JP2009212326A - Electronic device and method of manufacturing the same - Google Patents

Electronic device and method of manufacturing the same Download PDF

Info

Publication number
JP2009212326A
JP2009212326A JP2008054388A JP2008054388A JP2009212326A JP 2009212326 A JP2009212326 A JP 2009212326A JP 2008054388 A JP2008054388 A JP 2008054388A JP 2008054388 A JP2008054388 A JP 2008054388A JP 2009212326 A JP2009212326 A JP 2009212326A
Authority
JP
Japan
Prior art keywords
heat
resin
generating component
adhesive
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008054388A
Other languages
Japanese (ja)
Other versions
JP5146016B2 (en
Inventor
Takamitsu Sakai
孝充 坂井
Tetsuo Fujii
哲夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008054388A priority Critical patent/JP5146016B2/en
Publication of JP2009212326A publication Critical patent/JP2009212326A/en
Application granted granted Critical
Publication of JP5146016B2 publication Critical patent/JP5146016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic device which has a heat generating component mounted on one surface of a substrate with an adhesive containing a number of heat conductive fillers in a resin and allows efficient heat dissipation by making it easy to form a heat by thermally connecting heat conductive fillers in a direction from the heat generating component to the substrate. <P>SOLUTION: In the resin 31 of the adhesive 30, a filmy connection member 40 is provided which is larger than the heat conductive fillers 32 and is formed of a heat conductive material and whose section is formed in a wave shape, and the connection member 40 has a wall surface 41 extending in the direction X from the heat generating component 20 to the substrate 10 among the plurality of heat conductive fillers 32. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、樹脂に多数の熱伝導性フィラーを含有してなる接着剤を介して、発熱部品を放熱部材の一面上に搭載してなる電子装置、および、そのような電子装置の製造方法に関する。   The present invention relates to an electronic device in which a heat-generating component is mounted on one surface of a heat dissipation member via an adhesive containing a large number of thermally conductive fillers in a resin, and a method for manufacturing such an electronic device. .

従来より、この種の電子装置としては、樹脂に多数の熱伝導性フィラーを含有してなる接着剤を介して、発熱部品を放熱部材の一面上に搭載し、接着剤を介して発熱部品の熱を放熱部材に放熱させるようにしたものが提案されている(たとえば、特許文献1および2参照)。そして、このような従来のものでは、接着剤を高熱伝導化するために、フィラーの高充填化を行う手法が一般的である。
特開2005−12154号公報 特開2005−89559号公報
Conventionally, as an electronic device of this type, a heat generating component is mounted on one surface of a heat radiating member via an adhesive containing a large number of thermally conductive fillers in a resin, and the heat generating component is connected via an adhesive. There has been proposed one in which heat is radiated to a heat radiating member (see, for example, Patent Documents 1 and 2). And in such a conventional thing, in order to make an adhesive high thermal conductivity, the method of performing high filling of a filler is common.
JP 2005-12154 A JP 2005-89559 A

本発明者は、熱伝導率が異なるフィラー材料で、それぞれ接着剤の膜厚すなわち接続膜厚を変えて熱抵抗を測定するという検討を行った。その結果、高熱伝導材料は膜厚により熱抵抗は小さくなるが、発熱部品と接着剤との界面および放熱部材と接着剤との界面における接触熱抵抗は低熱伝導材料と同等レベルであった。   The present inventor has studied that the thermal resistance is measured by changing the film thickness of the adhesive, that is, the connection film thickness, with filler materials having different thermal conductivities. As a result, although the thermal resistance of the high thermal conductive material is reduced depending on the film thickness, the contact thermal resistance at the interface between the heat generating component and the adhesive and the interface between the heat dissipation member and the adhesive is the same level as that of the low thermal conductive material.

このような検討結果から、熱伝導性フィラーを高充填化して、接着剤自体の熱伝導率を向上しても、パワーIC等の発熱部品を実装した際、上記の界面における熱抵抗が支配的であるため、充分に熱抵抗を下げられないことがわかってきた。   From these examination results, even if the thermal conductivity of the adhesive itself is improved by increasing the thermal conductive filler, the thermal resistance at the above interface is dominant when mounting heat-generating parts such as power ICs. Therefore, it has been found that the thermal resistance cannot be lowered sufficiently.

本発明は、上記問題に鑑みてなされたものであり、樹脂に多数の熱伝導性フィラーを含有してなる接着剤を介して、発熱部品を放熱部材の一面上に搭載してなる電子装置において、発熱部品から放熱部材へ向かう方向に熱伝導性フィラーを熱的に接続してなる熱経路が形成されやすくなるようにして、放熱性の向上を図ることを目的とする。   The present invention has been made in view of the above problems, and in an electronic device in which a heat generating component is mounted on one surface of a heat radiating member via an adhesive containing a large number of thermally conductive fillers in a resin. An object of the present invention is to improve heat dissipation by facilitating the formation of a heat path formed by thermally connecting a thermally conductive filler in a direction from the heat generating component toward the heat dissipation member.

上記目的を達成するため、請求項1に記載の発明では、接着剤(30)の樹脂(31)内には、熱伝導性フィラー(32)よりもサイズが大きく熱伝導性材料よりなる接続部材(40)が設けられており、接続部材(40)は、複数個の熱伝導性フィラー(32)の間を発熱部品(20)から放熱部材(10)へ向かう方向に延びる面(41)を備えていることを特徴としている。   In order to achieve the above object, in the invention according to claim 1, the connecting member made of a heat conductive material larger in size than the heat conductive filler (32) in the resin (31) of the adhesive (30). (40) is provided, and the connecting member (40) has a surface (41) extending between the plurality of thermally conductive fillers (32) in a direction from the heat generating component (20) to the heat radiating member (10). It is characterized by having.

それによれば、接続部材(40)の延びる面(41)に沿って複数個の熱伝導性フィラー(32)が並びやすくなることで、当該並んだ複数個の熱伝導性フィラー(32)同士は、直接接触により熱的に接続されるか、あるいは、接続部材(40)に接して接続部材(40)を介して熱的に接続されるため、発熱部品(20)から放熱部材(10)へ向かう方向に熱伝導性フィラーを熱的に接続してなる熱経路が形成されやすくなり、放熱性の向上が図れる。   According to this, since the plurality of thermally conductive fillers (32) are easily arranged along the extending surface (41) of the connecting member (40), the plurality of arranged thermally conductive fillers (32) are arranged together. Since it is thermally connected by direct contact or contacted to the connecting member (40) and thermally connected via the connecting member (40), the heat generating component (20) to the heat radiating member (10) A heat path formed by thermally connecting the thermally conductive filler in the direction to go is easily formed, and the heat dissipation can be improved.

ここで、請求項2に記載の発明では、接続部材(40)は、樹脂(31)内にて放熱部材(10)の一面に沿って配置された膜状部材であって、その膜面が発熱部品(20)から放熱部材(10)へ向かう方向に凹凸をなす凹凸面となっているものであり、凹凸面における凹部は熱伝導性フィラー(32)が入り込む大きさであり、当該凹凸面における凸部の頂部と凹部の底部との間に位置する壁面(41)が、上記の延びる面として構成されていることを特徴とする。   Here, in the invention according to claim 2, the connection member (40) is a film-like member disposed along one surface of the heat dissipation member (10) in the resin (31), and the film surface is It is an uneven surface that is uneven in the direction from the heat generating component (20) to the heat dissipation member (10), and the recess in the uneven surface is a size into which the heat conductive filler (32) enters, and the uneven surface The wall surface (41) located between the top part of the convex part in and the bottom part of a recessed part is comprised as said extended surface.

それによれば、膜状の接続部材(40)を、樹脂(31)内にて放熱部材(10)の一面に沿って配置するだけで、樹脂(31)内にて上記延びる面(41)が容易に構成される。   According to this, the surface (41) extending in the resin (31) can be obtained by simply arranging the film-like connecting member (40) along one surface of the heat dissipation member (10) in the resin (31). Easy to configure.

ここで、請求項3に記載の発明のように、上記凹凸面は、接続部材(40)の膜断面形状を波形とすることにより構成されているものにできる。また、請求項4に記載の発明のように、上記凹凸面は、接続部材(40)の膜面を粗化することにより構成されているものでもよい。   Here, like the invention of Claim 3, the said uneven | corrugated surface can be comprised by making the film | membrane cross-sectional shape of a connection member (40) into a waveform. Moreover, like the invention of Claim 4, the said uneven | corrugated surface may be comprised by roughening the film | membrane surface of a connection member (40).

また、請求項5に記載の発明では、膜状の接続部材(40)には、発熱部品(20)側と放熱部材(10)側とを連通する貫通穴(42)が設けられており、この貫通穴(42)を介して、発熱部品(20)側の樹脂(31)と放熱部材(10)側の樹脂(31)とがつながっていることを特徴とする。   In the invention according to claim 5, the membrane-shaped connecting member (40) is provided with a through hole (42) communicating the heat generating component (20) side and the heat radiating member (10) side, The resin (31) on the heat generating component (20) side and the resin (31) on the heat radiating member (10) side are connected via the through hole (42).

それによれば、貫通穴(42)を介して発熱部品(20)側と放熱部材(10)側とで樹脂(31)がつながるため、接着剤(30)の接着力の向上の点で好ましい。   According to this, since the resin (31) is connected to the heat generating component (20) side and the heat radiating member (10) side through the through hole (42), it is preferable in terms of improving the adhesive force of the adhesive (30).

また、請求項6に記載の発明では、上記凹凸面における凸部の頂部は、発熱部品(20)および放熱部材(10)のいずれか一方に直接接触していることを特徴とする。それによれば、発熱部品(20)および放熱部材(10)と接着剤(30)との界面において、接続部材(40)による熱経路が形成されるため、放熱性の向上の点で好ましい。   Further, the invention according to claim 6 is characterized in that the top of the convex portion on the concavo-convex surface is in direct contact with one of the heat generating component (20) and the heat radiating member (10). According to this, a heat path is formed by the connecting member (40) at the interface between the heat generating component (20) and the heat radiating member (10) and the adhesive (30), which is preferable in terms of improving heat dissipation.

また、請求項7に記載の発明は、上記請求項3に記載の電子装置を製造する製造方法であって、接着剤(30)を介して放熱部材(10)の一面上に発熱部品(20)を搭載するとともに、接続部材(40)となる膜状素材(40a)を、樹脂(31)内にて放熱部材(10)の一面に沿って配置し、次に、樹脂(31)を硬化させることにより、当該樹脂(31)の硬化収縮力によって膜状素材(40a)を波形に変形させ、凹凸面を形成することを特徴とする。それによれば、請求項3に記載の電子装置を適切に製造することができる。   The invention according to claim 7 is a manufacturing method for manufacturing the electronic device according to claim 3, wherein the heat generating component (20) is formed on one surface of the heat radiating member (10) via an adhesive (30). ) And a film-like material (40a) to be the connection member (40) is disposed along one surface of the heat dissipation member (10) in the resin (31), and then the resin (31) is cured. By doing so, the film-like material (40a) is deformed into a waveform by the curing shrinkage force of the resin (31), and an uneven surface is formed. Accordingly, the electronic device according to claim 3 can be appropriately manufactured.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each means described in the claim and this column is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description.

(第1実施形態)
図1は、本発明の第1実施形態に係る電子装置の概略断面構成を示す図である。この電子装置は、大きくは、接着剤30を介して、発熱部品20を放熱部材10の一面上に搭載し、接着剤30を介して発熱部品20に発生する熱を放熱部材10に放熱させるようにしたものである。
(First embodiment)
FIG. 1 is a diagram showing a schematic cross-sectional configuration of an electronic device according to the first embodiment of the present invention. In general, the electronic device is configured such that the heat generating component 20 is mounted on one surface of the heat radiating member 10 via the adhesive 30 and the heat generated in the heat generating component 20 is radiated to the heat radiating member 10 via the adhesive 30. It is a thing.

放熱部材10は、接着剤30を介して発熱部品20を搭載可能であり且つ発熱部品20の熱を放熱可能なものであれば、特に限定されないが、本実施形態では、放熱部材10は基板10により構成されている。基板10は、セラミック基板やプリント基板などの配線基板や回路基板を採用することができ、特に限定されるものではない。   The heat dissipating member 10 is not particularly limited as long as it can mount the heat generating component 20 via the adhesive 30 and can dissipate the heat of the heat generating component 20, but in this embodiment, the heat dissipating member 10 is the substrate 10. It is comprised by. The substrate 10 may be a wiring substrate such as a ceramic substrate or a printed substrate, or a circuit substrate, and is not particularly limited.

本実施形態では、基板10の一面には、熱伝導性を有する材料よりなるパッド11が設けられている。このパッド11に電極としての機能を持たせるときは、さらにパッド11の構成材料は導電性を有するものとする。たとえば、パッド11は、Au、Sn、Ag、Ni、Cuなど、および、これらの合金などの材料を用いた厚膜やめっきから構成されたものである。   In the present embodiment, a pad 11 made of a material having thermal conductivity is provided on one surface of the substrate 10. When the pad 11 has a function as an electrode, the constituent material of the pad 11 is further conductive. For example, the pad 11 is composed of a thick film or plating using materials such as Au, Sn, Ag, Ni, Cu, and alloys thereof.

ここでは、接着剤30は、パッド11に接触しており、それによって接着剤30とパッド11とが熱的に接続される。なお、接着剤30と基板10とが上記放熱のために十分に熱的に接続されるならば、パッド11を設けずに、基板10を構成するセラミックなどの構成材料と接着剤30とが直接接触していてもよい。   Here, the adhesive 30 is in contact with the pad 11, whereby the adhesive 30 and the pad 11 are thermally connected. If the adhesive 30 and the substrate 10 are sufficiently thermally connected for the heat dissipation, the constituent material such as ceramic and the adhesive 30 constituting the substrate 10 can be directly connected without providing the pad 11. It may be in contact.

発熱部品20は、駆動時に発熱するものであって接着剤で実装可能な部品であればよい。本実施形態では、発熱部品20は、駆動時に高発熱を伴うシリコン半導体よりなるパワーICチップであるが、それ以外にも、発熱部品20としては、ダイオード、コンデンサ、抵抗などの表面実装部品が挙げられる。   The heat generating component 20 may be any component that generates heat during driving and can be mounted with an adhesive. In the present embodiment, the heat generating component 20 is a power IC chip made of a silicon semiconductor that generates high heat during driving. However, other examples of the heat generating component 20 include surface mount components such as a diode, a capacitor, and a resistor. It is done.

接着剤30は、樹脂31に多数の熱伝導性フィラー32を含有してなる一般的なものを採用する。接着剤30は必要に応じて導電性でもよいし、非導電性でもよいが、基板10の一面と発熱部品20との間に介在し、これら両部材10、20を熱的・機械的に接続するものである。   As the adhesive 30, a general adhesive comprising a resin 31 containing a large number of thermally conductive fillers 32 is employed. The adhesive 30 may be conductive or non-conductive as required. However, the adhesive 30 is interposed between one surface of the substrate 10 and the heat generating component 20, and the two members 10 and 20 are connected thermally and mechanically. To do.

ここで、樹脂31はエポキシ系樹脂、シリコーン系樹脂、ポリイミド系樹脂、フェノール系樹脂、メラミン系樹脂など、一般的なバインダ用樹脂材料よりなり、一液性のものでも、2種類の樹脂の混合で効果する二液性のものでもよい。さらに、カップリング剤、有機溶剤、希釈剤、硬化遅延剤などが混合されていてもよい。   Here, the resin 31 is made of a general binder resin material such as an epoxy resin, a silicone resin, a polyimide resin, a phenol resin, a melamine resin, etc. It may be a two-component one that works well. Furthermore, a coupling agent, an organic solvent, a diluent, a curing retarder, and the like may be mixed.

また、熱伝導性フィラー32としては、金、銀、銅などの熱伝導性に優れた材料よりなり、たとえば平均粒径が数μm〜数十μm程度の粒よりなる。その粒形状は、鱗片状、柱状あるいは球状など種々である。なお、この熱伝導性フィラー32は、図1および後述する各図において接着剤30に含有された状態を示すときには、当該図中、多数の白丸にて示してある。   The heat conductive filler 32 is made of a material having excellent heat conductivity such as gold, silver, copper, and the like, for example, made of particles having an average particle diameter of about several μm to several tens of μm. The particle shape is various, such as scale-like, columnar or spherical. In addition, when this heat conductive filler 32 shows the state contained in the adhesive agent 30 in FIG. 1 and each figure mentioned later, it is shown with many white circles in the figure.

そして、接着剤30は、樹脂31を硬化させることにより、樹脂31中の熱伝導性フィラー32同士の接触、および、熱伝導性フィラー32と発熱部品20や基板10との接触がなされており、これら接触により熱経路が形成され、上記放熱が得られている。   Then, the adhesive 30 cures the resin 31 so that the heat conductive fillers 32 in the resin 31 are in contact with each other, and the heat conductive filler 32 is in contact with the heat-generating component 20 and the substrate 10. A heat path is formed by these contacts, and the heat dissipation is obtained.

そして、本実施形態においては、接着剤30の樹脂31内には、熱伝導性フィラー32よりもサイズが大きな接続部材40が設けられている。ここで、熱伝導性フィラー32よりもサイズが大きいとは、通常、熱伝導性フィラーは平均粒径でサイズが表示されるが、そのフィラーの最大粒径よりも大きいということである。また、接続部材40は、金属などの熱伝導性材料よりなる。   In the present embodiment, a connecting member 40 having a size larger than that of the heat conductive filler 32 is provided in the resin 31 of the adhesive 30. Here, the size larger than the heat conductive filler 32 usually means that the heat conductive filler is displayed in terms of an average particle size but larger than the maximum particle size of the filler. The connection member 40 is made of a heat conductive material such as metal.

ここで、図2は、本実施形態の接続部材40単体の外観構成を示す斜視図であり、(a)は変形前すなわち電子装置に組み付ける前の接続部材40である膜状素材40a、(b)は変形後の膜状素材40aすなわち図1の状態に組み付けた後の接続部材40を示している。   Here, FIG. 2 is a perspective view showing an external configuration of the connection member 40 according to the present embodiment, and (a) is a film-like material 40a, (b) which is the connection member 40 before being deformed, that is, before being assembled to the electronic device. ) Shows the deformed membrane material 40a, that is, the connecting member 40 after being assembled in the state shown in FIG.

本実施形態の接続部材40は、組み付け前は平坦な膜状部材であり(図2(a)の状態)、これが組み付け後には後述する樹脂31の硬化収縮によって、図2(b)および図1に示されるように変形したものである。   The connecting member 40 of the present embodiment is a flat film-like member before assembly (the state shown in FIG. 2A). As shown in FIG.

つまり、本実施形態の接続部材40は、樹脂31内にて当該接続部材40の膜面が基板10の一面に沿って配置された膜状部材であって、当該膜面が発熱部品20から基板10へ向かう方向に凹凸をなす凹凸面となっている。ここでは、凹凸面は、接続部材40の膜断面形状を波形とすることにより構成されている。   That is, the connection member 40 of the present embodiment is a film-like member in which the film surface of the connection member 40 is disposed along one surface of the substrate 10 in the resin 31, and the film surface is formed from the heat generating component 20 to the substrate. It is an uneven surface that is uneven in the direction toward 10. Here, the uneven surface is formed by corrugating the film cross-sectional shape of the connection member 40.

図1に示されるように、接続部材40の凹凸面における凹部は熱伝導性フィラー32が入り込む大きさである。具体的には、当該凹部の開口サイズ及び深さは、熱伝導性フィラー32の最大粒径よりも大きい。   As shown in FIG. 1, the recesses in the concavo-convex surface of the connection member 40 have a size that allows the heat conductive filler 32 to enter. Specifically, the opening size and depth of the recess are larger than the maximum particle size of the heat conductive filler 32.

そして、当該凹凸面における凸部の頂部と凹部の底部との間に位置する壁面41は、複数個の熱伝導性フィラー32の間を発熱部品20から基板10へ向かう方向に延びている。ここで、発熱部品20から基板10へ向かう方向とは、つまり、接着剤30の厚さ方向(図1中の矢印X方向)であり、以下、当該方向のことを、図1中の矢印Xに倣って、単に厚さ方向Xということにする。   And the wall surface 41 located between the top part of the convex part in the said uneven surface and the bottom part of a recessed part is extended in the direction which goes to the board | substrate 10 from the heat-emitting component 20 between the some heat conductive fillers 32. FIG. Here, the direction from the heat generating component 20 toward the substrate 10 is the thickness direction of the adhesive 30 (the direction indicated by the arrow X in FIG. 1). Hereinafter, this direction is referred to as the arrow X in FIG. The thickness direction is simply referred to as X.

このことから、当該凹凸面における凸部の頂部と凹部の底部との間に位置する壁面41は、複数個の熱伝導性フィラー32の間を厚さ方向Xに延びる面として構成されている。そして、当該延びる面である壁面41は、複数個の熱伝導性フィラー32の間を厚さ方向Xに延びるため、個々の熱伝導性フィラー32よりは厚さ方向Xへのサイズが大きいものである。   For this reason, the wall surface 41 located between the top of the convex portion and the bottom of the concave portion on the uneven surface is configured as a surface extending in the thickness direction X between the plurality of thermally conductive fillers 32. And since the wall surface 41 which is the said extending surface is extended in the thickness direction X between the some heat conductive fillers 32, the size to the thickness direction X is larger than each heat conductive filler 32. is there.

それにより、接着剤30の樹脂31内において、壁面41に沿って複数個の熱伝導性フィラー32が並ぶようになるため、複数個の熱伝導性フィラー32は、従来よりも厚さ方向Xに並びやすくなる。つまり、接続部材40の延びる面である壁面41は、熱伝導性フィラー32の並びを厚さ方向Xに規制する規制面となっている。   As a result, in the resin 31 of the adhesive 30, a plurality of thermally conductive fillers 32 are arranged along the wall surface 41, so that the plurality of thermally conductive fillers 32 are arranged in the thickness direction X as compared with the conventional case. It becomes easy to line up. That is, the wall surface 41 that is the surface on which the connection member 40 extends serves as a regulation surface that regulates the arrangement of the thermally conductive fillers 32 in the thickness direction X.

また、図2に示されるように、接続部材40には、膜の厚さ方向に貫通する貫通穴42が設けられている。ここでは貫通穴42は複数個設けられている。この貫通穴42は、プレスやエッチングなどにより穴あけ加工されることによって形成されるもので、たとえば穴の大きさは数μm〜数十μmであり、穴の形は円形や正多角形である。   As shown in FIG. 2, the connection member 40 is provided with a through hole 42 that penetrates in the film thickness direction. Here, a plurality of through holes 42 are provided. The through hole 42 is formed by drilling by pressing, etching, or the like. For example, the size of the hole is several μm to several tens of μm, and the shape of the hole is a circle or a regular polygon.

この貫通穴42は、図1に示されるように接続部材40を電子装置に組み付けた状態で、発熱部品20側と基板10側とを連通するものである。そのため、電子装置においては、この貫通穴42を介して、発熱部品20側に位置する樹脂31と基板10側に位置する樹脂31とがつながっている。   As shown in FIG. 1, the through-hole 42 communicates the heat-generating component 20 side and the substrate 10 side with the connection member 40 assembled to the electronic device. Therefore, in the electronic device, the resin 31 positioned on the heat generating component 20 side and the resin 31 positioned on the substrate 10 side are connected via the through hole 42.

また、図1に示されるように、接続部材40の凹凸面における凸部の頂部は、発熱部品20および基板10のいずれか一方に直接接触していることが好ましい。それによれば、熱伝導性フィラー32が発熱部品20および基板10に直接接触する箇所以外にも、接続部材40による熱経路が形成されるため、放熱性の向上が期待される。   Further, as shown in FIG. 1, it is preferable that the top of the convex portion on the concavo-convex surface of the connection member 40 is in direct contact with either the heat generating component 20 or the substrate 10. According to this, since the heat path by the connecting member 40 is formed in addition to the location where the heat conductive filler 32 directly contacts the heat generating component 20 and the substrate 10, an improvement in heat dissipation is expected.

つまり、熱伝導性フィラー32だけでなく、接続部材40も上記接触を行うため、発熱部品20と接着剤30との界面および基板10と接着剤30との界面における接触熱抵抗を低減することが、可能となる。なお、この接続部材40における凸部の頂部の接触は行われていなくてもよい。   That is, since not only the heat conductive filler 32 but also the connecting member 40 makes the contact, the contact thermal resistance at the interface between the heat generating component 20 and the adhesive 30 and the interface between the substrate 10 and the adhesive 30 can be reduced. It becomes possible. In addition, the contact of the top part of the convex part in this connection member 40 does not need to be performed.

次に、本実施形態の電子装置の製造方法について述べる。図3は、本電子装置において各部を分解した状態を示す斜視図であり、図4は本製造方法を断面的に示す工程図である。   Next, a method for manufacturing the electronic device of this embodiment will be described. FIG. 3 is a perspective view showing a state in which each part is disassembled in the electronic device, and FIG. 4 is a process diagram showing the manufacturing method in a cross-sectional view.

図3に示されるように、基板10の一面上に、印刷などにより接着剤30を塗布し、その上に、上記図2(a)に示されるような接続部材40となる平坦な膜状素材40aを載せる。そして、その上に発熱部品20を搭載する。   As shown in FIG. 3, an adhesive 30 is applied on one surface of the substrate 10 by printing or the like, and a flat film-like material that becomes a connection member 40 as shown in FIG. 40a is loaded. And the heat-emitting component 20 is mounted on it.

この状態で、図4(a)に示されるように、発熱部品20の上から荷重を加える。加える荷重は、一般的に発熱部品を搭載する際の0.5N〜5N程度である。荷重は発熱部品20の上面全体に等しく加えるようにする。   In this state, as shown in FIG. 4A, a load is applied from above the heat generating component 20. The applied load is generally about 0.5N to 5N when a heat-generating component is mounted. The load is applied equally over the entire top surface of the heat generating component 20.

この荷重を加えることで、接着剤30が膜状素材40a0の貫通穴42から発熱部品20側に進行し、接着剤30に膜状素材40aが埋もれる形になる。こうして、接着剤30を介して基板10の一面上に発熱部品20が搭載され、接続部材40となる膜状素材が、樹脂31内にて基板10の一面に沿って配置される。   By applying this load, the adhesive 30 advances from the through hole 42 of the film-like material 40a0 toward the heat generating component 20, and the film-like material 40a is buried in the adhesive 30. In this way, the heat generating component 20 is mounted on one surface of the substrate 10 via the adhesive 30, and the film material that becomes the connection member 40 is arranged along the one surface of the substrate 10 in the resin 31.

次に、図4(b)に示されるように、樹脂31を硬化させることにより、当該樹脂31の硬化収縮力によって膜状素材40aを、上述した波形に変形させ、上記凹凸面を形成する。樹脂31を硬化させるための加熱温度は、一般的なこの種の接着剤の硬化温度であり、たとえば130℃〜200℃程度である。   Next, as shown in FIG. 4B, by curing the resin 31, the film-like material 40a is deformed into the above-described waveform by the curing shrinkage force of the resin 31, and the uneven surface is formed. The heating temperature for curing the resin 31 is a general curing temperature of this type of adhesive, and is about 130 ° C. to 200 ° C., for example.

こうして、接着剤30の樹脂31内にて上記凹凸面を有する接続部材40が形成されることよって、壁面41に沿って熱伝導性フィラー32が並び、また、樹脂31の硬化によって基板10と発熱部品20とが機械的に接続される。   Thus, by forming the connecting member 40 having the uneven surface in the resin 31 of the adhesive 30, the heat conductive fillers 32 are arranged along the wall surface 41, and the substrate 10 generates heat due to the curing of the resin 31. The component 20 is mechanically connected.

これにより、本実施形態の電子装置ができあがる。ここで、接続部材40について、更に述べると、接続部材40は、例えば、Al、Au、Ag、Cuなどの高熱伝導な金属よりなるが、その厚さは熱伝導性フィラー32の平均粒径(たとえば数μm〜数十μm)と同等以上、たとえば数μm〜数百μm程度であることが好ましい。   Thereby, the electronic device of this embodiment is completed. Here, the connection member 40 will be further described. The connection member 40 is made of, for example, a metal having a high thermal conductivity such as Al, Au, Ag, or Cu. For example, it is preferably equal to or more than several μm to several tens μm, for example, about several μm to several hundred μm.

これは、上記した樹脂31の硬化収縮力により、平坦な膜状素材40aが湾曲して、凹凸面を有する接続部材40が形成されるのであるが、接続部材40の膜厚を熱伝導性フィラー32の平均粒径と同等以上にすれば、凹凸面における凹部を熱伝導性フィラー32が入り込む大きさにしやすいためである。もし、接続部材40がこれよりも薄いと、熱伝導性フィラーが入らない程度まで上記湾曲度合が急峻になりやすい。   This is because the flat film-like material 40a is curved by the curing shrinkage force of the resin 31 described above, and the connecting member 40 having an uneven surface is formed. This is because if the average particle size of 32 is set to be equal to or greater than the average particle size, the recesses on the uneven surface can be easily made large enough for the heat conductive filler 32 to enter. If the connecting member 40 is thinner than this, the degree of bending tends to be steep to such an extent that the heat conductive filler does not enter.

ところで、本実施形態においては、接続部材40は、複数個の熱伝導性フィラー32の間を発熱部品20から基板10へ向かう方向である厚さ方向Xに延びる面として、壁面41を備えている。   By the way, in this embodiment, the connection member 40 is provided with the wall surface 41 as a surface extended in the thickness direction X which is the direction which goes to the board | substrate 10 between the some heat conductive fillers 32 from the heat generating component 20. FIG. .

それによれば、接続部材40の壁面41に沿って複数個の熱伝導性フィラー32が並ぶことで、当該並んだ複数個の熱伝導性フィラー32同士は、直接接触により熱的に接続されるか、あるいは、接続部材40に接して接続部材40を介して熱的に接続される。   According to this, when a plurality of thermally conductive fillers 32 are arranged along the wall surface 41 of the connecting member 40, the plurality of arranged thermally conductive fillers 32 are thermally connected by direct contact. Alternatively, it is in thermal contact with the connection member 40 via the connection member 40.

そのため、本実施形態においては、厚さ方向Xに、熱伝導性フィラー32を熱的に接続した熱経路が形成されやすくなる。言い換えれば、本実施形態によれば、接着剤30を介した放熱性の向上を図るために、厚さ方向Xに熱伝導性フィラー32を熱的に接続してなる熱経路を形成するのに適した構成が提供される。   Therefore, in this embodiment, a thermal path in which the thermally conductive filler 32 is thermally connected is easily formed in the thickness direction X. In other words, according to the present embodiment, in order to improve the heat dissipation through the adhesive 30, the thermal path formed by thermally connecting the thermally conductive filler 32 in the thickness direction X is formed. A suitable configuration is provided.

そして、熱伝導性フィラー32が厚さ方向Xに並びやすいということは、接着剤30中の熱伝導性フィラー32が、発熱部品20と接着剤30との界面および基板10と接着剤30との界面にて、発熱部品20や基板10に接触しやすくなることにつながる。それゆえ、本実施形態では、放熱性の向上が図れるのである。   The fact that the heat conductive fillers 32 are easily arranged in the thickness direction X means that the heat conductive fillers 32 in the adhesive 30 are connected to the interface between the heat generating component 20 and the adhesive 30 and between the substrate 10 and the adhesive 30. This leads to easy contact with the heat generating component 20 and the substrate 10 at the interface. Therefore, in this embodiment, the heat dissipation can be improved.

また、本実施形態によれば、接続部材40を、膜面が凹凸面である膜状部材とし、凹凸面における凸部の頂部と凹部の底部との間に位置する壁面41が、厚さ方向Xに延びる面とされている。そのため、膜状の接続部材40を、樹脂31内にて基板10の一面に沿って配置するだけで、樹脂31内にて上記延びる面が容易に構成される。   In addition, according to the present embodiment, the connecting member 40 is a film-like member whose film surface is an uneven surface, and the wall surface 41 located between the top of the convex portion and the bottom of the concave portion on the uneven surface is in the thickness direction. The surface extends to X. Therefore, the extending surface is easily configured in the resin 31 only by arranging the film-like connecting member 40 along one surface of the substrate 10 in the resin 31.

また、その凹凸面を有する膜状の接続部材40の配置および形成は、上記製造方法の通り、一般的なこの種の電子装置の製造方法における接着剤の硬化工程にて行うことができる。そのため、製造コストの増大を抑制できるなどの効果が期待される。   Moreover, the arrangement | positioning and formation of the film-shaped connection member 40 which has the uneven | corrugated surface can be performed in the hardening process of the adhesive agent in the manufacturing method of this kind of general electronic device like the said manufacturing method. Therefore, an effect such as suppressing an increase in manufacturing cost is expected.

また、上記図2に示したように、接続部材40には、発熱部品20側と基板10側とを連通する貫通穴42を設けているため、上記製造方法に述べたように、この貫通穴42を介して、発熱部品20側と基板10とで樹脂31がつながる。そのため、接続部材40を簡単に樹脂31の内部に配置できるとともに、接着力の向上が期待される。   Further, as shown in FIG. 2, since the connecting member 40 is provided with a through hole 42 that communicates the heat generating component 20 side and the substrate 10 side, as described in the manufacturing method, this through hole is provided. The resin 31 is connected to the heat generating component 20 side and the substrate 10 through 42. Therefore, the connection member 40 can be easily disposed inside the resin 31 and an improvement in adhesive strength is expected.

(第2実施形態)
図5は、本発明の第2実施形態に係る種々の接続部材40単体の外観構成を示す斜視図である。上記第1実施形態では、接続部材40は膜状部材であったが、図5に示されるような熱伝導性フィラー32よりも一回りサイズが大きなものでもよい。
(Second Embodiment)
FIG. 5 is a perspective view showing an external configuration of various connecting members 40 according to the second embodiment of the present invention. In the first embodiment, the connecting member 40 is a film-like member. However, the connecting member 40 may be one size larger than the thermally conductive filler 32 as shown in FIG.

図5では、(a)が板面細かな板状、(b)が真っ直ぐな棒状、(c)がくの字の棒状、(d)がテトラポット状である。これらの接続部材40の大きさは、最大寸法部Lとして図5に示してあるが、この最大寸法部Lは熱伝導性フィラー32の最大粒径よりも大きいものである。   In FIG. 5, (a) is a fine plate shape, (b) is a straight bar shape, (c) is a square bar shape, and (d) is a tetrapot shape. Although the size of these connecting members 40 is shown in FIG. 5 as the maximum dimension portion L, the maximum dimension portion L is larger than the maximum particle size of the heat conductive filler 32.

また、図5の各接続部材40において、上記第1実施形態では壁面41により構成されていた上記延びる面を、当該延びる面41として符号を付してある。この延びる面41は、(a)では板面であり、(b)〜(c)では棒の側面である。   Further, in each connection member 40 of FIG. 5, the extending surface that is configured by the wall surface 41 in the first embodiment is denoted as the extending surface 41. The extending surface 41 is a plate surface in (a) and a side surface of a bar in (b) to (c).

このような図5に示される本実施形態の各接続部材40は、基板10上に接着剤30を塗布した後、その上に分散して配置するか、あるいは、接着剤30内にあらかじめ分散させておくことにより、電子装置に組み込まれる。   Each of the connection members 40 of the present embodiment shown in FIG. 5 is applied after the adhesive 30 is applied on the substrate 10 and then dispersed on the substrate 10 or dispersed in advance in the adhesive 30. It is incorporated in the electronic device.

図6は、図5(b)に示される接続部材40を用いた電子装置の概略断面図である。接続部材40は樹脂31内に設けられ、延びる面41は厚さ方向Xに延びている。それにより、本実施形態においても、厚さ方向Xに熱伝導性フィラー32を熱的に接続してなる熱経路が形成されやすくなり、放熱性の向上が図れる。   FIG. 6 is a schematic cross-sectional view of an electronic device using the connection member 40 shown in FIG. The connecting member 40 is provided in the resin 31, and the extending surface 41 extends in the thickness direction X. Thereby, also in this embodiment, it becomes easy to form the thermal path formed by thermally connecting the thermally conductive filler 32 in the thickness direction X, and the heat dissipation can be improved.

(第3実施形態)
図7は、本発明の第4実施形態に係る電子装置の製造方法を断面的に示す工程図である。本実施形態では、最終的に図7(b)に示される電子装置が製造される。
(Third embodiment)
FIG. 7 is a cross-sectional process diagram illustrating a method for manufacturing an electronic device according to a fourth embodiment of the present invention. In the present embodiment, the electronic device shown in FIG. 7B is finally manufactured.

上記第1実施形態では、膜状の接続部材40を接着剤30中に1層設けた構成であったが、接続部材40は2層以上設けてもよい。図7では、樹脂31内にて、その膜面が厚さ方向Xへ向かう方向に凹凸をなす凹凸面を有し、当該凹凸面の上記壁面41が上記延びる面となっている膜状の接続部材40が、基板10の一面に沿って2層配置されている。   In the first embodiment, the film-like connecting member 40 is provided in one layer in the adhesive 30, but the connecting member 40 may be provided in two or more layers. In FIG. 7, in the resin 31, a film-like connection in which the film surface has an uneven surface that is uneven in the direction toward the thickness direction X, and the wall surface 41 of the uneven surface is the extending surface. Two layers of members 40 are arranged along one surface of the substrate 10.

本電子装置の製造方法は、このように接続部材40を2層重ねること以外は、上記第1実施形態と同様である。すなわち、図7(a)に示されるように、基板10の一面上に、接着剤30、上記膜状素材40a、接着剤30、上記膜状素材40a、発熱部品20を順次重ねていき、荷重を加えて、接着剤30を硬化させる。   The manufacturing method of the present electronic device is the same as that of the first embodiment except that the two connecting members 40 are stacked in this way. That is, as shown in FIG. 7A, the adhesive 30, the film material 40 a, the adhesive 30, the film material 40 a, and the heat generating component 20 are sequentially stacked on one surface of the substrate 10, and the load Is added to cure the adhesive 30.

それにより、接着剤30の硬化収縮力により、2層の膜状素材40aが波形に変形し、それぞれ接続部材40となり、図7(b)に示される本実施形態の電子装置ができあがる。そして、この電子装置においても、上記第1実施形態と同様、厚さ方向Xに、熱伝導性フィラー32を熱的に接続した熱経路が形成されやすくなる。   Thereby, the two-layer film-like material 40a is deformed into a waveform by the curing shrinkage force of the adhesive 30, and each becomes the connection member 40, and the electronic device of the present embodiment shown in FIG. 7B is completed. Also in this electronic device, as in the first embodiment, a thermal path in which the thermally conductive filler 32 is thermally connected is easily formed in the thickness direction X.

上記図7では、接続部材40が複数層である場合の例として、2層の場合を示したが、接続部材40は3層以上であってもよい。   In FIG. 7 described above, a case of two layers is shown as an example in which the connection member 40 has a plurality of layers, but the connection member 40 may have three or more layers.

(他の実施形態)
なお、膜状の接続部材において、上記延びる面としての壁面41を有する凹凸面を形成する場合に、上記第1実施形態では、接着剤30の硬化収縮時に接続部材40の膜断面形状を波形に変形させることにより行ったが、当該凹凸面は、接続部材40の膜面を粗化することにより形成してもよい。
(Other embodiments)
In the film-like connection member, when the uneven surface having the wall surface 41 as the extending surface is formed, in the first embodiment, the film cross-sectional shape of the connection member 40 is corrugated when the adhesive 30 is cured and contracted. Although it performed by making it deform | transform, you may form the said uneven | corrugated surface by roughening the film | membrane surface of the connection member 40. FIG.

粗化の方法としては、公知であるが、たとえばNiなどの粗化メッキや物理的または化学的エッチングなどが挙げられる。このとき、接続部材の表面粗さは、熱伝導性フィラー32の最大粒径よりも大きくする。また、この場合には、接続部材としては、接着剤30の硬化時に変形しないものであっても使用できる。   As a roughening method, known methods include roughening plating such as Ni, physical or chemical etching, and the like. At this time, the surface roughness of the connecting member is made larger than the maximum particle size of the heat conductive filler 32. In this case, the connecting member can be used even if it does not deform when the adhesive 30 is cured.

また、上記第1実施形態では、膜状の接続部材40に貫通穴42が設けられていたが、この貫通穴42は無いものであってもよい。この場合、基板10上に接着剤30を塗布し、その上に膜状の接続部材を載せ、さらにその上に接着剤30を塗布し、その後、発熱部品20を搭載すれば、樹脂31の内部に接続部材が配置される。   Moreover, in the said 1st Embodiment, although the through-hole 42 was provided in the film-like connection member 40, this through-hole 42 may not be provided. In this case, if the adhesive 30 is applied on the substrate 10, a film-like connecting member is placed thereon, the adhesive 30 is further applied thereon, and then the heat generating component 20 is mounted, the inside of the resin 31. A connecting member is disposed on the surface.

また、放熱部材としては、接着剤を介して発熱部品の搭載および放熱が可能なものであれば、上記した配線基板や回路基板などの基板に限定されるものではなく、たとえばヒートシンク、リードフレーム、バスバー、ケースなどであってもよい。   Further, the heat radiating member is not limited to the above-described substrate such as a wiring board or a circuit board as long as the heat generating component can be mounted and radiated through an adhesive. For example, a heat sink, a lead frame, It may be a bus bar or a case.

本発明の第1実施形態に係る電子装置の概略断面図である。1 is a schematic cross-sectional view of an electronic device according to a first embodiment of the present invention. 第1実施形態の接続部材単体の外観構成を示す斜視図であり、(a)は変形前の接続部材である膜状素材、(b)は組み付け後の接続部材を示している。It is a perspective view which shows the external appearance structure of the connection member single-piece | unit of 1st Embodiment, (a) is the film-form raw material which is a connection member before a deformation | transformation, (b) has shown the connection member after an assembly | attachment. 第1実施形態の電子装置において各部を分解した状態を示す斜視図である。It is a perspective view which shows the state which decomposed | disassembled each part in the electronic device of 1st Embodiment. 第1実施形態の製造方法を断面的に示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment in cross section. 本発明の第2実施形態に係る種々の接続部材単体の外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure of the various connection member single-piece | unit based on 2nd Embodiment of this invention. 図5(b)に示される接続部材を用いた電子装置の概略断面図である。It is a schematic sectional drawing of the electronic device using the connection member shown by FIG.5 (b). 本発明の第4実施形態に係る電子装置の製造方法を断面的に示す工程図である。It is process drawing which shows in cross section the manufacturing method of the electronic device which concerns on 4th Embodiment of this invention.

符号の説明Explanation of symbols

10 放熱部材としての基板
20 発熱部品
30 接着剤
31 樹脂
32 熱伝導性フィラー
40 接続部材
40a 膜状素材
41 延びる面
42 貫通穴
DESCRIPTION OF SYMBOLS 10 Board | substrate as heat dissipation member 20 Heat generating component 30 Adhesive agent 31 Resin 32 Thermally conductive filler 40 Connection member 40a Film-like material 41 Extending surface 42 Through-hole

Claims (7)

樹脂(31)に熱伝導性フィラー(32)を含有してなる接着剤(30)を介して、発熱する発熱部品(20)を放熱部材(10)の一面上に搭載し、前記接着剤(30)を介して前記発熱部品(20)の熱を前記放熱部材(10)に放熱させるようにした電子装置において、
前記接着剤(30)の前記樹脂(31)内には、前記熱伝導性フィラー(32)よりもサイズが大きく熱伝導性材料よりなる接続部材(40)が設けられており、
前記接続部材(40)は、複数個の前記熱伝導性フィラー(32)の間を前記発熱部品(20)から前記放熱部材(10)へ向かう方向に延びる面(41)を備えていることを特徴とする電子装置。
A heat-generating component (20) is mounted on one surface of the heat dissipation member (10) via an adhesive (30) containing a heat conductive filler (32) in the resin (31), and the adhesive ( 30) In the electronic device in which the heat of the heat generating component (20) is radiated to the heat radiating member (10) via 30)
In the resin (31) of the adhesive (30), a connecting member (40) having a size larger than that of the heat conductive filler (32) and made of a heat conductive material is provided,
The connecting member (40) includes a surface (41) extending in a direction from the heat generating component (20) to the heat radiating member (10) between the plurality of thermally conductive fillers (32). Electronic device characterized.
前記接続部材(40)は、前記樹脂(31)内にて前記放熱部材(10)の一面に沿って配置された膜状部材であって、その膜面が前記発熱部品(20)から前記放熱部材(10)へ向かう方向に凹凸をなす凹凸面となっているものであり、
前記凹凸面における凹部は前記熱伝導性フィラー(32)が入り込む大きさであり、
当該凹凸面における凸部の頂部と凹部の底部との間に位置する壁面(41)が、前記延びる面として構成されていることを特徴とする請求項1に記載の電子装置。
The connecting member (40) is a film-like member disposed along one surface of the heat radiating member (10) in the resin (31), and the film surface is radiated from the heat generating component (20). It is an uneven surface that forms unevenness in the direction toward the member (10),
The concave portion in the concave and convex surface is a size into which the thermally conductive filler (32) enters,
2. The electronic device according to claim 1, wherein a wall surface (41) located between the top of the convex portion and the bottom of the concave portion on the uneven surface is configured as the extending surface.
前記凹凸面は、前記接続部材(40)の膜断面形状を波形とすることにより構成されていることを特徴とする請求項2に記載の電子装置。   The electronic device according to claim 2, wherein the uneven surface is formed by corrugating the cross-sectional shape of the connection member. 前記凹凸面は、前記接続部材(40)の前記膜面を粗化することにより構成されていることを特徴とする請求項2に記載の電子装置。   The electronic device according to claim 2, wherein the uneven surface is formed by roughening the film surface of the connection member. 前記接続部材(40)には、前記発熱部品(20)側と前記放熱部材(10)側とを連通する貫通穴(42)が設けられており、この貫通穴(42)を介して、前記発熱部品(20)側の前記樹脂(31)と前記放熱部材(10)側の前記樹脂(31)とがつながっていることを特徴とする請求項2ないし4のいずれか1つに記載の電子装置。   The connecting member (40) is provided with a through hole (42) communicating the heat generating component (20) side and the heat radiating member (10) side, and through the through hole (42), 5. The electron according to claim 2, wherein the resin (31) on the heat generating component (20) side and the resin (31) on the heat radiating member (10) side are connected to each other. apparatus. 前記凹凸面における凸部の頂部は、前記発熱部品(20)および前記放熱部材(10)のいずれか一方に直接接触していることを特徴とする請求項2ないし5のいずれか1つに記載の電子装置。   The top part of the convex part in the said uneven surface is directly in contact with either one of the said heat-emitting component (20) and the said heat radiating member (10), The one of Claim 2 thru | or 5 characterized by the above-mentioned. Electronic devices. 請求項3に記載の電子装置を製造する製造方法であって、
前記接着剤(30)を介して前記放熱部材(10)の一面上に前記発熱部品(20)を搭載するとともに、前記接続部材(40)となる膜状素材(40a)を、前記樹脂(31)内にて前記放熱部材(10)の一面に沿って配置し、
次に、前記樹脂(31)を硬化させることにより、当該樹脂(31)の硬化収縮力によって前記膜状素材(40a)を前記波形に変形させ、前記凹凸面を形成することを特徴とする電子装置の製造方法。
A manufacturing method for manufacturing the electronic device according to claim 3,
The heat generating component (20) is mounted on one surface of the heat radiating member (10) via the adhesive (30), and the film material (40a) to be the connecting member (40) is replaced with the resin (31 ) Arranged along one surface of the heat radiating member (10),
Next, by curing the resin (31), the film-shaped material (40a) is deformed into the corrugated shape by the curing shrinkage force of the resin (31) to form the uneven surface. Device manufacturing method.
JP2008054388A 2008-03-05 2008-03-05 Electronic device and manufacturing method thereof Expired - Fee Related JP5146016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008054388A JP5146016B2 (en) 2008-03-05 2008-03-05 Electronic device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008054388A JP5146016B2 (en) 2008-03-05 2008-03-05 Electronic device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009212326A true JP2009212326A (en) 2009-09-17
JP5146016B2 JP5146016B2 (en) 2013-02-20

Family

ID=41185183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008054388A Expired - Fee Related JP5146016B2 (en) 2008-03-05 2008-03-05 Electronic device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5146016B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031242A (en) * 2010-07-29 2012-02-16 Nitto Denko Corp Heat-conductive sheet
JP2015122360A (en) * 2013-12-20 2015-07-02 日東電工株式会社 Heat diffusing film and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244656A (en) * 1987-03-12 1988-10-12 ミネソタ マイニング アンド マニユフアクチユアリング カンパニー Electrically and thermally conductive elastic bending composite material
JPH07221125A (en) * 1994-01-27 1995-08-18 Toyota Autom Loom Works Ltd Mounting structure of semiconductor device and insulating adhesive agent
JP2005093996A (en) * 2003-09-15 2005-04-07 Fujitsu Ltd Adhesive for thermal interface
JP2008214524A (en) * 2007-03-06 2008-09-18 Sumitomo Electric Ind Ltd Adhesive, semiconductor device, and method for manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244656A (en) * 1987-03-12 1988-10-12 ミネソタ マイニング アンド マニユフアクチユアリング カンパニー Electrically and thermally conductive elastic bending composite material
JPH07221125A (en) * 1994-01-27 1995-08-18 Toyota Autom Loom Works Ltd Mounting structure of semiconductor device and insulating adhesive agent
JP2005093996A (en) * 2003-09-15 2005-04-07 Fujitsu Ltd Adhesive for thermal interface
JP2008214524A (en) * 2007-03-06 2008-09-18 Sumitomo Electric Ind Ltd Adhesive, semiconductor device, and method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031242A (en) * 2010-07-29 2012-02-16 Nitto Denko Corp Heat-conductive sheet
JP2015122360A (en) * 2013-12-20 2015-07-02 日東電工株式会社 Heat diffusing film and electronic device

Also Published As

Publication number Publication date
JP5146016B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP4159861B2 (en) Method for manufacturing heat dissipation structure of printed circuit board
JP2007158279A (en) Semiconductor device and electronic controller using the same
JP2013211526A (en) Component built-in substrate, and manufacturing method thereof
JP2010263003A (en) Heat-conducting structure of printed board
TWI435666B (en) Radiant heat circuit board and method for manufacturing the same
JP4862871B2 (en) Semiconductor device
KR20100011773A (en) Electronic chip module
TW201428908A (en) Chip-embedded printed circuit board and semiconductor package using the PCB, and manufacturing method of the PCB
JP2010080572A (en) Electronic equipment
WO2013047520A1 (en) Component embedded substrate mounting body, method for manufacturing same and component embedded substrate
JP5885630B2 (en) Printed board
JP2009064870A (en) Mold package
JP2010205863A (en) On-vehicle electronic controller
JP5146016B2 (en) Electronic device and manufacturing method thereof
JP4452888B2 (en) Electronic circuit equipment
JP2006100687A (en) Packaging structure of light-emitting diode
JP6610497B2 (en) Electronic device and manufacturing method thereof
JP5358515B2 (en) Semiconductor device and electronic control device using the same
CN116669286A (en) Flexible circuit board structure capable of conducting heat
KR101602706B1 (en) Embedded substrate having metal foil for radiating heat and method manufacturing method thereof
JP2009135372A (en) Circuit module and method of manufacturing the same
JPH11163564A (en) Electronic apparatus and its manufacture
JP2009188308A (en) Heat dissipation substrate and manufacturing method thereof
JP2010040900A (en) Heat radiation board, method of manufacturing the same, and module using the same
JP2007243079A (en) Heat radiation type printed wiring board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees