JP2009217249A - 可変焦点レンズ - Google Patents

可変焦点レンズ Download PDF

Info

Publication number
JP2009217249A
JP2009217249A JP2009021440A JP2009021440A JP2009217249A JP 2009217249 A JP2009217249 A JP 2009217249A JP 2009021440 A JP2009021440 A JP 2009021440A JP 2009021440 A JP2009021440 A JP 2009021440A JP 2009217249 A JP2009217249 A JP 2009217249A
Authority
JP
Japan
Prior art keywords
medium
focus lens
variable focus
hole
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009021440A
Other languages
English (en)
Other versions
JP5419005B2 (ja
Inventor
Hiromasa Oku
寛雅 奥
Masatoshi Ishikawa
正俊 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2009021440A priority Critical patent/JP5419005B2/ja
Publication of JP2009217249A publication Critical patent/JP2009217249A/ja
Application granted granted Critical
Publication of JP5419005B2 publication Critical patent/JP5419005B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】高い解像度を得ることが可能な可変焦点レンズを提供する。
【解決手段】仕切部14の第1表面141は、平坦面となっている。貫通孔142は、第1表面141を貫通し、かつ、仕切部14を貫通するように形成されている。貫通孔142の開口端を構成する周縁部1421は、第1表面141内に配置されている。第1媒質30は、第1空間111の内部に収容されている。第2媒質40は、第2空間112の内部に収容されている。第1媒質30と第2媒質40との間の界面70は、貫通孔142における周縁部1421に位置している。駆動部20は、第1媒質30又は第2媒質40の圧力又は体積を変動させることにより、界面70の曲率を変化させる。
【選択図】図2

Description

本発明は、可変焦点レンズに関するものである。
近年、液体界面を屈折面とした可変焦点レンズ技術が登場し、注目を集めている。一般に、液体界面は、理想的には完全な球面の一部になるという性質がある。従来の可変焦点レンズでは、この性質を利用しつつ、球面の曲率を変化させることにより、精度のよい球面屈折面を形成している。例えば、下記非特許文献1〜3の技術は、液体の濡れ性を電気的に制御することによって、界面の曲率を制御している。このような可変焦点レンズは、特に光学系の小型化・省電力化を実現するためのキーデバイスとして開発されている。
また、可変焦点レンズでは、焦点距離制御を高速に行えるという利点もある。既存のほとんどの焦点距離制御手法は、光学系を構成するレンズ(群)位置を動かすことで実現されている。このため、焦点距離制御の高速化は難しかった。これに対して、可変焦点レンズでは、表面形状の微小な変化のみで焦点距離を大きく変えることが可能であるために、高速化が容易であると期待できる。しかしながら、液体の濡れ性を電気的に制御するという従来の方式は、その特性上、高速化の限界が低いと考えられている。
本発明者らは、焦点距離制御の高速化を目指して、ピエゾアクチュエータと、圧力伝播用の液体とを用いた可変焦点レンズを提案した(非特許文献4,5及び特許文献1)。この技術によれば、1kHz 以上の動作周波数で、焦点距離制御を行うことが可能である。
しかしながら、この可変焦点レンズは、レンズ表面のガラス薄板を変形させて屈折面を形成しているために、屈折面形状が非球面となり、大きな球面収差を生じるという問題があった。つまり、このレンズでは、十分な光学性能を得ることが難しいという問題があった。
そこで、本発明者らは、高い応答速度及び光学性能を持ちうるレンズとして、非特許文献6及び7記載の可変焦点レンズを提案した。このレンズの概要を図1に示す。
このレンズでは、二つの液体の間における界面の形状を、圧力により変化させることによって、可変焦点を実現する。
すなわち、このレンズでは、混ざらない2種類の液体1及び2が、金属容器3の内部に充填されている。これら二液の間における界面は、容器3に形成された円形のアパーチャー4に接するように配置される(図1(a)参照)。
アパーチャー4の断面形状は、図1に示されるように、略三角形状となるように加工されている。つまり、アパーチャー4の表面は、円錐面となるように加工されている。そして、二液間の界面は、アパーチャー4の先端に配置される。
積層型ピエゾアクチュエータ5を伸縮させると、その下部にある液体2の容積が変化する(図1(b)参照)。これにより、液体1が液体2の方向に押し出され、二液間の界面形状が変化する(図1(b)及び(c)参照)。
この技術では、このようにして、屈折面の曲率を変更して、可変焦点レンズを実現することができる。理想的には、界面の形状は、常に球面となる。
国際公開WO2003/102636号公報 C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides. Langmuir 11, 2242-2246 (1995) B. Berge, and J. Peseux. Eur. Phys. J. E 3, 159-163 (2000) S. Kuper, and B. H. W. Hendriks. Appl. Phys. Lett. 85, 1128-1130 (2004) 奥 寛雅,石川 正俊.光学 31, no. 10, 758-764 (2002) H. Oku, K. Hashimoto, and M. Ishikawa. Opt. Express 12, 2138-2149 (2004) H. Oku, and M. Ishikawa. Rapid Liquid Variable-Focus Lens with 2-ms Response, Proc. of the 19th Annual Meeting of the IEEE LEOS (2006) 奥寛雅,石川正俊:液体界面を屈折面とする高速可変焦点レンズの構造,日本光学会年次学術講演会・日本分光学会秋季講演会 Optics & Photonics Japan 2006 (東京,2006.11.9)/Post-Deadline 論文集, pp.10-11
ところで、前記した非特許文献6及び7に記載の技術では、アパーチャー4の表面を円錐面に形成するために、機械加工を用いている。機械加工は、得られる形状の自由度が高いという利点がある。
しかしながら、この従来の技術では、アパーチャー4を機械加工で形成しているために、その先端(内周縁)形状の加工誤差が大きくなりやすいという傾向がある。この部分の加工誤差が大きいと、界面で形成されるレンズの形状がいびつになり、レンズの解像度が悪くなるという問題がある。特に、機械加工の場合、先端形状が鋸歯状となってしまうことがあり、そうなると、レンズの解像度が大きく劣化するおそれがある。
本発明は、前記した事情に鑑みてなされたものである。本発明の目的は、高い解像度を得ることが可能な可変焦点レンズを提供することである。
本発明は、下記のいずれかの項目に記載の構成を備えている。
(項目1)
収容部と、駆動部と、第1媒質と、第2媒質とを備えており、
前記収容部は、収容空間と、第1壁部と、第2壁部と、仕切部を備えており、
前記収容空間は、前記第1壁部と前記第2壁部との間に配置されており、
かつ、前記第1壁部と前記第2壁部とは、前記収容空間を挟んで対向するように配置されており、
前記第1壁部は、光を透過させる第1窓部を備えており、
前記第2壁部は、前記第1窓部を透過した光をさらに透過させる第2窓部を備えており、
前記仕切部は、前記収容空間を仕切ることで、第1空間と第2空間とを形成する構成となっており、
前記仕切部は、第1表面と、貫通孔とを備えており、
前記第1表面は、前記仕切部の表面における少なくとも一部を構成しており、
かつ、前記第1表面は、一つの仮想的な平坦面内に配置されており、
前記貫通孔は、前記第1表面を貫通し、かつ、前記仕切部を貫通するように形成されており、
前記貫通孔は、前記第1窓部を透過した光が前記第2窓部に向かう光路上に配置されており、
かつ、前記貫通孔は、前記第1窓部を透過した光を透過させる構成となっており、
前記貫通孔の開口端を構成する周縁部は、前記第1表面の端部に配置されており、
前記第1媒質と前記第2媒質とは、接触状態において互いに混合しない材質とされており、
かつ、前記第1媒質と前記第2媒質の屈折率は、互いに異なるものとされており、
前記第1媒質は、前記第1空間中に収容されており、
前記第2媒質は、前記第2空間中に収容されており、
前記第1媒質と前記第2媒質とは、互いに接触させられており、
前記第1媒質と前記第2媒質との間における界面の外周は、前記貫通孔における前記周縁部に位置しており、
前記駆動部は、前記第1媒質又は前記第2媒質の圧力又は体積を変動させることにより、前記界面の曲率を変化させる構成となっている
ことを特徴とする可変焦点レンズ。
この可変焦点レンズでは、平坦面である第1表面を貫通するように貫通孔を形成したので、貫通孔の周縁部の加工精度を高くすることができる。一方、第1媒質と第2媒質との間の界面(すなわちレンズ面)の外周部は、貫通孔の周縁部に捕捉される。このため、このレンズによれば、レンズ形状の精度を高くすることができ、その結果、レンズ解像度の向上を図ることができる。
(項目2)
前記第1媒質及び前記第2媒質は、いずれも液体である
ことを特徴とする項目1に記載の可変焦点レンズ。
媒質を液体とすることにより、駆動部20から媒質に与えられた振動を素早く界面に伝えることができる。このため、この発明によれば、焦点距離調整における動作周波数を高くすることができる。
(項目3)
前記第1媒質の密度と、前記第2媒質の密度とは、実質的に等しい
ことを特徴とする項目2に記載の可変焦点レンズ。
両媒質の密度を実質的に等しくすることにより、媒質に作用する重力の向きが変化しても、界面の形状が変わらない。このため、レンズを移動させても、焦点距離を一定に保つことができる。
(項目4)
前記駆動部は、前記第1媒質と前記第2媒質に対して直接又は間接に振動を加えるピエゾ素子を用いて構成されている
ことを特徴とする、項目1〜3のいずれか1項に記載の可変焦点レンズ。
ピエゾ素子は、高速で動作することができるので、この発明によれば、焦点距離調整における動作周波数を高くすることができる。
(項目5)
前記ピエゾ素子自体の位置を調整するための調整ステージをさらに備えた
ことを特徴とする項目4に記載の可変焦点レンズ。
調整ステージを設けることにより、ピエゾ素子と媒体との位置関係を調整することができる。これにより、媒体間における界面のおおよその位置を決定することができる。
(項目6)
前記仕切部は、基板とマスク部とを備えており、
前記マスク部は、前記基板の表面上に配置されており、
前記貫通孔は、フォトリソグラフィを用いて、前記基板と前記マスク部とを貫通するように形成されており、
前記第1表面は、前記マスク部の表面によって構成されている
ことを特徴とする項目1〜5のいずれか1項に記載の可変焦点レンズ。
マスク部の表面によって貫通孔の周縁部を形成することにより、周縁部の加工精度を更に高めることができる。
(項目7)
前記貫通孔は、前記仕切部の表面を平坦面に加工することによって前記第1表面を形成した後、前記第1表面に穴開け加工を行うことによって形成されたものである
ことを特徴とする項目1〜5のいずれか1項に記載の可変焦点レンズ。
仕切部の表面を平坦面に加工する作業においては、高い加工精度を得る技術が確立している。そのような技術を用いることにより、第1表面の平坦度を高めることができる。その後に貫通孔を形成することによって、貫通孔の周縁部の加工精度を高めることができ、レンズの解像度を向上させることができる。
(項目8)
前記仕切部は、基板と薄膜部とを備えており、
前記貫通孔は、前記基板と前記薄膜部とを貫通するように形成されており、
前記第1表面は、前記薄膜部の表面により構成されており、
前記貫通孔に面する前記薄膜部の周縁部は、前記基板よりも、前記貫通孔の内側方向に突出するように形成されている
ことを特徴とする項目2に記載の可変焦点レンズ。
薄膜部の周縁部を貫通孔の内側に突出させることによって、界面の曲率半径が変動できる範囲を広げることができる。
(項目9)
前記第1媒質又は前記第2媒質には、負の熱膨張率を持つ物質が混合されている
ことを特徴とする項目1〜8のいずれか1項に記載の可変焦点レンズ。
負の熱膨張率を持つ物質を媒質に混合することにより、温度変化があっても、焦点距離の変動を小さく抑えることができる。
(項目10)
さらに第3媒質を備えており、
前記第3媒質は、前記第1媒質及び前記第2媒質のうちの一方と前記駆動部との間に配置されており、
前記駆動部は、前記第3媒質を介して、前記一方の媒質に振動を加える構成となっており、
かつ、前記第3媒質は、前記一方の媒質よりも低い圧縮率を有している
ことを特徴とする項目1〜9のいずれか1項に記載の可変焦点レンズ。
本発明のように構成することにより、焦点距離の調整における動作周波数を高めることが可能になる。
(項目11)
さらに第3媒質を備えており、
前記第3媒質は、前記第1媒質及び前記第2媒質のうちの一方と前記駆動部との間に配置されており、
前記駆動部は、前記第3媒質を介して、前記一方の媒質に振動を加える構成となっており、
かつ、前記第3媒質は、前記一方の媒質よりも低い熱膨張率を有している
ことを特徴とする項目1〜9のいずれか1項に記載の可変焦点レンズ。
本発明のように構成することにより、温度変化に起因する焦点距離の変動を小さく抑えることが可能になる。
(項目12)
項目1に記載の可変焦点レンズの製造方法であって、以下を含む:
(1)前記仕切部における前記第1表面を平坦面に加工するステップ;
(2)その後に、前記第1表面に前記貫通孔を形成することにより、前記周縁部を形成するステップ。
仕切部の表面を平坦面に加工する作業においては、高い加工精度を得る技術が確立している。そのような技術を用いることにより、第1表面の平坦度を高めることができる。その後に貫通孔を形成することによって、貫通孔の周縁部の加工精度を高めることができ、レンズの解像度を向上させることができる。
(項目13)
項目1に記載の可変焦点レンズの製造方法であって、前記第1媒質及び前記第2媒質は流動体とされており、かつ、この製造方法は、以下を含む:
(1)前記前記第1空間に前記第1媒質を充填するステップ;
(2)前記第1媒質で反射される光学像を、前記貫通孔を介して視認するステップ;
(3)前記光学像の倍率が変更されたときに、前記第1媒質の充填を停止し、その後、前記第2媒質を充填するステップ。
貫通孔を微少に形成した場合には、界面を視認することが難しい。しかしながら、この発明によれば、項目13のようにして第1媒質を充填することによって、界面の外周部を、貫通孔の周縁部に正確に一致させることができる。
(項目14)
項目1〜11のいずれか1項に記載された可変焦点レンズを備えた撮像装置。
ここで、撮像装置とは、例えばカメラである。撮像装置は、可変焦点レンズで得られた像を解析する画像処理チップを備えることができる。また、そのようなチップは、画像解析の結果に基づいて、レンズの焦点距離を調整するための指令を生成することも可能である。
(項目15)
項目1〜11のいずれか1項に記載された可変焦点レンズを備えた投射装置。
投射装置とは、例えばプロジェクタである。すなわち、本発明の可変焦点レンズは、撮像光学系だけでなく、投射光学系において用いることもできる。
(項目16)
項目1〜11のいずれか1項に記載された可変焦点レンズを用いた、全焦点画像の生成方法であって、以下のステップを備える:
(1)前記駆動部を動作させることによって、焦点位置を変えながら、複数の画像を取得するステップ;
(2)前記複数の画像を用いて、全焦点画像を生成するステップ。
焦点位置を変えながら画像を取得することにより、各画像における焦点位置を異ならせることができる。つまり、合焦されている位置が、取得された各画像において異なることになる。このような複数の画像を用いることにより、合成された全焦点画像を得ることができる。また、本発明に係る可変焦点レンズでは、焦点位置の変更を高速に行うことが可能なので、全焦点画像を高速で生成することが可能になる。
本発明によれば、高い解像度を得ることが可能な可変焦点レンズを提供することができる。
(第1実施形態)
以下、本発明の第1実施形態に係る可変焦点レンズを、図2及び図3に基づいて説明する。
この可変焦点レンズ7は、収容部10と、駆動部20と、第1媒質30と、第2媒質40と、制御部50と、駆動ステージ60とを備えている。
収容部10は、収容空間11と、第1壁部12と、第2壁部13と、仕切部14を備えている。
収容空間11は、第1壁部12と第2壁部13との間に配置されている。さらに、第1壁部12と第2壁部13とは、収容空間11を挟んで対向するように配置されている。
第1壁部12は、光を透過させる第1窓部121を備えている。第2壁部13は、第1窓部121を透過した光をさらに透過させる第2窓部131を備えている。第1窓部121及び第2窓部131は、例えば、第1壁部12及び第2壁部13に貫通孔を形成した後、この部分に透明なガラスをはめ込むことにより構成することができる。
仕切部14は、収容空間11を仕切ることで、第1空間111と第2空間112とを形成する構成となっている。
仕切部14は、この実施形態では、平板状に構成されている。仕切部14は、第1表面141と、貫通孔142とを備えている。この実施形態では、仕切部14の上面(図2参照)が第1表面141を構成している。これにより、第1表面141は、仕切部14の表面における少なくとも一部を構成するものとなっている。
第1表面141は、一つの仮想的な平坦面内に配置されている。すなわち、第1表面141は、一つの仮想的な平坦面の一部をなす形状となっている。図2では、第1表面141が、仕切部14の上面総てと一致している。しかしながら、後述するように、第1表面141は、貫通孔142の周囲のみに存在すればよく、その面積はごく微少であっても良い。
貫通孔142は、第1表面141を貫通し、かつ、仕切部14を貫通するように形成されている。貫通孔142は、横断面において円形となる円筒形状に形成されている。貫通孔142の大きさは、用途に応じて適宜に設定できる。本実施形態では、貫通孔142として、直径3.000±0.0001mm程度の大きさ及び加工誤差を想定しているが、これはあくまで一例である。また、貫通孔142をアレイ状に多数形成することも可能であるが、本実施形態では一つの貫通孔142について説明する。
貫通孔142は、第1窓部121を透過した光が第2窓部131に向かう光路上に配置されている(図2参照)。貫通孔142は、第1窓部121を透過した光を透過させる構成となっている。
貫通孔142の開口端を構成する周縁部1421は、第1表面141の端部に配置されている。具体的には、この実施形態においては、周縁部1421は、第1表面141と、貫通孔142の内周面との交線によって構成されている。周縁部1421の形状は、一般的には真円であることが好ましいが、必要となるレンズの形状に応じて、例えば楕円形とすることも原理的には可能である。
第1媒質30と第2媒質40とは、接触状態において互いに混合しない材質とされている。第1媒質30と第2媒質40の屈折率は、互いに異なるものとされている。このような媒質の組み合わせは、適宜選択しうるが、例えば、PDMS(Poly-Dimethyl-Siloxane)と純水の組み合わせを用いることができる。屈折率はそれぞれ1.40と1.33 である。どちらを第1媒質30としてもよい。
この明細書の説明では、特に説明がない限り、第1媒質30の屈折率(n1)よりも第2媒質40の屈折率(n2)が小さい(つまりn1>n2である)と仮定する。ただし、屈折率の大小関係を、これとは逆にすることは可能である。
この例では、第1媒質30及び第2媒質40として液体が用いられている。ただし、これらの媒質としては、液体以外に、ゾル状、ゲル状、弾性体などの状態であることも可能である。要するに、媒質としては、駆動部20から受けた押圧力の変化を、両媒質間の界面に作用させて、この界面の形状を変化させることができるものであればよい。
第1媒質30は、第1空間111中に収容されている。同様に、第2媒質40は、第2空間112中に収容されている。もちろん、第2媒質40を第1空間111に収容することも可能であるが、説明の便宜上、本明細書では、第1空間111に収容される媒質を第1媒質と名付けている。
収容空間11に収容された状態においては、第1媒質30と第2媒質40とは、互いに接触させられている。この接触状態における、第1媒質30と第2媒質40との間における界面70の外周は、貫通孔142における周縁部1421に位置している(図3参照)。
また、第1媒質30の密度と、第2媒質40の密度とは、実質的に等しいものとされている。
駆動部20は、第1媒質30又は第2媒質40の圧力又は体積を変動させることにより、界面70の曲率を変化させる構成となっている。
この実施形態では、駆動部20は、積層構造のピエゾ素子21を主体として構成されている。ピエゾ素子は、印加電圧に応じて形状を変化させる圧電素子である。交流電圧を印加することにより、ピエゾ素子の形状を周期的に伸縮させることができる。このような駆動部20の構成は、前記した非特許文献6及び7に示されているものと基本的に同様でよいので、詳しい説明は省略する。
また、この実施形態では、駆動部20は、第1媒質30に対して、周期的な圧力変動を加える構成となっている。もちろん、第2媒質40に対して圧力変動を加える構成とすることも可能である。
制御部50は、駆動信号を駆動部20に送ることによって、駆動部20の動作を制御する構成となっている。制御部50における駆動信号は、予め入力されたデータに従って生成されても良いし、レンズにより得られた像の解析に基づいて動的に生成されても良い。
駆動ステージ60は、第1媒質30に対する駆動部20の位置あるいは姿勢を調整するための機構である。このような駆動ステージ60は、例えば、駆動部20を固定するテーブルと、このテーブルを3次元方向に位置決めできるアクチュエータ(いずれも図示せず)によって容易に構成することができるので、詳しい説明は省略する。
(本実施形態の可変焦点レンズの製造方法)
次に、本実施形態に係る可変焦点レンズ7を製造する方法の概要を、図4に示すフローチャートに基づいて説明する。
(ステップSA−1)
まず、平板状の仕切部14を用意する。ついで、この仕切部14の表面を平坦面に加工する。表面の平坦度は、高い方が好ましい。平坦度を上げる方法としては、例えば、半導体基板を製造する際に用いられるポリッシング加工がある。つまり、平坦度を上げる方法は、半導体製造プロセスなどの技術において確立されているので、それを用いれば、比較的に容易に、高い平坦度を達成することができる。
本実施形態では、このように形成された平坦面を、仕切部14における第1表面141とすることができる。
本実施形態では、第1表面141を平坦面としたので、高い加工精度(つまり高い平坦度)の第1表面141を、比較的容易に得ることができる。
(ステップSA−2)
ついで、仕切部14に対して穴開けを行い、貫通孔142を形成する。穴開けの具体的方法としては、例えばフォトリソグラフィを用いたエッチング加工がある。この加工方法の一例を以下に示す。
この方法では、まず、基板(例えばSi基板)の表面に、マスク部(例えばSiO2膜)を形成する(図示せず)。ついで、マスク部の表面にフォトレジスト(感光剤)を塗布した後、フォトレジストを所定のパターンで感光させる。その後、感光したフォトレジスト(あるいは逆に感光していないフォトレジスト)を除去する。その後、フォトレジストに転写されたパターンに基づいて、マスク部をエッチングで除去する。さらに、マスク部が除去された部分における基板をエッチングで除去する。このようにして、貫通孔142を形成することができる。
本実施形態では、仕切部14に対して第1表面141を形成し、これを貫通するように、貫通孔142を形成する。このため、この技術では、貫通孔142を形成するために、フォトリソグラフィのような、高い加工精度を得られる技術を適用することができる。
すなわち、本実施形態によれば、貫通孔142の加工精度をきわめて高くすることができる。
従来の技術(非特許文献6及び7)に記載のものでは、既に述べたように、貫通孔の周縁部近傍が傾斜面(円錐面)となっている。このため、従来の技術では、フォトリソグラフィのようなMEMS技術を用いて貫通孔を形成することが難しく、貫通孔周縁部の加工精度が低くなりやすいという問題があった。貫通孔の周縁部の形状における寸法誤差は、得られるレンズ面の精度に影響するため、従来のレンズでは、解像度の向上が困難であった。
これに対して、本実施形態の技術では、仕切部14に平坦な第1表面141を形成し、これを貫通するように貫通孔142を形成したので、貫通孔142の加工精度を高くすることができる。このため、この技術では、貫通孔142の周縁部1421の寸法精度を高くすることが容易になる。
よって、本実施形態の可変焦点レンズ7によれば、界面70によって形成されるレンズ面を精度良く形成することができる。このため、この可変焦点レンズ7によれば、レンズの解像度を向上させることができるという利点がある。
なお、以上において説明した動作に鑑みると、第1表面141は、周縁部1421を構成することに寄与していればよい。つまり、第1表面141は、周縁部1421の構成に寄与しない部分においては、平坦でない形状に加工されても良い。例えば、第1表面141を平坦に加工した後、他の形状に加工することも可能である。また、第1表面141の上に他の部材を積層することも可能である。
(ステップSA−3)
ついで、仕切部14を、収容部10における収容区間11に取り付け(図2参照)、これによって、第1空間111と第2空間112とを形成する。
その後、まず、第1空間111に、第1媒質30を充填する。すると、第1媒質30の液面が徐々に上昇し、貫通孔142の内側に達する。貫通孔142の内側においても、液面はさらに上昇して、周縁部1421に達する。
作業者は、液面が上昇する間、特に、貫通孔142の内側に達した後は、第1媒質30の液面で反射される光学像を観察する。
(ステップSA−3)
そして、第1媒質30の液面で反射される光学像の倍率が大きく変化した時点で、液面が周縁部1421に到達したと判断する。その時点で、第1媒質30の充填を停止する。
一般に、第1媒質30が貫通孔142の内側において上昇する場合、その液面の形状は、貫通孔内周面と第1媒質30とで決定される接触角によって規定される。このため、基本的には、液面での反射により観察される光学像は変化しない。
しかし、一旦、液面が周縁部1421に達すると、液面外周の位置は、周縁部1421に固定される。この状態で液面が上昇すると、液面の曲率が大きく変化する。例えば、凹面状であった液面が、凸面状に変化する。すると、液面における反射像の倍率が大きく変化し、観察者に視認される。もちろん、この視認は、直接肉眼によることも可能であるが、レンズが微少である場合は、顕微鏡を介して行うことができる。
したがって、反射像の倍率が大きく変化で、第1媒質30の充填を停止すれば、液面外周の位置を、周縁部1421に確実に一致させることができる。
したがって、この点からも、周縁部1421によって規定されるレンズ形状の精度を高めることができるという利点がある。
(ステップSA−5)
ついで、第2媒質40を、第2空間112に充填する。これにより、第2媒質40を、第1媒質30の上部に接触した状態で配置するとができる。この状態では、第1媒質30と第2媒質40との接触部分に界面70(図2参照)が形成される。
その後、駆動部20を収容部10に取り付けることにより、可変焦点レンズを得ることができる。前記以外の具体的な製造方法は、非特許文献6及び7に記載の技術と同様でよいので、これ以上詳しい説明は省略する。
(可変焦点レンズの動作)
次に、本実施形態に係る可変焦点レンズの動作を説明する。初期状態において、界面70でのレンズ作用による焦点の位置を、図2において符号Fで表す。
ついで、駆動部20を駆動することにより、第1媒質30を押圧して、界面70を上方に突出させる。すると、界面40の周囲が、貫通孔142の周縁部1421に接触したままの状態で、界面70が、図2において上方に膨出する(図2において破線で示す)。これにより、界面70でのレンズ作用による焦点の位置は、図2において符号F’で示される位置に変化する。
本実施形態によれば、このようにして、可変焦点レンズを得ることができる。
本実施形態のレンズでは、界面70の形状、すなわちレンズ面の形状を、きわめて高精度とすることができるので、可変焦点レンズでありながら、高い解像度を得ることができるという利点がある。
第1媒質30への押圧を解除することにより、焦点の位置を初期状態に復帰させることができる。もちろん、第1媒質30への押圧量を調整することにより、焦点距離を適宜に調整することができる。
本実施形態では、駆動部20としてピエゾ素子を用いているので、例えば1kHz程度の高い周波数で、焦点距離を変化させることが可能である。
また、本実施形態では、第1媒質30及び第2媒質40として、液体を用いているので、媒質そのものの圧縮量が小さい。このため、第1媒質30への押圧力を直ちに第2媒質40に伝達することができる。この点からも、本実施形態のレンズでは、高い動作周波数を達成することができる。
さらに、本実施形態では、第1媒質30の密度と、第2媒質40の密度とを実質的に一致させている。両媒質の密度が異なると、レンズの姿勢が変化した場合(例えばレンズの天地方向が反転した場合)には、重力の影響により、界面70の形状が変化する。例えば、界面形状に偏りが生じて偏心するというような現象を生じる。これに対して、本実施形態では、両媒質の密度を一致させているので、このような場合でも、界面70の形状が変化しないという利点がある。
(第2実施形態)
次に、図5を参照して、第2実施形態に係る可変焦点レンズを説明する。この実施形態の説明においては、第1実施形態のレンズと基本的に共通する構成要素については、同一符号を用いることにより、説明を簡略化する。
第1実施形態のレンズでは、図3に示されるように、貫通孔142が、第1表面141に対して、ほぼ垂直な方向に延長されている。このため、貫通孔142の内周面と第1表面141とのなす角は、ほぼ直角となっている。
これに対して、第2実施形態のレンズ(図5参照)では、貫通孔142を、第1表面141に対して、傾斜する方向に延長している。
このレンズにおける他の構成及び利点は、前記した第1実施形態のレンズと同様なので、これ以上詳細な説明は省略する。
(第3実施形態)
次に、図6を参照して、第3実施形態に係る可変焦点レンズを説明する。この実施形態の説明においては、第1実施形態のレンズと基本的に共通する構成要素については、同一符号を用いることにより、説明を簡略化する。
第1実施形態のレンズでは、仕切部14における第1表面141が、第2空間112に面する位置とされている(図2参照)。
これに対して、第3実施形態のレンズ(図6参照)では、仕切部14における第1表面141が、第1空間111に面する位置とされている。そして、貫通孔142の周縁部1421も、第1空間111に面している。
この実施形態では、この位置における周縁部1421に、界面70が配置されている。この実施形態でも、第1実施形態の場合と同様に、周縁部1421に界面70が捕捉されたときに、反射された光学像の変化を生じる。このため、この現象を充填作業に利用して、作業を効率化することができる。
このレンズにおける他の構成及び利点は、前記した第1実施形態のレンズと同様なので、これ以上詳細な説明は省略する。
(第4実施形態)
次に、図7を参照して、第4実施形態に係る可変焦点レンズを説明する。この実施形態の説明においては、第3実施形態のレンズと基本的に共通する構成要素については、同一符号を用いることにより、説明を簡略化する。
第3実施形態のレンズでは、図6に示されるように、貫通孔142が、第1表面141に対して、ほぼ垂直な方向に延長されている。
これに対して、第6実施形態のレンズ(図7参照)では、貫通孔142を、第1表面141に対して、傾斜する方向に延長している。
このレンズにおける他の構成及び利点は、前記した第3実施形態のレンズと同様なので、これ以上詳細な説明は省略する。
(第5実施形態)
次に、図8を参照して、第5実施形態に係る可変焦点レンズを説明する。この実施形態の説明においては、第1実施形態のレンズと基本的に共通する構成要素については、同一符号を用いることにより、説明を簡略化する。
第5実施形態のレンズでは、仕切部14が、基板(例えばSi基板)143とマスク部(薄膜部;例えばSiO2膜)144とから構成されている。マスク部144は、基板143の表面上に配置されている。貫通孔142は、第1実施形態において説明したフォトリソグラフィの技術によって、基板143とマスク部144とを貫通するように形成されている。
第5実施形態における第1表面141は、マスク部144の表面(図8における上面)によって構成されている。
また、この実施形態では、貫通孔142の周縁部1421は、マスク部144の開口端によって構成されている。この周縁部1421は、基板143よりも、貫通孔142の内側方向に突出するように形成されている(図8(b))。
このような構造は、第1実施形態で説明した製造方法(エッチングによる加工方法)において用いるマスク部を除去せずに残存させることで、比較的容易に得ることができる。
一般に、フォトリソグラフィでは、レジストのパターンが直接的に転写されるのはマスク部であるため、マスク部の加工精度は、基板の加工精度より高い。
本実施形態では、マスク部144の開口端によって、貫通孔142の周縁部1421を形成しているので、周縁部1421の加工精度を更に向上させることができる。したがって、本実施形態では、得られるレンズ面の精度が高くなるという利点がある。
また、本実施形態の場合は、界面70の曲率変化の範囲を広げることが可能となる。以下、この動作について、図9を参照しながら説明する。
前記した第1実施形態においては、界面70が変化できる範囲は、概略的には、図9(a)のように考えることができる。
一方、第5実施形態においては、界面70が変化できる範囲は、概略的には、図9(b)のようになる。つまり、マスク部144の開口端における上下両端を、それぞれ、界面70を固定するための周縁部として利用できる。
このため、図9b(b)に示されるように、界面70の曲率変化の範囲を広げることができる。
ただし、第5実施形態のレンズでは、上下両端を使っているために、マスク部144の厚さだけ、レンズ周縁の位置が動くことになる。しかしながら、一般に、マスクの厚さは、非常に薄い(例えば2μm以下)。したがって、マスク部144の厚さを、周縁部1421において求められる加工精度より薄くすれば、マスク部144の存在は、レンズ性能にはほとんど影響しない。
このレンズにおける他の構成及び利点は、前記した第1実施形態のレンズと同様なので、これ以上詳細な説明は省略する。
(第6実施形態)
次に、図10を参照して、第6実施形態に係る可変焦点レンズを説明する。この実施形態の説明においては、第1実施形態のレンズと基本的に共通する構成要素については、同一符号を用いることにより、説明を簡略化する。
第6実施形態の可変焦点レンズでは、第1媒質30及び第2媒質40に、負の熱膨張率を持つ物質80が混合されている。このような物質80を各媒質(液体)に混合することにより、液体の温度による体積変化を除去したり、もしくは所望の範囲に抑えることが可能になる。以下、この作用について説明する。
液体は温度に対する体積膨張率が高い。このため、液体を第1又は第2媒質として用いると、界面70(つまりレンズ面)曲率が、温度に依存して変化することになる(図10(b)参照)。
そこで、常温で負の熱膨張率をもつ物質(例えばタングステン酸ジルコニウム(ZrW2O8))80を液体中に混ぜる。すると、温度による体積変化を相殺できる。
ただし、一般に、液体の熱膨張率は負熱膨張物質80のそれに比べて十倍以上大きい。そこで、液体の体積変化を完全に相殺するためには、物質80の体積比を相当に大きくする必要がある。そのためには、例えば、粉末状、もしくはビーズ状の負熱膨張物質に液体を浸潤させる方法が考えられる。このようにすれば、媒質を介しての圧力伝達が可能で、かつ、体積変化が少なくなる。
なお、本実施形態の手法でも、体積変化を精度良く補正できるのは、ある特定の温度だけとなる。そこで、媒質の温度を測定する温度センサや、温度制御用のベルチェ素子などのデバイスを用いて、温度のフィードバック制御を行うことが好ましい。このようにすれば、±10度以上の範囲で、レンズ周囲の温度が変化しても、安定した焦点距離制御性能を達成できると考えられる。
このレンズにおける他の構成及び利点は、前記した第1実施形態のレンズと同様なので、これ以上詳細な説明は省略する。
(第7実施形態)
次に、図11を参照して、第7実施形態に係る可変焦点レンズを説明する。この実施形態の説明においては、第1実施形態のレンズと基本的に共通する構成要素については、同一符号を用いることにより、説明を簡略化する。
第7実施形態の可変焦点レンズは、さらに第3媒質90を備えている。第3媒質90は、第1媒質30と駆動部20との間に配置されている。駆動部20は、第3媒質90を介して、第1媒質30に振動(圧力変動)を加える構成となっている。
第3媒質は、第1媒質30よりも低い圧縮率及び熱膨張率を有している。
本実施形態のレンズでは、光が透過する部分は、第1媒質30及び第2媒質40であり、第3媒質には光は透過しない。このため、第3媒質としては、光の透過性と関係なく、好適な圧縮率及び熱膨張率の材料を選択することができる。
そして、第3媒質90の圧縮率を、第1媒質30よりも低いものとすることにより、駆動部20による圧力伝達の効率や応答速度を向上させることができる。
また、第3媒質90の熱膨張率を、第1媒質30よりも低いものとすることにより、熱変動に起因するレンズ特性の変化を小さく抑えることができる。
なお、第3媒質90は、液体、ゾル、ゲル、弾性体など、適宜の材質とすることができる。
また、第3媒質90は、第1媒質30と混合しない材質であることが好ましいが、必要に応じて、第1媒質30との間に、変形可能な膜を配置して、混合を防止することができる。この場合において、本実施形態では、膜に透光性を与える必要がないので、膜として利用できる材質の自由度が高くなる。
さらに、前記の説明では、第3媒質90により第1媒質30を押圧しているが、第3媒質により第2媒質40を押圧する構造とすることもできる。この場合の構成は前記の説明から容易に理解できるので、詳しい説明は省略する。
このレンズにおける他の構成及び利点は、前記した第1実施形態のレンズと同様なので、これ以上詳細な説明は省略する。
(第8実施形態)
次に、図12を参照して、第8実施形態に係る撮像装置を説明する。この実施形態の説明においては、第1実施形態のレンズと基本的に共通する構成要素については、同一符号を用いることにより、説明を簡略化する。
第11実施形態の撮像装置は、前記したいずれかの実施形態における可変焦点レンズ7と、画像センサ8とを備えている。この装置では、対象物9の光学像を、可変焦点レンズ7及び画像センサ8によって取得し、解析することができる。
この撮像装置において、画像センサ8として、高速動作できるもの(例えば「石川正俊:超並列・超高速視覚情報システム−汎用ビジョンチップと階層型光電子ビジョンシステム−,応用物理,Vol.67,No.1,pp.33-38 (1998)」参照)を用いると、以下のような動作が可能になる。
・ 温度変化に起因する焦点距離の変化を画像から検出して、焦点距離を補正すること;
・ 対象物9に対して高速にオートフォーカスを行うこと;
・ 対象の奥行き位置を、いわゆる、「Depth From Focus理論」により検出すること。
なお、「Depth from Focus 理論」とは、レンズの焦点距離を変化させ、それぞれの焦点距離で得られた画像を解析することで、物体までの距離を取得するものである。
また、前記した各実施形態における可変焦点レンズを、投射装置用の投射レンズとして用いることも可能である。
(応用例)
前記した各実施形態における可変焦点レンズを用いて、全焦点画像を生成することができる。この方法は、以下のステップにより実現できる。
(1)駆動部20を動作させることによって、焦点位置を変えながら、複数の画像を取得するステップ;
(2)取得された複数の画像を用いて、全焦点画像を生成するステップ。
焦点位置を変えながら画像を取得することにより、各画像における焦点位置を異ならせることができる。つまり、合焦されている位置が、取得された各画像において異なることになる。このような複数の画像を用いることにより、奥行き方向においてボケが少ない画像、すなわち、いわゆる全焦点画像を得ることができる。
前記した実施形態における可変焦点レンズでは、焦点位置の変更を高速に行うことが可能なので、結果的に、全焦点画像を高速で生成することが可能になる。
例えば、実験的には、本発明の原理を用いた可変焦点レンズを用いて、1秒間あたり8000枚の速さで、焦点位置を変えながら、画像を取得できている。すると、計算時間を考えても、1000枚/秒の割合で全焦点画像を生成することが可能であると考えられる。なお、全焦点画像の生成手法自体は、従来から知られているアルゴリズムを用いることができるので、これについての詳しい説明は省略する。
なお、前記実施形態及び実施例の記載は単なる一例に過ぎず、本発明に必須の構成を示したものではない。各部の構成は、本発明の趣旨を達成できるものであれば、上記に限らない。
従来の可変焦点レンズの概略的な構造を示す説明図である。図(a)は、初期状態を示す。図(b)は、第1液を若干押圧した状態を示す。図(c)は、第1液をさらに押圧した状態を示す。 本発明の第1実施形態に係る可変焦点レンズの概略的な横断面図である。 図2の要部を拡大した説明図である。 第1実施形態のレンズを製造するプロセスを説明するためのフローチャートである。 第2実施形態のレンズの要部を説明するための説明図である。 第3実施形態のレンズの要部を説明するための説明図である。 第4実施形態のレンズの要部を説明するための説明図である。 第5実施形態に係る可変焦点レンズの要部の構成を示すための説明図である。図(a)は仕切部の斜視図である。図(b)は貫通孔の開口端部分の拡大図である。 第5実施形態に係る可変焦点レンズの動作を説明するための説明図である。図(a)は、一つの開口端のみで界面を保持した例である。図(b)は二つの開口端で界面を保持した例である。 第6実施形態に係る可変焦点レンズの原理を説明するための説明図である。図(a)は、低温時の媒質の状態を示す。図(b)は、高温時において体積が増加した媒質を示す。図(c)は、負膨張率物質を混合した媒質を示す。図(d)は、高温時において負膨張率物質が収縮している状態を示す。 第7実施形態に係る可変焦点レンズを説明するための説明図である。 第8実施形態に係る撮像装置を示すためのブロック図である。
7 可変焦点レンズ
8 画像センサ
9 対象物
10 収容部
11 収容空間
111 第1空間
112 第2空間
12 第1壁部
121 第1窓部
13 第2壁部
131 第2窓部
14 仕切部
141 第1表面
142 貫通孔
1421 周縁部
143 基板
144 マスク部(薄膜部)
20 駆動部
21 ピエゾ素子
30 第1媒質
40 第2媒質
50 制御部
60 駆動ステージ
70 界面
80 負の熱膨張率を有する物質
90 第3媒質

Claims (16)

  1. 収容部と、駆動部と、第1媒質と、第2媒質とを備えており、
    前記収容部は、収容空間と、第1壁部と、第2壁部と、仕切部を備えており、
    前記収容空間は、前記第1壁部と前記第2壁部との間に配置されており、
    かつ、前記第1壁部と前記第2壁部とは、前記収容空間を挟んで対向するように配置されており、
    前記第1壁部は、光を透過させる第1窓部を備えており、
    前記第2壁部は、前記第1窓部を透過した光をさらに透過させる第2窓部を備えており、
    前記仕切部は、前記収容空間を仕切ることで、第1空間と第2空間とを形成する構成となっており、
    前記仕切部は、第1表面と、貫通孔とを備えており、
    前記第1表面は、前記仕切部の表面における少なくとも一部を構成しており、
    かつ、前記第1表面は、一つの仮想的な平坦面内に配置されており、
    前記貫通孔は、前記第1表面を貫通し、かつ、前記仕切部を貫通するように形成されており、
    前記貫通孔は、前記第1窓部を透過した光が前記第2窓部に向かう光路上に配置されており、
    かつ、前記貫通孔は、前記第1窓部を透過した光を透過させる構成となっており、
    前記貫通孔の開口端を構成する周縁部は、前記第1表面の端部に配置されており、
    前記第1媒質と前記第2媒質とは、接触状態において互いに混合しない材質とされており、
    かつ、前記第1媒質と前記第2媒質の屈折率は、互いに異なるものとされており、
    前記第1媒質は、前記第1空間中に収容されており、
    前記第2媒質は、前記第2空間中に収容されており、
    前記第1媒質と前記第2媒質とは、互いに接触させられており、
    前記第1媒質と前記第2媒質との間における界面の外周は、前記貫通孔における前記周縁部に位置しており、
    前記駆動部は、前記第1媒質又は前記第2媒質の圧力又は体積を変動させることにより、前記界面の曲率を変化させる構成となっている
    ことを特徴とする可変焦点レンズ。
  2. 前記第1媒質及び前記第2媒質は、いずれも液体である
    ことを特徴とする請求項1に記載の可変焦点レンズ。
  3. 前記第1媒質の密度と、前記第2媒質の密度とは、実質的に等しい
    ことを特徴とする請求項2に記載の可変焦点レンズ。
  4. 前記駆動部は、前記第1媒質と前記第2媒質に対して直接又は間接に振動を加えるピエゾ素子を用いて構成されている
    ことを特徴とする、請求項1〜3のいずれか1項に記載の可変焦点レンズ。
  5. 前記ピエゾ素子自体の位置を調整するための調整ステージをさらに備えた
    ことを特徴とする請求項4に記載の可変焦点レンズ。
  6. 前記仕切部は、基板とマスク部とを備えており、
    前記マスク部は、前記基板の表面上に配置されており、
    前記貫通孔は、フォトリソグラフィを用いて、前記基板と前記マスク部とを貫通するように形成されており、
    前記第1表面は、前記マスク部の表面によって構成されている
    ことを特徴とする請求項1〜5のいずれか1項に記載の可変焦点レンズ。
  7. 前記貫通孔は、前記仕切部の表面を平坦面に加工することによって前記第1表面を形成した後、前記第1表面に穴開け加工を行うことによって形成されたものである
    ことを特徴とする請求項1〜5のいずれか1項に記載の可変焦点レンズ。
  8. 前記仕切部は、基板と薄膜部とを備えており、
    前記貫通孔は、前記基板と前記薄膜部とを貫通するように形成されており、
    前記第1表面は、前記薄膜部の表面により構成されており、
    前記貫通孔に面する前記薄膜部の周縁部は、前記基板よりも、前記貫通孔の内側方向に突出するように形成されている
    ことを特徴とする請求項2に記載の可変焦点レンズ。
  9. 前記第1媒質又は前記第2媒質には、負の熱膨張率を持つ物質が混合されている
    ことを特徴とする請求項1〜8のいずれか1項に記載の可変焦点レンズ。
  10. さらに第3媒質を備えており、
    前記第3媒質は、前記第1媒質及び前記第2媒質のうちの一方と前記駆動部との間に配置されており、
    前記駆動部は、前記第3媒質を介して、前記一方の媒質に振動を加える構成となっており、
    かつ、前記第3媒質は、前記一方の媒質よりも低い圧縮率を有している
    ことを特徴とする請求項1〜9のいずれか1項に記載の可変焦点レンズ。
  11. さらに第3媒質を備えており、
    前記第3媒質は、前記第1媒質及び前記第2媒質のうちの一方と前記駆動部との間に配置されており、
    前記駆動部は、前記第3媒質を介して、前記一方の媒質に振動を加える構成となっており、
    かつ、前記第3媒質は、前記一方の媒質よりも低い熱膨張率を有している
    ことを特徴とする請求項1〜9のいずれか1項に記載の可変焦点レンズ。
  12. 請求項1に記載の可変焦点レンズの製造方法であって、以下を含む:
    (1)前記仕切部における前記第1表面を平坦面に加工するステップ;
    (2)その後に、前記第1表面に前記貫通孔を形成することにより、前記周縁部を形成するステップ。
  13. 請求項1に記載の可変焦点レンズの製造方法であって、前記第1媒質及び前記第2媒質は流動体とされており、かつ、この製造方法は、以下を含む:
    (1)前記前記第1空間に前記第1媒質を充填するステップ;
    (2)前記第1媒質で反射される光学像を、前記貫通孔を介して視認するステップ;
    (3)前記光学像の倍率が変更されたときに、前記第1媒質の充填を停止し、その後、前記第2媒質を充填するステップ。
  14. 請求項1〜11のいずれか1項に記載された可変焦点レンズを備えた撮像装置。
  15. 請求項1〜11のいずれか1項に記載された可変焦点レンズを備えた投射装置。
  16. 請求項1〜11のいずれか1項に記載された可変焦点レンズを用いた、全焦点画像の生成方法であって、以下のステップを備える:
    (1)前記駆動部を動作させることによって、焦点位置を変えながら、複数の画像を取得するステップ;
    (2)前記複数の画像を用いて、全焦点画像を生成するステップ。
JP2009021440A 2008-02-15 2009-02-02 可変焦点レンズ Active JP5419005B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021440A JP5419005B2 (ja) 2008-02-15 2009-02-02 可変焦点レンズ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008033985 2008-02-15
JP2008033985 2008-02-15
JP2009021440A JP5419005B2 (ja) 2008-02-15 2009-02-02 可変焦点レンズ

Publications (2)

Publication Number Publication Date
JP2009217249A true JP2009217249A (ja) 2009-09-24
JP5419005B2 JP5419005B2 (ja) 2014-02-19

Family

ID=41189105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021440A Active JP5419005B2 (ja) 2008-02-15 2009-02-02 可変焦点レンズ

Country Status (1)

Country Link
JP (1) JP5419005B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141438A (ja) * 2010-01-07 2011-07-21 Fujifilm Corp 可変焦点レンズ及びその駆動方法
WO2011148610A1 (ja) * 2010-05-27 2011-12-01 富士フイルム株式会社 レンズ装置及び撮像装置
JP2012247644A (ja) * 2011-05-27 2012-12-13 Fujifilm Corp 撮像装置
WO2013046934A1 (ja) * 2011-09-30 2013-04-04 株式会社日立ハイテクノロジーズ 光学素子およびその製造方法ならびに形状検査装置
JP2013540280A (ja) * 2010-07-27 2013-10-31 レンセラール ポリテクニック インスティチュート 再構成可能な非振動液体レンズ及びイメージングシステム

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222206A (ja) * 1986-09-24 1994-08-12 Univ Leland Stanford Jr 可変焦点距離レンズ装置
JP2000203036A (ja) * 1999-01-19 2000-07-25 Nec Niigata Ltd インクジェットヘッド製造方法及びその製造装置
JP2001257932A (ja) * 2000-03-09 2001-09-21 Denso Corp 撮像装置
JP2002055286A (ja) * 2000-08-10 2002-02-20 Canon Inc 光学素子及び同光学素子を有した光学装置
WO2003102636A1 (fr) * 2002-06-04 2003-12-11 Masatoshi Ishikawa Lentille a focale variable et organe de commande de lentille
WO2004113963A1 (ja) * 2003-06-17 2004-12-29 Konica Minolta Opto, Inc. 光学素子
JP2005284066A (ja) * 2004-03-30 2005-10-13 Nippon Tenganyaku Kenkyusho:Kk 可変焦点レンズ及び可変焦点レンズを使用した計器並びに表示器
WO2006009514A1 (en) * 2004-07-20 2006-01-26 Agency For Science, Technology And Research Variable focus microlens
JP2007094172A (ja) * 2005-09-29 2007-04-12 Nikon Corp 正立変倍アフォーカル光学系
JP2007519025A (ja) * 2003-07-14 2007-07-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 可変レンズ
WO2008018387A1 (en) * 2006-08-10 2008-02-14 Panasonic Corporation Varifocal lens device
JP2009519498A (ja) * 2005-12-16 2009-05-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 圧電可変焦点流体レンズおよび焦点化の方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222206A (ja) * 1986-09-24 1994-08-12 Univ Leland Stanford Jr 可変焦点距離レンズ装置
JP2000203036A (ja) * 1999-01-19 2000-07-25 Nec Niigata Ltd インクジェットヘッド製造方法及びその製造装置
JP2001257932A (ja) * 2000-03-09 2001-09-21 Denso Corp 撮像装置
JP2002055286A (ja) * 2000-08-10 2002-02-20 Canon Inc 光学素子及び同光学素子を有した光学装置
WO2003102636A1 (fr) * 2002-06-04 2003-12-11 Masatoshi Ishikawa Lentille a focale variable et organe de commande de lentille
WO2004113963A1 (ja) * 2003-06-17 2004-12-29 Konica Minolta Opto, Inc. 光学素子
JP2007519025A (ja) * 2003-07-14 2007-07-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 可変レンズ
JP2005284066A (ja) * 2004-03-30 2005-10-13 Nippon Tenganyaku Kenkyusho:Kk 可変焦点レンズ及び可変焦点レンズを使用した計器並びに表示器
WO2006009514A1 (en) * 2004-07-20 2006-01-26 Agency For Science, Technology And Research Variable focus microlens
JP2007094172A (ja) * 2005-09-29 2007-04-12 Nikon Corp 正立変倍アフォーカル光学系
JP2009519498A (ja) * 2005-12-16 2009-05-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 圧電可変焦点流体レンズおよび焦点化の方法
WO2008018387A1 (en) * 2006-08-10 2008-02-14 Panasonic Corporation Varifocal lens device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013002588; H. Oku, and M. Ishikawa: '"Rapid Liquid Variable-Focus Lens with 2-ms Response"' Lasers and Electro-Optics Society, 2006. LEOS 2006. 19th Annual Meeting of the IEEE , 2006, p. 947-948 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141438A (ja) * 2010-01-07 2011-07-21 Fujifilm Corp 可変焦点レンズ及びその駆動方法
WO2011148610A1 (ja) * 2010-05-27 2011-12-01 富士フイルム株式会社 レンズ装置及び撮像装置
JP2011248148A (ja) * 2010-05-27 2011-12-08 Fujifilm Corp レンズ装置及び撮像装置
US8780450B2 (en) 2010-05-27 2014-07-15 Fujifilm Corporation Lens apparatus and image capturing apparatus
JP2013540280A (ja) * 2010-07-27 2013-10-31 レンセラール ポリテクニック インスティチュート 再構成可能な非振動液体レンズ及びイメージングシステム
JP2013540279A (ja) * 2010-07-27 2013-10-31 レンセラール ポリテクニック インスティチュート ピン止め接触振動液体−液体レンズ及びイメージングシステム
JP2012247644A (ja) * 2011-05-27 2012-12-13 Fujifilm Corp 撮像装置
WO2013046934A1 (ja) * 2011-09-30 2013-04-04 株式会社日立ハイテクノロジーズ 光学素子およびその製造方法ならびに形状検査装置

Also Published As

Publication number Publication date
JP5419005B2 (ja) 2014-02-19

Similar Documents

Publication Publication Date Title
CN100529834C (zh) 双折射光学系统
US7646544B2 (en) Fluidic optical devices
US7369723B1 (en) High speed piezoelectric optical system with tunable focal length
JP5419005B2 (ja) 可変焦点レンズ
Xu et al. Adaptive liquid lens actuated by photo-polymer
TWI677729B (zh) 可變焦距光學元件
Zhou et al. Microelectromechanically-driven miniature adaptive Alvarez lens
Koyama et al. Compact, high-speed variable-focus liquid lens using acoustic radiation force
Hsieh et al. Thin autofocus camera module by a large-stroke micromachined deformable mirror
US20100309560A1 (en) Method for Forming Variable Focus Liquid Lenses in a Tubular Housing
JP2009519498A (ja) 圧電可変焦点流体レンズおよび焦点化の方法
JP2009543152A (ja) ズーム光学系、並びにそれを備えたカメラ及びデバイス
JP2009003053A (ja) コリメータレンズユニット及びこれを備えた光走査装置
TW202006403A (zh) 電潤濕設備
An et al. Spherically encapsulated variable liquid lens on coplanar electrodes
Dirdal et al. MEMS-tunable dielectric metasurface lens using thin-film PZT for large displacements at low voltages
Park et al. Micromachined lens microstages for two-dimensional forward optical scanning
US9541741B2 (en) Zoom lens and image pickup apparatus including a deformable mirror
Kwon et al. Vertical microlens scanner for 3D imaging
Feng et al. Simple-structured capillary-force-dominated tunable-focus liquid lens based on the higher-order-harmonic resonance of a piezoelectric ring transducer
Nakazawa et al. Confocal laser displacement sensor using a micro-machined varifocal mirror
Wang et al. Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror
JP2006138950A (ja) 光学特性可変光学素子、その光偏向作用を検出する検出装置及び光学特性可変光学素子を用いた光学装置
Moghimi et al. Improved micro-optoelectromechanical systems deformable mirror for in vivo optical microscopy
JP4931019B2 (ja) 可変焦点レンズ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Ref document number: 5419005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250