JP2009212284A - Gallium nitride substrate - Google Patents

Gallium nitride substrate Download PDF

Info

Publication number
JP2009212284A
JP2009212284A JP2008053348A JP2008053348A JP2009212284A JP 2009212284 A JP2009212284 A JP 2009212284A JP 2008053348 A JP2008053348 A JP 2008053348A JP 2008053348 A JP2008053348 A JP 2008053348A JP 2009212284 A JP2009212284 A JP 2009212284A
Authority
JP
Japan
Prior art keywords
gan
substrate
peak
single crystal
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008053348A
Other languages
Japanese (ja)
Other versions
JP5575372B2 (en
Inventor
Shunsuke Yamamoto
俊輔 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008053348A priority Critical patent/JP5575372B2/en
Publication of JP2009212284A publication Critical patent/JP2009212284A/en
Application granted granted Critical
Publication of JP5575372B2 publication Critical patent/JP5575372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a GaN substrate with which a device having superior characteristics is manufactured with good reproducibility. <P>SOLUTION: The gallium nitride substrate is characterized in that a first intensity at a first peak of a wavelength corresponding to a band gap of gallium nitride in a spectrum of cathode luminescence obtained through irradiation with an electron of ≥13 kV in acceleration voltage is ≥2 times as large as a second intensity at a second peak observed on a longer-wavelength side than the first peak. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、窒化ガリウム基板に関する。特に、本発明は、特性の優れたデバイスを再現性よく製造することのできる窒化ガリウム基板に関する。   The present invention relates to a gallium nitride substrate. In particular, the present invention relates to a gallium nitride substrate capable of manufacturing a device having excellent characteristics with high reproducibility.

従来、窒化ガリウム基板上に所定の窒化物半導体を形成して特性の優れた電子デバイスを製造することを目的として、窒化ガリウム基板の表面から浅い部分のダメージを改善する試みがなされている。窒化ガリウム基板の表面のダメージを評価する方法としては、例えば、化合物半導体基板の表面のフォトルミネッセンス(Photoluminescence:PL)測定を実施するダメージ評価方法が提案されている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, attempts have been made to improve damage in a shallow portion from the surface of a gallium nitride substrate in order to produce an electronic device having excellent characteristics by forming a predetermined nitride semiconductor on the gallium nitride substrate. As a method for evaluating the damage on the surface of the gallium nitride substrate, for example, a damage evaluation method for performing photoluminescence (PL) measurement on the surface of the compound semiconductor substrate has been proposed (see, for example, Patent Document 1).

特許文献1に記載のダメージ評価方法においては、フォトルミネッセンス測定によって得られた発光スペクトルにおいて、化合物半導体基板のバンドギャップに対応する波長におけるピークの半値幅を用いて化合物半導体基板の表面から数十nmの深さのダメージを評価している。   In the damage evaluation method described in Patent Document 1, in the emission spectrum obtained by photoluminescence measurement, the half width of the peak at the wavelength corresponding to the band gap of the compound semiconductor substrate is used, and several tens of nm from the surface of the compound semiconductor substrate. The damage of depth is evaluated.

特開2006−339605号公報JP 2006-339605 A

しかし、特許文献1に記載のダメージ評価方法により良好な評価が示された窒化ガリウム(GaN)基板であっても、その上に成長したエピタキシャル層の特性がデバイスの作成に用いることができないほど劣化する場合がある。   However, even in the case of a gallium nitride (GaN) substrate that has been successfully evaluated by the damage evaluation method described in Patent Document 1, the characteristics of the epitaxial layer grown on the substrate cannot be used for device fabrication. There is a case.

したがって、本発明の目的は、特性の優れたデバイスを再現性よく製造することのできるGaN基板を提供する。   Therefore, an object of the present invention is to provide a GaN substrate capable of manufacturing a device having excellent characteristics with high reproducibility.

本発明は、上記目的を達成するため、加速電圧が13kV以上の電子が照射された際に得られるカソードルミネッセンスのスペクトルのうち、窒化ガリウムのバンドギャップに対応する波長における第1のピークの第1の強度が、第1のピークより長波長側に観測される第2のピークの第2の強度の2倍以上である窒化ガリウム基板が提供される。   In order to achieve the above object, the present invention provides a first peak of a first peak at a wavelength corresponding to a band gap of gallium nitride in a spectrum of cathodoluminescence obtained when electrons having an acceleration voltage of 13 kV or more are irradiated. The gallium nitride substrate is provided whose intensity is at least twice the second intensity of the second peak observed on the longer wavelength side than the first peak.

また、本発明は、上記目的を達成するため、加速電圧が13kV以上の電子が照射された際に得られるカソードルミネッセンスのスペクトルのうち、窒化ガリウムのバンドギャップに対応する波長における第1のピークの第1の強度が、第1のピークより長波長側に観測される第2のピークの第2の強度の5倍以上である窒化ガリウム基板が提供される。   In order to achieve the above object, the present invention provides a first peak at a wavelength corresponding to the band gap of gallium nitride in the spectrum of cathodoluminescence obtained when electrons having an acceleration voltage of 13 kV or higher are irradiated. A gallium nitride substrate is provided in which the first intensity is five times or more the second intensity of the second peak observed on the longer wavelength side than the first peak.

本発明の窒化ガリウム基板によれば、特性の優れたデバイスを再現性よく製造することのできるGaN基板を提供することができる。   According to the gallium nitride substrate of the present invention, it is possible to provide a GaN substrate capable of manufacturing a device having excellent characteristics with good reproducibility.

[実施の形態]
窒化物系の高性能のデバイスを製造する場合、窒化ガリウム(GaN)基板上には、窒化物系半導体層及び/又は電極が形成される。デバイスの特性(例えば、電気的特性)は、GaN基板と窒化物系半導体層との界面、及び/又はGaN基板と電極との界面の影響を強く受ける。したがって、GaN基板の表面の特性、特に、GaN基板表面近傍におけるダメージの程度は重要である。GaN基板を製造する際には複数の製造プロセスを経るので、各プロセスにおいて生じたダメージがGaN基板に含まれる。
[Embodiment]
When manufacturing a nitride-based high-performance device, a nitride-based semiconductor layer and / or an electrode are formed on a gallium nitride (GaN) substrate. Device characteristics (for example, electrical characteristics) are strongly influenced by the interface between the GaN substrate and the nitride-based semiconductor layer and / or the interface between the GaN substrate and the electrode. Therefore, the characteristics of the surface of the GaN substrate, particularly the degree of damage near the surface of the GaN substrate is important. Since a GaN substrate is manufactured through a plurality of manufacturing processes, damage caused in each process is included in the GaN substrate.

例えば、GaN基板の表面が粗い場合、すなわち、表面ラフネスが所定値以上の場合は、GaN基板上に成長した半導体層に欠陥等が引き継がれる。成長した半導体層に欠陥等が引き継がれると、引き継がれた欠陥等を原因としてデバイス特性が劣化するので、GaN基板表面には、研磨処理又はエッチング処理が施される。このとき、GaN基板の表面及び表面近傍には、スクラッチ及び/又は加工歪み等のダメージが生じる。このようなダメージが表面に存在するGaN基板の表面上に、窒化物半導体等のエピタキシャル膜を成長させてデバイスを製造すると、GaN基板とエピタキシャル膜との界面に存在するダメージに起因して、デバイス特性が劣化する。   For example, when the surface of the GaN substrate is rough, that is, when the surface roughness is a predetermined value or more, defects and the like are inherited in the semiconductor layer grown on the GaN substrate. When defects or the like are inherited in the grown semiconductor layer, the device characteristics are deteriorated due to the inherited defects or the like, so that the GaN substrate surface is subjected to polishing treatment or etching treatment. At this time, damage such as scratches and / or processing distortion occurs on the surface of the GaN substrate and in the vicinity of the surface. When a device is manufactured by growing an epitaxial film such as a nitride semiconductor on the surface of the GaN substrate where such damage exists on the surface, the device is caused by damage existing at the interface between the GaN substrate and the epitaxial film. Characteristics deteriorate.

ここで、本発明者は、GaN基板の表面から1μm程度の深さの領域のおけるダメージが、GaN基板上に形成する窒化物系化合物半導体層の特性、すなわち、デバイス特性に大きな影響を与える原因であるとの知見を得た。そして、GaN基板の表面から1μm程度の深さの領域におけるダメージが低減したGaN基板を用いると、再現性よく特性の優れたデバイスを製造することができるとの知見を得た。なお、上述したような本実施の形態に係るGaN基板であるか否かは、カソードルミネッセンス(Cathodoluminescence:CL)測定によって特定できる。   Here, the present inventor found that the damage in the region having a depth of about 1 μm from the surface of the GaN substrate greatly affects the characteristics of the nitride compound semiconductor layer formed on the GaN substrate, that is, the device characteristics. The knowledge that it is. And the knowledge that a device with excellent reproducibility and excellent characteristics can be manufactured by using a GaN substrate with reduced damage in a region having a depth of about 1 μm from the surface of the GaN substrate was obtained. In addition, whether it is a GaN substrate according to the present embodiment as described above can be specified by cathodoluminescence (CL) measurement.

(GaN基板の構造)
本実施の形態に係るGaN基板は、加速電圧が13kV以上の電子が照射された際に得られるCLのスペクトルのうち、GaNのバンドギャップに対応する波長における第1のピークの第1の強度が、第1のピークより長波長側に観測される第2のピークの第2の強度の2倍以上、又は5倍以上を示すものである。
(Structure of GaN substrate)
In the GaN substrate according to the present embodiment, the first intensity of the first peak at the wavelength corresponding to the band gap of GaN out of the CL spectrum obtained when electrons having an acceleration voltage of 13 kV or higher are irradiated. , 2 times or more, or 5 times or more of the second intensity of the second peak observed on the longer wavelength side than the first peak.

そして、本実施の形態に係るGaN基板は、発光ダイオード、レーザダイオード等の発光素子を含む電子デバイス製造のプロセス工程に用いられる。例えば、本実施の形態に係るGaN基板を下地基板として用い、下地基板としてのGaN基板上に所定の化合物半導体、例えば、所定の窒化物系化合物半導体層をエピタキシャル成長する。これにより、本実施の形態に係るGaN基板上に所定構造のデバイス構造層が形成される。窒化物系化合物半導体層は、例えば、有機金属成長法(MOVPE法)、分子線気相成長法(MBE法)、ハイドライド気相成長法(HVPE法)等の気相成長法を用いてGaN基板上にエピタキシャル成長することにより成長することができる。   The GaN substrate according to the present embodiment is used for process steps of manufacturing electronic devices including light emitting elements such as light emitting diodes and laser diodes. For example, a GaN substrate according to this embodiment is used as a base substrate, and a predetermined compound semiconductor, for example, a predetermined nitride-based compound semiconductor layer is epitaxially grown on the GaN substrate as the base substrate. Thereby, a device structure layer having a predetermined structure is formed on the GaN substrate according to the present embodiment. The nitride compound semiconductor layer is formed by using a vapor phase growth method such as an organic metal growth method (MOVPE method), a molecular beam vapor phase growth method (MBE method), or a hydride vapor phase growth method (HVPE method). It can be grown by epitaxial growth on it.

(GaN基板の製造方法)
本実施の形態に係るGaN基板が切り出されるGaNインゴットは、例えば、低温バッファ成長法、Epitaxial Lateral Overgrowth(ELO)法、Facet−Initiated Epitaxal Lateral Overgrowth(FIERO)法、又はDislocation Elimination by the Epi−growth with Inverted−Pyramidal Pits(DEEP)法等を用いて成長することができる。
(Method for manufacturing GaN substrate)
The GaN ingot from which the GaN substrate according to the present embodiment is cut out is, for example, a low-temperature buffer growth method, an epitaxial lateral overgrowth (ELO) method, a facet-initiated epitaxy lateral overgrowth (FIERO) method, or a displacement eligibility method. It can be grown using an inverted-pyramidal pits (DEEP) method or the like.

低温バッファ成長法は、サファイア等の異種基板上に低温堆積緩衝層(バッファ層)を形成する工程と、バッファ層上にエピタキシャル成長層を形成する工程とを備える。より具体的に、低温バッファ成長法は、サファイア等の基板上に窒化アルミニウム(AlN)層又はGaN層を500℃付近で堆積する低温バッファ層堆積工程と、低温バッファ層堆積工程に連続して、アモルファス状の膜又は一部に多結晶を含むGaNの連続膜を形成する連続膜形成工程と、形成した連続膜を1,000℃付近に昇温して連続膜の一部を蒸発又は結晶化させて、密度の高い結晶核を形成する結晶核形成工程と、結晶核を成長の核としてGaN膜を成長するGaN膜成長工程を備える。   The low temperature buffer growth method includes a step of forming a low temperature deposition buffer layer (buffer layer) on a heterogeneous substrate such as sapphire and a step of forming an epitaxial growth layer on the buffer layer. More specifically, in the low temperature buffer growth method, a low temperature buffer layer deposition step of depositing an aluminum nitride (AlN) layer or a GaN layer on a substrate such as sapphire at around 500 ° C., and a low temperature buffer layer deposition step, A continuous film forming step of forming an amorphous film or a continuous film of GaN containing polycrystalline in a part, and the formed continuous film is heated to around 1000 ° C. to evaporate or crystallize a part of the continuous film A crystal nucleation step for forming high-density crystal nuclei, and a GaN film growth step for growing a GaN film using the crystal nuclei as growth nuclei.

また、ELO法は、サファイア基板等の下地基板に開口部を有するマスクを形成するマスク形成工程と、マスクの開口部からGaNをラテラル成長させるラテラル成長工程とを備える成長方法である。ELO法においては、サファイア基板上にGaNを形成した後、サファイア基板をエッチング等により除去することによりGaNを形成する。   The ELO method is a growth method including a mask forming step of forming a mask having an opening on a base substrate such as a sapphire substrate and a lateral growth step of laterally growing GaN from the opening of the mask. In the ELO method, GaN is formed on a sapphire substrate and then removed by etching or the like.

また、FIELO法は、サファイア基板等の下地基板に酸化シリコンマスクを用いて開口部を有するマスクを形成して選択成長する点でELO法と共通する。ただし、FIELO法は、選択成長の際にマスクの開口部にファセットを形成することにより、結晶成長中に生じる転位の伝播方向を所定の方向に変え、エピタキシャル成長層の上面に至る貫通転位を低減する成長方法である点でELO法と異なる。FIELO法では、例えば、サファイア等の下地基板上に厚膜のGaN層を成長させる。続いて、下地基板を除去する。これにより、結晶欠陥の少ない良質なGaN単結晶を形成する。   The FIELO method is common to the ELO method in that a silicon oxide mask is used to form a mask having an opening on a base substrate such as a sapphire substrate and is selectively grown. However, the FIELO method reduces the threading dislocations reaching the upper surface of the epitaxial growth layer by changing the propagation direction of dislocations generated during crystal growth to a predetermined direction by forming facets at the opening of the mask during selective growth. It differs from the ELO method in that it is a growth method. In the FIELO method, for example, a thick GaN layer is grown on a base substrate such as sapphire. Subsequently, the base substrate is removed. Thereby, a high-quality GaN single crystal with few crystal defects is formed.

また、DEEP法は、ガリウムヒ素(GaAs)基板上に窒化ケイ素等からなるマスクをパターニングするパターニング工程と、パターニング工程後にGaNを成長させる成長工程とを備える。DEEP法においては、まず、マスクを用いてGaNを成長することによりGaN結晶の表面にファセット面で囲まれたピットを意図的に複数形成する。続いてGaNの成長を続けると、ピットの底部に転位が集積する。これにより、DEEP法においては、ピットの底部に比べて転位密度の低い領域を形成することができる。   The DEEP method includes a patterning process for patterning a mask made of silicon nitride or the like on a gallium arsenide (GaAs) substrate, and a growth process for growing GaN after the patterning process. In the DEEP method, first, a plurality of pits surrounded by facet planes are intentionally formed on the surface of a GaN crystal by growing GaN using a mask. When GaN continues to grow, dislocations accumulate at the bottom of the pit. Thereby, in the DEEP method, a region having a lower dislocation density than the bottom of the pit can be formed.

GaNインゴットを製造した後、GaNインゴットをスライスしてGaN基板(表面処理前)を製造する。続いて、スライスして得たGaN基板の表面に対して、粗研磨を施した後、所定の平均粒径及び硬度を有する所定の研磨剤による研磨処理及び/又は所定のエッチング処理(ドライエッチング処理及び/又はウェットエッチング処理)による表面処理を施すことにより、本実施の形態に係るGaN基板を製造することができる。   After manufacturing the GaN ingot, the GaN ingot is sliced to manufacture a GaN substrate (before surface treatment). Subsequently, after slicing the surface of the GaN substrate obtained by slicing, polishing treatment with a predetermined abrasive having a predetermined average particle diameter and hardness and / or predetermined etching processing (dry etching processing) (And / or wet etching treatment), the GaN substrate according to the present embodiment can be manufactured.

表面処理は、一例として、粗研磨及び研磨処理後のGaN基板の表面に対して、ドライエッチング処理を施した後、ウェットエッチング処理を施す工程を含む。表面処理の他の例としては、粗研磨後の表面を所定の粒径の所定の研磨剤を用いて研磨した後、所定のエッチャントにより表面にウェットエッチング処理を施す工程を含む。また、粗研磨後の表面の研磨においては、粗研磨後のGaN基板の表面から所定の深さ(一例として、10μm前後)まで研磨する。更に、表面処理は、一例として、粗研磨及び研磨処理後のGaN基板の表面に対して、イソプロピルアルコール等の有機溶剤による洗浄工程を採用することもできる。   As an example, the surface treatment includes a step of performing wet etching after performing dry etching on the surface of the GaN substrate after rough polishing and polishing. Another example of the surface treatment includes a step of polishing the surface after rough polishing with a predetermined abrasive having a predetermined particle size and then subjecting the surface to a wet etching process with a predetermined etchant. Further, in the polishing of the surface after the rough polishing, the polishing is performed from the surface of the GaN substrate after the rough polishing to a predetermined depth (for example, around 10 μm). Further, as an example, the surface treatment may employ a cleaning process using an organic solvent such as isopropyl alcohol on the surface of the GaN substrate after rough polishing and polishing.

本実施の形態に係るGaN基板であるか否かは、カソードルミネッセンス測定(CL測定)を用いてGaN基板の表面近傍のダメージを測定することにより判断できる。   Whether or not the substrate is a GaN substrate according to the present embodiment can be determined by measuring damage near the surface of the GaN substrate using cathodoluminescence measurement (CL measurement).

CL測定においては、測定対象物としてのGaN基板表面からダメージの評価をすることのできる領域の端部までの深さは、照射する電子ビームがGaN基板の表面から進入する深さとしての進入深さに応じて決定される。電子ビームの進入深さは、照射する電子ビームの電子の加速電圧と、測定対象物の原子量及び原子番号並びに密度とに応じて決定される。具体的には、以下の「式1」により、電子の進入深さが決定される(例えば、Jpn. J. Appl. Phys., Vol. 40 (2001), pp. 476-479参照。)。   In the CL measurement, the depth from the surface of the GaN substrate as a measurement object to the end of the region where damage can be evaluated is the depth of penetration as the depth at which the irradiated electron beam enters from the surface of the GaN substrate. It is decided accordingly. The penetration depth of the electron beam is determined according to the acceleration voltage of electrons of the electron beam to be irradiated and the atomic weight, atomic number, and density of the measurement object. Specifically, the electron penetration depth is determined by the following “Equation 1” (see, for example, Jpn. J. Appl. Phys., Vol. 40 (2001), pp. 476-479).

Figure 2009212284
Figure 2009212284

ここで、Reは、電子の進入深さ(μm)、Aは、測定対象物の原子量、ρは、測定対象物の密度(g/cm)、Zは、測定対象物の原子番号、Ebは、電子の加速電圧(kV)である。 Here, Re is the electron penetration depth (μm), A is the atomic weight of the measurement object, ρ is the density (g / cm 3 ) of the measurement object, Z is the atomic number of the measurement object, Eb Is the acceleration voltage (kV) of electrons.

CL測定においては、GaN基板の表面から所定の深さまでのGaN結晶中に存在するダメージを評価する。「式1」において、原子量、密度、及び原子番号は測定対象物に固有の値なので、測定対象物が決定されればこれらの値は一義的に決定される。したがって、GaN基板の表面から電子が侵入する深さは、GaN基板に照射する電子の加速電圧に応じて決定される。そして、所定の加速電圧の電子ビームをGaN基板に照射してCL測定を実施する。例えば、CLのスペクトルから、GaN基板を構成するGaN結晶のバンドギャプに対応する波長のピーク(第1のピーク)の強度と、第1のピークよりも長波長側に観測され、GaNのバンドギャップ間に発生する準位に起因するピーク(第2のピーク)の強度とを測定する。   In the CL measurement, damage existing in the GaN crystal from the surface of the GaN substrate to a predetermined depth is evaluated. In “Formula 1”, the atomic weight, density, and atomic number are values inherent to the measurement object. Therefore, if the measurement object is determined, these values are uniquely determined. Therefore, the depth at which electrons enter from the surface of the GaN substrate is determined according to the acceleration voltage of the electrons applied to the GaN substrate. Then, CL measurement is performed by irradiating the GaN substrate with an electron beam having a predetermined acceleration voltage. For example, from the CL spectrum, the intensity of the wavelength peak (first peak) corresponding to the band gap of the GaN crystal constituting the GaN substrate and the longer wavelength side than the first peak are observed, and the band gap between GaN And the intensity of the peak (second peak) attributed to the level generated in.

すなわち、CL測定においては、GaN基板の表面からフォトルミネッセンス(PL)測定では測定することのできない深さにおけるダメージの程度を評価する。例えば、CL測定において測定した第2のピークのピーク強度は、GaN基板が内包する発光を生じさせるようなダメージの程度によって変化するので、第1のピークの強度と第2のピークの強度との強度比を評価することで、GaN基板表面から所定の深さ(例えば、1μm程度の深さ)までの領域のダメージの程度を把握できる。   That is, in the CL measurement, the degree of damage at a depth that cannot be measured by the photoluminescence (PL) measurement from the surface of the GaN substrate is evaluated. For example, the peak intensity of the second peak measured in the CL measurement changes depending on the degree of damage that causes the light emission contained in the GaN substrate. Therefore, the intensity of the first peak and the intensity of the second peak By evaluating the intensity ratio, it is possible to grasp the extent of damage in a region from the GaN substrate surface to a predetermined depth (for example, a depth of about 1 μm).

図1は、CL測定による基板ダメージの評価の方法の概要を示す。   FIG. 1 shows an outline of a method for evaluating substrate damage by CL measurement.

CL測定において、測定対象物のバンドギャップに対応する波長λ1における第1のピーク50の強度I1と、波長λ1よりも長波長側の波長λ2における第2のピーク52の強度I2とを検出する。続いて、検出した強度I1と強度I2との強度比(I1/I2)を算出して、算出した強度比により結晶性を評価する。例えば、第1のピークの強度と第2のピークの強度との強度比は、GaN基板表面から所定の深さまでの領域のダメージの程度が大きいほど、小さくなる傾向がある。   In the CL measurement, the intensity I1 of the first peak 50 at the wavelength λ1 corresponding to the band gap of the measurement object and the intensity I2 of the second peak 52 at the wavelength λ2 longer than the wavelength λ1 are detected. Subsequently, an intensity ratio (I1 / I2) between the detected intensity I1 and intensity I2 is calculated, and crystallinity is evaluated based on the calculated intensity ratio. For example, the intensity ratio between the intensity of the first peak and the intensity of the second peak tends to decrease as the degree of damage in the region from the GaN substrate surface to a predetermined depth increases.

CL測定において、加速電圧が13kV以上の電子が照射された際に得られるCLのスペクトルのうち、GaNのバンドギャップに対応する波長における第1のピーク50の強度が、第1のピーク50より長波長側に観測される第2のピーク52の強度の2倍以上、又は5倍以上を示す場合、本実施の形態に係るGaN基板であると特定できる。   In CL measurement, the intensity of the first peak 50 at a wavelength corresponding to the band gap of GaN is longer than that of the first peak 50 in the CL spectrum obtained when an electron having an acceleration voltage of 13 kV or higher is irradiated. When the intensity of the second peak 52 observed on the wavelength side is 2 times or more, or 5 times or more, the GaN substrate according to this embodiment can be specified.

図2は、GaN基板に対する電子の進入深さと電子の加速電圧との関係を示す。   FIG. 2 shows the relationship between the penetration depth of electrons into the GaN substrate and the acceleration voltage of electrons.

測定対象物としてのGaN基板においては、上記説明における「式1」から、GaN基板に対する電子の進入深さと加速電圧との関係を求めることができる。図2を参照すると、電子の加速電圧が13kV以上の場合、GaN基板に対する電子の進入深さが1μm以上となる。そのため、CL測定において、照射する電子の加速電圧を13kV以上にすると、GaN基板表面からの深さが1μm以上の領域のダメージを評価でき、本実施の形態に係るGaN基板であるか否かを特定できる。   In the GaN substrate as the measurement object, the relationship between the electron penetration depth into the GaN substrate and the acceleration voltage can be obtained from “Expression 1” in the above description. Referring to FIG. 2, when the acceleration voltage of electrons is 13 kV or more, the penetration depth of electrons to the GaN substrate is 1 μm or more. Therefore, in the CL measurement, when the acceleration voltage of the irradiated electrons is set to 13 kV or more, damage in a region having a depth of 1 μm or more from the surface of the GaN substrate can be evaluated. Can be identified.

なお、この場合、GaNのバンドギャップに対応する波長365nm付近のピークが図1において説明した第1のピーク50となると共に、波長500nmから700nm付近のピークが図1において説明した第2のピーク52となる。   In this case, the peak near the wavelength 365 nm corresponding to the band gap of GaN becomes the first peak 50 described in FIG. 1, and the peak near the wavelength 500 nm to 700 nm is the second peak 52 described in FIG. It becomes.

本実施の形態に係るGaN基板は、照射する電子の加速電圧を13kV以上に設定した際のGaN基板の表面のCL測定によって得られる発光スペクトルにおいて、第1のピーク50の強度I1が、第2のピーク52の強度I2の2倍以上、より好ましくは5倍以上となるものである。このような本実施の形態に係るGaN基板は、基板表面からの深さが1μm程度における結晶に対するダメージが少なく、特性の良いデバイスを再現性よく作成できるGaN基板として用いることができる。   In the emission spectrum obtained by CL measurement of the surface of the GaN substrate when the acceleration voltage of the electrons to be irradiated is set to 13 kV or more, the GaN substrate according to the present embodiment has an intensity I1 of the first peak 50 of the second peak. The peak 52 has an intensity I2 of 2 times or more, more preferably 5 times or more. Such a GaN substrate according to the present embodiment can be used as a GaN substrate capable of producing a device having good characteristics with good reproducibility with little damage to the crystal when the depth from the substrate surface is about 1 μm.

(実施の形態の効果)
本発明の実施の形態に係るGaN基板は、基板表面から1μm程度の深さにおけるダメージが少ないので、基板表面から1μm程度の深さのダメージに起因する欠陥が、基板上に成長されるエピタキシャル層中に生じる(又は伝搬する)ことを低減できる。これにより、再現性よく高品質のデバイスを製造することのできるGaN基板を提供することができる。
(Effect of embodiment)
Since the GaN substrate according to the embodiment of the present invention has little damage at a depth of about 1 μm from the substrate surface, an epitaxial layer in which defects caused by damage at a depth of about 1 μm from the substrate surface are grown on the substrate. It is possible to reduce the occurrence (or propagation) of the inside. Thereby, it is possible to provide a GaN substrate capable of manufacturing a high-quality device with high reproducibility.

[実施例及び比較例]
以下に述べる実施例及び比較例においては、所定の方法により得られたGaN単結晶のインゴットをスライスして得られたGaN単結晶基板(直径:2インチ)にそれぞれ異なる表面処理を施した。そして、表面処理後の各GaN単結晶基板のそれぞれについて、CL測定及び基板ダメージ評価を実施した。更に、実施例及び比較例に係る各GaN単結晶基板上に所定のGaN薄膜を形成した後、表面粗さの測定も実施した。なお、一部の実施例及び一部の比較例については、フォトルミネッセンスによる評価も実施した。以下、詳述する。
[Examples and Comparative Examples]
In Examples and Comparative Examples described below, different surface treatments were applied to GaN single crystal substrates (diameter: 2 inches) obtained by slicing GaN single crystal ingots obtained by a predetermined method. And CL measurement and substrate damage evaluation were implemented about each of each GaN single crystal substrate after surface treatment. Furthermore, after a predetermined GaN thin film was formed on each GaN single crystal substrate according to the example and the comparative example, the surface roughness was also measured. Note that some examples and some comparative examples were also evaluated by photoluminescence. Details will be described below.

まず、GaN単結晶のインゴットをスライスして得られたGaN単結晶基板の表面を粗研磨した。次に、粒径0.1μmのダイアモンド砥粒を用いて、粗研磨した表面を10μm研磨した。更に、反応性イオンエッチング法(Reactive Ion Etching法:RIE法)を用いて、研磨済みの表面をドライエッチングした。なお、RIEの実施条件は、エッチングガス:Clガス、供給エッチングガス流量:50sccm、供給電力:200W、チャンバー内圧力:10Pa、エッチング時間:60分間、である。 First, the surface of a GaN single crystal substrate obtained by slicing a GaN single crystal ingot was roughly polished. Next, the rough polished surface was polished by 10 μm using diamond abrasive grains having a particle size of 0.1 μm. Further, the polished surface was dry etched using a reactive ion etching method (Reactive Ion Etching method: RIE method). The RIE conditions are: etching gas: Cl 2 gas, supply etching gas flow rate: 50 sccm, supply power: 200 W, chamber pressure: 10 Pa, etching time: 60 minutes.

RIE後、エッチングした表面のダメージの除去を目的として、GaN単結晶基板を80℃の5%NHOH溶液に60分間浸漬させてウェットエッチングした。これにより、実施例1に係るGaN単結晶基板を得た。 After RIE, the GaN single crystal substrate was immersed in a 5% NH 4 OH solution at 80 ° C. for 60 minutes for the purpose of removing damage on the etched surface, and wet etched. As a result, a GaN single crystal substrate according to Example 1 was obtained.

実施例2に係るGaN単結晶基板は以下のようにして得た。まず、GaN単結晶のインゴットをスライスして得られたGaN単結晶基板の表面を粗研磨した。次に、粒径1μmのダイアモンド砥粒を用いて表面を10μm研磨した。更に、イソプロピルアルコールを用いて表面を洗浄した。続いて、GaN単結晶基板を、80℃の5%NHOH溶液に900分間浸漬させることにより、ウェットエッチングした。このようにして、実施例2に係るGaN単結晶基板を得た。 The GaN single crystal substrate according to Example 2 was obtained as follows. First, the surface of a GaN single crystal substrate obtained by slicing a GaN single crystal ingot was roughly polished. Next, the surface was polished by 10 μm using diamond abrasive grains having a particle diameter of 1 μm. Further, the surface was washed with isopropyl alcohol. Subsequently, the GaN single crystal substrate was wet etched by immersing it in a 5% NH 4 OH solution at 80 ° C. for 900 minutes. Thus, a GaN single crystal substrate according to Example 2 was obtained.

実施例3に係るGaN単結晶基板は以下のようにして得た。まず、GaN単結晶のインゴットをスライスして得られたGaN単結晶基板の表面を粗研磨した。次に、粒径1μmのダイアモンド砥粒を用いて表面を10μm研磨した。更に、イソプロピルアルコールを用いて表面を洗浄した。続いて、GaN単結晶基板を、80℃の5%NHOH溶液に780分間浸漬させることにより、ウェットエッチングした。このようにして、実施例3に係るGaN単結晶基板を得た。 The GaN single crystal substrate according to Example 3 was obtained as follows. First, the surface of a GaN single crystal substrate obtained by slicing a GaN single crystal ingot was roughly polished. Next, the surface was polished by 10 μm using diamond abrasive grains having a particle diameter of 1 μm. Further, the surface was washed with isopropyl alcohol. Subsequently, the GaN single crystal substrate was wet-etched by immersing it in a 5% NH 4 OH solution at 80 ° C. for 780 minutes. Thus, a GaN single crystal substrate according to Example 3 was obtained.

実施例4に係るGaN単結晶基板は以下のようにして得た。まず、GaN単結晶のインゴットをスライスして得られたGaN単結晶基板の表面を粗研磨した。次に、粒径1μmのダイアモンド砥粒を用いて表面を10μm研磨した。更に、イソプロピルアルコールを用いて表面を洗浄した。続いて、GaN単結晶基板を、80℃の5%NHOH溶液に660分間浸漬させることにより、ウェットエッチングした。このようにして、実施例4に係るGaN単結晶基板を得た。 The GaN single crystal substrate according to Example 4 was obtained as follows. First, the surface of a GaN single crystal substrate obtained by slicing a GaN single crystal ingot was roughly polished. Next, the surface was polished by 10 μm using diamond abrasive grains having a particle diameter of 1 μm. Further, the surface was washed with isopropyl alcohol. Subsequently, the GaN single crystal substrate was wet-etched by immersing in a 5% NH 4 OH solution at 80 ° C. for 660 minutes. In this way, a GaN single crystal substrate according to Example 4 was obtained.

実施例5に係るGaN単結晶基板は以下のようにして得た。まず、GaN単結晶のインゴットをスライスして得られたGaN単結晶基板の表面を粗研磨した。次に、粒径1μmのダイアモンド砥粒を用いて表面を10μm研磨した。更に、イソプロピルアルコールを用いて表面を洗浄した。続いて、GaN単結晶基板を、80℃の5%NHOH溶液に540分間浸漬させることにより、ウェットエッチングした。このようにして、実施例5に係るGaN単結晶基板を得た。 The GaN single crystal substrate according to Example 5 was obtained as follows. First, the surface of a GaN single crystal substrate obtained by slicing a GaN single crystal ingot was roughly polished. Next, the surface was polished by 10 μm using diamond abrasive grains having a particle diameter of 1 μm. Further, the surface was washed with isopropyl alcohol. Subsequently, the GaN single crystal substrate was wet etched by immersing it in a 5% NH 4 OH solution at 80 ° C. for 540 minutes. In this way, a GaN single crystal substrate according to Example 5 was obtained.

実施例6に係るGaN単結晶基板は以下のようにして得た。まず、GaN単結晶のインゴットをスライスして得られたGaN単結晶基板の表面を粗研磨した。次に、粒径1μmのダイアモンド砥粒を用いて、粗研磨した表面を10μm研磨した。更に、イソプロピルアルコールを用いて表面を洗浄した。続いて、GaN単結晶基板を、80℃の5%NHOH溶液に480分間浸漬させることにより、ウェットエッチングした。このようにして、実施例6に係るGaN単結晶基板を得た。 The GaN single crystal substrate according to Example 6 was obtained as follows. First, the surface of a GaN single crystal substrate obtained by slicing a GaN single crystal ingot was roughly polished. Next, the rough polished surface was polished by 10 μm using diamond abrasive grains having a particle diameter of 1 μm. Further, the surface was washed with isopropyl alcohol. Subsequently, the GaN single crystal substrate was wet etched by immersing it in a 5% NH 4 OH solution at 80 ° C. for 480 minutes. In this way, a GaN single crystal substrate according to Example 6 was obtained.

(比較例1)
比較例1に係るGaN単結晶基板は以下のようにして得た。まず、GaN単結晶のインゴットをスライスして得られたGaN単結晶基板の表面を粗研磨した。次に、粒径0.8μmのダイアモンド砥粒を用いて、粗研磨した表面を10μm研磨した。続いて、イソプロピルアルコールを用いて表面を洗浄した。これにより、比較例1に係るGaN単結晶基板を得た。
(Comparative Example 1)
The GaN single crystal substrate according to Comparative Example 1 was obtained as follows. First, the surface of a GaN single crystal substrate obtained by slicing a GaN single crystal ingot was roughly polished. Next, the rough polished surface was polished 10 μm using diamond abrasive grains having a particle diameter of 0.8 μm. Subsequently, the surface was washed with isopropyl alcohol. Thereby, a GaN single crystal substrate according to Comparative Example 1 was obtained.

(比較例2)
粒径0.8μmのダイアモンド砥粒に代えて、粒径1μmのダイアモンド砥粒を用いたこと以外は比較例1と同様にして、比較例2に係るGaN単結晶基板を得た。
(Comparative Example 2)
A GaN single crystal substrate according to Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that diamond abrasive grains having a particle diameter of 1 μm were used instead of diamond abrasive grains having a particle diameter of 0.8 μm.

(比較例3)
粒径0.8μmのダイアモンド砥粒に代えて、粒径3μmのダイアモンド砥粒を用いたこと以外は比較例1と同様にして、比較例3に係るGaN単結晶基板を得た。
(Comparative Example 3)
A GaN single crystal substrate according to Comparative Example 3 was obtained in the same manner as Comparative Example 1 except that diamond abrasive grains having a particle diameter of 3 μm were used instead of diamond abrasive grains having a particle diameter of 0.8 μm.

(比較例4)
まず、GaN単結晶のインゴットをスライスして得られたGaN単結晶基板の表面を粗研磨した。次に、粒径3μmのダイアモンド砥粒を用いて、粗研磨した表面を10μm研磨した。続いて、イソプロピルアルコールを用いて表面を洗浄した。次に、この基板にアニール処理を施すことにより、比較例4に係るGaN単結晶基板を得た。アニール処理の条件は、常圧、基板温度1,100℃、Nガス9L/min、NHガス1L/min、アニール時間は50時間である。
(Comparative Example 4)
First, the surface of a GaN single crystal substrate obtained by slicing a GaN single crystal ingot was roughly polished. Next, the roughly polished surface was polished by 10 μm using diamond abrasive grains having a particle size of 3 μm. Subsequently, the surface was washed with isopropyl alcohol. Next, this substrate was annealed to obtain a GaN single crystal substrate according to Comparative Example 4. The annealing conditions are normal pressure, substrate temperature 1,100 ° C., N 2 gas 9 L / min, NH 3 gas 1 L / min, and the annealing time is 50 hours.

(カソードルミネッセンス測定)
図3は、本発明の実施例に係るGaN単結晶基板のカソードルミネッセンス発光スペクトルの一例を示す。
(Cathodeluminescence measurement)
FIG. 3 shows an example of the cathodoluminescence emission spectrum of the GaN single crystal substrate according to the embodiment of the present invention.

本実施例に係るGaN単結晶基板のカソードルミネッセンス測定には、走査型電子顕微鏡に、カソードルミネッセンスによって得られた発光スペクトルを検出、分光する機器を設置した装置を用いた。具体的には、走査型電子顕微鏡として、日立ハイテクノロジーズ製のS−3000Nを用い、発光スペクトルを検出・分光する機器としてのスペクトル検出装置には、堀場製作所製のMP−32Mを用いた。走査型電子顕微鏡の電子線(電子ビーム)の加速電圧を13kVとして、実施例及び比較例に係る各GaN単結晶基板のそれぞれの発光スペクトルを得た。   For the cathodoluminescence measurement of the GaN single crystal substrate according to this example, an apparatus in which a device for detecting and spectroscopically analyzing an emission spectrum obtained by cathodoluminescence was used in a scanning electron microscope. Specifically, S-3000N manufactured by Hitachi High-Technologies was used as the scanning electron microscope, and MP-32M manufactured by HORIBA, Ltd. was used as the spectrum detection apparatus as a device for detecting and spectrally analyzing the emission spectrum. The emission voltage of each GaN single crystal substrate according to the example and the comparative example was obtained by setting the acceleration voltage of the electron beam (electron beam) of the scanning electron microscope to 13 kV.

図3は、具体的に、実施例4に係るGaN単結晶基板から得た発光スペクトルを示す。縦軸はカソードルミネッセンス(CL)強度を示しており、横軸は波長(単位:nm)を示している。なお、図3におけるCL強度は、365nm付近の第1のピーク50の強度I1を1とした相対値である。また、365nmよりも長波長側の500nmから700nm付近にブロードな第2のピーク52が観察された。ここで、第2のピーク52の強度をI2とする。   FIG. 3 specifically shows an emission spectrum obtained from the GaN single crystal substrate according to Example 4. The vertical axis represents the cathodoluminescence (CL) intensity, and the horizontal axis represents the wavelength (unit: nm). The CL intensity in FIG. 3 is a relative value where the intensity I1 of the first peak 50 near 365 nm is 1. In addition, a broad second peak 52 was observed near 500 nm to 700 nm on the longer wavelength side than 365 nm. Here, the intensity of the second peak 52 is I2.

表1は、本発明の実施例及び比較例に係るGaN単結晶基板から得られたCLの発光スペクトルにおける第1のピーク50と第2のピーク52との強度比I1/I2を、電子線の加速電圧ごとに示す。なお、加速電圧は、13kV、21kV、及び30kVに設定して、それぞれCL測定を実施した。   Table 1 shows the intensity ratio I1 / I2 between the first peak 50 and the second peak 52 in the emission spectrum of CL obtained from the GaN single crystal substrates according to Examples and Comparative Examples of the present invention. Shown for each acceleration voltage. The acceleration voltage was set to 13 kV, 21 kV, and 30 kV, and CL measurement was performed.

Figure 2009212284
Figure 2009212284

(フォトルミネッセンス測定)
表2は、本発明の一部の実施例及び一部の比較例に係るGaN単結晶基板から得られたフォトルミネッセンスの発光スペクトルにおける第1のピークと第2のピークとのピーク強度比を示す。
(Photoluminescence measurement)
Table 2 shows the peak intensity ratio between the first peak and the second peak in the emission spectrum of the photoluminescence obtained from the GaN single crystal substrates according to some examples and some comparative examples of the present invention. .

Figure 2009212284
Figure 2009212284

フォトルミネッセンス測定には、ナノメトリクス製のRPM2000を用いた。He−Cdのレーザ光源を用いて、実施例6及び比較例4のGaN単結晶基板それぞれのPL発光スペクトルを得た。GaN基板のバンドギャップに対応する波長365nm付近の第1のピークのピーク強度をI3、GaN基板のバンドギャップに対応する波長365nmのピークよりも長波長側に位置する第2のピークのピーク強度をI4とする。表2は、実施例6及び比較例4のGaN単結晶基板から得られる発光スペクトルにおけるピークの強度比I3/I4を求めた結果である。   For photoluminescence measurement, RPM2000 manufactured by Nanometrics was used. PL emission spectra of the GaN single crystal substrates of Example 6 and Comparative Example 4 were obtained using a He—Cd laser light source. The peak intensity of the first peak near the wavelength 365 nm corresponding to the band gap of the GaN substrate is I3, and the peak intensity of the second peak located on the longer wavelength side than the peak of wavelength 365 nm corresponding to the band gap of the GaN substrate is I4. Table 2 shows the results of obtaining the peak intensity ratio I3 / I4 in the emission spectra obtained from the GaN single crystal substrates of Example 6 and Comparative Example 4.

(表面粗さ測定)
表3は、本発明の実施例及び比較例に係るGaN単結晶基板上にGaN薄膜を形成した後の基板表面の粗さを測定した結果を示す。
(Surface roughness measurement)
Table 3 shows the results of measuring the roughness of the substrate surface after the GaN thin film was formed on the GaN single crystal substrates according to Examples and Comparative Examples of the present invention.

Figure 2009212284
Figure 2009212284

まず、実施例1から6及び比較例1から4のGaN単結晶基板の表面上に、Halide Vapor Phase Epitaxy(HVPE)法を用いて膜厚1μmのGaN薄膜を形成した。HVPE法の成長に用いた原料はNHとGaClで、キャリアガスとして5%のHと95%のNとの混合ガスを用いた。成長条件は、常圧、基板温度1050℃であった。供給ガス中のNHの分圧は5×10−3atmとし、供給ガス中のGaClの分圧を1×10−3atmとした。そして、GaN薄膜を形成した後、原子間力顕微鏡(AFM)によりGaN薄膜の表面粗さ(RMS:二乗平均粗さ)を測定した。 First, a GaN thin film having a thickness of 1 μm was formed on the surfaces of the GaN single crystal substrates of Examples 1 to 6 and Comparative Examples 1 to 4 using the Halide Vapor Phase Epitaxy (HVPE) method. The raw materials used for the growth of the HVPE method were NH 3 and GaCl, and a mixed gas of 5% H 2 and 95% N 2 was used as a carrier gas. The growth conditions were normal pressure and a substrate temperature of 1050 ° C. The partial pressure of NH 3 in the supply gas was 5 × 10 −3 atm, and the partial pressure of GaCl in the supply gas was 1 × 10 −3 atm. And after forming a GaN thin film, the surface roughness (RMS: root mean square roughness) of the GaN thin film was measured with the atomic force microscope (AFM).

表1及び表3を参照すると分かるように、電子線の加速電圧が13kV、21kV、及び30kVのいずれの場合においても、強度比I1/I2が5以上である実施例1から4に係るGaN単結晶基板によれば、その上に成長したGaN薄膜の表面の二乗平均粗さは、0.5nm以下であった。   As can be seen by referring to Tables 1 and 3, the GaN unit according to Examples 1 to 4 in which the intensity ratio I1 / I2 is 5 or more when the acceleration voltage of the electron beam is 13 kV, 21 kV, or 30 kV. According to the crystal substrate, the root mean square roughness of the surface of the GaN thin film grown thereon was 0.5 nm or less.

また、電子線の加速電圧が13kV、21kV、及び30kVのいずれの場合においても、強度比I1/I2が2以上である実施例1から6に係るGaN単結晶基板によれば、その上に成長したGaN薄膜の表面の二乗平均粗さは、1nm以下であった。   In addition, when the acceleration voltage of the electron beam is 13 kV, 21 kV, or 30 kV, the GaN single crystal substrate according to Examples 1 to 6 in which the intensity ratio I1 / I2 is 2 or more grows thereon. The root mean square roughness of the surface of the GaN thin film was 1 nm or less.

以上から、実施例1から6に係るGaN単結晶基板は、その表面にGaN薄膜が形成された場合でも、GaN薄膜の表面の粗さが少ないことが分かる。すなわち、実施例1から6の係るGaN単結晶基板は、電子デバイス等の下地基板として実用上、十分に用いることができることが示された。   From the above, it can be seen that the GaN single crystal substrates according to Examples 1 to 6 have little surface roughness of the GaN thin film even when the GaN thin film is formed on the surface thereof. That is, it was shown that the GaN single crystal substrates according to Examples 1 to 6 can be sufficiently used practically as a base substrate for electronic devices and the like.

一方、比較例1から4に係るGaN単結晶基板においては、表1及び表3に示されているように、電子線の加速電圧が13kV、21kV、及び30kVのいずれの場合においても、強度比I1/I2が2未満である比較例1から4に係るGaN単結晶基板によれば、その上に形成したGaN薄膜の表面の二乗平均粗さは1nm以上であり、デバイス等の下地基板としては、実用上、用いることが困難であることが示された。これは、比較例1から4に係るGaN単結晶基板の表面から1μm程度の深さの領域のダメージの程度が大きいためと考えられる。   On the other hand, in the GaN single crystal substrates according to Comparative Examples 1 to 4, as shown in Tables 1 and 3, the intensity ratio is obtained when the electron beam acceleration voltage is 13 kV, 21 kV, and 30 kV. According to the GaN single crystal substrates according to Comparative Examples 1 to 4 in which I1 / I2 is less than 2, the root mean square roughness of the surface of the GaN thin film formed thereon is 1 nm or more. It was shown that it was difficult to use in practical use. This is presumably because the extent of damage in the region having a depth of about 1 μm from the surface of the GaN single crystal substrate according to Comparative Examples 1 to 4 is large.

また、表2を参照すると、比較例4に係るGaN単結晶基板においては、フォトルミネッセンス測定でのI3/I4の強度比が5以上であるが、実施例6に係るGaN単結晶基板においては、フォトルミネッセンス測定でのI3/I4の強度比が2以下であった。そして、比較例4に係るGaN単結晶基板上に形成したGaN薄膜の表面の二乗平均粗さは、表3を参照すると2.34nm、すなわち、1nm以上である。これは、比較例4に係るGaN単結晶基板の表面から1μm程度の深さの領域のダメージの程度が大きいためと考えられる。   Further, referring to Table 2, in the GaN single crystal substrate according to Comparative Example 4, the intensity ratio of I3 / I4 in the photoluminescence measurement is 5 or more, but in the GaN single crystal substrate according to Example 6, The intensity ratio of I3 / I4 in the photoluminescence measurement was 2 or less. Then, referring to Table 3, the root mean square roughness of the surface of the GaN thin film formed on the GaN single crystal substrate according to Comparative Example 4 is 2.34 nm, that is, 1 nm or more. This is presumably because the extent of damage in a region having a depth of about 1 μm from the surface of the GaN single crystal substrate according to Comparative Example 4 is large.

ここで、PL測定で評価できるGaN基板の表面からの深さは、測定するGaN基板に対して照射する光の進入深さで決定される。この進入深さは、一般的に、照射する光源の波長と、評価対象の基板の吸収係数で決まる。ここで、PL測定において通常用いられる光源として、He−Cdレーザ(波長325nm)やYAGレーザ(波長266nm)があり、波長325nmのHe−Cdレーザと波長266nmのYAGレーザのGaNの吸収係数は、12.5×10cm−1(He−Cdレーザ)、18.5×10cm−1(YAGレーザ)である。 Here, the depth from the surface of the GaN substrate that can be evaluated by the PL measurement is determined by the penetration depth of light applied to the GaN substrate to be measured. This penetration depth is generally determined by the wavelength of the light source to be irradiated and the absorption coefficient of the substrate to be evaluated. Here, as a light source usually used in PL measurement, there are a He-Cd laser (wavelength 325 nm) and a YAG laser (wavelength 266 nm), and the absorption coefficient of GaN of the He-Cd laser having a wavelength of 325 nm and the YAG laser having a wavelength of 266 nm is 12.5 × 10 4 cm −1 (He—Cd laser) and 18.5 × 10 4 cm −1 (YAG laser).

そして、吸収係数の逆数が進入深さとなるので、GaN基板に対するHe−Cdレーザの進入深さは1/12.5/10×10=80nmとなり、GaN基板に対するYAGレーザの進入深さは1/18.5/10×10=54nmとなる。その結果、進入深さが共に0.1μm以下で、PL測定で評価しているGaN基板表面からの深さも0.1μm以下と非常に浅い。したがって、GaN基板のPL測定においては、表面から非常に浅い領域のダメージが評価される。 Since the reciprocal of the absorption coefficient is the penetration depth, the penetration depth of the He-Cd laser with respect to the GaN substrate is 1 / 12.5 / 10 4 × 10 7 = 80 nm, and the penetration depth of the YAG laser with respect to the GaN substrate is 1 / 18.5 / 10 4 × 10 7 = 54 nm. As a result, both the penetration depths are 0.1 μm or less, and the depth from the GaN substrate surface evaluated by PL measurement is also very shallow, 0.1 μm or less. Therefore, in the PL measurement of the GaN substrate, damage in a very shallow region from the surface is evaluated.

したがって、非常に浅い領域のみ評価しているPL測定で最表面のダメージの程度が小さいと判断されるGaN基板であっても、表面から1μm程度の深さまでに存在するダメージは把握できない。PL測定による評価がよいGaN基板を用いた場合であっても良好なデバイス特性が再現性よく得られない場合があるのは、表面だけではなく、表面から1μm程度の深さの領域のダメージも、GaN基板上に形成するエピタキシャル層に欠陥等のダメージを伝搬させるからである。   Therefore, even a GaN substrate that is judged to have a small degree of damage on the outermost surface by PL measurement that evaluates only a very shallow region, the damage existing to a depth of about 1 μm from the surface cannot be grasped. Even when a GaN substrate that is well evaluated by PL measurement is used, good device characteristics may not be obtained with good reproducibility, not only on the surface, but also on damage at a depth of about 1 μm from the surface. This is because damage such as defects is propagated to the epitaxial layer formed on the GaN substrate.

(実施例の効果)
照射する電子の加速電圧を13kV以上にして実施するCL測定によって得られる発光スペクトルにおいて、GaNのバンドギャップに対応する波長におけるピークの強度が、バンドギャップに対応する波長よりも長波長側に位置するピークの強度の2倍以上、より好ましくは5倍以上である本発明の実施例に係るGaN基板は、デバイスに用いる基板として十分な性能を有する。このような実施例に係るGaN基板を電子デバイスの製造に用いることにより、性能のよいデバイスを再現性よく得ることができる。
(Effect of Example)
In an emission spectrum obtained by CL measurement performed with an acceleration voltage of irradiated electrons of 13 kV or higher, the peak intensity at the wavelength corresponding to the band gap of GaN is located on the longer wavelength side than the wavelength corresponding to the band gap. A GaN substrate according to an embodiment of the present invention having a peak intensity of 2 times or more, more preferably 5 times or more, has sufficient performance as a substrate used in a device. By using the GaN substrate according to such an example for manufacturing an electronic device, a device with good performance can be obtained with good reproducibility.

以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments and examples of the present invention have been described above, the embodiments and examples described above do not limit the invention according to the claims. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.

基板ダメージの評価の方法の概要図である。It is an outline figure of a method of evaluation of substrate damage. GaN基板に対する電子の進入深さと電子の加速電圧との関係を示す図である。It is a figure which shows the relationship between the penetration depth of an electron with respect to a GaN substrate, and the acceleration voltage of an electron. 実施例に係るGaN単結晶基板のカソードルミネッセンス発光スペクトルの一例を示す図である。It is a figure which shows an example of the cathodoluminescence emission spectrum of the GaN single crystal substrate which concerns on an Example.

符号の説明Explanation of symbols

50 第1のピーク
52 第2のピーク
50 First peak 52 Second peak

Claims (2)

加速電圧が13kV以上の電子が照射された際に得られるカソードルミネッセンスのスペクトルのうち、窒化ガリウムのバンドギャップに対応する波長における第1のピークの第1の強度が、前記第1のピークより長波長側に観測される第2のピークの第2の強度の2倍以上である窒化ガリウム基板。   Of the cathodoluminescence spectrum obtained when electrons having an acceleration voltage of 13 kV or higher are irradiated, the first intensity of the first peak at a wavelength corresponding to the band gap of gallium nitride is longer than that of the first peak. A gallium nitride substrate that is at least twice the second intensity of the second peak observed on the wavelength side. 加速電圧が13kV以上の電子が照射された際に得られるカソードルミネッセンスのスペクトルのうち、窒化ガリウムのバンドギャップに対応する波長における第1のピークの第1の強度が、前記第1のピークより長波長側に観測される第2のピークの第2の強度の5倍以上である窒化ガリウム基板。   Of the cathodoluminescence spectrum obtained when electrons having an acceleration voltage of 13 kV or higher are irradiated, the first intensity of the first peak at a wavelength corresponding to the band gap of gallium nitride is longer than that of the first peak. A gallium nitride substrate that is at least five times the second intensity of the second peak observed on the wavelength side.
JP2008053348A 2008-03-04 2008-03-04 Gallium nitride substrate Active JP5575372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008053348A JP5575372B2 (en) 2008-03-04 2008-03-04 Gallium nitride substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053348A JP5575372B2 (en) 2008-03-04 2008-03-04 Gallium nitride substrate

Publications (2)

Publication Number Publication Date
JP2009212284A true JP2009212284A (en) 2009-09-17
JP5575372B2 JP5575372B2 (en) 2014-08-20

Family

ID=41185153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053348A Active JP5575372B2 (en) 2008-03-04 2008-03-04 Gallium nitride substrate

Country Status (1)

Country Link
JP (1) JP5575372B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236078A (en) * 2010-05-10 2011-11-24 Hitachi Cable Ltd Gallium nitride substrate
JP2013060347A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Group 13 nitride crystal and group 13 nitride crystal substrate
JP2013173648A (en) * 2012-02-26 2013-09-05 Osaka Univ Method for producing group iii nitride crystal, group iii nitride crystal and semiconductor device
WO2015083768A1 (en) * 2013-12-05 2015-06-11 日本碍子株式会社 Gallium nitride substrate and functional element
JP2015231943A (en) * 2015-06-18 2015-12-24 株式会社サイオクス Gallium nitride substrate production method
JP2016128381A (en) * 2010-03-15 2016-07-14 株式会社リコー Gallium nitride crystal, group 13 nitride crystal, crystal substrate and method for manufacturing them
US10538858B2 (en) 2014-03-18 2020-01-21 Sciocs Company Limited Method for manufacturing group 13 nitride crystal and group 13 nitride crystal

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282331A (en) * 1985-10-08 1987-04-15 Fujitsu Ltd Photodetector for light emission pattern measurement
JPH0574710A (en) * 1991-09-11 1993-03-26 Asahi Chem Ind Co Ltd Semiconductor thin film growth method
JPH05175124A (en) * 1991-12-25 1993-07-13 Asahi Chem Ind Co Ltd Manufacture of semiconductor thin film
JPH0831757A (en) * 1994-07-12 1996-02-02 Sony Corp Growth of te-based ii-vi compound semiconductor
JPH11260730A (en) 1998-03-09 1999-09-24 Mitsubishi Chemical Corp Semiconductor material
JP2002100579A (en) * 2000-07-17 2002-04-05 Nichia Chem Ind Ltd Nitride semiconductor substrate and its producing method
JP2004530306A (en) 2001-06-08 2004-09-30 アドバンスト テクノロジー マテリアルズ,インコーポレイテッド High surface quality GaN wafer and method for manufacturing the same
JP2004335646A (en) 2003-05-06 2004-11-25 Sumitomo Electric Ind Ltd GaN SUBSTRATE
WO2005041283A1 (en) * 2003-10-27 2005-05-06 Sumitomo Electric Industries, Ltd. Gallium nitride semiconductor substrate and process for producing the same
JP2006339605A (en) * 2005-06-06 2006-12-14 Sumitomo Electric Ind Ltd Method of evaluating damage of compound semiconductor member, method of manufacturing compound semiconductor member, gallium nitride based compound semiconductor member and gallium nitride based compound semiconductor film
JP2006349374A (en) * 2005-06-13 2006-12-28 Sumitomo Electric Ind Ltd Damage evaluation method on compound semiconductor member, manufacturing method for compound semiconductor member, potassium nitride compound semiconductor member, and potassium nitride compound semiconductor film
JP2007254174A (en) 2006-03-20 2007-10-04 Nippon Light Metal Co Ltd Gallium oxide single crystal and its manufacturing method, and nitride semiconductor substrate and its manufacturing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282331A (en) * 1985-10-08 1987-04-15 Fujitsu Ltd Photodetector for light emission pattern measurement
JPH0574710A (en) * 1991-09-11 1993-03-26 Asahi Chem Ind Co Ltd Semiconductor thin film growth method
JPH05175124A (en) * 1991-12-25 1993-07-13 Asahi Chem Ind Co Ltd Manufacture of semiconductor thin film
JPH0831757A (en) * 1994-07-12 1996-02-02 Sony Corp Growth of te-based ii-vi compound semiconductor
JPH11260730A (en) 1998-03-09 1999-09-24 Mitsubishi Chemical Corp Semiconductor material
JP2002100579A (en) * 2000-07-17 2002-04-05 Nichia Chem Ind Ltd Nitride semiconductor substrate and its producing method
JP2004530306A (en) 2001-06-08 2004-09-30 アドバンスト テクノロジー マテリアルズ,インコーポレイテッド High surface quality GaN wafer and method for manufacturing the same
JP2004335646A (en) 2003-05-06 2004-11-25 Sumitomo Electric Ind Ltd GaN SUBSTRATE
WO2005041283A1 (en) * 2003-10-27 2005-05-06 Sumitomo Electric Industries, Ltd. Gallium nitride semiconductor substrate and process for producing the same
JP2006339605A (en) * 2005-06-06 2006-12-14 Sumitomo Electric Ind Ltd Method of evaluating damage of compound semiconductor member, method of manufacturing compound semiconductor member, gallium nitride based compound semiconductor member and gallium nitride based compound semiconductor film
JP2006349374A (en) * 2005-06-13 2006-12-28 Sumitomo Electric Ind Ltd Damage evaluation method on compound semiconductor member, manufacturing method for compound semiconductor member, potassium nitride compound semiconductor member, and potassium nitride compound semiconductor film
JP2007254174A (en) 2006-03-20 2007-10-04 Nippon Light Metal Co Ltd Gallium oxide single crystal and its manufacturing method, and nitride semiconductor substrate and its manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013000792; Jae-Min MYOUNG, Kyu-Hwan SHIM and Sangsig KIM: 'Depth-Resolved Cathodoluminescence of III-V Nitride Films Grown by Plasma-Assisted Molecular Beam Ep' Japanese Journal of Applied Physics Vol.40, Part 1, No. 2A, 20010215, pp.476-479
JPN6013061931; Drew Hanser, Mike Tutor, Ed Preble, Mark Williams, Xueping Xu, Denis Tsvetkov,Lianghong Liu: 'Surface preparation of substrates from bulk GaN crystals' Journal of Crystal Growth 305, 2007, 372-376

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128381A (en) * 2010-03-15 2016-07-14 株式会社リコー Gallium nitride crystal, group 13 nitride crystal, crystal substrate and method for manufacturing them
JP2011236078A (en) * 2010-05-10 2011-11-24 Hitachi Cable Ltd Gallium nitride substrate
JP2013060347A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Group 13 nitride crystal and group 13 nitride crystal substrate
JP2013173648A (en) * 2012-02-26 2013-09-05 Osaka Univ Method for producing group iii nitride crystal, group iii nitride crystal and semiconductor device
WO2015083768A1 (en) * 2013-12-05 2015-06-11 日本碍子株式会社 Gallium nitride substrate and functional element
CN105793476A (en) * 2013-12-05 2016-07-20 日本碍子株式会社 Gallium nitride substrate and functional element
US9653649B2 (en) 2013-12-05 2017-05-16 Ngk Insulators, Ltd. Gallium nitride substrates and functional devices
CN105793476B (en) * 2013-12-05 2018-12-11 日本碍子株式会社 Gallium nitride base board and function element
US10538858B2 (en) 2014-03-18 2020-01-21 Sciocs Company Limited Method for manufacturing group 13 nitride crystal and group 13 nitride crystal
JP2015231943A (en) * 2015-06-18 2015-12-24 株式会社サイオクス Gallium nitride substrate production method

Also Published As

Publication number Publication date
JP5575372B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5607781B2 (en) Large area and uniform low dislocation density GaN substrate and its manufacturing process
KR102106722B1 (en) Method for manufacturing epitaxial silicon carbide single crystal wafer
JP5575372B2 (en) Gallium nitride substrate
TWI453799B (en) Non-polar iii-v nitride material and production method
JP5170030B2 (en) Nitride semiconductor free-standing substrate, nitride semiconductor free-standing substrate manufacturing method, and nitride semiconductor device
WO2010082267A1 (en) Inside reforming substrate for epitaxial growth; crystal film forming element, device, and bulk substrate produced using the same; and method for producing the same
JP5865440B2 (en) Method for producing β-Ga 2 O 3 single crystal substrate
JP2005101475A (en) Iii-v group nitride semiconductor substrate and method for manufacturing the same
JP2008024554A (en) Method for producing single crystal
JP2008277841A (en) Method for manufacturing for group iii-v nitride based semiconductor substrate
JP4525309B2 (en) Method for evaluating group III-V nitride semiconductor substrate
JP2005072572A (en) Manufacturing method of group iii nitride crystal substrate and etchant used for the same and, group iii nitride crystal substrate and semiconductor element using the same
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
JP2019029568A (en) Method for manufacturing semiconductor laminate and method for manufacturing nitride crystal substrate
JP2016023124A (en) Gallium nitride substrate
CN103296171B (en) Gallium nitride base board and the light device for having used the gallium nitride base board
JP4359770B2 (en) III-V nitride semiconductor substrate and production lot thereof
JP5439526B2 (en) Group III nitride semiconductor and substrate for group III nitride semiconductor growth
JP2009227545A (en) Substrate for optical device and method for producing the same
JP3975700B2 (en) Method for producing compound semiconductor
JP4786587B2 (en) Group III nitride semiconductor and method for manufacturing the same, substrate for manufacturing group III nitride semiconductor
JP2010222187A (en) Production method of group iii nitride semiconductor layer
JP2004035360A (en) GaN SINGLE CRYSTAL SUBSTRATE, NITRIDE SEMICONDUCTOR EPITAXIAL SUBSTRATE, AND ITS MANUFACTURING METHOD
JP3956343B2 (en) Manufacturing method of semiconductor device
JP4811325B2 (en) III-V nitride semiconductor substrate and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121004

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

R150 Certificate of patent or registration of utility model

Ref document number: 5575372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350