JP2009213567A - 超音波画像処理装置及び方法並びにプログラム - Google Patents

超音波画像処理装置及び方法並びにプログラム Download PDF

Info

Publication number
JP2009213567A
JP2009213567A JP2008058297A JP2008058297A JP2009213567A JP 2009213567 A JP2009213567 A JP 2009213567A JP 2008058297 A JP2008058297 A JP 2008058297A JP 2008058297 A JP2008058297 A JP 2008058297A JP 2009213567 A JP2009213567 A JP 2009213567A
Authority
JP
Japan
Prior art keywords
speckle
ultrasonic
image processing
ultrasonic image
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008058297A
Other languages
English (en)
Other versions
JP4966227B2 (ja
Inventor
Takaharu Hisanaga
隆治 久永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008058297A priority Critical patent/JP4966227B2/ja
Publication of JP2009213567A publication Critical patent/JP2009213567A/ja
Application granted granted Critical
Publication of JP4966227B2 publication Critical patent/JP4966227B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】スペックルの形状やエコーレベルに依存せず正確にスペックルを抽出して3次元画像を生成する。
【解決手段】被検者に向けて超音波を送信するとともに、被検者から反射された超音波を受診する超音波送受信手段と、前記超音波送受信手段が受診した超音波信号の位相成分からスペックル成分を抽出するスペックル成分抽出手段と、前記抽出されたスペックル成分に基づいて、複数の超音波画像データに含まれる組織の位置を補正する補正手段とを備えたことを特徴とする超音波画像処理装置を提供することにより前記課題を解決する。
【選択図】図10

Description

本発明は、超音波画像処理装置及び方法並びにプログラムに係り、特に、超音波画像データに含まれる位相情報を利用して抽出したスペックルノイズの形状から連続したフレームの位置ずれを推定、補正し、3D画像を生成する技術に関する。
従来より、超音波を用いて被検者の断層画像を取得して医療診断に供する超音波画像診断装置が広く知られている。超音波画像診断装置は、超音波を被検体に送信し、その被検体から反射され受診される超音波により得られるエコー信号に基づいて、被検体の断層についての画像を生成し、その断層の画像を表示手段に表示する。
また近年では、診断部位を明確に観察可能にするために、被検体の3次元領域に超音波プローブから超音波を送信し、その3次元領域から反射される超音波を受信して得られる3次元エコー信号に基づいて、3次元画像を構成して表示するものが開発されている。超音波画像診断装置において、3次元超音波画像は、連続した2次元の画像データを組み合わせて構成した3次元のデータ(ボリュームデータ)をレンダリングして作成される。
ここで、超音波プローブによってスキャンされた連続フレームのデータは、それぞれ位置のずれ(探触子を持った手のぶれや組織の動きによるぶれなど)の影響を受けるため、3次元画像を構成する際は、これらの微妙なずれを補正しなければならない。このずれを補正する方法としては、例えば自動的にスキャンする装置を使用する方法、プローブに位置センサを設けて位置情報に基づいて補正を行う方法あるいは3次元プローブを使用する方法などがあるが、いずれもコストが高くなってしまうという問題があった。
そこで、これに対して、フリーハンドでスキャンしたデータから3次元画像を生成する方法において、フレームをブロックに分割し、ブロック毎に上下左右の位置ずれ、スキャンスピードのずれをフレーム間の相関から求めて補正して3次元画像を生成するものが知られている(例えば、特許文献1等参照)。
また、超音波診断装置の画像には、スペックルノイズ(スペックル)と呼ばれる、被検体内の複数の反射体からの反射超音波のランダムな干渉によって生ずる低エコー情報が存在する。このスペックルノイズは、組織の状態などによって変化し、低エコー組織にも含まれることが知られているため、スペックルノイズを抽出することでエコーレベルに依存することなく画像のずれを解析することができる。
そこで、スペックルノイズを含む画像の特徴(スペックルパターン)を利用したずれ補正方法として、画像データにROI(Region Of Interest、関心領域)を設け、ROI内のスペックルパターンの相関によってフレーム間の手ぶれなどによるバラツキの無い3次元画像を生成するものが知られている(例えば、特許文献2等参照)。
特開2003−325519号公報 特開平11−313822号公報
しかしながら、上記特許文献1に記載されたものでは、フリーハンドでスキャンしたデータは受信データのエコーレベルに依存すると考えられる。つまり、心臓壁や血管壁などのような高エコー組織の場合は高輝度となるため、画像のずれ量を正しく求めることができると思われるが、血流や臓器の実質部などのような低エコー組織の場合には、ずれ量の検出精度が低下するという問題がある。
また、上記特許文献2に記載されたものでは、振幅情報から得られたデータのスペックルパターンを使用しているため、ROI内のエコーレベルは振幅が均一である必要があり、均一組織がない場合には補正が困難であるという問題がある。
本発明は、このような事情に鑑みてなされたもので、スペックルの形状やエコーレベルに依存せず正確にスペックルを抽出して3次元画像を生成することのできる超音波画像処理装置及び方法並びにプログラムを提供することを目的とする。
前記目的を達成するために、請求項1に記載の発明は、被検者に向けて超音波を送信するとともに、被検者から反射された超音波を受診する超音波送受信手段と、前記超音波送受信手段が受診した超音波信号の位相成分からスペックル成分を抽出するスペックル成分抽出手段と、前記抽出されたスペックル成分に基づいて、複数の超音波画像データに含まれる組織の位置を補正する補正手段とを備えたことを特徴とする超音波画像処理装置を提供する。
これにより、位相情報を利用することによりスペックルの形状や周囲のエコーレベルに依存しない正確なスペックルの抽出が可能となり、スペックルパターンを利用することで高エコー情報以外の画像のずれを求めることができる。
また、請求項2に示すように、請求項1に記載の超音波画像処理装置であって、さらに前記組織の位置が補正された結果を3次元表示する表示手段を有することを特徴とする。
また、請求項3に示すように、請求項1に記載の超音波画像処理装置であって、さらに前記組織の位置が補正された結果を動画表示する表示手段を有することを特徴とする。
また、請求項4に示すように、請求項1に記載の超音波画像処理装置であって、さらに前記組織の位置が補正された結果を結合させた2次元画像データを表示する表示手段を有することを特徴とする。
これらのことにより、超音波画像診断の精度が向上する。
また、請求項5に示すように、請求項1〜4のいずれかに記載の超音波画像処理装置であって、前記スペックル成分抽出手段は、位相成分の変化量を用いて前記超音波信号の位相成分からスペックル成分を抽出することを特徴とする。
これにより、スペックル抽出の精度を向上させることができる。
また、請求項6に示すように、請求項1〜4のいずれかに記載の超音波画像処理装置であって、前記スペックル成分抽出手段は、位相成分の少なくとも2つ以上の方向の変化量を用いることを特徴とする。
このように、複数方向の変化量を用いることでスペックル抽出の精度を向上させることができる。
また、請求項7に示すように、請求項1〜6のいずれかに記載の超音波画像処理装置であって、前記スペックル成分抽出手段は、スペックルを判別する判別関数を使用することを特徴とする。
これにより、スペックル抽出の目的に応じた判別関数を使用することができる。
また、請求項8に示すように、請求項1〜6のいずれかに記載の超音波画像処理装置であって、前記スペックル成分抽出手段は、前記位相成分の変化量と比較してスペックルを判別する閾値を使用することを特徴とする。
これにより、閾値と比較してスペックルの判別ができる場合には、スペックル抽出が容易となる。
また、請求項9に示すように、請求項7に記載の超音波画像処理装置であって、前記判別関数は、スペックル及び非スペックルの位置がわかっている位相成分から生成された特徴量によって設定されることを特徴とする。
これにより、スペックル抽出処理に応じた特徴量を用いて判別関数を作成することができる。
また、請求項10に示すように、請求項1〜9のいずれかに記載の超音波画像処理装置であって、前記補正手段は、2つのフレーム間における、前記スペックル成分の相関値から求めた前記組織の移動量を基に前記組織の位置補正を行うことを特徴とする。
これにより、フレーム間の位置ずれを正確に補正することができる。
また、請求項11に示すように、請求項1〜9のいずれかに記載の超音波画像処理装置であって、前記補正手段は、2つのフレーム間における、前記スペックル成分の局所領域の相関値から求めた前記組織の移動量を基に前記組織の位置補正を行うことを特徴とする。
これにより、同様にフレーム間の位置ずれを正確に補正することができる。
また、同様に前記目的を達成するために、請求項12に記載の発明は、被検者に向けて超音波を送信するとともに、被検者から反射された超音波を受診する超音波送受信手段と、前記超音波送受信手段が受診した超音波信号の振幅成分または包絡線成分と位相成分の組み合わせからスペックル成分を抽出するスペックル成分抽出手段と、前記抽出されたスペックル成分に基づいて、複数の超音波画像データに含まれる組織の位置を補正する補正手段と、を備えたことを特徴とする超音波画像処理装置を提供する。
これにより、より正確に位置ずれ補正を行うことができる。
また、請求項13に示すように、請求項1〜12のいずれかに記載の超音波画像処理装置であって、前記位相成分は、前記超音波信号の進行方向に垂直な方向のデータの分解能が、前記超音波受信手段と前記超音波信号の送受信を行う素子の配列間隔以上であることを特徴とする。
これによれば、分解能が良くなり、さらにスペックル抽出精度が向上する。
また、同様に前記目的を達成するために、請求項14に記載の発明は、被検者に向けて超音波を送信するとともに、被検者から反射された超音波を受診し、受診した超音波信号の位相成分からスペックル成分を抽出し、前記抽出されたスペックル成分に基づいて、複数の超音波画像データに含まれる組織の位置を補正することを特徴とする超音波画像処理方法を提供する。
これにより、振幅情報ではなく位相情報を用いてスペックルを抽出するようにしたため、スペックルの形状や周囲のエコーレベルに依存しないスペックルの抽出が可能となり、フレーム間の位置ずれを正確に補正することが可能となる。
また、同様に前記目的を達成するために、請求項15に記載の発明は、被検者に向けて超音波を送信するとともに、被検者から反射された超音波を受診する機能と、受診した超音波信号の位相成分からスペックル成分を抽出する機能と、前記抽出されたスペックル成分に基づいて、複数の超音波画像データに含まれる組織の位置を補正する機能と、をコンピュータに実現させることを特徴とする超音波画像処理プログラムを提供する。
これにより、位相情報を利用することによりスペックルの形状や周囲のエコーレベルに依存しない正確なスペックルの抽出が可能となり、スペックルパターンを利用することで高エコー情報以外の画像のずれを求めることができる。
以上説明したように、本発明によれば、位相情報を利用することによりスペックルの形状や周囲のエコーレベルに依存しない正確なスペックルの抽出が可能となり、スペックルパターンを利用することで高エコー情報以外の画像のずれを求めることができる。
以下、添付図面を参照して、本発明に係る超音波画像処理装置及び方法並びにプログラムについて詳細に説明する。
図1は、本発明に係る超音波画像処理装置を含む超音波診断装置の一実施形態の概略構成を示すブロック図である。この超音波診断装置は、超音波を用いて被検者の診断部位について超音波画像を撮影して表示するものであり、主に、超音波用探触子10、信号処理部20、画像処理部30及び表示部40を含んで構成されている。
超音波用探触子10は、被検者の体内の診断部位に向けて超音波を送信するとともに、被検者の体内で反射してきた超音波を受診するものである。すなわち、超音波は構造物の境界のように音響インピーダンスが異なる領域の境界において反射されるため、超音波ビームを人体等の被検体内に送信して被検体内において生じた超音波エコーを受信し、超音波エコーが生じた反射点や反射強度を求めることにより、被検体内に存在する構造物の輪郭を検出することができる。
超音波用探触子10は、例えば1次元の超音波トランスデューサアレイを構成する複数の超音波トランスデューサを備え、各超音波トランスデューサは、例えばPZT等の圧電素子の両端に電極を形成した振動子によって構成されるが、特に限定されるものではない。例えば、このように複数の超音波トランスデューサが1次元に配列されたリニアアレイプローブの他、被検体内を扇状に走査するセクタプローブ、複数の超音波トランスデューサが凸面上に配列されたコンベックスアレイプローブや、あるいは複数の超音波トランスデューサが2次元に配列された2次元アレイプローブを用いてもよい。またあるいは超音波内視鏡においてラジアル走査を行うメカニカルラジアルプローブでもよい。
超音波用探触子10は、図示を省略した制御部の制御により超音波ビームを被検者内に送信し、リニア走査や、セクタ走査や、コンベックス走査や、ラジアル走査等の走査方式で被検者を走査する。超音波用探触子10が発生した超音波は被検者体内に存在する反射体によって反射され、反射した超音波は超音波用探触子10で受信される。超音波用探触子10で受信された超音波受信信号は、電気信号に変換された後、図示を省略した送受信部を介して信号処理部20に引き渡される。
信号処理部20は、入力された受信信号に対し所定の信号処理を施すとともに、受け取った超音波受信信号から複数の受信データに遅延をかけて加算する位相整合加算、受信データをIQデータ(複素信号)に分離するIQ検波などの処理を行いIQデータを作成して画像処理部30に出力する。
なお、IQデータから次の式によって受信データの振幅A及び位相θが算出される。
A=√(I+Q)、θ=arctan(Q/I)
ここで、記号√(X)は、Xの平方根を表す。また、受信データの波形の包絡線をとる場合には、その振幅は上記値を2倍して2√(I+Q)としなければならない。
なお、信号処理部20は、1ライン毎にデータを生成する手法でもよいが、例えば特開2003−180688号公報に記載されたような、全素子の受信データをメモリに保存しておき、後処理でデータを生成する手法でもよい。この手法であれば、さらに方位分解能(素子方向の分解能)を向上させることができる。例えば、超音波信号の進行方向に垂直な方向に位相情報の分解能が素子間隔以上のデータを利用するように、超音波信号の進行方向に垂直な方向に高分解能な位相情報を利用することで、スペックルのランダムな位相変化をより正確に区別することができる。
また、一般的な超音波Bモード画像では、振幅から画像を生成し、位相情報は利用しないため、既存の超音波画像処理技術(Bモード)における超音波画像データは振幅データを指している。
次に信号の干渉と位相の関係について図を用いて説明する。干渉には、強め合う干渉と打ち消し合う干渉がある。強め合う干渉は波と波の位相差が小さい場合に生じ、弱め合う干渉は位相差がπに近い場合に生じる。
図2に、強め合う干渉の例を示す。図2(a)は干渉前を表し、基準波に対して位相差0.2(rad)、位相差0.4(rad)及び位相差0.6(rad)という位相差の小さな3つの波を干渉させるようにしている。図2(b)は干渉後を表し、破線で表された基準波に対し干渉波が実線で表されている。このように位相差が小さい場合には、強め合う干渉波が得られる。また、図2(b)からわかるように、干渉波の山のピークは基準波の山のピークと近く、位相差が小さい干渉の波は、干渉後も基準波との位相差が小さくなる。
また、図3に、弱め合う干渉の例を示す。図3(a)は干渉前を表し、この場合基準波に対して位相差0.2(rad)の他に位相差3.0(rad)及び位相差3.2(rad)という、位相差がπ(rad)に近く、大きい波を干渉させている。このとき図3(b)に示すように、破線で表された基準波に対して、実線で表されるように弱め合う干渉波が得られる。このように位相差が大きい波を干渉させると、弱め合う干渉波が得られる。また、図3(b)からわかるように、干渉波の山のピークは基準波の山のピークと離れており、位相差が大きい干渉の波は、干渉後も基準波との位相差が大きい。
前にスペックルノイズは、被検体内の複数の反射体からの反射超音波のランダムな干渉によって生ずると言ったが、図3に示すような位相差が大きい干渉が、スペックルノイズを発生させる干渉となる。
また、IQデータから得られる位相は干渉後の波と検波の波との位相差を表すが、IQ検波の位相は誤差を含むため、干渉後の波から、位相差が大きい干渉の結果か、小さい干渉の結果かを確認するには、IQデータの連続的な位相変化(例えば、隣接する画素間の差分)を見れば良い。これは、位相差が小さい波が連続すると位相変化は小さく、スペックルノイズ部になると位相が急変化し位相変化が大きくなるからである。
このように、位相が急に変化するという特徴を用いることでスペックルノイズを判別することができる。
画像処理部30は、信号処理部20で得られたIQデータに画像処理を施して、表示部40に表示する。画像処理部30における処理の中心は、信号処理部20のIQデータから位相情報を抽出してスペックルの判別を行いスペックルを抽出し、スペックル抽出結果に基づいて振幅データから3次元画像データ(3Dデータ)を作成することである。そのため画像処理部30は、後述するようにスペックル抽出部及びフレーム間の位置ずれを補正する位置補正部等を有している。
図4に、画像処理部30における、位相情報を利用したスペックル抽出処理の流れを示す。
図4に示すように、画像処理部30は、位相変化量抽出部32とスペックル判別部34から構成されるスペックル抽出部35を有している。
信号処理部20で得られたIQデータから位相データが位相変化量抽出部32に入力される。位相は、前述したように、式θ=arctan(Q/I)で与えられる。位相変化量抽出部32は、位相データから位相変化量を抽出する。抽出された位相変化量データはスペックル判別部34に入力される。スペックル判別部34は、位相変化量データを用いてスペックルを抽出し、スペックル抽出結果を出力する。
図5に、位相変化量抽出部32における処理の一例を示す。
位相変化量抽出部32は、位相データを得ると、まず方位方向(横方向)の位相変化量及び距離方向(深さ方向)の位相変化量、すなわちそれぞれの方向における画素の差分(方位方向差分及び距離方向差分)を算出する。
2次元のBモード画像の場合、このように方位方向及び距離方向の位相変化量を求めることが望ましい。これは、スペックルノイズが方位方向または距離方向のどちらかに平行に存在する場合、その方向では位相変化が小さいが、それと直交する方向では位相変化が大きくなるためである。
次に、検波のずれによる一定量の位相変化を除去する。なお、スペックルの位相変化は他の部分に比べて急に変化するので、フィルタ(ローパスフィルタ、メディアンフィルタ)との差分データや位相データの2次微分など、変化量が大きくなる成分のみを抽出することによって、よりスペックルの判別をし易い特徴を持つデータを得ることができる。
そして、各方向で位相が急変化する成分が抽出され、各方向での位相変化量データが算出される。変化量は各方向の画素間の差分によって求められる。このとき隣接画素間における差分を用いることが最も好ましいが、適宜間引いた画素間における差分を用いてもよい。
このように、縦方向、横方向それぞれに対し、一定量の位相変化量を取り除いた結果の情報を基にしてスペックル/信号の判定を行うことができる。
なお、位相変化量は、この情報に限らず、複数画素の差分平均や斜め方向の差分を用いてもよい。さらに、別々の変化量ではなく、ベクトル成分のような一つのデータに変換してもよい。
スペックル判別部34では、得られた位相変化量データに対し、スペックルノイズかどうかという2値的な判別や、どの程度スペックルノイズが含まれているかという多値的な判別を行い、その結果が目的に応じて出力される。もちろん、位相変化量そのものを、スペックルらしさを示すデータとして出力するようにしてもよい。
位相変化量抽出部32によって抽出された方位方向位相変化量データ及び距離方向位相変化量データはスペックル判別部34に入力される。スペックル判別部34は、これらの位相情報データに基づいてスペックルの判別を行う。
図6に、スペックル判別部34の一構成例を示す。
図6に示すように、スペックル判別部34は、判別関数作成部341を備えている。判別関数作成部341は、位相変化量データに対し、スペックルノイズかどうかを判別するための判別関数を作成するものである。
判別関数作成部341は、振幅画像においてスペックルまたは非スペックルの位置がわかっている位相データを予め用意しておき、その位相変化量から作成した特徴量を元に判別関数を作成する。すなわち、スペックルであることがわかっている位相変化量データ344a及び非スペックルであることがわかっている位相変化量データ344bとから、それぞれ所定の特徴量が特徴量変換部342において算出され、これからスペックル判別関数が作成される。
ここで、特徴量は、位相変化量のデータの単一画素でも良い。ただし、単一画素の場合、差分をとって位相変化量を求めた場合には画素の僅かなずれが生じる、縦横方向から位相変化量を求めた場合には十字に交差する部分の中心の位相変化は大きくならないなどの問題があるため、注目画素の近傍画素の値や近傍画素との演算結果等、複数のデータを使用するのが望ましい。このとき、複数のデータは多次元となるため、閾値を設計し易いようにPCA(主成分分析)などを行って次元を下げるようにしても良い。
図9に、スペックル判別関数の一例を示す。
ここでは、縦方向位相変化量及び横方向位相変化量をそれぞれ特徴量(1)及び特徴量(2)とし、非スペックルノイズを〇で表し、スペックルノイズを×で表している。図9に示す例では、非スペックルノイズ〇とスペックルノイズ×の領域を分離する直線として判別関数が設定される。このように特徴量に変換した結果を基にしてスペックルノイズと非スペックルノイズを判別する関数(あるいは閾値)が設計される。なお、判別関数はこのような線形のものに限定されるものではない。
また、判別関数の設定方法は特に限定されるものではなく、例えば、SVM(サポートベクターマシン)などの既知のデータ(学習データ)を利用した統計的手法(例えば、参考文献としてネロ・クリスティアニーニ、ジョン・テーラー著「サポートベクターマシン入門」共立出版などが挙げられる。)などの公知のクラス分類に使用される線形あるいは非線形の判別関数を用いることができる。もちろん、特徴量毎に閾値を与えるだけで判別可能であれば、閾値だけでスペックルを判別してもよい。また、位相変化量に変換することなく、連続的な位相データの画素といった位相変化がわかるデータを特徴量とした判別関数を設定してもよい。
図7に、SVM(サポートベクターマシン)を使用した特徴量変換部342におけるスペックル抽出の判別関数生成処理の一例を示す。
図7に示すように、まずファントム画像から手作業でスペックル部分及び非スペックル部分をラベリングし、スペックル判別関数を作成するための既知データを作成する。なお、スペックル及び非スペックル部分をラベリングする際、曖昧な箇所についてはラベリングは行わないようにする。次に、この既知データのスペックル部分及び非スペックル部分からスペックルの判別に用いる特徴量を抽出する。
ここでは特徴量として、図8に示すように、3×3画素の中央の画素cを注目画素とし、注目画素cとその上下左右の4つの近傍画素a、b、d、eに関し、それぞれ縦(距離)方向位相変化及び横(方位)方向位相変化の計10個の特徴量を使用する。
次に、この縦方向及び横方向それぞれのラベリングされた画素(注目画素及びその近傍)の計10箇所の位相変化量を特徴量としてSVM(サポートベクターマシン)を適用し、判別関数(スペックル判別器)を生成する。もちろん、ラベリングに使用するデータや特徴量は、判別結果が最適となるように変更しても良い。
このように、判別関数作成部341において、予めスペックルまたは非スペックルの位置がわかっている位相データから特徴量を抽出してスペックル判別関数を作成しておく。そして、実際の超音波診断において、超音波用探触子10の走査によって得られたデータから信号処理部20によって生成されたIQデータから得られた位相情報に基づいてスペックル抽出が行われる。
すなわち、図6において、方位(横)方向位相変化量データ346a及び距離(縦)方向位相変化量データ346bが入力されると、特徴量変換部343ではこれをスペックル判別に用いる特徴量に変換し、判別関数作成部341で予め作成されたスペックル判別関数347を用いてスペックルであるかどうか判別し、スペックル抽出が行われる。そして、スペックル抽出結果348が出力され表示部40に表示される。この表示は、スペックルのみを表示してもよいし、原画像である振幅画像に重ねて表示するようにしてもよい。
判別結果は、2値的にスペックルであるかどうかを示すだけでなく、閾値との差を多値的にどの程度スペックルノイズが含まれているかを示すスペックルらしさとして出力してもよい。また、多値的に出力する場合には、LUT(ルックアップテーブル)などでさらに値を調整してもよい。
なお、スペックル判別関数は、超音波の送受信の条件などによって変化するため、実際の装置の場合には条件毎に判別関数を設定するのが望ましい。
以上説明したように、本実施形態においては、振幅情報ではなく位相情報を用いてスペックルを抽出するようにしているが、振幅ではスペックルの形状、エコーレベルによっては、スペックルの判別が困難な場合があるため正確にスペックルを抽出できない場合があるが、位相情報を用いることにより、スペックルの形状や周囲のエコーレベルに依存しないスペックルの抽出が可能となった。
このように、位相情報のみでスペックルを抽出することができるが、振幅情報を特徴量に加えるなど、振幅情報(振幅成分あるいはその包絡線成分)と位相情報を組み合わせてスペックルを抽出するようにしてもよい。この場合、例えば図6において、位相情報(方位方向位相変化量データ346a、距離方向位相変化量データ346b)が特徴量変換部343に入力されているが、これらのデータとともに振幅情報をも特徴量変換部343に入力して、振幅情報(画素値)も加えて特徴量の次元(図9に示す例では2次元)を増加して、スペックル抽出を行うようにしてもよい。
次に、画像処理部30は、スペックル抽出結果に基づいて振幅画像(振幅データ)におけるフレーム間の位置ずれを補正して3次元画像データを生成する。
図10に、画像処理部30におけるスペックル抽出結果を利用した3次元画像向け位置補正処理の一例を示す。
すなわち、ここでは、まず位相データを用いてスペックル抽出が行われ、そのスペックル抽出結果に基づいて、振幅データにおけるフレーム間の位置ずれ補正処理が行われる。
図10に示すように、画像処理部30は、スペックル抽出部35、メモリ36、位置補正部37、フレーム間隔補正部38及びスキャンコンバータ39を有している。なお、スペックル抽出部35は、図4に示すように位相変化量抽出部32とスペックル判別部34で構成される。
信号処理部20から入力されたIQデータは位相データと振幅データに分けられ、位相データはスペックル抽出部35に入力されるとともに、振幅データはメモリ36に格納される。スペックル抽出部35において、前述したように、位相データを用いてスペックルが抽出される。スペックル抽出結果はメモリ36に格納される。
図10に符号30aで示した構成部分における処理は、超音波用探触子10がスキャンした被検体内の組織について3次元画像を生成するための複数フレームについて繰り返し実行される。このように、複数回繰り返し行われた処理によってメモリ36に保存された複数フレームのデータに対して、次に位置補正部37における位置補正処理が施される。
図11に、位置補正部37で行われる位置補正処理の一例をブロック図で示す。
なお、メモリ36には、連続した複数のフレームの振幅データ(A〜N)とスペックル抽出結果(A〜N)がそれぞれ存在している。
図11の最も左側にスペックル抽出結果A〜Nが表示されているが、例えばスペックル抽出結果Bとこれに時系列で最も近く隣接するスペックル抽出結果Aの相関を計算し、位置補正情報A−Bを求める。このとき、スペックル抽出結果Bをシフトさせ、スペックル抽出結果Aとの相関値が最も高かったときのシフト量を位置補正情報A−Bとする。シフトの方法は例えばアフィン変換など、縦横の画素の移動に限らず、回転や拡大も考慮してよい。
この処理を全スペックル抽出結果A〜Nに対して行い、位置補正情報A−B、B−C、・・・、(N−1)−(N)を求める。相関に使用するデータはROIなどで設けた局所的な領域でも、画像データ全領域でもどちらでも良い。
また、相関は公知のマッチングアルゴリズム(例えば、SAD法、SSD法、NCC法など)によって求めても良いし、領域内のスペックル抽出結果の和や平均などでも良い。なお、相関が低い場合や、極端にシフト量が大きい場合には、3次元を構成するフレームの範囲を変更しても良い。
また、この検出された領域の相関値の結果から、フレーム間の距離(プローブの走査方向)及びフレーム間の傾きを推定する。フレーム間の距離の推定方法としては、前記特許文献1に記載されているような相関値と距離の関数を使用してフレーム間の距離を推定する方法が好適に例示される。またフレーム間の傾きに関しては、プローブの回転角(相関値、角度など)の情報を与えるようにしても良い。
次に、上で得られた隣接する各フレーム間の位置補正情報A−B、B−C、・・・、(N−1)−(N)を、全てスペックル抽出結果Aを基準とした位置補正情報A−B、A−C、・・・、A−Nに変換する。なお基準となるフレームはAに限定する必要は無く、どのフレームでもよい。
そして、位置補正情報A−B、A−C、・・・、A−Nを基に振幅データB、C、・・・、Nの位置をシフトさせて、補正された振幅データA−B、A−C、・・・、A−Nを得る。
最後に、振幅データA及び補正された振幅データA−B、A−C、・・・、A−Nをフレーム間の距離情報とともにフレーム間隔補正部38に出力する。
フレーム間隔補正部38では、フレーム間距離及びフレーム間傾き情報を基に実際の組織のサイズに近いボリュームデータを作成する。例えば、フレーム間の距離が大きい場合は、前後のフレームで補間し、逆にフレーム間の距離が短い場合は、フレームの間引き、又は距離の短いフレーム同士を平均してまとめるなどといった処理を行う。
この技術は3次元表示だけでなく、2次元画像にも適用できる。例えば、動画表示、パノラマ画像やフレーム平均画像を生成する際に使用しても良い。その場合は、フレーム間の距離補正は省いても良い。
フレーム間隔補正部38におけるフレーム間の傾き補正処理について説明する。
まず、位置補正部37のフレーム間距離情報を、図12に示すようにフレームを局所領域に分けて、各局所領域の相関値から求める。各局所領域毎の距離がそれぞれ異なる場合にはフレームが傾いていることがわかる。この際の相関値と距離の関係は、例えば前述した特許文献1に記載されているような相関値と距離の関数を使用すると良い。
次に、フレーム間隔を補正する際、傾いているフレームは傾きに応じて前後のフレームから以下のように補間を行う。
図13に一つのフレームが傾いている場合の例を示す。すなわち、図13に示すように、3つ並んだフレームA、B、Cのうち、真ん中のフレームBが傾いているとする。
まず、フレームBの傾きの結果から、傾きの中心位置を決定する。そして、中心位置とフレームA、フレームCとの距離をそれぞれdA−B、dB−Cとする。
フレームAとの距離が中心より遠ざかっている画素においては、フレームAとフレームBから補間した画像を生成する。その画素から傾きの中心位置までの距離をΔdA−Bとすると、補正後のフレームBの画素値フレームB’は次の式(1)によって求めることができる。
[フレームB’]=([フレームA]×ΔdA−B+[フレームB]×dA−B
÷(dA−B+ΔdA−B) ・・・(1)
また、フレームCとの距離が中心より遠ざかっている画素においてもフレームCとの間で次の式(2)に示すように同様の処理を行う。
[フレームB’]=([フレームB]×ΔdB−C+[フレームC]×dB−C
÷(dB−C+ΔdB−C) ・・・(2)
なお、フレーム間の傾きの中心の座標は位置補正の結果を反映したものとする。また、フレームの補間方法はこれに限らず、公知の補間方法を応用したものでよい。
このように、フレーム間隔補正部38において、フレーム間隔が補正されたデータはスキャンコンバータ39において表示用の3次元画像として生成され表示部40に表示される。
以上説明したように、本実施形態においては、位相情報からスペックルパターンを求め、スペックルパターンの移動量を利用してフレーム間の位置ずれ補正を行うようにしており、スペックルパターンを利用することで高エコー情報以外の画像のずれを求めることができる。また、振幅データだけではスペックルの形状、エコーレベルによってはスペックルの判別が困難な場合があるため正確にスペックルの抽出ができない場合があるが、本発明においては位相情報を用いることにより、スペックルの形状や周囲のエコーレベルに依存しない正確なスペックルの抽出が可能となる。
また、本実施形態の超音波画像処理装置は、図示を省略した制御部に付属したメモリに格納された超音波画像処理プログラムによって制御される。すなわち、制御部によってメモリから超音波画像処理プログラムが読み出され、該超音波画像処理プログラムに従って、被検者に向けて超音波を送信するとともに、被検者から反射された超音波を受診する機能と、受診した超音波信号の位相成分からスペックル成分を抽出する機能と、前記抽出されたスペックル成分に基づいて、複数の超音波画像データに含まれる組織の位置を補正する機能が実行される。
なお、超音波画像処理プログラムは、このように制御部に付属のメモリに格納されるものに限定されず、該超音波画像処理プログラムを例えばPCカードやCD−ROMなど、本超音波画像処理装置に着脱可能に構成されるメモリ媒体(リムーバブル媒体)に記録しておき、リムーバブル媒体に対応するインターフェイスを介して本装置に読み込むように構成してもよい。
以上、本発明の超音波画像処理装置及び方法並びにプログラムについて詳細に説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。
本発明に係る超音波画像処理装置を含む超音波診断装置の一実施形態の概略構成を示すブロック図である。 強め合う干渉の例を示すグラフであり、(a)は干渉前を表し、(b)は干渉後を表す。 弱め合う干渉の例を示すグラフであり、(a)は干渉前を表し、(b)は干渉後を表す。 画像処理部における位相情報を利用したスペックル抽出処理の流れを示すブロック図である。 位相変化量抽出部における処理の一例を示すブロック図である。 スペックル判別部の一構成例を示すブロック図である。 特徴量変換部におけるSVM(サポートベクターマシン)を使用したスペックル抽出の判別関数生成処理の一例を示すブロック図である。 特徴量として用いる画素の例を示す説明図である。 スペックル判別関数の例を示す説明図である。 画像処理部における位置補正処理及び3次元画像生成処理の流れを示すブロック図である。 位置補正処理の一例を示すブロック図である。 局所領域のフレーム間距離を求める方法を示す説明図である。 傾いたフレームを含むデータの例を示す説明図である。
符号の説明
10…超音波用探触子、20…信号処理部、30…画像処理部、32…位相変化量抽出部、34…スペックル判別部、35…スペックル抽出部、36…メモリ、37…位置補正部、38…フレーム間隔補正部、39…スキャンコンバータ、40…表示部、341…判別関数作成部、342、343…特徴量変換部

Claims (15)

  1. 被検者に向けて超音波を送信するとともに、被検者から反射された超音波を受診する超音波送受信手段と、
    前記超音波送受信手段が受診した超音波信号の位相成分からスペックル成分を抽出するスペックル成分抽出手段と、
    前記抽出されたスペックル成分に基づいて、複数の超音波画像データに含まれる組織の位置を補正する補正手段と、
    を備えたことを特徴とする超音波画像処理装置。
  2. 請求項1に記載の超音波画像処理装置であって、さらに前記組織の位置が補正された結果を3次元表示する表示手段を有することを特徴とする超音波画像処理装置。
  3. 請求項1に記載の超音波画像処理装置であって、さらに前記組織の位置が補正された結果を動画表示する表示手段を有することを特徴とする超音波画像処理装置。
  4. 請求項1に記載の超音波画像処理装置であって、さらに前記組織の位置が補正された結果を結合させた2次元画像データを表示する表示手段を有することを特徴とする超音波画像処理装置。
  5. 請求項1〜4のいずれかに記載の超音波画像処理装置であって、前記スペックル成分抽出手段は、位相成分の変化量を用いて前記超音波信号の位相成分からスペックル成分を抽出することを特徴とする超音波画像処理装置。
  6. 請求項1〜4のいずれかに記載の超音波画像処理装置であって、前記スペックル成分抽出手段は、位相成分の少なくとも2つ以上の方向の変化量を用いることを特徴とする超音波画像処理装置。
  7. 請求項1〜6のいずれかに記載の超音波画像処理装置であって、前記スペックル成分抽出手段は、スペックルを判別する判別関数を使用することを特徴とする超音波画像処理装置。
  8. 請求項1〜6のいずれかに記載の超音波画像処理装置であって、前記スペックル成分抽出手段は、前記位相成分の変化量と比較してスペックルを判別する閾値を使用することを特徴とする超音波画像処理装置。
  9. 請求項7に記載の超音波画像処理装置であって、前記判別関数は、スペックル及び非スペックルの位置がわかっている位相成分から生成された特徴量によって設定されることを特徴とする超音波画像処理装置。
  10. 請求項1〜9のいずれかに記載の超音波画像処理装置であって、前記補正手段は、2つのフレーム間における、前記スペックル成分の相関値から求めた前記組織の移動量を基に前記組織の位置補正を行うことを特徴とする超音波画像処理装置。
  11. 請求項1〜9のいずれかに記載の超音波画像処理装置であって、前記補正手段は、2つのフレーム間における、前記スペックル成分の局所領域の相関値から求めた前記組織の移動量を基に前記組織の位置補正を行うことを特徴とする超音波画像処理装置。
  12. 被検者に向けて超音波を送信するとともに、被検者から反射された超音波を受診する超音波送受信手段と、
    前記超音波送受信手段が受診した超音波信号の振幅成分または包絡線成分と位相成分の組み合わせからスペックル成分を抽出するスペックル成分抽出手段と、
    前記抽出されたスペックル成分に基づいて、複数の超音波画像データに含まれる組織の位置を補正する補正手段と、
    を備えたことを特徴とする超音波画像処理装置。
  13. 請求項1〜12のいずれかに記載の超音波画像処理装置であって、前記位相成分は、前記超音波信号の進行方向に垂直な方向のデータの分解能が、前記超音波受信手段と前記超音波信号の送受信を行う素子の配列間隔以上であることを特徴とする超音波画像処理装置。
  14. 被検者に向けて超音波を送信するとともに、被検者から反射された超音波を受診し、
    受診した超音波信号の位相成分からスペックル成分を抽出し、
    前記抽出されたスペックル成分に基づいて、複数の超音波画像データに含まれる組織の位置を補正することを特徴とする超音波画像処理方法。
  15. 被検者に向けて超音波を送信するとともに、被検者から反射された超音波を受診する機能と、
    受診した超音波信号の位相成分からスペックル成分を抽出する機能と、
    前記抽出されたスペックル成分に基づいて、複数の超音波画像データに含まれる組織の位置を補正する機能と、
    をコンピュータに実現させることを特徴とする超音波画像処理プログラム。
JP2008058297A 2008-03-07 2008-03-07 超音波画像処理装置及び方法並びにプログラム Expired - Fee Related JP4966227B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058297A JP4966227B2 (ja) 2008-03-07 2008-03-07 超音波画像処理装置及び方法並びにプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058297A JP4966227B2 (ja) 2008-03-07 2008-03-07 超音波画像処理装置及び方法並びにプログラム

Publications (2)

Publication Number Publication Date
JP2009213567A true JP2009213567A (ja) 2009-09-24
JP4966227B2 JP4966227B2 (ja) 2012-07-04

Family

ID=41186113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058297A Expired - Fee Related JP4966227B2 (ja) 2008-03-07 2008-03-07 超音波画像処理装置及び方法並びにプログラム

Country Status (1)

Country Link
JP (1) JP4966227B2 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286449A (ja) * 1986-06-05 1987-12-12 株式会社島津製作所 超音波診断装置
JPH05237104A (ja) * 1991-05-27 1993-09-17 Yokogawa Medical Syst Ltd 超音波診断装置
JPH09289988A (ja) * 1995-12-29 1997-11-11 General Electric Co <Ge> 画像のスペックルを調節する方法及び物体の超音波イメージングのための方法
JP2003061964A (ja) * 2001-08-24 2003-03-04 Toshiba Corp 超音波診断装置
JP2003180688A (ja) * 2001-10-20 2003-07-02 Novasonics Inc 幅広ビーム映像化
JP2004159672A (ja) * 2002-11-08 2004-06-10 Matsushita Electric Ind Co Ltd 超音波診断装置および超音波計測方法
WO2005058168A2 (ja) * 2003-12-16 2005-06-30 Hitachi Medical Corp 超音波体動検出装置、及びこれを用いた画像提示装置及び超音波治療装置
JP2005312773A (ja) * 2004-04-30 2005-11-10 Toshiba Corp 超音波診断装置
JP2006000618A (ja) * 2004-05-20 2006-01-05 Fuji Photo Film Co Ltd 超音波撮像装置、超音波画像処理方法、及び、超音波画像処理プログラム
JP2006212054A (ja) * 2005-02-01 2006-08-17 Fuji Photo Film Co Ltd 超音波観測装置、画像処理装置、及び、画像処理プログラム
JP2006280520A (ja) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 超音波撮像装置、超音波画像処理方法、及び、超音波画像処理プログラム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286449A (ja) * 1986-06-05 1987-12-12 株式会社島津製作所 超音波診断装置
JPH05237104A (ja) * 1991-05-27 1993-09-17 Yokogawa Medical Syst Ltd 超音波診断装置
JPH09289988A (ja) * 1995-12-29 1997-11-11 General Electric Co <Ge> 画像のスペックルを調節する方法及び物体の超音波イメージングのための方法
JP2003061964A (ja) * 2001-08-24 2003-03-04 Toshiba Corp 超音波診断装置
JP2003180688A (ja) * 2001-10-20 2003-07-02 Novasonics Inc 幅広ビーム映像化
JP2004159672A (ja) * 2002-11-08 2004-06-10 Matsushita Electric Ind Co Ltd 超音波診断装置および超音波計測方法
WO2005058168A2 (ja) * 2003-12-16 2005-06-30 Hitachi Medical Corp 超音波体動検出装置、及びこれを用いた画像提示装置及び超音波治療装置
JP2005312773A (ja) * 2004-04-30 2005-11-10 Toshiba Corp 超音波診断装置
JP2006000618A (ja) * 2004-05-20 2006-01-05 Fuji Photo Film Co Ltd 超音波撮像装置、超音波画像処理方法、及び、超音波画像処理プログラム
JP2006212054A (ja) * 2005-02-01 2006-08-17 Fuji Photo Film Co Ltd 超音波観測装置、画像処理装置、及び、画像処理プログラム
JP2006280520A (ja) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 超音波撮像装置、超音波画像処理方法、及び、超音波画像処理プログラム

Also Published As

Publication number Publication date
JP4966227B2 (ja) 2012-07-04

Similar Documents

Publication Publication Date Title
US20070287915A1 (en) Ultrasonic imaging apparatus and a method of displaying ultrasonic images
KR101100464B1 (ko) 부 관심영역에 기초하여 3차원 초음파 영상을 제공하는 초음파 시스템 및 방법
JP2006255083A (ja) 超音波画像生成方法および超音波診断装置
JP2011120901A (ja) 超音波空間合成映像を提供する超音波システムおよび方法
US10722217B2 (en) Ultrasonic diagnostic apparatus and medical image processing apparatus
JP5174604B2 (ja) 超音波信号処理装置及び方法
JP6925824B2 (ja) 超音波診断装置、画像処理装置、及び画像処理プログラム
JP6402241B2 (ja) 音響波画像生成装置および方法
JP5205149B2 (ja) 超音波画像処理装置及び方法並びにプログラム
US9107631B2 (en) Ultrasonic imaging apparatus and a method for generating an ultrasonic image
JPWO2019058753A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP2012029718A (ja) 超音波プローブアダプタ、超音波診断システムおよび超音波診断装置
JP5090215B2 (ja) 超音波画像処理装置及び方法並びにプログラム
JP5829198B2 (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP5823184B2 (ja) 超音波診断装置、医用画像処理装置および医用画像処理プログラム
JP4966227B2 (ja) 超音波画像処理装置及び方法並びにプログラム
JP6858768B2 (ja) 神経ブロックで使用するための3次元超音波撮像システム
JP4966226B2 (ja) 超音波画像処理装置及び方法並びにプログラム
JP5205152B2 (ja) 超音波画像処理装置及びプログラム
JP5089442B2 (ja) 超音波画像処理装置及び方法並びにプログラム
KR20070105607A (ko) 초음파 영상을 형성하는 초음파 시스템 및 방법
JP4519445B2 (ja) 超音波画像生成装置
EP4295780A1 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
JP2007325786A (ja) 超音波診断装置、超音波画像表示方法及び超音波画像表示プログラム
JP2023148356A (ja) 医用情報処理装置、超音波診断装置、及び学習用データ生成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees