JP2009221032A - Solid molding containing sludge and method for producing solid molding - Google Patents

Solid molding containing sludge and method for producing solid molding Download PDF

Info

Publication number
JP2009221032A
JP2009221032A JP2008065003A JP2008065003A JP2009221032A JP 2009221032 A JP2009221032 A JP 2009221032A JP 2008065003 A JP2008065003 A JP 2008065003A JP 2008065003 A JP2008065003 A JP 2008065003A JP 2009221032 A JP2009221032 A JP 2009221032A
Authority
JP
Japan
Prior art keywords
weight
parts
sludge
molded body
solid molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008065003A
Other languages
Japanese (ja)
Inventor
Motohide Matsuda
元秀 松田
Michihiro Miyake
通博 三宅
Yumi Kimura
由美 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSU SAISEKI KOGYOSHO KK
Original Assignee
MITSU SAISEKI KOGYOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSU SAISEKI KOGYOSHO KK filed Critical MITSU SAISEKI KOGYOSHO KK
Priority to JP2008065003A priority Critical patent/JP2009221032A/en
Publication of JP2009221032A publication Critical patent/JP2009221032A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • C04B28/12Hydraulic lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0088Compounds chosen for their latent hydraulic characteristics, e.g. pozzuolanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid molding where various sludge being industrial wastes can be recycled as various construction materials and to provide its producing method. <P>SOLUTION: A calcium compound and a pozzolanic material are mixed into the sludge discharged from a quarry and the like at a suitable ratio, and the mixture is press-molded and then cured. Further, infiltration treatment is favorably performed in curing. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、スラッジを含む固形成形体及び該固形成形体の製造方法に関する。詳細には、砕石場をはじめとする骨材生産現場や浚渫現場の汚泥、建設残土あるいは焼却灰等のスラッジを、各種建設資材としての再利用するためのスラッジ処理技術に関する。   The present invention relates to a solid molded body containing sludge and a method for producing the solid molded body. More specifically, the present invention relates to sludge treatment technology for reusing sludge such as sludge, construction residual soil, or incinerated ash at aggregate production sites and dredging sites including quarries.

砕石場をはじめとする骨材生産現場において骨材製造時に生じる汚泥、ダム建設工事現場において濁水処理時に生じる汚泥、浚渫工事現場において生じる汚泥、各種建設現場において生じる建設残土、あるいは大規模焼却場において生じる焼却灰などのスラッジは、一般に産業廃棄物として、廃棄業者により埋め立てるなどの廃棄処分がなされているのが現状である。
特に、砕石工程中に発生する石粉(スラッジ)は可塑性に乏しく、再資源化が進んでいない産業廃棄物である。
Sludge generated during aggregate production at aggregate production sites including quarries, sludge generated during muddy water treatment at dam construction sites, sludge generated at dredging sites, construction residual soil generated at various construction sites, or large-scale incineration sites The present state is that sludge such as incinerated ash is generally disposed of as industrial waste by landfilling by a disposal company.
In particular, stone powder (sludge) generated during the crushed stone process is an industrial waste that has poor plasticity and has not been recycled.

近年発生する産業廃棄物の量は膨大で、その処分地の確保を年々困難なものとなり、これに伴う処分地の遠隔地化等により、廃棄処分に要する経費・労力も増大化の一途をたどっている。一方で、環境保護の観点から骨材の原材料となる山砂や川砂等の採取が抑制されるとともに、産業廃棄物の再生利用の可能性についても種々の試験、研究が行われている。   The amount of industrial waste generated in recent years is enormous, making it difficult to secure the disposal site year by year. The associated disposal site has become increasingly remote and the costs and labor required for disposal have been increasing. ing. On the other hand, from the viewpoint of environmental protection, collection of mountain sand, river sand, and the like, which are raw materials for aggregates, is suppressed, and various tests and research are being conducted on the possibility of recycling industrial waste.

例えば、スラッジ処理に関する先行特許出願では、以下のものが開示されている。   For example, in a prior patent application relating to sludge treatment, the following is disclosed.

特許文献1は、「スラッジに、改良軟化剤(セメント、シリカ、炭酸ナトリウム)を混合して、脱水処理、成形工程、軟化工程を得るスラッジ処理方法」を開示している。しかし、得られた骨剤は、本発明の固形成形体とは明らかに組成が異なる。また、該骨剤は、十分な強度を有さないと考えられる。   Patent Document 1 discloses a “sludge treatment method in which a sludge is mixed with an improved softening agent (cement, silica, sodium carbonate) to obtain a dehydration treatment, a molding step, and a softening step”. However, the resulting bone agent clearly differs in composition from the solid molded body of the present invention. Further, it is considered that the bone agent does not have sufficient strength.

特許文献2は、「砕石副産物である濁水ケーキや石粉にカルシウム化合物を添加、混合し、さらに水熱固化処理すること」を開示している。しかし、得られた水熱固化成形品は、本発明の固形成形体とは明らかに組成が異なる。また、該水熱固化成形品の圧縮強度は、最大でも約35MPaであり、本発明の固形成形体の圧縮強度と比較して、低い。   Patent Document 2 discloses “adding and mixing a calcium compound to a muddy water cake or stone powder, which is a crushed stone byproduct, and further hydrothermally solidifying it”. However, the obtained hydrothermal solidified molded product has a clearly different composition from the solid molded product of the present invention. Further, the compressive strength of the hydrothermal solidified molded product is about 35 MPa at the maximum, which is lower than the compressive strength of the solid molded body of the present invention.

特許文献3は、「セメント、潜在水硬性物質、ポゾラン物質、及び骨材を含有するモルタル組成物であって、骨材の一部あるいは全部に非鉄精錬スラグ骨材を含有しているモルタル組成物」を開示している。しかし、得られたモルタル組成物は、セメントを主成分として含んでいるので、本発明の固形成形体とは明らかに組成が異なる。   Patent Document 3 states that “a mortar composition containing cement, a latent hydraulic substance, a pozzolanic substance, and an aggregate, and a non-ferrous smelted slag aggregate in part or all of the aggregate. Is disclosed. However, since the obtained mortar composition contains cement as a main component, the composition is clearly different from the solid molded body of the present invention.

特許文献4は、「高炉スラグ粉末、セメント等、高性能減水剤及びアルカリ金属の亜硫酸塩等を含有してなる水硬性組成物」を開示している。しかし、得られた水硬性組成物は、本発明の固形成形体とは明らかに組成が異なる。   Patent Document 4 discloses “a hydraulic composition comprising a high-performance water reducing agent, an alkali metal sulfite, and the like, such as blast furnace slag powder and cement”. However, the obtained hydraulic composition clearly differs in composition from the solid molded body of the present invention.

特許文献5は、「セメント、廃棄物溶融スラグ及びカルシウム化合物を配合した水硬性組成物」を開示している。しかし、得られた水硬性組成物は、セメントを主成分として含んでいるので、本発明の固形成形体とは明らかに組成が異なる。
特開平8−229593 特開2002−137956 特開2006−315883 特開平11−079822 特開平11−263659
Patent Document 5 discloses “a hydraulic composition in which cement, waste molten slag and a calcium compound are blended”. However, since the obtained hydraulic composition contains cement as a main component, the composition is clearly different from the solid molded body of the present invention.
JP-A-8-229593 JP2002-137756 JP 2006-315883 A JP-A-11-077982 JP-A-11-263659

本発明は、上記課題に鑑みてなされたものであって、その目的とするところは、これら産業廃棄物である各種のスラッジを各種建設資材としての再利用することができる固形成形体及びその製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to form a solid molded body capable of reusing various sludges as industrial waste as various construction materials and the production thereof. It is to provide a method.

上記目的を達成するために、本発明の固形成形体の製造方法は、砕石場等において排出されるスラッジに、カルシウム化合物及びポゾラン物質を適切な割合で混合し、そして加圧成形し、その後、養生することを特徴とする。さらに、前記養生では、浸透処理を行うことを特徴とする。   In order to achieve the above object, the method for producing a solid molded body according to the present invention comprises mixing calcium compound and pozzolanic material in an appropriate ratio to sludge discharged at a quarry or the like, and then press-molding the mixture. It is characterized by curing. Further, the curing is characterized by performing an infiltration treatment.

すなわち、本発明は以下の通りである。
「1.スラッジ10〜75重量部、カルシウム化合物10〜65重量部及びポゾラン物質5〜70重量部を含む固形成形体。
2.ポゾラン物質が、シリカフューム及び/又はフライアッシュである前項1の固形成形体。
3.カルシウム化合物は、消石灰、生石灰及び水砕スラグのいずれか1以上である前項1又は2の固形成形体。
4.スラッジ30〜75重量部、消石灰10〜65重量部、シリカフューム5〜40重量部及び残りは水であることを特徴とする前項3の固形成形体。
5.スラッジ50〜70重量部、消石灰15〜60重量部、シリカフューム5〜30重量部及び残りは水であることを特徴とする前項4の固形成形体。
6.スラッジ10〜70重量部、消石灰10〜40重量部、フライアッシュ10〜70重量部及び残りは水であることを特徴とする前項3の固形成形体。
7.スラッジ粉末10〜75重量部、カルシウム化合物10〜65重量部、及びポゾラン物質5〜70重量部を混合し、50〜150MPaで加圧成形し、2〜30日間養生して得られる固形成形体。
8.スラッジ粉末30〜75重量部、消石灰粉末10〜65重量部、シリカフューム粉末5〜40重量部を混合し、50〜150MPaで加圧成形し、2〜30日間養生して得られ、並びに圧縮強度40〜120MPaであることを特徴とする固形成形体。
9.以下の工程を含む固形成形体の製造方法:
(1)スラッジ粉末10〜75重量部、カルシウム化合物粉末10〜65重量部、及びポゾラン物質粉末5〜70重量部を混合して混合物を得る工程;
(2)前記混合物を加圧成形して成形物を得る工程;
(3)前記成形物を養生して固形成形体を得る工程。
10.前記(3)工程において、浸透処理を行うことを特徴とする前項9の製造方法。」
That is, the present invention is as follows.
“1. Solid molded product containing 10 to 75 parts by weight of sludge, 10 to 65 parts by weight of calcium compound and 5 to 70 parts by weight of pozzolanic substance.
2. 2. The solid molded article according to 1 above, wherein the pozzolanic material is silica fume and / or fly ash.
3. The solid molded article according to item 1 or 2, wherein the calcium compound is any one or more of slaked lime, quicklime and granulated slag.
4). 30. 75 parts by weight of sludge, 10 to 65 parts by weight of slaked lime, 5 to 40 parts by weight of silica fume, and the balance is water,
5. The solid molded body according to item 4, wherein the sludge is 50 to 70 parts by weight, the slaked lime is 15 to 60 parts by weight, the silica fume is 5 to 30 parts by weight, and the remainder is water.
6). The solid molded article according to item 3 above, wherein 10 to 70 parts by weight of sludge, 10 to 40 parts by weight of slaked lime, 10 to 70 parts by weight of fly ash, and the rest are water.
7). A solid molded body obtained by mixing 10 to 75 parts by weight of sludge powder, 10 to 65 parts by weight of a calcium compound, and 5 to 70 parts by weight of a pozzolanic substance, pressure-molding at 50 to 150 MPa, and curing for 2 to 30 days.
8). 30 to 75 parts by weight of sludge powder, 10 to 65 parts by weight of slaked lime powder, 5 to 40 parts by weight of silica fume powder, mixed by pressing at 50 to 150 MPa, cured for 2 to 30 days, and compression strength 40 Solid molded body characterized by being -120 MPa.
9. A method for producing a solid molded body comprising the following steps:
(1) A step of mixing 10 to 75 parts by weight of sludge powder, 10 to 65 parts by weight of calcium compound powder, and 5 to 70 parts by weight of pozzolanic substance powder to obtain a mixture;
(2) A step of pressure-molding the mixture to obtain a molded product;
(3) A step of curing the molded product to obtain a solid molded product.
10. In the step (3), the permeation treatment is performed, and the production method according to item 9 above. "

本発明の固形成形体は、従来の成形体とは異なり、高含有量のスラッジにもかかわらず、非常に優れた強度を示す。これにより、従来処理に困っていたスラッジの有効利用が可能である。   Unlike the conventional molded body, the solid molded body of the present invention exhibits a very excellent strength despite the high content of sludge. This makes it possible to effectively use sludge, which has been in trouble with conventional processing.

(スラッジ)
本発明の「スラッジ」とは、砕石工程中等に発生する石粉を意味する。より詳しくは、製砂設備では、粒度5mmアンダーの破砕品について、一般に75μm以下の微細石粒子を除去するためにエアセパレータ等の乾式分級機で分級し、その後、除去仕切れずに残った微細石粒子の除去を前述の水洗により行うという製砂工程を採用している設備もある。このような製砂設備の場合、前記エアセパレータ等による分級によって主に75μm以下の微細石粒子が副産物として発生する。この微細な石粒子は石粉(スラッジ)と呼ばれている。
なお、本実施例では、砕石場において生じるスラッジを利用した。しかし、本発明では、ダム建設工事現場において濁水処理時に生じる汚泥、浚渫工事現場において生じる汚泥、各種建設現場において生じる建設残土、あるいは大規模焼却場において生じる焼却灰等の他の方法で生じたスラッジも適用可能である。
なお、本発明で使用したスラッジの組成は、以下の通りである。しかし、下記組成には限定されない。
(Sludge)
The “sludge” of the present invention means stone powder generated during the crushed stone process. More specifically, in a sandmaking facility, a crushed product with a particle size of 5 mm or less is generally classified with a dry classifier such as an air separator to remove fine stone particles of 75 μm or less, and then the fine stone remaining without separation. Some facilities employ a sand making process in which particles are removed by washing with water. In the case of such a sand making facility, fine stone particles of 75 μm or less are mainly generated as a by-product by classification with the air separator or the like. These fine stone particles are called stone powder (sludge).
In this example, sludge generated in a quarry was used. However, in the present invention, sludge generated by other methods such as sludge generated during muddy water treatment at a dam construction site, sludge generated at a dredging site, construction residual soil generated at various construction sites, or incineration ash generated at a large-scale incineration plant Is also applicable.
In addition, the composition of the sludge used by this invention is as follows. However, it is not limited to the following composition.

(ポゾラン物質)
本発明の「ポゾラン物質」とは、カルシウム化合物と反応する物質を意味する。その具体例としては、例えば、フライアッシュ、シリカフューム、カオリン鉱物(カオリナイト、ディッカイト、モハロイサイトの未焼成物)、パルプスラッジ焼却灰、下水汚泥焼却灰、及び廃ガラス粉末等、又はそれらの混合物が挙げられる。なお、フライアッシュ、シリカフュームが好ましく、より好ましくはシリカフュームである。
(Pozzolanic substance)
The “pozzolanic substance” of the present invention means a substance that reacts with a calcium compound. Specific examples thereof include fly ash, silica fume, kaolin mineral (kaolinite, dickite, mohalloysite unburned product), pulp sludge incineration ash, sewage sludge incineration ash, waste glass powder, and the like, or a mixture thereof. Can be mentioned. In addition, fly ash and silica fume are preferable, and silica fume is more preferable.

フライアッシュとは、微小粒子よりなる灰で、空中に浮遊する(fly)性質により呼ばれている。なお、焼却灰は、焼却炉の底などから回収される焼却主灰(ボトムアッシュ)と焼却廃ガス中に浮游する飛灰(フライアッシュ)に分けられる。フライアッシュの主成分はシリカ(SiO2)とアルミナ(Al2O3)であり、この2つの無機質で全体の70〜80%を占めている。その他少量の酸化第二鉄(Fe2O3)、酸化マグネシウム(Mg0)、酸化カルシウム(CaO)等を含む。
なお、本発明で使用したフライアッシュの組成は、以下の通りである。しかし、下記組成には限定されない。
Fly ash is ash made of fine particles, and is called for its ability to fly in the air. Incineration ash is divided into incineration main ash (bottom ash) recovered from the bottom of the incinerator and fly ash (fly ash) floating in the incineration waste gas. The main components of fly ash are silica (SiO 2 ) and alumina (Al 2 O 3 ), and these two minerals account for 70 to 80% of the total. In addition, small amounts of ferric oxide (Fe 2 O 3 ), magnesium oxide (Mg0), calcium oxide (CaO) and the like are included.
The composition of fly ash used in the present invention is as follows. However, it is not limited to the following composition.

シリカフュームとは、高純度SiO2の非晶質球状微粒子であり、フェロシリコン、電融ジルコニア、金属シリコンの製造時に発生する、平均粒径0.15μmと非常に細かい球状の微粒子である。
なお、本発明で使用したシリカフュームの組成は、以下の通りである。しかし、下記組成には限定されない。
Silica fume is amorphous spherical fine particles of high-purity SiO 2 and is very fine spherical fine particles with an average particle size of 0.15 μm that are generated during the production of ferrosilicon, electrofused zirconia, and metallic silicon.
The composition of silica fume used in the present invention is as follows. However, it is not limited to the following composition.

(カルシウム化合物)
本発明のカルシウム化合物とは、組成中にカルシウムを含有することを特徴とする。例えば、消石灰、生石灰、水砕スラグ等、又はそれらの混合物が挙げられる。なお、好ましいカルシウム化合物は、水砕スラグ又は消石灰であり、より好ましいカルシウム化合物は消石灰である。
(Calcium compound)
The calcium compound of the present invention is characterized by containing calcium in the composition. For example, slaked lime, quick lime, granulated slag, etc., or a mixture thereof can be used. In addition, a preferable calcium compound is granulated slag or slaked lime, and a more preferable calcium compound is slaked lime.

なお、水砕スラグとは高炉から生成する溶融スラグに多量の圧力水を噴射することにより急冷した砂状のスラグで、その用途はセメント原料、土木建材用資材、ケイカル肥料、高級ガラス用原料として使用されている。
なお、本発明で使用したフライアッシュの組成は、以下の通りである。しかし、下記組成には限定されない。
Granulated slag is sandy slag that is quenched by injecting a large amount of pressure water into the molten slag generated from the blast furnace, and its uses are as a raw material for cement, civil engineering materials, calcium fertilizer, and high-grade glass. in use.
The composition of fly ash used in the present invention is as follows. However, it is not limited to the following composition.

(固形成形体)
本発明の「固形成形体」とは、スラッジ、カルシウム化合物及びポゾラン物質を含む混合物を一連の処理により成形して、圧縮強度約40〜120MPaを持つ固形物を意味する。
なお、組成割合は、スラッジ10〜75重量部、カルシウム化合物10〜65重量部及びポゾラン物質5〜70重量部である。
(Solid molding)
The “solid molded product” of the present invention means a solid product having a compressive strength of about 40 to 120 MPa by molding a mixture containing sludge, calcium compound and pozzolanic material by a series of treatments.
In addition, a composition ratio is 10-75 weight part of sludge, 10-65 weight part of calcium compounds, and 5-70 weight part of pozzolanic substances.

また、ポゾラン物質としてシリカフュームを使用した場合の固形成形体は、好ましくは、スラッジ30〜75重量部、石灰10〜65重量部、シリカフューム5〜40重量部及び残りは水であり、より好ましくは、スラッジ50〜70重量部、石灰15〜60重量部、シリカフューム5〜30重量部及び残りは水である。   Moreover, the solid molded body when silica fume is used as the pozzolanic material is preferably 30 to 75 parts by weight of sludge, 10 to 65 parts by weight of lime, 5 to 40 parts by weight of silica fume, and the rest is water, more preferably, Sludge is 50 to 70 parts by weight, lime is 15 to 60 parts by weight, silica fume is 5 to 30 parts by weight, and the remainder is water.

また、ポゾラン物質としてフライアッシュを使用した場合の固形成形体は、好ましくは、スラッジ10〜70重量部、石灰10〜40重量部、フライアッシュ10〜70重量部及び残りは水である。   Moreover, the solid molded body when fly ash is used as the pozzolanic material is preferably 10 to 70 parts by weight of sludge, 10 to 40 parts by weight of lime, 10 to 70 parts by weight of fly ash, and the rest is water.

また、本発明の固形成形体は、スラッジ粉末10〜75重量部、カルシウム化合物10〜65重量部、及びポゾラン物質粉末5〜70重量部を混合し、50〜150MPaで加圧成形し、2〜30日間養生して得られる。
さらに、本発明の固形成形体は、圧縮強度40〜120 MPaを示し、スラッジ粉末10〜75重量部、消石灰粉末15〜65重量部、シリカフューム粉末5〜40重量部を混合し、50〜150MPaで加圧成形し、2〜30日間養生して得られる。
Further, the solid molded body of the present invention is a mixture of 10 to 75 parts by weight of sludge powder, 10 to 65 parts by weight of calcium compound, and 5 to 70 parts by weight of pozzolanic substance powder, and pressure-molded at 50 to 150 MPa, 2 to Obtained by curing for 30 days.
Further, the solid molded body of the present invention exhibits a compressive strength of 40 to 120 MPa, is mixed with 10 to 75 parts by weight of sludge powder, 15 to 65 parts by weight of slaked lime powder, 5 to 40 parts by weight of silica fume powder, and 50 to 150 MPa. Obtained by pressing and curing for 2-30 days.

(固形成形体の製造方法)
本発明の「固形成形体の製造方法」は、少なくとも以下の工程を行う。
(1)混合物を得る工程。
(2)加圧成形して成形物を得る工程。
(3)成形物を養生して固形成形体を得る工程。
なお、好ましくは、上記(3)工程において、浸透処理工程を行う。
(Method for producing solid molded body)
The “method for producing a solid molded body” of the present invention performs at least the following steps.
(1) A step of obtaining a mixture.
(2) A step of obtaining a molded product by pressure molding.
(3) A step of curing the molded product to obtain a solid molded body.
Preferably, in the step (3), an infiltration treatment step is performed.

(混合物を得る工程)
各種の粉末(スラッジ粉末10〜75重量部、カルシウム化合物粉末10〜65重量部、及びポゾラン物質粉末5〜70重量部)を秤量し、ボールミル等を用いて十分に混合して、混合物を得る。
(Step of obtaining a mixture)
Various powders (10 to 75 parts by weight of sludge powder, 10 to 65 parts by weight of calcium compound powder, and 5 to 70 parts by weight of pozzolanic substance powder) are weighed and mixed well using a ball mill or the like to obtain a mixture.

(混合物を加圧成形して成形物を得る工程)
上記混合物を成形機(例:一軸加圧成形装置)を用いて、約50〜150MPa、好ましくは約70〜100MPaという圧力で混合物をブロックなどの成形物(ペレット状成形物)を得る。
(Process of pressing the mixture to obtain a molded product)
Using the molding machine (eg, uniaxial pressure molding apparatus), the mixture is formed into a molded product such as a block (pellet-shaped molded product) at a pressure of about 50 to 150 MPa, preferably about 70 to 100 MPa.

(成形物を養生して固形成形体を得る工程)
上記成形物を室温又は約80 ℃という非常に温和な条件に保たれた反応容器内で2日〜300日、好ましくは3日〜90日、より好ましくは30日〜60日で養生する。
なお、好ましくは、前記反応容器内の相対湿度は、反応器内に水を置くことによって、湿度を約40〜95%、好ましくは約70〜92%に保つ。
(Step of curing the molded product to obtain a solid molded product)
The molded product is cured in a reaction vessel maintained at a room temperature or a very mild condition of about 80 ° C. for 2 to 300 days, preferably 3 to 90 days, more preferably 30 to 60 days.
Preferably, the relative humidity in the reaction vessel is maintained at about 40 to 95%, preferably about 70 to 92% by placing water in the reactor.

(浸透処理工程)
さらに、好ましくは前記固形成形体を得る工程では、浸透処理を行う。
なお、本発明の「浸透処理」とは、H2Oあるいはアルカリ溶液をしみ込ませたろ紙上に前記成形物を置き、毛細管現象によってH2Oあるいはアルカリ溶液が徐々に該成形物内に浸透させることである。
なお、前記アルカリ溶液とは、NaOH、KOH、消石灰、白班(明礬石)、水ガラス(珪酸ソーダ)等を含む溶液を単独で使用したり、複合で使用したりすることもできる。なお、本発明の好ましいアルカリ溶液は、KOH溶液又はNaOH溶液である。
(Osmosis treatment process)
Further, preferably, in the step of obtaining the solid molded body, an infiltration treatment is performed.
Note that the "infiltration" of the present invention, placing of H 2 O or alkaline solution the molded product on the filter paper impregnated with, H 2 O or an alkali solution is gradually penetrate into the molded product by capillary action That is.
In addition, with the said alkali solution, the solution containing NaOH, KOH, slaked lime, white spot (alumite), water glass (sodium silicate) etc. can be used independently, or can also be used in combination. A preferred alkaline solution of the present invention is a KOH solution or a NaOH solution.

以下に本発明を実施例により具体的に説明する。なお、これらの実施例は本発明を説明するためのものであって、本発明の範囲を限定するものではない。   Hereinafter, the present invention will be described specifically by way of examples. These examples are for explaining the present invention, and do not limit the scope of the present invention.

(シリカフューム、消石灰を使用した固形成形体の製造及び該固形成形体の特性評価)
本実施例では、シリカフューム、消石灰を使用した固形成形体の製造及び該固形成形体の特性評価を行った。詳細は、以下の通りである。
(Manufacture of solid molded body using silica fume and slaked lime and evaluation of characteristics of the solid molded body)
In this example, the production of a solid molded body using silica fume and slaked lime and the characteristics evaluation of the solid molded body were performed. Details are as follows.

(固形成形体の製造)
スラッジ粉末(参照:表1)、シリカフューム粉末(参照:表3)及び消石灰粉末を下記表5に記載する割合でボールミルを用いて十分に混合して、混合物を得た。
得られた混合物は、一軸加圧成形装置を用いて、約90MPa(90N/mm2)圧力で加圧成形して成形物を得た。
得られた成形物を各条件下(室温、50℃、80℃)で0〜258日間養生して固形成形体を製造した。なお、養生中には、H2O、KOH溶液又はNaOH溶液をしみ込ませたろ紙上に成形物を置き、毛細管現象によって溶液が徐々に該成形物内に浸透させた(試料No.6の一部を除く)。また、反応容器内の相対湿度は、反応器内に水を置くことによって、湿度約90%に保った。
さらに、得られた固形成形体の強度を簡易的に測定した。強度基準は、以下の通りである。
3: 手で割れない
2: ある程度の力で手割可能である
1: 弱い程度の力で手割可能である
0: 容易に崩壊状態になる
(Manufacture of solid molded products)
Sludge powder (reference: Table 1), silica fume powder (reference: Table 3) and slaked lime powder were sufficiently mixed using a ball mill in the proportions shown in Table 5 below to obtain a mixture.
The obtained mixture was subjected to pressure molding at a pressure of about 90 MPa (90 N / mm 2 ) using a uniaxial pressure molding apparatus to obtain a molded product.
The obtained molded product was cured for 0 to 258 days under each condition (room temperature, 50 ° C., 80 ° C.) to produce a solid molded product. During curing, the molded product was placed on a filter paper soaked with H 2 O, KOH solution or NaOH solution, and the solution was gradually infiltrated into the molded product by capillary action (sample No. 6). Part). The relative humidity in the reaction vessel was kept at about 90% by placing water in the reactor.
Furthermore, the strength of the obtained solid molded body was simply measured. The strength criteria are as follows.
3: Does not break by hand 2: Can be split with a certain amount of force 1: Can be split with a weak force 0: Easily collapses

なお、( )は、スラッジ量を1とした時の各成分の重量を意味する。また、[ ]は、体積比(概算)を意味する。以下の表も同じ。 In addition, () means the weight of each component when the sludge amount is 1. [] Means volume ratio (approximate). The following table is the same.

上記強度測定結果を図1〜9に示す。
図1〜9の結果により、固形成形体中のスラッジ量が増えると強度が高くなった。しかし、固形成形体中のスラッジ量が80重量部近くなると強度が下がった。また、80℃での養生は、室温での養生と比較して、強度が高かった。さらに、80℃での養生は、室温での養生と比較して、より早く強度が高くなった。
以上により、シリカフュームを使用した固形成形体では、スラッジ量がある程度まで増加させたほうが、高強度になるという従来の知見とはまったく異なる結果を得た。
The said intensity | strength measurement result is shown in FIGS.
From the results of FIGS. 1 to 9, the strength increased as the amount of sludge in the solid molded body increased. However, the strength decreased when the amount of sludge in the solid molded body was close to 80 parts by weight. In addition, curing at 80 ° C. was stronger than curing at room temperature. Furthermore, the curing at 80 ° C. was faster and stronger than the curing at room temperature.
As described above, in the solid molded body using silica fume, a result completely different from the conventional knowledge that the strength is increased when the amount of sludge is increased to some extent.

(フライアッシュ、消石灰を使用した固形成形体の製造及び該固形成形体の特性評価)
本実施例では、フライアッシュ、消石灰を使用した固形成形体の製造及び該固形成形体の特性評価を行った。詳細は、以下の通りである。
(Production of solid molded body using fly ash and slaked lime and characteristic evaluation of the solid molded body)
In the present Example, manufacture of the solid molded object which used fly ash and slaked lime, and the characteristic evaluation of this solid molded object were performed. Details are as follows.

(固形成形体の製造)
スラッジ粉末(参照:表1)、フライアッシュ粉末(参照:表2)及び消石灰粉末を下記表6に記載する割合でボールミルを用いて十分に混合して、混合物を得た。
得られた混合物は、一軸加圧成形装置を用いて、約90MPa(90N/mm2)圧力で加圧成形して成形物を得た。
得られた成形物を各条件下(室温、80℃)で0〜239日間養生して固形成形体を製造した。なお、養生中には、H2O、KOH溶液又はNaOH溶液をしみ込ませたろ紙上に成形物を置き、毛細管現象によって溶液が徐々に該成形物内に浸透させた。また、反応容器内の相対湿度は、反応器内に水を置くことによって、約90%程度に保った。
さらに、得られた固形成形体の強度を簡易的に測定した。強度基準は、実施例1と同様である。
(Manufacture of solid molded products)
Sludge powder (Reference: Table 1), fly ash powder (Reference: Table 2) and slaked lime powder were sufficiently mixed at a ratio described in Table 6 below using a ball mill to obtain a mixture.
The obtained mixture was subjected to pressure molding at a pressure of about 90 MPa (90 N / mm 2 ) using a uniaxial pressure molding apparatus to obtain a molded product.
The obtained molded product was cured for 0 to 239 days under each condition (room temperature, 80 ° C.) to produce a solid molded product. During curing, the molded product was placed on a filter paper soaked with H 2 O, KOH solution or NaOH solution, and the solution was gradually infiltrated into the molded product by capillary action. The relative humidity in the reaction vessel was kept at about 90% by placing water in the reactor.
Furthermore, the strength of the obtained solid molded body was simply measured. The strength standard is the same as in the first embodiment.

上記強度測定結果を図10〜15に示す。
図10〜15の結果により、80℃での養生は、室温での養生と比較して、強度が高かった。さらに、80℃での養生は、室温での養生と比較して、より早く強度が高くなった。
また、好ましい固形成形体の組成は、スラッジ10〜70重量部、消石灰10〜40重量部、フライアッシュ10〜70重量部であることがわかった。さらに、より好ましい固形成形体の組成は、スラッジ10〜60重量部、消石灰10〜40重量部、フライアッシュ20〜70重量部であることがわかった。
The said intensity | strength measurement result is shown to FIGS.
According to the results of FIGS. 10 to 15, the curing at 80 ° C. was higher in strength than the curing at room temperature. Furthermore, the curing at 80 ° C. was faster and stronger than the curing at room temperature.
Moreover, it turned out that the composition of a preferable solid molded object is 10-70 weight part of sludge, 10-40 weight part of slaked lime, and 10-70 weight part of fly ash. Furthermore, it turned out that the composition of a more preferable solid molded object is 10-60 weight part of sludge, 10-40 weight part of slaked lime, and 20-70 weight part of fly ash.

(シリカフューム、消石灰を使用した固形成形体の圧縮強度の測定)
本実施例では、実施例1で得られた好ましい組成割合の固形成形体の圧縮強度を測定した。詳細は、以下の通りである。
(Measurement of compressive strength of solid moldings using silica fume and slaked lime)
In this example, the compressive strength of the solid molded body having a preferred composition ratio obtained in Example 1 was measured. Details are as follows.

下記表7に記載の割合(No.16〜19)で、実施例1と同様な方法で固形成形体を製造した。
なお、すべての試料No.16〜19は、KOH溶液で浸透処理をおこなった。また、試料No.16は室温で養生し、他の試料No.17〜19は80℃で養生した。
得られた固形成形体の圧縮強度を測定した。測定方法は、以下の通りである。
φ10 mm、厚さ10 mmとした円柱状固形成形体を圧縮強度測定装置(オートグラフAG-100KN、製造元:(株)島津製作所)を使用して荷重速度0.5mm/分により圧縮強度を測定した。
なお、装置の仕様の詳細は以下の通りである。
最大荷重 100kn
負荷方式 機械式
最小レンジ 1kN
最大ストローク 650mm
支柱間 575mm
Solid molded bodies were produced in the same manner as in Example 1 at the ratios (Nos. 16 to 19) described in Table 7 below.
All sample Nos. 16-19 performed the infiltration process with the KOH solution. Sample No. No. 16 was cured at room temperature and other sample Nos. 17-19 were cured at 80 ° C.
The compression strength of the obtained solid molded body was measured. The measuring method is as follows.
Compressive strength of a cylindrical solid molded body having a diameter of 10 mm and a thickness of 10 mm was measured at a load speed of 0.5 mm / min using a compressive strength measuring device (Autograph AG-100KN, manufacturer: Shimadzu Corporation). .
The details of the specifications of the apparatus are as follows.
Maximum load 100kn
Load method Mechanical type Minimum range 1kN
Maximum stroke 650mm
Between posts 575mm

上記圧縮強度の測定結果を下記表8に示す。
本発明の固形成形体は、養生期間が短い3日間でも約45MPa以上という高い圧縮強度を示した。さらに、養生期間を長くすると、約100MPa程度までの高い圧縮強度を示した。
以上により、本来可塑性に乏しいスラッジの含有量が増えるほど、同じ養生期間で比べると、その圧縮強度は高まるといった傾向があることがわかった。これは、砕石スラッジの処理を考える上では非常に有用である。
The measurement results of the compressive strength are shown in Table 8 below.
The solid molded body of the present invention exhibited a high compressive strength of about 45 MPa or more even in a short curing period of 3 days. Furthermore, when the curing period was extended, a high compressive strength up to about 100 MPa was shown.
From the above, it was found that the compressive strength tends to increase as the content of sludge inherently poor in plasticity increases as compared with the same curing period. This is very useful when considering the treatment of crushed sludge.

さらに、上記実施例1との結果を合わせて、好ましい固形成形体の組成は、スラッジ30〜75重量部、消石灰10〜65重量部及びシリカフューム5〜40重量部であることがわかった。さらに、より好ましい固形成形体の組成は、スラッジ50〜70重量部、消石灰15〜60重量部及びシリカフューム5〜30重量部であることがわかった。   Furthermore, combining the results with Example 1 above, it was found that the preferable composition of the solid molded body was 30 to 75 parts by weight of sludge, 10 to 65 parts by weight of slaked lime, and 5 to 40 parts by weight of silica fume. Furthermore, it turned out that the composition of a more preferable solid molded object is 50-70 weight part of sludge, 15-60 weight part of slaked lime, and 5-30 weight part of silica fume.

なお、上記「―」は、未測定を意味する。 The above “-” means unmeasured.

また、ポゾラン物質としてシリカフューム、カルシウム化合物として水砕スラグを使用した固形成形体も高い強度を示すことを確認している。   It has also been confirmed that a solid molded body using silica fume as a pozzolanic material and granulated slag as a calcium compound also exhibits high strength.

スラッジの再利用が可能である。また、本発明の高含有量スラッジを含む固形成形体は非常に高い圧縮強度を有するので、骨材等に利用可能である。   Sludge can be reused. Moreover, since the solid molded object containing the high content sludge of this invention has very high compressive strength, it can utilize for an aggregate etc.

試料No.1の強度測定結果Sample No. Strength measurement result of 1 試料No.2の強度測定結果Sample No. 2. Strength measurement result 試料No.3の強度測定結果Sample No. Strength measurement result of 3 試料No.4の強度測定結果Sample No. 4 Strength measurement results 試料No.5の強度測定結果Sample No. Strength measurement result of 5 試料No.6の強度測定結果Sample No. Strength measurement result of 6 試料No.7の強度測定結果Sample No. Strength measurement result of 7 試料No.8の強度測定結果Sample No. Strength measurement result of 8 試料No.9の強度測定結果Sample No. 9 Strength measurement results 試料No.10の強度測定結果Sample No. 10 strength measurement results 試料No.11の強度測定結果Sample No. 11 strength measurement results 試料No.12の強度測定結果Sample No. 12 strength measurement results 試料No.13の強度測定結果Sample No. 13 strength measurement results 試料No.14の強度測定結果Sample No. 14 strength measurement results 試料No.15の強度測定結果Sample No. 15 strength measurement results

Claims (10)

スラッジ10〜75重量部、カルシウム化合物10〜65重量部及びポゾラン物質5〜70重量部を含む固形成形体。 A solid molded body containing 10 to 75 parts by weight of sludge, 10 to 65 parts by weight of a calcium compound, and 5 to 70 parts by weight of a pozzolanic substance. ポゾラン物質が、シリカフューム及び/又はフライアッシュである請求項1の固形成形体。 The solid molded body according to claim 1, wherein the pozzolanic material is silica fume and / or fly ash. カルシウム化合物は、消石灰、生石灰及び水砕スラグのいずれか1以上である請求項1又は2の固形成形体。 3. The solid molded body according to claim 1, wherein the calcium compound is at least one of slaked lime, quicklime and granulated slag. スラッジ30〜75重量部、消石灰10〜65重量部、シリカフューム5〜40重量部及び残りは水であることを特徴とする請求項3の固形成形体。 The solid molded body according to claim 3, wherein 30 to 75 parts by weight of sludge, 10 to 65 parts by weight of slaked lime, 5 to 40 parts by weight of silica fume and the remainder are water. スラッジ50〜70重量部、消石灰15〜60重量部、シリカフューム5〜30重量部及び残りは水であることを特徴とする請求項4の固形成形体。 The solid molded body according to claim 4, wherein the sludge is 50 to 70 parts by weight, the slaked lime is 15 to 60 parts by weight, the silica fume is 5 to 30 parts by weight, and the rest is water. スラッジ10〜70重量部、消石灰10〜40重量部、フライアッシュ10〜70重量部及び残りは水であることを特徴とする請求項3の固形成形体。 The solid molded body according to claim 3, wherein 10 to 70 parts by weight of sludge, 10 to 40 parts by weight of slaked lime, 10 to 70 parts by weight of fly ash and the rest are water. スラッジ粉末10〜75重量部、カルシウム化合物10〜65重量部、及びポゾラン物質5〜70重量部を混合し、50〜150MPaで加圧成形し、2〜30日間養生して得られる固形成形体。 A solid molded body obtained by mixing 10 to 75 parts by weight of sludge powder, 10 to 65 parts by weight of a calcium compound, and 5 to 70 parts by weight of a pozzolanic substance, pressure-molding at 50 to 150 MPa, and curing for 2 to 30 days. スラッジ粉末30〜75重量部、消石灰粉末10〜65重量部、シリカフューム粉末5〜40重量部を混合し、50〜150MPaで加圧成形し、2〜30日間養生して得られ、並びに圧縮強度40〜120 MPaであることを特徴とする固形成形体。 30 to 75 parts by weight of sludge powder, 10 to 65 parts by weight of slaked lime powder, 5 to 40 parts by weight of silica fume powder, mixed by pressing at 50 to 150 MPa, cured for 2 to 30 days, and compression strength 40 Solid molded body characterized by being -120 MPa. 以下の工程を含む固形成形体の製造方法:
(1)スラッジ粉末10〜75重量部、カルシウム化合物粉末10〜65重量部、及びポゾラン物質粉末5〜70重量部を混合して混合物を得る工程;
(2)前記混合物を加圧成形して成形物を得る工程;
(3)前記成形物を養生して固形成形体を得る工程。
A method for producing a solid molded body comprising the following steps:
(1) A step of mixing 10 to 75 parts by weight of sludge powder, 10 to 65 parts by weight of calcium compound powder, and 5 to 70 parts by weight of pozzolanic substance powder to obtain a mixture;
(2) A step of pressure-molding the mixture to obtain a molded product;
(3) A step of curing the molded product to obtain a solid molded product.
前記(3)工程において、浸透処理を行うことを特徴とする請求項9の製造方法。 The manufacturing method according to claim 9, wherein an infiltration treatment is performed in the step (3).
JP2008065003A 2008-03-13 2008-03-13 Solid molding containing sludge and method for producing solid molding Withdrawn JP2009221032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008065003A JP2009221032A (en) 2008-03-13 2008-03-13 Solid molding containing sludge and method for producing solid molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008065003A JP2009221032A (en) 2008-03-13 2008-03-13 Solid molding containing sludge and method for producing solid molding

Publications (1)

Publication Number Publication Date
JP2009221032A true JP2009221032A (en) 2009-10-01

Family

ID=41238231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008065003A Withdrawn JP2009221032A (en) 2008-03-13 2008-03-13 Solid molding containing sludge and method for producing solid molding

Country Status (1)

Country Link
JP (1) JP2009221032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162428A (en) * 2011-02-08 2012-08-30 Sumitomo Fudosan Kk Method for producing soil brick using surplus soil waste from construction
CN108178593A (en) * 2018-01-08 2018-06-19 北京兴华通达无机料有限公司 A kind of inorganic mixture containing building waste and preparation method thereof
CN109020430A (en) * 2018-09-04 2018-12-18 西安公路研究院 A kind of construction refuse regenerated mixture of two ash stability and preparation method thereof
CN113060955A (en) * 2021-03-22 2021-07-02 鱼迪 Method for preparing artificial volcanic ash by using sludge and construction waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162428A (en) * 2011-02-08 2012-08-30 Sumitomo Fudosan Kk Method for producing soil brick using surplus soil waste from construction
CN108178593A (en) * 2018-01-08 2018-06-19 北京兴华通达无机料有限公司 A kind of inorganic mixture containing building waste and preparation method thereof
CN109020430A (en) * 2018-09-04 2018-12-18 西安公路研究院 A kind of construction refuse regenerated mixture of two ash stability and preparation method thereof
CN113060955A (en) * 2021-03-22 2021-07-02 鱼迪 Method for preparing artificial volcanic ash by using sludge and construction waste

Similar Documents

Publication Publication Date Title
Tang et al. Valorization of concrete slurry waste (CSW) and fine incineration bottom ash (IBA) into cold bonded lightweight aggregates (CBLAs): Feasibility and influence of binder types
CN108218272B (en) Environment-friendly artificial aggregate (aggregate) derived from waste
Payá et al. Reuse of aluminosilicate industrial waste materials in the production of alkali-activated concrete binders
Lancellotti et al. Incinerator bottom ash and ladle slag for geopolymers preparation
KR101256834B1 (en) Geopolymeric concrete and manufacturing method for eco-friendly non-cement of new construction materials using recycled aggregate from waste of constrcution
CN105777075A (en) Solid waste resource utilization method
KR101160890B1 (en) Composition for soil block
JP2002003248A (en) Method of manufacturing artificial aggregate by using municipal refuse incinerator ash
Huang et al. Use of municipal solid waste incinerator (MSWI) fly ash in alkali activated slag cement
JPH11171628A (en) Cement composition using burnt ash of sewage sludge, use of the same cement composition and formed product and structure using the same composition
KR100562169B1 (en) Manufacturing method of lightweight aggregate using ash from municipal and industrial solid waste incinerators
JP3188200B2 (en) Manufacturing method of artificial lightweight aggregate
Wei et al. Reduction of sintering energy by application of calcium fluoride as flux in lightweight aggregate sintering
JP2009221032A (en) Solid molding containing sludge and method for producing solid molding
KR101247293B1 (en) Composition for making non-cement block using ashes and steel making slag, manufacturing method of non-cement block
Jing et al. Solidification of coal fly ash using hydrothermal processing method
Corinaldesi et al. Paper mill sludge ash as supplementary cementitious material
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
JP2000302498A (en) Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby
Villagrán-Zaccardi et al. Effect of wastes as supplementary cementitious materials on the transport properties of concrete
WO2015086350A1 (en) Method for producing a water barrier material as landfill cover, capping or landfill liner underneath and/or aside a landfill and water barrier material produced thereby
Moukannaa et al. Recycling of precast concrete waste sludge with paper mill and biomass ashes for lightweight granulated aggregate production
EP2903756B1 (en) Method for producing a water barrier material as landfill cover, capping or landfill liner underneath and/or aside a landfill and water barrier material produced thereby
KR20020082321A (en) Concrete 2th production using waste lime
JP4209224B2 (en) Method for producing calcium sulfide heavy metal fixing agent

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607