理を行った。   Specifically, in common with each example, a 7000 series aluminum alloy molten metal having each component composition shown in Table 1 below was DC cast to obtain an ingot of 45 mm thickness × 220 mm width × 145 mm length. The ingot was subjected to hot rolling after homogenization heat treatment at 470 ° C. for 4 hours to produce a hot rolled sheet having a thickness of 5.0 mm. This hot-rolled sheet was cold-rolled without being roughened (annealed) and without intermediate annealing between passes, and was commonly used as a cold-rolled sheet having a thickness of 2.0 mm. And this cold-rolled board was water-cooled after the solution treatment of 500 degreeC x 30 second in common with each example. Finally, an artificial age hardening treatment simulating an automobile structural material was performed under the conditions shown in Table 2.

こうして得られたアルミニウム合金冷延板と前記人工時効硬化処理後のアルミニウム合金板から試験片を採取して、各アルミニウム合金板結晶粒内の前記微細析出物の数密度、機械的特性を以下のようにして調査した。これらの結果を各々表2に示す。   Test pieces were collected from the aluminum alloy cold-rolled sheet thus obtained and the aluminum alloy sheet after the artificial age hardening treatment, and the number density and mechanical properties of the fine precipitates in the crystal grains of each aluminum alloy sheet were as follows. I investigated. These results are shown in Table 2, respectively.

(機械的特性)
各例とも、得られた各々のアルミニウム合金板の中央部を切断して採取した板状試験片の圧延直角方向の室温引張試験を行い、引張強度(MPa)、0.2%耐力(MPa)、全伸び(%)を測定した。室温引張り試験はJIS2241(1980)に基づき、室温20℃で試験を行った。引張速度は5mm/分で、試験片が破断するまで一定の速度で行った。
(Mechanical properties)
In each example, a room temperature tensile test in the direction perpendicular to the rolling direction of a plate-shaped test piece obtained by cutting the center part of each obtained aluminum alloy plate was performed, and tensile strength (MPa), 0.2% proof stress (MPa) The total elongation (%) was measured. The room temperature tensile test was performed at a room temperature of 20 ° C. based on JIS2241 (1980). The tensile speed was 5 mm / min, and was performed at a constant speed until the test piece broke.

(X線小角散乱測定)
X線小角散乱測定は、各例とも共通して、(株)リガク製 水平型X線回折装置SmartLabを用い、波長1.54ÅのX線を用いて測定し、各例とも前記X線の散乱強度プロファイルを測定した。試験装置は、試験片表面に対して垂直にX線を入射し、入射X線に対して0.1〜10度の微小角度(小角)で、前記試験片から後方に散乱されるX線を検出器を用いて測定するものである。測定試料は、約80μmに薄片化し、測定を行った。
(X-ray small angle scattering measurement)
The X-ray small angle scattering measurement is common to each example, using a horizontal X-ray diffractometer SmartLab manufactured by Rigaku Co., Ltd., and measuring with X-rays having a wavelength of 1.54 mm. The intensity profile was measured. The test apparatus enters X-rays perpendicularly to the surface of the test piece, and emits X-rays scattered backward from the test piece at a minute angle (small angle) of 0.1 to 10 degrees with respect to the incident X-ray. It is measured using a detector. The measurement sample was sliced to about 80 μm and measured.

このX線の散乱強度プロファイルを、前記したSchmidtらによる公知の解析方法が組み込まれている、解析ソフト(株)リガク製粒径・空孔解析ソフトウェア NANO−Solver[Ver.3.5]を用いて、測定したX線散乱強度と解析ソフトで計算したX線散乱強度の値が近くなるように非線形最小2乗法によってフィッティングを行うことで、平均粒子径および規格化分散を求めた。   This X-ray scattering intensity profile is obtained by analyzing the particle size / hole analysis software NANO-Solver [Ver. 3.5], the average particle diameter and the normalized dispersion are reduced by fitting by the nonlinear least square method so that the measured X-ray scattering intensity is close to the value of the X-ray scattering intensity calculated by the analysis software. Asked.

前記平均粒子径は、粒子としては完全な球状であると仮定して、理論式を用いて散乱強度を計算し、実験値とフィッティングして求めた。また、前記規格化分散は、粒子径に左右されず、粒子分布の広がりを比較できるようにするために用いた。   The average particle diameter was obtained by calculating the scattering intensity using a theoretical formula and fitting it with an experimental value, assuming that the particles are perfectly spherical. The normalized dispersion was used in order to make it possible to compare the spread of particle distributions regardless of the particle diameter.

この規格化分散の式を以下に示す。

ここでσが規格化分散、nは粒子数、xは粒子径、<x>は粒子径の相加平均である。
The normalized dispersion formula is shown below.

Here, σ is the normalized dispersion, n is the number of particles, x is the particle diameter, and <x> is an arithmetic average of the particle diameters.

耐SCC性:
前記人工時効硬化処理後のアルミニウム合金板の耐SCC性を評価するために、クロム酸促進法による耐応力腐食割れ試験を行った。前記調質された冷延板から板状試験片を切り出し、400℃での熱処理後に圧延直角方向に4%のひずみの負荷をかけ、表2に示す時効硬化処理を行った後、90℃の試験溶液に最大10時間まで浸漬し、SCCを目視で観察した。なお、応力負荷はジグのボルト・ナットを締めることにより試験片の外表面に引張応力を発生させ、負荷ひずみはこの外表面に接着した歪みゲージによって測定した。また、試験溶液は蒸留水に酸化クロム36g、2クロム酸カリウム30g及び塩化ナトリウム3g(1リットル当たり)を加えて作製した。SCCが発生しなかったものを○、10時間までにSCCが発生したものを×と評価した。
SCC resistance:
In order to evaluate the SCC resistance of the aluminum alloy sheet after the artificial age hardening treatment, a stress corrosion cracking test by a chromic acid acceleration method was performed. A plate-shaped test piece was cut out from the tempered cold-rolled plate, subjected to a 4% strain load in the direction perpendicular to the rolling direction after heat treatment at 400 ° C., and subjected to age hardening treatment shown in Table 2, followed by 90 ° C. It was immersed in the test solution for a maximum of 10 hours, and SCC was visually observed. The stress load was determined by generating a tensile stress on the outer surface of the test piece by tightening the bolts and nuts of the jig, and the load strain was measured with a strain gauge adhered to the outer surface. A test solution was prepared by adding 36 g of chromium oxide, 30 g of potassium dichromate and 3 g of sodium chloride (per liter) to distilled water. The case where no SCC occurred was evaluated as ◯, and the case where SCC occurred within 10 hours was evaluated as x.

表1、2から明らかなように、各発明例は、本発明アルミニウム合金組成範囲内であり、自動車車体の塗装焼付け処理が施された後の組織として、X線小角散乱法で測定された結晶粒内の微細粒子の粒度分布の平均粒子直径が1nm以上、7nm以下であるとともに、前記粒度分布の広がりを示す規格化分散が40%以下である組織を有している。この結果、前記人工時効処理後の0.2%耐力が350MPa以上、好ましくは400MPa以上であり、耐SCC性にも優れている。また、全伸びは好ましい13.0%以上である。   As is clear from Tables 1 and 2, each of the inventive examples is within the composition range of the aluminum alloy of the present invention, and is a crystal measured by the X-ray small angle scattering method as a structure after the paint baking treatment of the automobile body. The average particle diameter of the particle size distribution of the fine particles in the grains is 1 nm or more and 7 nm or less, and the normalized dispersion indicating the spread of the particle size distribution is 40% or less. As a result, the 0.2% yield strength after the artificial aging treatment is 350 MPa or more, preferably 400 MPa or more, and the SCC resistance is also excellent. Further, the total elongation is preferably 13.0% or more.

これに対して、各比較例は、合金組成が表1の通り、本発明範囲から外れる。比較例6はZnが下限に外れる。比較例7はMgが下限に外れる。これら比較例は、好ましい製造方法で製造されているが、X線小角散乱法で測定された結晶粒内の微細粒子の粒度分布の平均粒子直径が大きく、強度が低い。比較例8はCuが上限を超えているため熱延中に大幅な割れが発生して製造を中断した。比較例9はZrが上限に外れる。このため、粗大晶出物が形成して伸びが著しく低い。   On the other hand, each comparative example is outside the scope of the present invention as shown in Table 1. In Comparative Example 6, Zn falls outside the lower limit. In Comparative Example 7, Mg deviates from the lower limit. Although these comparative examples are manufactured by a preferable manufacturing method, the average particle diameter of the particle size distribution of the fine particles in the crystal grains measured by the X-ray small angle scattering method is large and the strength is low. In Comparative Example 8, since Cu exceeded the upper limit, a large crack occurred during hot rolling, and the production was interrupted. In Comparative Example 9, Zr deviates from the upper limit. For this reason, coarse crystals are formed and the elongation is extremely low.

また、比較例10は、合金組成が表1の通り、本発明範囲内であるものの、人工時効硬化処理の加熱時間が短かすぎ、この自動車車体の塗装焼付け処理だけでは、高強度化されていない場合を示している。   In Comparative Example 10, although the alloy composition is within the scope of the present invention as shown in Table 1, the heating time of the artificial age hardening treatment is too short, and the strength is increased only by the paint baking treatment of the automobile body. Shows no case.

以上の結果から、本発明アルミニウム合金板が高強度と高延性そして耐SCC性を兼備するための本発明各要件の臨界的な意義が裏付けられる。   The above results support the critical significance of the requirements of the present invention for the aluminum alloy sheet of the present invention to have both high strength, high ductility and SCC resistance.

以上説明したように、本発明は、7000系アルミニウム合金圧延板からなる、強度と耐応力腐食割れ性とを兼備した自動車部材を提供できる。したがって、アルミニウム合金を用いて車体をより軽量化したい自動車部材、なかでも特にフレーム、ピラーなどの高強度な自動車構造部材に好適である。   As described above, the present invention can provide an automobile member having both strength and stress corrosion cracking resistance, which is made of a 7000 series aluminum alloy rolled sheet. Therefore, it is suitable for an automobile member that uses an aluminum alloy to reduce the weight of the vehicle body, and particularly for a high-strength automobile structure member such as a frame or a pillar.

Claims (3)

アルミニウム合金製自動車部材であって、このアルミニウム合金が、質量%で、Zn:3.0〜8.0%、Mg:0.5〜4.0%を含み、残部がAlおよび不可避的不純物からなる組成のAl−Zn−Mg系アルミニウム合金圧延板からなり、人工時効硬化処理が施された後の組織として、X線小角散乱法で測定された結晶粒内の微細粒子の粒度分布の平均粒子直径が1nm以上、7nm以下であるとともに、前記粒度分布の規格化分散が40%以下である組織を有するとともに、0.2%耐力が350MPa以上であることを特徴とする自動車部材。   An aluminum alloy automobile member, the aluminum alloy containing Zn: 3.0 to 8.0% and Mg: 0.5 to 4.0% by mass, with the balance being Al and inevitable impurities An average particle of a particle size distribution of fine particles in a crystal grain measured by an X-ray small angle scattering method as a structure after an Al-Zn-Mg aluminum alloy rolled plate having the composition An automobile member having a structure having a diameter of 1 nm to 7 nm, a normalized dispersion of the particle size distribution of 40% or less, and a 0.2% proof stress of 350 MPa or more. 前記アルミニウム合金が、更に、質量%で、Cu:0.05〜0.6%、Ag:0.01〜0.15%の1種又は2種を含む請求項1に記載の自動車部材。   The automobile member according to claim 1, wherein the aluminum alloy further includes one or two of Cu: 0.05 to 0.6% and Ag: 0.01 to 0.15% by mass%. 前記アルミニウム合金が、更に、質量%で、Mn:0.05〜0.3%、Cr:0.03〜0.2%、Zr:0.03〜0.3%の1種又は2種以上を含む請求項1または2に記載の自動車部材。   The aluminum alloy is one or more of Mn: 0.05 to 0.3%, Cr: 0.03 to 0.2%, and Zr: 0.03 to 0.3% in mass%. The automobile member according to claim 1, comprising:
JP2012207189A 2012-09-20 2012-09-20 Method for manufacturing aluminum alloy automobile member Expired - Fee Related JP5860372B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012207189A JP5860372B2 (en) 2012-09-20 2012-09-20 Method for manufacturing aluminum alloy automobile member
PCT/JP2013/074862 WO2014046046A1 (en) 2012-09-20 2013-09-13 Aluminum alloy automobile part
CN201811025447.9A CN109055836A (en) 2012-09-20 2013-09-13 Aluminium alloy automobile component
CN201380047185.5A CN104619872A (en) 2012-09-20 2013-09-13 Aluminum alloy automobile part
US14/425,405 US20150218679A1 (en) 2012-09-20 2013-09-13 Aluminum alloy automobile part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207189A JP5860372B2 (en) 2012-09-20 2012-09-20 Method for manufacturing aluminum alloy automobile member

Publications (2)

Publication Number Publication Date
JP2014062284A true JP2014062284A (en) 2014-04-10
JP5860372B2 JP5860372B2 (en) 2016-02-16

Family

ID=50617784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207189A Expired - Fee Related JP5860372B2 (en) 2012-09-20 2012-09-20 Method for manufacturing aluminum alloy automobile member

Country Status (1)

Country Link
JP (1) JP5860372B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062283A (en) * 2012-09-20 2014-04-10 Kobe Steel Ltd Automotive member made of aluminum alloy
EP3239313A3 (en) * 2016-04-04 2019-08-14 Korea Automotive Technology Institute Wrought aluminum alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122243A (en) * 1989-10-04 1991-05-24 Furukawa Alum Co Ltd High strength aluminum alloy plate material for welding excellent in stress corrosion cracking resistance
JPH03221450A (en) * 1990-01-29 1991-09-30 Furukawa Alum Co Ltd High strength aluminum alloy damping material
JPH09125184A (en) * 1995-11-07 1997-05-13 Kobe Steel Ltd Welding structural material made of aluminum alloy and its production
JP2009221566A (en) * 2008-03-18 2009-10-01 Kobe Steel Ltd Aluminum alloy material for high pressure gas vessel having excellent hydrogen embrittlement resistance
WO2012059419A1 (en) * 2010-11-05 2012-05-10 Aleris Aluminum Duffel Bvba Formed automotive part made from an aluminium alloy product and method of its manufacture
JP2014062283A (en) * 2012-09-20 2014-04-10 Kobe Steel Ltd Automotive member made of aluminum alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122243A (en) * 1989-10-04 1991-05-24 Furukawa Alum Co Ltd High strength aluminum alloy plate material for welding excellent in stress corrosion cracking resistance
JPH03221450A (en) * 1990-01-29 1991-09-30 Furukawa Alum Co Ltd High strength aluminum alloy damping material
JPH09125184A (en) * 1995-11-07 1997-05-13 Kobe Steel Ltd Welding structural material made of aluminum alloy and its production
JP2009221566A (en) * 2008-03-18 2009-10-01 Kobe Steel Ltd Aluminum alloy material for high pressure gas vessel having excellent hydrogen embrittlement resistance
WO2012059419A1 (en) * 2010-11-05 2012-05-10 Aleris Aluminum Duffel Bvba Formed automotive part made from an aluminium alloy product and method of its manufacture
JP2014062283A (en) * 2012-09-20 2014-04-10 Kobe Steel Ltd Automotive member made of aluminum alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062283A (en) * 2012-09-20 2014-04-10 Kobe Steel Ltd Automotive member made of aluminum alloy
EP3239313A3 (en) * 2016-04-04 2019-08-14 Korea Automotive Technology Institute Wrought aluminum alloy
EP3680356A1 (en) * 2016-04-04 2020-07-15 Korea Automotive Technology Institute Wrought aluminum alloy

Also Published As

Publication number Publication date
JP5860372B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
WO2014046046A1 (en) Aluminum alloy automobile part
EP2899287B1 (en) Aluminum alloy plate for automobile part
WO2016140335A1 (en) Aluminum alloy plate
JP6165687B2 (en) Aluminum alloy plate
JP3819263B2 (en) Aluminum alloy material with excellent room temperature aging control and low temperature age hardening
JP6273158B2 (en) Aluminum alloy plate for structural materials
JP2020158885A (en) Aluminum alloy products and method of preparation
WO2015141647A1 (en) Aluminum alloy sheet for structural material
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
JP6223670B2 (en) Aluminum alloy sheet for automobile parts
JP6223669B2 (en) Aluminum alloy sheet for automobile parts
JP6224549B2 (en) Aluminum alloy plate with excellent rust resistance
JP5905810B2 (en) Aluminum alloy sheet for forming
JP2018204116A (en) Aluminum alloy sheet
JP5860371B2 (en) Aluminum alloy automotive parts
JP5860372B2 (en) Method for manufacturing aluminum alloy automobile member
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
JP2003239032A (en) Aluminum alloy sheet with excellent bendability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151218

R150 Certificate of patent or registration of utility model

Ref document number: 5860372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees