JP2009215769A - Underground water fluidization impediment preventing method, construction method of water passing part for preventing underground water flow impediment, and water passing part constructed by the method - Google Patents

Underground water fluidization impediment preventing method, construction method of water passing part for preventing underground water flow impediment, and water passing part constructed by the method Download PDF

Info

Publication number
JP2009215769A
JP2009215769A JP2008059979A JP2008059979A JP2009215769A JP 2009215769 A JP2009215769 A JP 2009215769A JP 2008059979 A JP2008059979 A JP 2008059979A JP 2008059979 A JP2008059979 A JP 2008059979A JP 2009215769 A JP2009215769 A JP 2009215769A
Authority
JP
Japan
Prior art keywords
soil cement
water
aquifer
flow
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008059979A
Other languages
Japanese (ja)
Other versions
JP4992769B2 (en
Inventor
Yoshihiko Morio
義彦 森尾
Hirotoshi Sei
広歳 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2008059979A priority Critical patent/JP4992769B2/en
Publication of JP2009215769A publication Critical patent/JP2009215769A/en
Application granted granted Critical
Publication of JP4992769B2 publication Critical patent/JP4992769B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow impediment preventing method attaining inexpensive and safe construction and hardly affecting environment. <P>SOLUTION: Round steel pipes 9 reaching the depth deeper than a sand layer 4 are embedded in a soil cement column row wall 1 at predetermined spaces in a wall surface direction. The round steel pipes 9 and the soil cement column row wall 1 at a depth part corresponding to the sand layer 4 are formed with a plurality of slits 6 to form the water passing parts 7 allowing underground water to pass through. Underground water upstream of the soil cement column row wall 1 can thereby pass through the water passing parts 7 of the soil cement column row wall 1 and flow downstream. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、山留め壁が構築された地盤内の地下水の流動阻害防止方法に関するものである。   The present invention relates to a method for preventing the inhibition of groundwater flow in the ground where a retaining wall is constructed.

地下構造物を開削工法等にて構築する際は、遮水性の土留め壁が地盤内に形成され、作業領域内への地下水の浸入を防止している。しかし、土留め壁を形成することにより、地盤内の地下水の流動を阻害するので、土留め壁の下流側に地下水が流れなくなり、下流側の井戸の水位が低下したり、地盤沈下が生じるという問題点があった。そこで、土留め壁の帯水層に位置する部分に開口部を設けて、地下水を下流に流水させている。   When constructing an underground structure by the open-cut method or the like, a water-impervious earth retaining wall is formed in the ground to prevent entry of groundwater into the work area. However, by forming the retaining wall, the flow of groundwater in the ground is obstructed, so that groundwater does not flow downstream of the retaining wall, the water level of the downstream well is lowered, or ground subsidence occurs There was a problem. Therefore, an opening is provided in a portion of the earth retaining wall located in the aquifer to allow the groundwater to flow downstream.

例えば、特許文献1には、帯水層よりも深い所定の深度までの止水壁と、帯水層よりも浅い深度までの壁とからなる土留め壁を形成するとともに、帯水層を含む地盤を凍結させて地下水の流れを遮断し、地下構造物を構築すると、凍結した地盤を解凍して地下水を下流側に流水させる方法が開示されている。   For example, Patent Document 1 forms a retaining wall composed of a water stop wall up to a predetermined depth deeper than the aquifer and a wall up to a depth shallower than the aquifer, and includes the aquifer. When the ground is frozen to block the flow of groundwater and the underground structure is constructed, a method is disclosed in which the frozen ground is thawed and the groundwater flows downstream.

また、特許文献2には、ソイルセメントからなる土留め壁に、その構築時又は構築後に、所望の間隔を隔てて縦向きの作業孔を形成し、その作業孔に水等の衝撃伝達材を注入するとともにプラズマ発生用電力を供給するためのプローブを挿入し、これに電力を供給してプラズマによる衝撃波を発生させて遮水性土留め壁を破砕し、この破砕により生じた隙間を介して地下水を下流側に流水させる方法が開示されている。
特開2000−136528号公報 特開2004−124575号公報
Further, in Patent Document 2, a vertical working hole is formed at a desired interval on the earth retaining wall made of soil cement at the time of or after the construction, and an impact transmission material such as water is formed in the work hole. A probe for supplying power for plasma generation is inserted, and electric power is supplied to generate a shock wave by plasma to crush the impermeable earth retaining wall, and through the gap generated by this crushing, groundwater A method of flowing water downstream is disclosed.
JP 2000-136528 A JP 2004-124575 A

しかしながら、特許文献1に記載の方法では、帯水層を含む広い範囲の地盤を凍結するので、地盤内に生息する生き物や植物に悪影響をおよぼす可能性があるという問題点があった。さらに、広い範囲を長期間にわたって凍結しなければならないので、設備投資費及び維持管理費がかかり、施工費が高くなるという問題点もあった。   However, the method described in Patent Document 1 has a problem in that since a wide range of ground including the aquifer is frozen, it may adversely affect living creatures and plants that inhabit the ground. Furthermore, since a wide range has to be frozen over a long period of time, there is a problem in that capital investment and maintenance costs are incurred and construction costs are high.

また、特許文献2に記載の方法では、プラズマ電力を発生させるための装置が高額なので設備投資費が高くなるという問題点があった。さらに、雨天時等には周囲に漏電する可能性があるという問題点もあった。   Further, the method described in Patent Document 2 has a problem that the equipment investment cost is high because the apparatus for generating plasma power is expensive. In addition, there is a problem that electric leakage may occur in the vicinity when it rains.

そこで、本発明は、上記のような従来の問題に鑑みなされたものであって、環境に与える影響が少なく、かつ、低コストで安全に施工できる流動阻害防止方法を提供することを目的とする。   Then, this invention is made | formed in view of the above conventional problems, It aims at providing the flow inhibition prevention method which has little influence on an environment and can be safely constructed | assembled at low cost. .

前記目的を達成するため、本発明の地下水の流動阻害防止方法は、地盤内の帯水層よりも深くまで構築された山留め壁であって、前記帯水層に達する深度又はそれよりも深い深度まで到達する管が埋設されている当該山留め壁における地下水の流動阻害防止方法において、前記管内に高圧水を噴射可能な破砕機を挿入して、前記帯水層の位置において前記高圧水を噴射することにより、前記帯水層まで貫通する貫通孔を形成する開口工程を備えることを特徴とする。(第1の発明)。   In order to achieve the object, the groundwater flow inhibition preventing method of the present invention is a retaining wall constructed deeper than the aquifer in the ground, and reaches the aquifer or a depth deeper than that. In the method for preventing groundwater flow inhibition in the mountain retaining wall where the pipe reaching the pipe is buried, a crusher capable of injecting high pressure water is inserted into the pipe, and the high pressure water is injected at the position of the aquifer. Thus, an opening step of forming a through hole penetrating to the aquifer is provided. (First invention).

本発明による地下水の流動阻害防止方法によれば、管内に高圧水を噴射可能な破砕機を挿入して、帯水層の位置において高圧水を噴射して帯水層まで貫通する貫通孔を形成することにより、この貫通孔を介して地下水を下流側へ流水させることができる。
そして、管内にて高圧水の噴射を行うので、安全に山留め壁及び管に貫通孔を形成することができる。
さらに、高圧水を作成する装置は、一般的なもので、入手性が良く、安価なので、設備投資費を低減することができる。
According to the method for preventing the inhibition of groundwater flow according to the present invention, a crusher capable of injecting high-pressure water is inserted into the pipe, and a through-hole penetrating to the aquifer is formed by injecting high-pressure water at the aquifer By doing, groundwater can be made to flow downstream through this through-hole.
And since high pressure water is injected in a pipe | tube, a through-hole can be formed in a mountain retaining wall and a pipe | tube safely.
Furthermore, since the apparatus for producing high-pressure water is a general one, readily available, and inexpensive, the capital investment cost can be reduced.

第2の発明は、第1の発明において、前記開口工程では前記管及び前記山留め壁を貫通する貫通孔を形成することを特徴とする。
本発明による地下水の流動阻害防止方法によれば、管及び山留め壁に貫通孔を形成することができる。
A second invention is characterized in that, in the first invention, a through-hole penetrating the pipe and the retaining wall is formed in the opening step.
According to the groundwater flow inhibition preventing method according to the present invention, a through hole can be formed in a pipe and a retaining wall.

第3の発明は、第1の発明において、前記管は前記帯水層の位置に開口部を有し、前記開口工程ではその前記開口部を介して前記山留め壁を貫通する貫通孔を形成することを特徴とする。
本発明による地下水の流動阻害防止方法によれば、山留め壁に貫通孔を形成することができる。
According to a third invention, in the first invention, the pipe has an opening at the position of the aquifer, and in the opening step, a through-hole penetrating the retaining wall is formed through the opening. It is characterized by that.
According to the groundwater flow inhibition preventing method according to the present invention, a through hole can be formed in a retaining wall.

第4の発明は、第1〜3のいずれかの発明において、前記破砕機を、前記管の内周面をガイドにして前記管内を移動させることを特徴とする。
本発明による地下水の流動阻害防止方法によれば、破砕機は、管の内周面をガイドにして管内を上下方向及び周方向に移動するので、貫通孔の位置、大きさ等を精度良く形成することができる。
A fourth invention is characterized in that, in any one of the first to third inventions, the crusher is moved in the pipe by using the inner peripheral surface of the pipe as a guide.
According to the groundwater flow inhibition preventing method according to the present invention, the crusher moves in the pipe in the vertical direction and the circumferential direction with the inner peripheral surface of the pipe as a guide, so that the position, size, etc. of the through hole are accurately formed. can do.

第5の発明は、第1〜4のいずれかの発明において、前記貫通孔を前記帯水層の土砂の粒径に応じてその土砂が流入しにくい大きさに形成することを特徴とする。
本発明による地下水の流動阻害防止方法によれば、貫通孔は帯水層の土砂の粒径に応じてその土砂が流入しにくい大きさに形成されるので、帯水層内の土砂はほとんど貫通孔内に流入しない。したがって、貫通孔は目詰まりしにくい。
A fifth invention is characterized in that, in any one of the first to fourth inventions, the through-hole is formed in a size that makes it difficult for the earth and sand to flow in accordance with the grain size of the earth and sand in the aquifer.
According to the method for preventing the inhibition of groundwater flow according to the present invention, the through-hole is formed in a size that makes it difficult for the sediment to flow in according to the particle size of the sediment in the aquifer. Does not flow into the hole. Therefore, the through hole is not easily clogged.

第6の発明は、第1〜5のいずれかの発明において、前記貫通孔をスリット状に形成することを特徴とする。
本発明による地下水の流動阻害防止方法によれば、貫通孔は、スリット状に形成されるので、管は土圧によりつぶされない。
According to a sixth invention, in any one of the first to fifth inventions, the through hole is formed in a slit shape.
According to the groundwater flow inhibition preventing method according to the present invention, since the through hole is formed in a slit shape, the pipe is not crushed by earth pressure.

第7の発明の通水部の構築方法は、地盤内の帯水層よりも深くまで構築された山留め壁であって、前記帯水層に達する深度又はそれよりも深い深度まで到達する管が埋設されている当該山留め壁に地下水の流動阻害を防止するための通水部を構築する通水部の構築方法において、前記管内に高圧水を噴射可能な破砕機を挿入して、前記帯水層の位置において前記高圧水を噴射することにより、前記帯水層まで貫通する貫通孔を形成する開口工程を備えることを特徴とする。   According to a seventh aspect of the present invention, there is provided a method for constructing a water flow portion, which is a mountain retaining wall constructed deeper than an aquifer in the ground, and a pipe reaching a depth reaching the aquifer or deeper than that. In the construction method of the water flow section for building a water flow section for preventing the flow inhibition of groundwater in the buried retaining wall, a crusher capable of injecting high-pressure water is inserted into the pipe, It is characterized by comprising an opening step of forming a through-hole penetrating to the aquifer by injecting the high-pressure water at the position of the layer.

第8の発明の通水部は、第7の発明の通水部の構築方法で構築されることを特徴とする。   The water flow section of the eighth invention is constructed by the construction method of the water flow section of the seventh invention.

本発明の流動阻害防止方法を用いることにより、環境に与える影響が少なく、かつ、低コストで安全に土留め壁で遮断された地下水を下流に流すことができる。   By using the flow inhibition preventing method of the present invention, the influence on the environment is small, and groundwater blocked by a retaining wall can be flowed downstream at a low cost.

以下、本発明の流動阻害防止方法の好ましい実施形態について図面を用いて詳細に説明する。なお、以下の実施形態では、山留め壁であるソイルセメント柱列壁を地山に設置した場合について説明するが、本発明は、RC等の山留め壁全般にも適用することができる。   Hereinafter, preferred embodiments of the flow inhibition preventing method of the present invention will be described in detail with reference to the drawings. In addition, although the following embodiment demonstrates the case where the soil cement pillar row wall which is a mountain retaining wall is installed in a natural ground, this invention is applicable also to mountain retaining walls, such as RC, in general.

図1及び図2は、それぞれ本発明の第一実施形態に係るソイルセメント柱列壁1を示す斜視断面図及び縦断面図である。   1 and 2 are a perspective sectional view and a longitudinal sectional view, respectively, showing a soil cement column wall 1 according to the first embodiment of the present invention.

図1及び図2に示すように、ソイルセメント柱列壁1は、不通水層の粘土層3及び帯水層の砂層4を貫通して不通水層の土丹層5の上部に到達するように構築されている。   As shown in FIGS. 1 and 2, the soil cement column wall 1 penetrates the clay layer 3 of the water-impervious layer and the sand layer 4 of the aquifer layer and reaches the upper part of the Dotan layer 5 of the water-impervious layer. Has been built.

ソイルセメント柱列壁1には、砂層4よりも深い深度まで到達する丸型鋼管9が壁面方向に間隔をおいて埋設されている。   Round steel pipes 9 that reach a depth deeper than the sand layer 4 are embedded in the soil cement column wall 1 at intervals in the wall surface direction.

丸型鋼管9及びソイルセメント柱列壁1の砂層4に相当する深度部分には、スリット6が複数形成されており、このスリット6が地下水の通水可能な通水部7となっている。したがって、ソイルセメント柱列壁1の上流側の地下水は、丸型鋼管9の上流側に形成されているスリット6を通過して丸型鋼管9内に流入し、その後、丸型鋼管9の下流側に形成されたスリット6を通過して、ソイルセメント柱列壁1の下流側に流水することができる。通水部7の設置数等は、設計等により決定され、各現場により異なる。   A plurality of slits 6 are formed in a depth portion corresponding to the sand layer 4 of the round steel pipe 9 and the soil cement column wall 1, and the slit 6 serves as a water passage portion 7 through which groundwater can be passed. Therefore, the groundwater on the upstream side of the soil cement column wall 1 passes through the slit 6 formed on the upstream side of the round steel pipe 9 and flows into the round steel pipe 9, and then downstream of the round steel pipe 9. Passing through the slit 6 formed on the side, water can flow to the downstream side of the soil cement column wall 1. The number of installed water passing portions 7 is determined by design and the like, and varies depending on each site.

なお、本実施形態においては、粘土層3と砂層4と土丹層5とからなる地盤に本発明を適用した場合について説明するが、これに限定されるものではなく、例えば、すべて砂層4、つまり帯水層からなる地盤であっても良い。   In addition, in this embodiment, although the case where this invention is applied to the ground which consists of the clay layer 3, the sand layer 4, and the Dotan layer 5 is demonstrated, it is not limited to this, For example, all the sand layers 4, That is, the ground which consists of an aquifer may be sufficient.

図3〜図8は、本発明の第一実施形態に係るソイルセメント柱列壁1の通水部7の構築手順を示す図である。   3-8 is a figure which shows the construction procedure of the water flow part 7 of the soil cement column wall 1 which concerns on 1st embodiment of this invention.

まず、図3に示すように、単軸又は多軸のアースオーガーにより形成した柱列状の掘削孔にセメントミルクを充填して、土中に土を骨材とするソイルセメント柱列壁1を構築する。
ソイルセメント柱列壁1の下端は、粘土層3及び砂層4を貫通して土丹層5の上部に到達するように構築する。
First, as shown in FIG. 3, cement milk is filled in a columnar drilling hole formed by a single-axis or multi-axis earth auger, and a soil cement column wall 1 having soil as an aggregate in the soil is formed. To construct.
The lower end of the soil cement column wall 1 is constructed so as to penetrate the clay layer 3 and the sand layer 4 and reach the upper part of the Dotan layer 5.

次に、図4に示すように、地上に設置されたクレーン8で、ソイルセメント柱列壁1の所定の位置に丸型鋼管9を建て込む。丸型鋼管9の建て込みは、丸型鋼管9の下端がソイルセメント柱列壁1の下端よりもやや浅い深度に到達するまで行う。丸型鋼管9は、通水部7を形成する予定のソイルセメント柱1aにのみ建て込む。   Next, as shown in FIG. 4, a round steel pipe 9 is installed at a predetermined position of the soil cement column wall 1 with a crane 8 installed on the ground. The round steel pipe 9 is built until the lower end of the round steel pipe 9 reaches a depth slightly shallower than the lower end of the soil cement column wall 1. The round steel pipe 9 is built only in the soil cement pillar 1a which is to form the water flow part 7.

次に、図5に示すように、丸型鋼管9の建て込まれているソイルセメント柱1aに隣接するソイルセメント柱1bにH型鋼10を建て込む。H型鋼10の建て込みは、H型鋼10の下端がソイルセメント柱列壁1の下端よりもやや浅い深度に到達するまで行う。   Next, as shown in FIG. 5, the H-shaped steel 10 is built in the soil cement pillar 1b adjacent to the soil cement pillar 1a in which the round steel pipe 9 is built. The H-shaped steel 10 is built until the lower end of the H-shaped steel 10 reaches a slightly shallower depth than the lower end of the soil cement column wall 1.

次に、図6に示すように、ソイルセメントが硬化した後に、丸型鋼管9内のソイルセメントを掘削機11で破砕して除去する。丸型鋼管9の内周面を破砕機22のガイドとして利用する(後述する)ので、掘削機11でソイルセメントを除去した後、ソイルセメントが丸型鋼管9の内周面に残置されないように、さらに、丸型鋼管9内を洗浄してソイルセメントをできるだけ除去する。   Next, as shown in FIG. 6, after the soil cement is hardened, the soil cement in the round steel pipe 9 is crushed and removed by the excavator 11. Since the inner peripheral surface of the round steel pipe 9 is used as a guide for the crusher 22 (described later), the soil cement is not left on the inner peripheral surface of the round steel pipe 9 after the soil cement is removed by the excavator 11. Further, the inside of the round steel pipe 9 is washed to remove as much soil cement as possible.

次に、図7に示すように、ソイルセメントを除去した丸型鋼管9内に高圧水を噴射可能な破砕機22を挿入し、砂層4に相当する深度の丸型鋼管9及びソイルセメント柱列壁1に高圧水を噴射して、これらを貫通するスリット6を形成する。   Next, as shown in FIG. 7, a crusher 22 capable of injecting high-pressure water is inserted into the round steel pipe 9 from which the soil cement has been removed, and the round steel pipe 9 and the soil cement column array having a depth corresponding to the sand layer 4 are inserted. High-pressure water is sprayed onto the wall 1 to form slits 6 penetrating therethrough.

破砕機22は、棒状で、両端から高圧水を噴射可能なノズル14と、このノズル14に高圧水を供給する水供給手段18と、ノズル14に研磨材を供給する研磨材供給手段13とを備えている。
ノズル14は、その長さが丸型鋼管9の内径よりもわずかに短く、両端に噴射口を有しており、両端から同時に高圧水を噴射するので、対向する向きの2箇所に同時にスリット6を形成することができる。なお、ノズル14は、送給管21に脱着可能であり、丸型鋼管9の内径に対応した長さのものを取り付ける。
水供給手段18は、水を貯留するための水用タンク19と、水用タンク19内の水をノズル14に送給管21を介して圧送するための圧入ポンプ20とから構成されている。
研磨材供給手段13は、研磨材を貯蔵するための研磨材用タンク16と、研磨材用タンク16内の研磨材をノズル14に送給管17を介して圧送するためのエアーコンプレッサー15とから構成されている。
The crusher 22 has a rod-like nozzle 14 capable of injecting high-pressure water from both ends, a water supply means 18 for supplying high-pressure water to the nozzle 14, and an abrasive supply means 13 for supplying an abrasive to the nozzle 14. I have.
The nozzle 14 has a length slightly shorter than the inner diameter of the round steel pipe 9 and has injection ports at both ends, and simultaneously injects high-pressure water from both ends. Can be formed. The nozzle 14 is detachable from the feed pipe 21 and is attached with a length corresponding to the inner diameter of the round steel pipe 9.
The water supply means 18 includes a water tank 19 for storing water, and a press-fitting pump 20 for pressure-feeding the water in the water tank 19 to the nozzle 14 via the feed pipe 21.
The abrasive material supply means 13 includes an abrasive material tank 16 for storing the abrasive material, and an air compressor 15 for pressure-feeding the abrasive material in the abrasive material tank 16 to the nozzle 14 via the supply pipe 17. It is configured.

次に、スリット6の形成方法について説明する。
まず、図7に示すように、丸型鋼管9内の砂層4の下端深度付近まで挿入されたノズル14を、この丸型鋼管9をガイドにして地上側へ一定の速度で引き上げつつ、高圧水を所定の時間間隔で、所定の時間だけ噴射して丸型鋼管9及びソイルセメント柱列壁1aを貫通するスリット6を複数形成する。
Next, a method for forming the slit 6 will be described.
First, as shown in FIG. 7, the nozzle 14 inserted to the vicinity of the lower end depth of the sand layer 4 in the round steel pipe 9 is pulled up to the ground side at a constant speed using the round steel pipe 9 as a guide, Are injected at predetermined time intervals for a predetermined time to form a plurality of slits 6 penetrating the round steel pipe 9 and the soil cement column wall 1a.

本実施形態においては、高圧水の噴射圧力は、例えば、2000kg/cmとしたが、この値に限定されるものではなく、丸型鋼管9の肉厚、ソイルセメント柱列壁1aの太さ等により適宜決定される。 In this embodiment, the injection pressure of the high-pressure water is, for example, 2000 kg / cm 2 , but is not limited to this value, and the thickness of the round steel pipe 9 and the thickness of the soil cement column wall 1a It is determined as appropriate.

次に、図8に示すように、ノズル14が砂層4の上端深度付近まで到達したら、ノズル14を、この丸型鋼管9をガイドにして丸型鋼管9の周方向に所定の角度(例えば、15°)だけ回転させる。その後、ノズル14を丸型鋼管9内の底側へ一定の速度で降下させつつ、引き上げ時と同様に、高圧水を所定の時間間隔で、所定の時間だけ噴射してスリット6を複数形成する。   Next, as shown in FIG. 8, when the nozzle 14 reaches the vicinity of the upper end depth of the sand layer 4, the nozzle 14 is moved to a predetermined angle (for example, in the circumferential direction of the round steel pipe 9 using the round steel pipe 9 as a guide). Rotate by 15 °). Thereafter, while lowering the nozzle 14 toward the bottom of the round steel pipe 9 at a constant speed, a plurality of slits 6 are formed by injecting high-pressure water at a predetermined time interval for a predetermined time as in the case of pulling up. .

そして、ノズル14が砂層4の下端深度付近まで到達したら、ノズル14を上記角度だけ回転させて、再び、地上側へ一定の速度で引き上げつつ、高圧水を噴射してスリット6を形成する。   When the nozzle 14 reaches the vicinity of the lower end depth of the sand layer 4, the nozzle 14 is rotated by the above-mentioned angle, and the high-pressure water is jetted again to form the slit 6 while being pulled up to the ground side at a constant speed.

上述したように、砂層4に相当する深度部分の範囲内にノズル14を上下させるとともに、丸型鋼管9の周方向に所定の角度ずつ回転させて、丸型鋼管9及びソイルセメント柱列壁1aにスリット6を形成する作業を、あらかじめ地質調査等により取得された地下水の流量に基づいて設計等により決定されているスリット6の開口率に達するまで繰り返す。   As described above, the nozzle 14 is moved up and down within the range of the depth portion corresponding to the sand layer 4, and the round steel pipe 9 and the soil cement column wall 1a are rotated by a predetermined angle in the circumferential direction of the round steel pipe 9. The process of forming the slit 6 is repeated until the opening ratio of the slit 6 determined by design or the like is reached based on the flow rate of groundwater acquired in advance by a geological survey or the like.

また、スリット6の幅は、砂層4内の土砂の粒径に応じてその土砂が流入しにくい程度の大きさに開口率を決定する際に、同時に設計等に基づいて適宜決定する。このスリット6の幅は、ノズル14の噴射口の開閉程度により調整される。   Further, the width of the slit 6 is appropriately determined based on the design and the like at the same time when the opening ratio is determined to a size that makes it difficult for the earth and sand to flow in accordance with the particle size of the earth and sand in the sand layer 4. The width of the slit 6 is adjusted by the degree of opening and closing of the nozzle 14.

砂層4に相当する深度部分に複数のスリット6からなる通水部7を設けることにより、ソイルセメント柱列壁1の上流側に位置する砂層4内の地下水は、丸型鋼管9の上流側に形成されている丸型鋼管9内及びソイルセメント柱列壁1a内のスリット6を通過して丸型鋼管9内に流入し、その後、丸型鋼管9の下流側に形成された丸型鋼管9内及びソイルセメント柱列壁1a内のスリット6を通過して、ソイルセメント柱列壁1の下流側に位置する砂層4内に流れる。   By providing a water flow portion 7 composed of a plurality of slits 6 at a depth corresponding to the sand layer 4, the groundwater in the sand layer 4 located upstream of the soil cement column wall 1 is upstream of the round steel pipe 9. It passes through the formed round steel pipe 9 and the slit 6 in the soil cement column wall 1 a and flows into the round steel pipe 9, and then the round steel pipe 9 formed on the downstream side of the round steel pipe 9. It passes through the slit 6 in the inner and soil cement column wall 1a and flows into the sand layer 4 located on the downstream side of the soil cement column wall 1.

以上説明した本発明の第一実施形態における流動阻害防止方法によれば、砂層4に相当する深度部分の丸型鋼管9及びソイルセメント柱列壁1aに高圧水を噴射して砂層4まで貫通するスリット6を形成することにより、このスリット6を介して地下水を下流側へ流水させることができる。また、丸型鋼管9内で高圧水を噴射させるので、安全に丸型鋼管9及びソイルセメント柱列壁1aにスリット6を形成することができる。   According to the flow inhibition preventing method in the first embodiment of the present invention described above, high-pressure water is injected into the round steel pipe 9 and the soil cement column wall 1a at the depth corresponding to the sand layer 4 to penetrate to the sand layer 4. By forming the slit 6, the groundwater can flow downstream through the slit 6. Moreover, since high pressure water is injected in the round steel pipe 9, the slit 6 can be safely formed in the round steel pipe 9 and the soil cement column wall 1a.

また、スリット6の幅は、砂層4の土砂の粒径に応じてその土砂が流入しにくい大きさに開口され、砂層4内の土砂はほとんどスリット6内に流入しないので、スリット6は目詰まりしにくい。   The width of the slit 6 is opened to a size that makes it difficult for the earth and sand to flow in accordance with the particle size of the sand and sand. Hard to do.

そして、破砕機22は、丸型鋼管9の内周面をガイドにして移動するので、スリット6の位置、長さ等を精度良く形成することができる。さらに、破砕機22及び水供給手段18は、一般的なもので、入手性が良く、安価なので、設備投資費を低減することができる。   And since the crusher 22 moves using the inner peripheral surface of the round steel pipe 9 as a guide, the position, length, etc. of the slit 6 can be formed with high accuracy. Furthermore, since the crusher 22 and the water supply means 18 are general, are easily available, and are inexpensive, the capital investment cost can be reduced.

次に、本発明の他の実施形態について説明する。以下の説明において、上記の実施形態に対応する部分には同一の符号を付して説明を省略し、主に相違点について説明する。   Next, another embodiment of the present invention will be described. In the following description, portions corresponding to the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and differences are mainly described.

図9は、本発明の第二実施形態に係るソイルセメント柱列壁31を示す斜視図である。
図9に示すように、ソイルセメント柱列壁31には、第一実施形態で用いた丸型鋼管9よりも径の小さい丸型鋼管32が壁面方向に間隔をおいて埋設されている。
丸型鋼管32及びソイルセメント柱列壁1の砂層4に相当する深度部分には、それぞれスリット33a、33bが複数形成されており、これらのスリット33a、33bが地下水の通水可能な通水部34となっている。
FIG. 9 is a perspective view showing a soil cement column wall 31 according to the second embodiment of the present invention.
As shown in FIG. 9, round steel pipes 32 having a diameter smaller than that of the round steel pipe 9 used in the first embodiment are embedded in the soil cement column wall 31 at intervals in the wall surface direction.
A plurality of slits 33a and 33b are formed in the depth portions corresponding to the sand layer 4 of the round steel pipe 32 and the soil cement column wall 1, and these slits 33a and 33b allow water to flow through groundwater. 34.

次に、ソイルセメント柱列壁31の構築方法について説明する。
図10〜図13は、本実施形態に係るソイルセメント柱列壁31の通水部34の構築手順を示す図である。
Next, the construction method of the soil cement column wall 31 will be described.
FIGS. 10-13 is a figure which shows the construction procedure of the water flow part 34 of the soil cement pillar row wall 31 which concerns on this embodiment.

まず、図10に示すように、クレーン8で、ソイルセメント柱列壁31の所定の位置に丸型鋼管32を建て込む。丸型鋼管32は丸型鋼管9よりも径が小さく、砂層4に相当する深度部分には、予めスリット33aが複数設けられている。   First, as shown in FIG. 10, the round steel pipe 32 is installed at a predetermined position of the soil cement column wall 31 with the crane 8. The round steel pipe 32 has a diameter smaller than that of the round steel pipe 9, and a plurality of slits 33a are provided in advance in a depth portion corresponding to the sand layer 4.

丸型鋼管32の建て込みは、第一実施形態と同様に、通水部34を形成する予定のソイルセメント柱31aにのみ行い、また、図11に示すように、丸型鋼管32の建て込まれているソイルセメント柱31aに隣接するソイルセメント柱31bには、H型鋼10を建て込む。そして、丸型鋼管32内のソイルセメントを掘削機11で破砕して除去する。   As with the first embodiment, the round steel pipe 32 is built only on the soil cement column 31a that is to form the water flow portion 34. Also, as shown in FIG. 11, the round steel pipe 32 is built. The H-shaped steel 10 is built in the soil cement column 31b adjacent to the soil cement column 31a. Then, the soil cement in the round steel pipe 32 is crushed and removed by the excavator 11.

次に、図12に示すように、ソイルセメントを除去した丸型鋼管32内に破砕機22のノズル14を挿入し、このノズル14を丸型鋼管32のスリット33aに沿うように地上側へ引き上げつつ、スリット33aを介して高圧水をソイルセメント柱列壁31aに噴射して、スリット33aの設けられている位置に対応する部分のソイルセメント柱列壁31aを貫通するスリット33bを複数形成する。本実施形態においては、高圧水の噴射圧力は、例えば、500kg/cmとしたが、この値に限定されるものではなく、ソイルセメント柱列壁31aの太さ等により適宜決定される。なお、ソイルセメント柱列壁31aのみを貫通すればよいので、高圧水に研磨材を混合しなくてもよい。 Next, as shown in FIG. 12, the nozzle 14 of the crusher 22 is inserted into the round steel pipe 32 from which the soil cement has been removed, and the nozzle 14 is pulled up to the ground side along the slit 33a of the round steel pipe 32. Meanwhile, high-pressure water is sprayed onto the soil cement column wall 31a through the slits 33a to form a plurality of slits 33b penetrating through the portion of the soil cement column wall 31a corresponding to the position where the slits 33a are provided. In the present embodiment, the injection pressure of the high-pressure water is, for example, 500 kg / cm 2 , but is not limited to this value, and is appropriately determined depending on the thickness of the soil cement column wall 31a. In addition, since it is only necessary to penetrate the soil cement column wall 31a, it is not necessary to mix the abrasive with the high-pressure water.

次に、図13に示すように、ノズル14が砂層4の上端深度付近まで到達したら、ノズル14を隣接するスリット33aの位置まで所定の角度だけ回転させる。その後、そのスリット33aに沿うように丸型鋼管32内の底側へ降下させつつ、引き上げ時と同様に、スリット33aを介して高圧水をソイルセメント柱列壁31aに噴射してスリット33bを複数形成する。   Next, as shown in FIG. 13, when the nozzle 14 reaches the vicinity of the upper end depth of the sand layer 4, the nozzle 14 is rotated by a predetermined angle to the position of the adjacent slit 33a. Thereafter, while descending to the bottom of the round steel pipe 32 along the slit 33a, a plurality of slits 33b are formed by injecting high-pressure water onto the soil cement column wall 31a through the slits 33a in the same manner as when pulling up. Form.

そして、ノズル14が砂層4の下端深度付近まで到達したら、ノズル14を上記角度だけ回転させて、再び、地上側へ引き上げつつ、高圧水を噴射してスリット33bを形成する。   When the nozzle 14 reaches the vicinity of the lower end depth of the sand layer 4, the nozzle 14 is rotated by the above-mentioned angle, and the high pressure water is jetted again while forming the slit 33 b while pulling up again to the ground side.

上述したように、砂層4に相当する深度部分の範囲内にノズル14を上下させるとともに、丸型鋼管32の周方向に所定の角度ずつ回転させて、スリット33aを介して高圧水をソイルセメント柱列壁31aに噴射し、スリット33bを形成する作業を繰り返す。   As described above, the nozzle 14 is moved up and down within the range of the depth portion corresponding to the sand layer 4 and rotated by a predetermined angle in the circumferential direction of the round steel pipe 32 so that the high pressure water is supplied to the soil cement column through the slit 33a. The operation of spraying on the row wall 31a to form the slit 33b is repeated.

以上説明した本発明の第二実施形態における流動阻害防止方法によれば、砂層4に相当する深度部分のソイルセメント柱列壁31aに高圧水を噴射して砂層4まで貫通するスリット33bを形成することにより、地下水を下流側へ流水させることができる。   According to the flow inhibition preventing method in the second embodiment of the present invention described above, the slit 33b penetrating to the sand layer 4 is formed by injecting high-pressure water onto the soil cement column wall 31a at the depth corresponding to the sand layer 4. By this, groundwater can be made to flow downstream.

また、丸型鋼管32には予めスリット33aが設けられており、ソイルセメント柱列壁31aにのみスリット33bを形成するので、第一実施形態よりも高圧水の吐出圧を低くすることができる。したがって、小型の水供給手段18を使用することができる。   Moreover, since the slit 33a is previously provided in the round steel pipe 32 and the slit 33b is formed only in the soil cement column wall 31a, the discharge pressure of high-pressure water can be made lower than in the first embodiment. Therefore, a small water supply means 18 can be used.

そして、丸型鋼管32は、ノズル14を挿入できる程度の径を有するものであればよいので、小さい径の鋼管を用いることができる。また、小さい径の鋼管は、安価なので材料費を削減することができる。   And since the round steel pipe 32 should just have a diameter which can insert the nozzle 14, a steel pipe with a small diameter can be used. In addition, since the steel pipe having a small diameter is inexpensive, the material cost can be reduced.

なお、上述した各実施形態においては、縦方向にスリット6、33a、33bを形成する場合について説明したが、これに限定されるものではなく、図14及び図15に示すように、横方向のスリット41や斜め方向のスリット51を形成してもよい。また、スリット6、33a、33b、41、51の形状も丸形や角形でもよく、形状は問わない。   In each of the above-described embodiments, the case where the slits 6, 33a, 33b are formed in the vertical direction has been described. However, the present invention is not limited to this, and as illustrated in FIGS. You may form the slit 41 and the slit 51 of the diagonal direction. The shapes of the slits 6, 33a, 33b, 41, 51 may be round or square, and the shape is not limited.

なお、上述した各実施形態においては、ソイルセメント柱列壁1に埋設されている管として丸型鋼管9、32を用いた場合について説明したが、材質は鋼材に限定されるものではなく、塩ビやプラスチックからなる管を用いてもよい。   In each of the above-described embodiments, the case where the round steel pipes 9 and 32 are used as the pipes embedded in the soil cement column wall 1 has been described. However, the material is not limited to steel, and polyvinyl chloride is used. Alternatively, a tube made of plastic may be used.

なお、上述した各実施形態においては、ソイルセメント柱列壁1に埋設されている管として丸型鋼管9、32を用いた場合について説明したが、形状は丸型に限定されるものではなく、角形等の多角形の管を用いてもよい。   In addition, in each embodiment mentioned above, although the case where round steel pipes 9 and 32 were used as a pipe embedded in soil cement column wall 1 was explained, the shape is not limited to a round shape. A polygonal tube such as a square may be used.

本発明の第一実施形態に係るソイルセメント柱列壁を示す斜視図である。It is a perspective view which shows the soil cement pillar row wall which concerns on 1st embodiment of this invention. 本実施形態に係るソイルセメント柱列壁を示す縦断面図である。It is a longitudinal cross-sectional view which shows the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の通水部の構築手順を示す図である。It is a figure which shows the construction procedure of the water flow part of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の通水部の構築手順を示す図である。It is a figure which shows the construction procedure of the water flow part of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の通水部の構築手順を示す図である。It is a figure which shows the construction procedure of the water flow part of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の通水部の構築手順を示す図である。It is a figure which shows the construction procedure of the water flow part of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の通水部の構築手順を示す図である。It is a figure which shows the construction procedure of the water flow part of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の通水部の構築手順を示す図である。It is a figure which shows the construction procedure of the water flow part of the soil cement pillar row wall which concerns on this embodiment. 本発明の第二実施形態に係るソイルセメント柱列壁を示す斜視図である。It is a perspective view which shows the soil cement column wall which concerns on 2nd embodiment of this invention. 本実施形態に係るソイルセメント柱列壁の通水部の構築手順を示す図である。It is a figure which shows the construction procedure of the water flow part of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の通水部の構築手順を示す図である。It is a figure which shows the construction procedure of the water flow part of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の通水部の構築手順を示す図である。It is a figure which shows the construction procedure of the water flow part of the soil cement pillar row wall which concerns on this embodiment. 本実施形態に係るソイルセメント柱列壁の通水部の構築手順を示す図である。It is a figure which shows the construction procedure of the water flow part of the soil cement pillar row wall which concerns on this embodiment. スリットの他の形状を示す図である。It is a figure which shows the other shape of a slit. スリットの他の形状を示す図である。It is a figure which shows the other shape of a slit.

符号の説明Explanation of symbols

1 ソイルセメント柱列壁
1a、1b ソイルセメント柱
3 粘土層
4 砂層
5 土丹層
6 スリット
7 通水部
8 クレーン
9 丸型鋼管
10 H型鋼
11 掘削機
13 研磨材供給手段
14 ノズル
15 エアーコンプレッサー
16 研磨材用タンク
17 送給管
18 水供給手段
19 水用タンク
20 圧入ポンプ
21 送給管
22 破砕機
31 ソイルセメント柱列壁
31a、31b ソイルセメント柱
32 丸型鋼管
33a、33b、41、51 スリット
34 通水部
DESCRIPTION OF SYMBOLS 1 Soil cement pillar row wall 1a, 1b Soil cement pillar 3 Clay layer 4 Sand layer 5 Dotan layer 6 Slit 7 Water flow part 8 Crane 9 Round steel pipe 10 H-type steel 11 Excavator 13 Abrasive supply means 14 Nozzle 15 Air compressor 16 Abrasive material tank 17 Feed pipe 18 Water supply means 19 Water tank 20 Press-in pump 21 Feed pipe 22 Crusher 31 Soil cement column wall 31a, 31b Soil cement pillar 32 Round steel pipe 33a, 33b, 41, 51 Slit 34 Water passage

Claims (8)

地盤内の帯水層よりも深くまで構築された山留め壁であって、前記帯水層に達する深度又はそれよりも深い深度まで到達する管が埋設されている当該山留め壁における地下水の流動阻害防止方法において、
前記管内に高圧水を噴射可能な破砕機を挿入して、前記帯水層の位置において前記高圧水を噴射することにより、前記帯水層まで貫通する貫通孔を形成する開口工程を備えることを特徴とする地下水の流動阻害防止方法。
Preventing the inhibition of groundwater flow in the retaining wall, which is constructed to be deeper than the aquifer in the ground and in which a pipe reaching the depth of the aquifer or a pipe reaching the depth is embedded. In the method
Inserting a crusher capable of injecting high-pressure water into the pipe and injecting the high-pressure water at the position of the aquifer, thereby providing an opening step for forming a through-hole penetrating to the aquifer. A characteristic groundwater flow inhibition prevention method.
前記開口工程では前記管及び前記山留め壁を貫通する貫通孔を形成することを特徴とする請求項1に記載の地下水の流動阻害防止方法。   The method for preventing flow of groundwater according to claim 1, wherein in the opening step, a through-hole penetrating the pipe and the retaining wall is formed. 前記管は前記帯水層の位置に開口部を有し、前記開口工程ではその前記開口部を介して前記山留め壁を貫通する貫通孔を形成することを特徴とする請求項1に記載の地下水の流動阻害防止方法。   2. The groundwater according to claim 1, wherein the pipe has an opening at the position of the aquifer, and in the opening step, a through-hole penetrating the mountain retaining wall is formed through the opening. Flow inhibition prevention method. 前記破砕機を、前記管の内周面をガイドにして前記管内を移動させることを特徴とする請求項1〜3のいずれかに記載の地下水の流動阻害防止方法。   The method for preventing the inhibition of groundwater flow according to any one of claims 1 to 3, wherein the crusher is moved in the pipe using the inner peripheral surface of the pipe as a guide. 前記貫通孔を前記帯水層の土砂の粒径に応じてその土砂が流入しにくい大きさに形成することを特徴とする請求項1〜4のいずれかに記載の地下水の流動阻害防止方法。   The method for preventing inhibition of groundwater flow according to any one of claims 1 to 4, wherein the through-hole is formed in a size that makes it difficult for sediment to flow in according to the particle size of the sediment in the aquifer. 前記貫通孔をスリット状に形成することを特徴とする請求項1〜5のいずれかに記載の地下水の流動阻害防止方法。   The method for preventing flow of groundwater according to any one of claims 1 to 5, wherein the through hole is formed in a slit shape. 地盤内の帯水層よりも深くまで構築された山留め壁であって、前記帯水層に達する深度又はそれよりも深い深度まで到達する管が埋設されている当該山留め壁に地下水の流動阻害を防止するための通水部を構築する通水部の構築方法において、
前記管内に高圧水を噴射可能な破砕機を挿入して、前記帯水層の位置において前記高圧水を噴射することにより、前記帯水層まで貫通する貫通孔を形成する開口工程を備えることを特徴とする通水部の構築方法。
A mountain retaining wall constructed deeper than the aquifer in the ground, which has a depth reaching the aquifer or a pipe that reaches a depth deeper than that. In the construction method of the water flow part to build the water flow part to prevent,
Inserting a crusher capable of injecting high-pressure water into the pipe and injecting the high-pressure water at the position of the aquifer, thereby providing an opening step for forming a through-hole penetrating to the aquifer. The construction method of the water flow section.
請求項7に記載の通水部の構築方法で構築されることを特徴とする通水部。   A water flow part constructed by the method for constructing a water flow part according to claim 7.
JP2008059979A 2008-03-10 2008-03-10 Method for preventing fluidization inhibition of groundwater, Construction method of water flow section preventing inhibition of groundwater flow Expired - Fee Related JP4992769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008059979A JP4992769B2 (en) 2008-03-10 2008-03-10 Method for preventing fluidization inhibition of groundwater, Construction method of water flow section preventing inhibition of groundwater flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008059979A JP4992769B2 (en) 2008-03-10 2008-03-10 Method for preventing fluidization inhibition of groundwater, Construction method of water flow section preventing inhibition of groundwater flow

Publications (2)

Publication Number Publication Date
JP2009215769A true JP2009215769A (en) 2009-09-24
JP4992769B2 JP4992769B2 (en) 2012-08-08

Family

ID=41187892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059979A Expired - Fee Related JP4992769B2 (en) 2008-03-10 2008-03-10 Method for preventing fluidization inhibition of groundwater, Construction method of water flow section preventing inhibition of groundwater flow

Country Status (1)

Country Link
JP (1) JP4992769B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691294A (en) * 2012-05-15 2012-09-26 安宜建设集团有限公司 Construction method of underground continuous wall
CN105178288A (en) * 2015-07-31 2015-12-23 中铁隧道集团有限公司 Construction method of underground continuous wall below viaduct
JP2021095681A (en) * 2019-12-13 2021-06-24 株式会社竹中工務店 Construction method of structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030228A (en) * 1996-07-17 1998-02-03 Zenitaka Corp Construction method for underground continuous wall and square pipe steel
JPH10121462A (en) * 1996-10-16 1998-05-12 Okumura Corp Formation method of water permeable part in continuous underground wall
JP2000054420A (en) * 1998-08-10 2000-02-22 Shimizu Corp Method of forming water passing part in underground continuous wall
JP2000328561A (en) * 1999-05-19 2000-11-28 Kubota Corp Underground water flowing construction method in soil cement column row earth retaining wall
JP2004176498A (en) * 2002-11-29 2004-06-24 Tenox Corp Continuous underground wall with water passing passage, and method and pipe member for forming water passing passage thereof
JP2006161514A (en) * 2004-12-10 2006-06-22 Konoike Constr Ltd Construction method of securing water permeability of water-bearing layer
JP2008081942A (en) * 2006-09-26 2008-04-10 Shimizu Corp Construction method for water passage portion of underground wall

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030228A (en) * 1996-07-17 1998-02-03 Zenitaka Corp Construction method for underground continuous wall and square pipe steel
JPH10121462A (en) * 1996-10-16 1998-05-12 Okumura Corp Formation method of water permeable part in continuous underground wall
JP2000054420A (en) * 1998-08-10 2000-02-22 Shimizu Corp Method of forming water passing part in underground continuous wall
JP2000328561A (en) * 1999-05-19 2000-11-28 Kubota Corp Underground water flowing construction method in soil cement column row earth retaining wall
JP2004176498A (en) * 2002-11-29 2004-06-24 Tenox Corp Continuous underground wall with water passing passage, and method and pipe member for forming water passing passage thereof
JP2006161514A (en) * 2004-12-10 2006-06-22 Konoike Constr Ltd Construction method of securing water permeability of water-bearing layer
JP2008081942A (en) * 2006-09-26 2008-04-10 Shimizu Corp Construction method for water passage portion of underground wall

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691294A (en) * 2012-05-15 2012-09-26 安宜建设集团有限公司 Construction method of underground continuous wall
CN105178288A (en) * 2015-07-31 2015-12-23 中铁隧道集团有限公司 Construction method of underground continuous wall below viaduct
JP2021095681A (en) * 2019-12-13 2021-06-24 株式会社竹中工務店 Construction method of structure
JP7356889B2 (en) 2019-12-13 2023-10-05 株式会社竹中工務店 Construction method of structure

Also Published As

Publication number Publication date
JP4992769B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
US7854572B2 (en) Piling machine with high-pressure jet spiral bit and its piling method
KR101378814B1 (en) Microfile construction method using the jet grouting
JP6679757B2 (en) Micropile corrugated grout bulb and method of forming the same
CN105821830A (en) Permeation increase siphon drainage system for low-permeability soil slope
JP4867861B2 (en) Method for preventing fluidization inhibition of groundwater, method for constructing retaining wall to prevent inhibition of groundwater flow, retaining wall constructed by the method, and method for constructing water passage
JP4992769B2 (en) Method for preventing fluidization inhibition of groundwater, Construction method of water flow section preventing inhibition of groundwater flow
JP4074313B2 (en) Structure of steel sheet pile for water flow and water retaining wall, and its construction method.
JP4727718B2 (en) Retaining method for retaining wall
JP6225458B2 (en) Retaining wall and its construction method
JP5717148B2 (en) Underground consolidated body construction method
KR102076246B1 (en) Anchor hole boring method to emit the crushed slime and the injected water by forming the negative pressure on the slope of the cone-shaped bit
JP3940735B2 (en) Earth retaining method
JP2008280771A (en) Countermeasure construction method against liquefaction of under ground supporting existing structure
JP5277925B2 (en) Method for preventing fluidization inhibition of groundwater and structure for preventing inhibition of flow of mountain retaining wall constructed by the method
JP2013147805A (en) Method and structure for countermeasure against liquefaction
KR102297853B1 (en) Mortar pile formation method that can reduce the occurrence of floating soil
JP2008223437A (en) Underground wall structure, construction method of underground wall structure, method for constructing well in underground wall structure and method of utilizing the well constructed according to the method
JP2008081942A (en) Construction method for water passage portion of underground wall
JP4905296B2 (en) Method for constructing retaining wall and retaining wall
JP4888293B2 (en) Earth retaining wall made of parent pile sheet pile, water stop structure of earth retaining wall made of parent pile side sheet pile, construction method of earth retaining wall made of parent pile side sheet pile, and retaining wall of earth retaining wall made of parent pile side sheet pile Water method
JP4633273B2 (en) Earth retaining method and equipment
JP5282542B2 (en) Ground deformation prevention method and ground deformation prevention structure
JP2008063787A (en) Liquefaction preventing structure
JP2005146756A (en) Earth retaining impervious wall construction method and earth retaining impervious wall formed by it
JP6480745B2 (en) How to install water injection wells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees