JP2007254174A - Gallium oxide single crystal and its manufacturing method, and nitride semiconductor substrate and its manufacturing method - Google Patents

Gallium oxide single crystal and its manufacturing method, and nitride semiconductor substrate and its manufacturing method Download PDF

Info

Publication number
JP2007254174A
JP2007254174A JP2006077459A JP2006077459A JP2007254174A JP 2007254174 A JP2007254174 A JP 2007254174A JP 2006077459 A JP2006077459 A JP 2006077459A JP 2006077459 A JP2006077459 A JP 2006077459A JP 2007254174 A JP2007254174 A JP 2007254174A
Authority
JP
Japan
Prior art keywords
gallium oxide
single crystal
oxide single
powder
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006077459A
Other languages
Japanese (ja)
Inventor
Shigeo Ohira
重男 大平
Satohito Suzuki
悟仁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2006077459A priority Critical patent/JP2007254174A/en
Publication of JP2007254174A publication Critical patent/JP2007254174A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gallium oxide single crystal excellent in crystallinity and conductivity, its manufacturing method, a nitride semiconductor substrate suitable for epitaxial growth of a nitride semiconductor, and its manufacturing method. <P>SOLUTION: A powder material prepared by adding an additive comprising one or more kinds selected from Sn, Ge, Si and their oxides to a gallium oxide powder is compacted and sintered at 1,400 to 1,600°C to obtain a gallium oxide sintered body; and the obtained gallium oxide sintered body is used as a source rod to grow a gallium oxide single crystal at a growth rate v satisfying 5 mm/h<v<15 mm/h by an FZ method in a mixture gas atmosphere of oxygen and inert gas. The surface of the single crystal is subjected to nitriding process to obtain a nitride semiconductor substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、導電性及び結晶性が共に優れた酸化ガリウム単結晶とその製造方法、並びにこの酸化ガリウム単結晶を用いて得た窒化物半導体用基板とその製造方法に関する。   The present invention relates to a gallium oxide single crystal excellent in both conductivity and crystallinity and a method for producing the same, and a nitride semiconductor substrate obtained using the gallium oxide single crystal and a method for producing the same.

酸化ガリウム(β-Ga2O3)単結晶は、可視領域で透明であり、かつ、4.8eVのワイドバンドギャップを有することから、紫外領域における光学材料をはじめとして、発光ダイオード(LED)やレーザーダイオード(LD)等を得るための半導体用基板、フラットパネルディスプレー、光学的エミッター、太陽電池等で使用される透明導電体、レーザ光共振キャビティ等の光学材料、高温酸素ガスセンサ材料等のほか、各種電極、基板、導電体、ガスセンサ、光記録材料等の高性能デバイスへの応用が種々検討されている。 Gallium oxide (β-Ga 2 O 3 ) single crystal is transparent in the visible region and has a wide band gap of 4.8 eV. In addition to semiconductor substrates to obtain laser diodes (LD), flat panel displays, optical emitters, transparent conductors used in solar cells, optical materials such as laser light resonant cavities, high-temperature oxygen gas sensor materials, etc. Various applications to various high-performance devices such as various electrodes, substrates, conductors, gas sensors, and optical recording materials have been studied.

従来において、LEDやLD等の発光素子を得る際には、サファイア(α-Al2O3)やシリコンカーバイド(SiC)が基板として使われている。しかしながら、サファイアは透明ではあるが、電気的には絶縁性であるため、発光素子の構造はいわゆる水平型となる。水平型の素子構造では、基板上に形成した発光層をエッチングやマスキングによりその一部を露出させた上で、別途電極を取り付ける必要があることから、素子を形成するための工程数が多くなってしまう問題がある。一方、SiCは導電性ではあるが、着色があって透明性に難があるため、光を取り出す側の面とは反対側に発せられた光の一部を基板が吸収してしまい、素子としての発光効率が上がらないといった問題がある。 Conventionally, sapphire (α-Al 2 O 3 ) or silicon carbide (SiC) is used as a substrate when obtaining light emitting elements such as LEDs and LDs. However, since sapphire is transparent but electrically insulating, the structure of the light-emitting element is a so-called horizontal type. In a horizontal element structure, the light emitting layer formed on the substrate must be partially exposed by etching or masking, and an additional electrode must be attached, which increases the number of steps for forming the element. There is a problem. On the other hand, although SiC is conductive, it is colored and difficult to be transparent. Therefore, the substrate absorbs part of the light emitted on the side opposite to the surface from which light is extracted, and the element is There is a problem that the light emission efficiency does not increase.

このような状況のもと、基板として透明性に優れた酸化ガリウム単結晶を用いて、垂直型の素子構造からなる発光素子を得ることが報告されている(特許文献1参照)。酸化ガリウム単結晶は、結晶中に酸素欠損が生ずることでn型半導体としての挙動を示すことから、酸化ガリウム単結晶からなる基板上に化合物半導体膜(発光層)を設けることで、垂直構造の発光素子が可能となる。このような垂直型の構造であれば、水平型の場合のような電極の取り付けが不要となり、素子作製の工程が短縮されて、プロセスコストを低減することができる。また、基板が透明であることから、発光層とは反対側に発せられた光を反射させるなどの手段を講ずれば、素子全体としての発光効率を向上させることができる。   Under such circumstances, it has been reported that a light emitting element having a vertical element structure is obtained using a gallium oxide single crystal having excellent transparency as a substrate (see Patent Document 1). Since the gallium oxide single crystal exhibits the behavior as an n-type semiconductor due to the occurrence of oxygen vacancies in the crystal, by providing a compound semiconductor film (light emitting layer) on a substrate made of gallium oxide single crystal, A light emitting element becomes possible. With such a vertical structure, it is not necessary to attach electrodes as in the case of the horizontal type, and the device manufacturing process is shortened, and the process cost can be reduced. In addition, since the substrate is transparent, the luminous efficiency of the entire device can be improved by taking measures such as reflecting light emitted on the side opposite to the light emitting layer.

ところで、上記のような垂直構造の発光素子では、透明性と共に、基板が優れた導電性を備えていることが重要になってくる。上記特許文献1の酸化ガリウム基板はn型導電性を有し、0.1Ω・cm程度の電気抵抗率(比抵抗)を示すとしている。しかしながら、発光素子用の基板として用いるためには、駆動電圧の低減、電流密度低減による発熱抑制、素子寿命等の観点から、0.05Ω・cm以下程度の電気抵抗率であることが望まれる。   By the way, in the light emitting element having the vertical structure as described above, it is important that the substrate has excellent conductivity as well as transparency. The gallium oxide substrate of Patent Document 1 has n-type conductivity and exhibits an electrical resistivity (specific resistance) of about 0.1 Ω · cm. However, in order to use it as a substrate for a light emitting element, an electrical resistivity of about 0.05 Ω · cm or less is desired from the viewpoints of reduction in driving voltage, suppression of heat generation due to reduction in current density, element lifetime, and the like.

そこで、例えば、酸化ガリウム単結晶を浮遊帯域溶融法(floating zone method: FZ法)によって得る際、酸素量を制限した雰囲気下で結晶成長させることで、酸素欠損を強制的に作り出して、低い電気抵抗率の酸化ガリウム単結晶が得られることが報告されている(例えば非特許文献1参照)。この文献によれば、酸素と窒素の混合ガス雰囲気下で単結晶の育成を行う際に、混合ガスの窒素の割合を増やすことで、酸化ガリウム単結晶の電気抵抗率が下がることが示されている。ところが、強制的に酸素欠損を作り出した単結晶は結晶性が劣るため、発光素子等の高性能デバイスを作製するのには適さない。   Therefore, for example, when a gallium oxide single crystal is obtained by the floating zone method (FZ method), oxygen deficiency is forcibly created by crystal growth in an atmosphere in which the amount of oxygen is limited, and low electric power. It has been reported that a gallium oxide single crystal having a resistivity can be obtained (for example, see Non-Patent Document 1). According to this document, it is shown that when a single crystal is grown in a mixed gas atmosphere of oxygen and nitrogen, the electrical resistivity of the gallium oxide single crystal is decreased by increasing the ratio of nitrogen in the mixed gas. Yes. However, a single crystal forcibly creating oxygen vacancies is not suitable for manufacturing a high-performance device such as a light-emitting element because of poor crystallinity.

上記の問題を解決するために、Snを添加して得た酸化ガリウム単結晶が報告されている(例えば非特許文献1及び非特許文献2参照)。これらの文献では、いずれも、酸化ガリウムの粉末に3mol%のSnO2を添加したものを圧縮成形し、これを焼結したものを原料棒にして、FZ法によって酸化ガリウム単結晶の育成を行っている。これによって得られた酸化ガリウム単結晶は、結晶中にドープされたSnによる作用、あるいは単結晶が育成する際にSnO2が蒸発して形成された酸素欠損により、単結晶の電気抵抗率が低下するものと考えられる。 In order to solve the above problem, a gallium oxide single crystal obtained by adding Sn has been reported (for example, see Non-Patent Document 1 and Non-Patent Document 2). In each of these documents, a gallium oxide single crystal is grown by the FZ method using compression molding of a gallium oxide powder added with 3 mol% of SnO 2 , and using the sintered material as a raw material rod. ing. The resulting gallium oxide single crystal has a reduced electrical resistivity of the single crystal due to the action of Sn doped in the crystal or the oxygen deficiency formed by evaporation of SnO 2 when the single crystal is grown. It is thought to do.

しかしながら、これらの文献においてSnを添加して得た酸化ガリウム単結晶は、いずれも前述したような電気抵抗率を満足できるものではない。一方で、SnO2が蒸発して酸素欠損が生じた状態であると前述の通り結晶性が劣るおそれがあり、また、得られた酸化ガリウム単結晶中にSnがドープされたままの状態であると、バンドギャップ中に酸素欠損に起因する不純物準位の他にSnに起因する準位が形成されることで、光吸収が増加する。一般に、結晶性が劣り着色した酸化ガリウム単結晶は、焼き鈍しすることにより結晶性を確保することも可能であるが、このような単結晶では酸素欠損が再び酸素によって塞がれ、逆に導電性が失われてしまう。すなわち、酸化物半導体では、導電性と結晶性はいわば相反する特性であり、導電性を付与すべく酸素欠損を強制的につくるとその結晶性は劣り、反対に結晶性を向上させようとすると酸素欠損が少なくなり絶縁体になってしまう。なお、前述の特許文献1においてもSn等を添加してFZ法により酸化ガリウム単結晶を得ることが示唆されているが、その電気抵抗率は上述した値であって十分に満足できるものではない。 However, none of the gallium oxide single crystals obtained by adding Sn in these documents can satisfy the electrical resistivity as described above. On the other hand, if SnO 2 is evaporated and oxygen vacancies are generated, the crystallinity may be inferior as described above, and Sn is doped in the obtained gallium oxide single crystal. In addition to the impurity levels caused by oxygen vacancies in the band gap, the levels caused by Sn are formed, thereby increasing light absorption. Generally, colored gallium oxide single crystals with poor crystallinity can also be secured by annealing, but in such single crystals, oxygen deficiency is again closed by oxygen, and conversely conductive Will be lost. In other words, in an oxide semiconductor, conductivity and crystallinity are contradictory characteristics. If oxygen deficiency is forcibly created to provide conductivity, the crystallinity is inferior, and conversely, an attempt is made to improve crystallinity. Oxygen deficiency decreases and becomes an insulator. In the above-mentioned Patent Document 1, it is suggested that Sn or the like is added to obtain a gallium oxide single crystal by the FZ method. However, the electrical resistivity is the above-described value and is not sufficiently satisfactory. .

ところで、特許文献2には、紫外線領域から可視光領域にかけて透明であり、かつ、導電性を備えた酸化ガリウムからなる紫外透明導電膜が開示されているが、その電気抵抗率は前述した値を満足できるものではなく、また、この文献に係る導電膜は石英ガラスやサファイア等の異種基板上に成膜して得るものであり、バルク結晶のような結晶品質を得るのは困難である。
特開2004−56098号公報 特開2002−93243号公報 Naoyuki Ueda et al. Appl. Phys. Lett. 70(26), 3561-3563 (1997) Mitsuo Yamaga et al. PHYSHICAL REVIEW B 68, 155207 (2003)
By the way, Patent Document 2 discloses an ultraviolet transparent conductive film made of gallium oxide that is transparent from the ultraviolet region to the visible light region and has conductivity, and its electrical resistivity has the value described above. In addition, the conductive film according to this document is obtained by forming a film on a dissimilar substrate such as quartz glass or sapphire, and it is difficult to obtain a crystal quality such as a bulk crystal.
JP 2004-56098 A JP 2002-93243 A Naoyuki Ueda et al. Appl. Phys. Lett. 70 (26), 3561-3563 (1997) Mitsuo Yamaga et al. PHYSHICAL REVIEW B 68, 155207 (2003)

以上のように、これまでのところ、結晶性と導電性とを同時に満たし、発光素子等の高性能デバイスの作製に適した酸化ガリウム単結晶は、発明者らが知る限りでは報告された例はない。そこで本発明者らは、結晶性及び導電性のいずれをも同時に満たす酸化ガリウム単結晶を得る方法について鋭意検討した結果、驚くべきことには、添加物を含んだ酸化ガリウム粉末を焼結して得た焼結体を原料棒にして、浮遊帯域溶融法(FZ法)によって酸化ガリウム単結晶を育成する際、焼結温度と単結晶の成長速度とを所定の条件で組み合わせて最適化を行なうことで、結晶性及び導電性が共に優れてこれらの性能を同時に満たすバルクの酸化ガリウム単結晶が得られることを見出し、本発明を完成した。   As described above, a gallium oxide single crystal that satisfies both crystallinity and conductivity at the same time and is suitable for manufacturing a high-performance device such as a light emitting element has been reported to the best of the inventors' knowledge. Absent. Thus, as a result of intensive studies on a method for obtaining a gallium oxide single crystal that simultaneously satisfies both crystallinity and conductivity, the inventors surprisingly found that a gallium oxide powder containing an additive was sintered. When growing the gallium oxide single crystal by the floating zone melting method (FZ method) using the obtained sintered body as a raw material rod, optimization is performed by combining the sintering temperature and the growth rate of the single crystal under predetermined conditions. As a result, it was found that a bulk gallium oxide single crystal having excellent crystallinity and conductivity and satisfying these performances at the same time was obtained, and the present invention was completed.

従って、本発明の目的は、結晶性及び導電性が共に優れた酸化ガリウム単結晶を提供することにある。
また、本発明の別の目的は、結晶性及び導電性が共に優れた酸化ガリウム単結晶の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a gallium oxide single crystal having excellent crystallinity and conductivity.
Another object of the present invention is to provide a method for producing a gallium oxide single crystal having excellent crystallinity and conductivity.

更に、本発明の別の目的は、窒化物半導体をエピタキシャル成長させるのに好適な窒化物半導体用基板を提供することにある。
更にまた、本発明の別の目的は、上記窒化物半導体用基板の製造方法を提供することにある。
Furthermore, another object of the present invention is to provide a nitride semiconductor substrate suitable for epitaxially growing a nitride semiconductor.
Furthermore, another object of the present invention is to provide a method for manufacturing the nitride semiconductor substrate.

すなわち、本発明は、電気抵抗率が0.05Ω・cm以下であり、かつ、厚さ0.4mmにおける300〜620nmの波長領域での内部透過率が80%以上であることを特徴とする酸化ガリウム(β-Ga2O3)単結晶である。 That is, the present invention is an oxidation characterized by having an electrical resistivity of 0.05 Ω · cm or less and an internal transmittance of 80% or more in a wavelength region of 300 to 620 nm at a thickness of 0.4 mm. Gallium (β-Ga 2 O 3 ) single crystal.

また、本発明は、酸化ガリウム粉末にSn、Ge、Si又はこれらの酸化物から選ばれた1種以上からなる添加物を添加した粉末材料を圧縮成形し、これを1400〜1600℃で焼結して酸化ガリウム焼結体を得て、この酸化ガリウム焼結体を原料棒としてFZ法により酸素と不活性ガスとの混合ガス雰囲気下で、成長速度vを5mm/h<v<15mm/hとして酸化ガリウム単結晶を育成することを特徴とする酸化ガリウム(β-Ga2O3)単結晶の製造方法である。 The present invention also compresses a powder material obtained by adding one or more additives selected from Sn, Ge, Si or oxides thereof to gallium oxide powder, and sinters it at 1400 to 1600 ° C. Thus, a gallium oxide sintered body is obtained, and the growth rate v is set to 5 mm / h <v <15 mm / h in a mixed gas atmosphere of oxygen and inert gas by the FZ method using the gallium oxide sintered body as a raw material rod. A method for producing a gallium oxide (β-Ga 2 O 3 ) single crystal characterized by growing a gallium oxide single crystal as

先ず、本発明における酸化ガリウム単結晶について説明する。
本発明における酸化ガリウム単結晶は、電気抵抗率(比抵抗)が0.05Ω・cm以下、好ましくは0.02Ω・cm以下である。電気抵抗率が0.05Ω・cm以下であれば、例えばLEDやLD等の発光素子を形成するための基板のほか、酸化物透明導電体、高温酸素ガスセンサ材料等の高性能デバイス作成に供する透明導電性材料として好適に用いることができる。この電気抵抗率については、以下の実施例で説明するように、例えばホール係数等の測定によって求めることができ、本発明においては室温における値を言うものとする。
First, the gallium oxide single crystal in the present invention will be described.
The gallium oxide single crystal in the present invention has an electrical resistivity (specific resistance) of 0.05 Ω · cm or less, preferably 0.02 Ω · cm or less. If the electrical resistivity is 0.05 Ω · cm or less, for example, a substrate for forming light emitting elements such as LEDs and LDs, as well as transparent materials used for creating high-performance devices such as oxide transparent conductors and high-temperature oxygen gas sensor materials It can be suitably used as a conductive material. As will be described in the following examples, this electrical resistivity can be obtained by measuring, for example, the Hall coefficient, and in the present invention, it means a value at room temperature.

また、本発明における酸化ガリウム単結晶は、厚さ0.4mmにおける300〜620nmの波長領域での内部透過率が80%以上、好ましくは300〜800nmの波長領域での内部透過率が85%以上、より好ましくは300〜800nmの波長領域での内部透過率が90%以上である。ここで、内部透過率とは、薄膜表面における光の反射の寄与を取り除いた透過率であり、紫外可視分光光度計を用いて測定した光透過率Tと反射率Rを用い、下記式(1)に従い算出される値(Tint)である。すなわち、薄膜中に入射した光が薄膜中を透過した比率を百分率で示したものである。
int=100×T/(100−R) … …(1)
The gallium oxide single crystal of the present invention has an internal transmittance of 80% or more in a wavelength region of 300 to 620 nm at a thickness of 0.4 mm, preferably an internal transmittance of 85% or more in a wavelength region of 300 to 800 nm. More preferably, the internal transmittance in the wavelength region of 300 to 800 nm is 90% or more. Here, the internal transmittance is a transmittance obtained by removing the contribution of light reflection on the surface of the thin film, and using the light transmittance T and the reflectance R measured using an ultraviolet-visible spectrophotometer, the following formula (1 ) (T int ) calculated according to That is, the percentage of the light incident on the thin film transmitted through the thin film is shown as a percentage.
T int = 100 × T / (100−R) (1)

上記波長領域での内部透過率が80%以上であれば、特に可視域における垂直構造の発光素子を形成するための基板として好適であり、また、種々の発光素子やセンサ等の高性能デバイス作製に供する透明導電性材料として好適に用いることができる。   If the internal transmittance in the above-mentioned wavelength region is 80% or more, it is suitable as a substrate for forming a light emitting device having a vertical structure particularly in the visible region, and also for producing high performance devices such as various light emitting devices and sensors. It can be suitably used as a transparent conductive material to be used for.

また、上記酸化ガリウム単結晶は、X線ロッキングカーブ測定により得られるX線ロッキングカーブの半値幅が好ましくは180arcsec(0.05°)以下、より好ましくは60arcsec以下であるのがよい。このような半値幅を有する酸化ガリウム単結晶は、回折ピークがシングル(すなわち結晶ドメインがシングル)であって、より完全性が高い優れた結晶性を有することから、特に、GaN系窒化物半導体膜を成長させる基板やレーザ光共振キャビティ等における応用で極めて有利である。   The gallium oxide single crystal preferably has a half width of an X-ray rocking curve obtained by X-ray rocking curve measurement of preferably 180 arcsec (0.05 °) or less, more preferably 60 arcsec or less. Since the gallium oxide single crystal having such a half width has a single diffraction peak (that is, a single crystal domain) and has excellent crystallinity with higher completeness, the GaN-based nitride semiconductor film is particularly preferable. This is extremely advantageous in applications such as a substrate for growing a substrate and a laser beam resonant cavity.

X線ロッキングカーブ測定は、一般に、半導体単結晶等の結晶組成、格子歪み、ドメイン構造等の評価に用いられるものであり、被検査結晶に対しX線を照射し、回折角度を中心に所定の範囲で被検査結晶を回転させてX線カウンターの検出値をモニタリングして、回折角度に対するX線検出値の関係を示すスペクトルであるロッキングカーブを得る。このロッキングカーブについて、ピークを与える角度(ピーク角度:θ)からは格子定数の情報を得ることができ、このピーク角度(θ)は回折面によって決まることから、これが揺らぐ場合には結晶面が傾いていることを示すことになる。また、ピークにおけるX線強度はその面における回折の強さを示すものであり、このピーク強度によって結晶化度の情報を得ることができる。更に、ピークの半値幅(FWHM)はその回折面の角度の揺らぎを表すものであることから、この半値幅がより小さければ格子面の傾き(misorientation)がより小さく、かつ、格子歪み(lattice strain)もより小さいことを示す。   X-ray rocking curve measurement is generally used for evaluation of crystal composition, lattice distortion, domain structure, etc. of a semiconductor single crystal and the like. The crystal to be inspected is rotated in the range and the detection value of the X-ray counter is monitored to obtain a rocking curve which is a spectrum showing the relationship of the X-ray detection value to the diffraction angle. With respect to this rocking curve, information on the lattice constant can be obtained from the angle giving the peak (peak angle: θ). Since this peak angle (θ) is determined by the diffraction surface, the crystal plane tilts when it fluctuates. It will show that. Further, the X-ray intensity at the peak indicates the intensity of diffraction on the surface, and information on crystallinity can be obtained from the peak intensity. Furthermore, since the half width of the peak (FWHM) represents the fluctuation of the angle of the diffraction surface, the smaller the half width, the smaller the misorientation of the lattice plane and the lattice strain. ) Is also smaller.

次に、本発明における酸化ガリウム単結晶の製造方法について説明する。
先ず、酸化ガリウム(β-Ga2O3)の粉末、好ましくは純度99.99%以上の酸化ガリウム粉末にSn、Ge、Si又はこれらの酸化物から選ばれた1種以上からなる添加物を添加した粉末材料を用意し、これを圧縮成形して1400〜1600℃、好ましくは1500〜1550℃で焼結して酸化ガリウム焼結体を得る。粉末材料を圧縮成形する際には、例えばラバープレスに粉末材料を封入して、静水圧50〜600MPaで1〜3分間程度ラバープレスして成形するのがよく、焼結時間については10〜20時間程度でよい。また、焼結雰囲気としては、大気雰囲気で行なうことができる。
Next, the manufacturing method of the gallium oxide single crystal in this invention is demonstrated.
First, a gallium oxide (β-Ga 2 O 3 ) powder, preferably a gallium oxide powder having a purity of 99.99% or more, is added with one or more additives selected from Sn, Ge, Si or their oxides. The added powder material is prepared, compression molded, and sintered at 1400 to 1600 ° C., preferably 1500 to 1550 ° C., to obtain a gallium oxide sintered body. When the powder material is compression-molded, for example, the powder material is enclosed in a rubber press, and is preferably molded by rubber pressing at a hydrostatic pressure of 50 to 600 MPa for about 1 to 3 minutes. Time is sufficient. The sintering atmosphere can be performed in an air atmosphere.

酸化ガリウム粉末に添加する添加物については、酸化ガリウム焼結体を形成した際には酸化ガリウムの置換サイトに取り込まれるものであり、かつ、この焼結体を原料棒としてFZ法により酸化ガリウム単結晶を形成した際には蒸発するものである。すなわち、焼結体に含まれた添加物は、焼結体が酸化ガリウムの融点(約1740℃)以上に熱せられた溶融状態で、添加物はその蒸気圧に応じて蒸発し、得られる酸化ガリウム単結晶には酸素欠損が形成されて導電性が付与される。例えば、添加物がSnO2粉末の場合、SnO2の沸点は1850℃(融点は1127℃)であるため、焼結体に含まれたSnO2は、FZ法による酸化ガリウム単結晶の育成の際に蒸発し、得られた酸化ガリウム単結晶には酸素欠損が形成される。 The additive to be added to the gallium oxide powder is incorporated into the gallium oxide substitution site when the gallium oxide sintered body is formed. When crystals are formed, they evaporate. That is, the additive contained in the sintered body is in a molten state in which the sintered body is heated to a melting point (about 1740 ° C.) or higher of gallium oxide, and the additive evaporates according to its vapor pressure, and the resulting oxidation Oxygen vacancies are formed in the gallium single crystal to impart conductivity. For example, when the additive is SnO 2 powder, SnO 2 has a boiling point of 1850 ° C. (melting point is 1127 ° C.), so SnO 2 contained in the sintered body is used for growing a gallium oxide single crystal by the FZ method. As a result, the oxygen vacancies are formed in the resulting gallium oxide single crystal.

ところで、本発明においては、FZ法で用いる原料棒を得るのに比較的高い1400〜1600℃で焼結するため、原料棒のかさ密度が大きくなり単結晶の密度に近づく。そして、この焼結体を原料棒にしてFZ法による単結晶育成を行なえば、集光加熱の際に反射が抑えられて効率的に熱を吸収するため、単結晶育成時に原料棒が溶けやすくなる。また、焼結体中の隙間が減少することで、隙間にあったガスが溶融帯に気泡として混入する量が減るため、溶融帯の体積及び表面積の変動が抑えられ、溶融帯が安定する。その結果、得られる酸化ガリウム単結晶に形成される酸素欠損のムラが抑えられて均一に存在するようになる。つまり、導電性が付与された酸化ガリウム単結晶の結晶性の低下を可及的に抑制し、結晶性に優れた酸化ガリウム単結晶を得ることができる。焼結温度が1400℃より低いと得られる焼結体の密度が低くなり、溶融帯と焼結体の界面で溶融した原料が毛細管現象により原料棒中の隙間に吸い上がる。また、原料棒中に含まれていたガスが気泡として溶融帯中に取り込まれ、ガスが溶融帯から排出される度に溶融帯の体積・表面積が変動し、添加物の蒸発が一定でなくなり、得られる単結晶の酸素欠損にムラが生じ、均質な結晶性の単結晶が得られない。反対に1600℃より高いと、焼結体から添加元素が蒸発してしまい、単結晶を得た際に導電性が付与されないおそれがある。上記焼結温度が、特に1500℃〜1550℃であれば、より優れた結晶性及び導電性の酸化ガリウム単結晶を得ることができるため好ましい。   By the way, in this invention, in order to obtain the raw material stick | rod used by FZ method, since it sinters at 1400-1600 degreeC which is comparatively high, the bulk density of a raw material stick | rod becomes large and it approaches the density of a single crystal. Then, if this sintered body is used as a raw material rod and single crystal growth is performed by the FZ method, reflection is suppressed during condensing heating and heat is efficiently absorbed, so that the raw material rod is easily melted during single crystal growth. Become. Further, since the gap in the sintered body is reduced, the amount of gas in the gap mixed as bubbles in the melt zone is reduced, so that the fluctuation of the volume and surface area of the melt zone is suppressed, and the melt zone is stabilized. As a result, the unevenness of oxygen vacancies formed in the obtained gallium oxide single crystal is suppressed and exists uniformly. That is, it is possible to suppress a decrease in crystallinity of the gallium oxide single crystal imparted with conductivity as much as possible and obtain a gallium oxide single crystal excellent in crystallinity. When the sintering temperature is lower than 1400 ° C., the density of the obtained sintered body is lowered, and the raw material melted at the interface between the melting zone and the sintered body is sucked into the gaps in the raw material rod by capillary action. In addition, the gas contained in the raw material rod is taken into the melting zone as bubbles, and the volume and surface area of the melting zone fluctuate each time the gas is discharged from the melting zone, and the evaporation of the additive is not constant, Unevenness occurs in the oxygen vacancies in the obtained single crystal, and a homogeneous crystalline single crystal cannot be obtained. On the other hand, when the temperature is higher than 1600 ° C., the additive element evaporates from the sintered body, and there is a possibility that conductivity is not imparted when a single crystal is obtained. If the sintering temperature is 1500 ° C. to 1550 ° C. in particular, it is preferable because a more excellent crystalline and conductive gallium oxide single crystal can be obtained.

添加物の添加量については、元素量(2種以上の元素が添加される場合にはその合計量)がガリウム元素に対して0.05〜5at%とするのが好ましい。添加物の量がガリウム元素に対して5at%以下であれば、酸化ガリウムの置換サイトに添加物の元素が取り込まれた焼結体を得ることができ、導電性及び結晶性がより優れた酸化ガリウム単結晶を形成することができる。5at%を超えると、添加した元素の一部が焼結体中で置換サイトに入らずに、得られる単結晶の結晶性に影響を及ぼすおそれがある。また、結晶成長の際に添加元素の蒸発が不完全となり、結晶性に優れた酸化ガリウム単結晶を得ることが難しくなる。成長速度を落とせばこの問題は回避可能だが、原料の約1割程度が蒸発するのは無駄が多く、結晶成長の制御も難しくなる。一方、添加量が0.05at%より少ないと酸化ガリウム単結晶の導電性向上の効果が得られ難い。   Regarding the addition amount of the additive, the element amount (the total amount when two or more elements are added) is preferably 0.05 to 5 at% with respect to the gallium element. If the amount of the additive is 5 at% or less with respect to the gallium element, a sintered body in which the additive element is taken into the substitution site of the gallium oxide can be obtained, and oxidation with more excellent conductivity and crystallinity. A gallium single crystal can be formed. If it exceeds 5 at%, a part of the added element may not enter the substitution site in the sintered body and may affect the crystallinity of the obtained single crystal. Further, the evaporation of the additive element becomes incomplete during crystal growth, and it becomes difficult to obtain a gallium oxide single crystal having excellent crystallinity. Although this problem can be avoided by reducing the growth rate, it is wasteful that about 10% of the raw material evaporates, and it becomes difficult to control crystal growth. On the other hand, when the addition amount is less than 0.05 at%, it is difficult to obtain the effect of improving the conductivity of the gallium oxide single crystal.

添加物については、元素の状態のまま酸化ガリウム粉末に添加してもよく、酸化物の状態で添加してもよいが、添加物が酸化物の状態で添加される場合には、元素量が上記範囲となるようにすればよい。例えば添加物がSnO2の場合には、酸化ガリウム粉末に対してSnO2を0.1〜10mol%となるように添加するのがよい。また、添加物は、純度が99.99%以上のものを用いるのが好ましい。 The additive may be added to the gallium oxide powder in the elemental state or may be added in the oxide state, but when the additive is added in the oxide state, the amount of the element is What is necessary is just to make it become the said range. For example, when the additive is SnO 2 , it is preferable to add SnO 2 to 0.1 to 10 mol% with respect to the gallium oxide powder. Moreover, it is preferable to use an additive having a purity of 99.99% or more.

上記で得た酸化ガリウム焼結体については、これを原料棒にしてFZ法により酸化ガリウム単結晶を育成する。この際、成長速度vについては5mm/hより速く15mm/h未満、好ましくは10mm/h以上15mm/h未満、より好ましくは10〜12.5mm/hで<001>方向に酸化ガリウム単結晶を育成する。一般に、FZ法では、成長速度が遅い方が品質の良い単結晶を得ることができるとされるが、本発明においては上記のような比較的速い成長速度で酸化ガリウム単結晶を成長させる。このような条件は、導電性及び結晶性を同時に満たす酸化ガリウム単結晶を得るために本発明者らが系統的に行なった結果見出されたものである。この理由については次のように推測される。本発明においては、上述したように、焼結体を得る際の焼結温度を比較的高くすることによって比較的高いかさ密度の焼結体を形成しており、この焼結体を原料棒にしてFZ法を行なえば、原料棒は比較的溶けやすい。そして、均一な状態で存在する添加物が蒸発することによって、結晶品質を落とさずに酸素欠損を生じさせることができる。この際、成長速度が5mm/h以下だと酸素欠損が雰囲気ガス中の酸素(O)で補われて、得られる酸化ガリウム単結晶の電気抵抗率が高くなるおそれがある。反対に15mm/h以上だと添加物の蒸発が不完全となり、結晶性に優れた酸化ガリウム単結晶を得ることが難しくなる。   About the gallium oxide sintered compact obtained above, this is made into a raw material stick, and a gallium oxide single crystal is grown by FZ method. At this time, the growth rate v is higher than 5 mm / h and less than 15 mm / h, preferably 10 mm / h or more and less than 15 mm / h, more preferably 10 to 12.5 mm / h, and a gallium oxide single crystal is formed in the <001> direction. Cultivate. Generally, in the FZ method, it is considered that a single crystal having a good quality can be obtained when the growth rate is slow. In the present invention, a gallium oxide single crystal is grown at a relatively fast growth rate as described above. Such a condition has been found as a result of the systematic efforts of the present inventors to obtain a gallium oxide single crystal that simultaneously satisfies conductivity and crystallinity. The reason is presumed as follows. In the present invention, as described above, a relatively high bulk density sintered body is formed by relatively increasing the sintering temperature when obtaining the sintered body, and this sintered body is used as a raw material rod. If the FZ method is performed, the raw material rod is relatively easy to melt. The additive present in a uniform state evaporates, so that oxygen vacancies can be generated without deteriorating the crystal quality. At this time, if the growth rate is 5 mm / h or less, oxygen deficiency is supplemented by oxygen (O) in the atmospheric gas, and the electric resistivity of the resulting gallium oxide single crystal may be increased. On the contrary, if it is 15 mm / h or more, the evaporation of the additive becomes incomplete, and it becomes difficult to obtain a gallium oxide single crystal excellent in crystallinity.

また、酸化ガリウム単結晶を成長させる際の雰囲気については、酸素と不活性ガスとの混合ガス雰囲気とする。酸素を含有した雰囲気とすることによって、酸化ガリウム自体の蒸発が抑えられて、結晶性に優れた酸化ガリウム単結晶を得ることができる。不活性ガスについては窒素、アルゴン、ヘリウム等から選ばれた1種以上とするのがよい。このような混合ガスとして、例えば空気やドライエアを使用することができる。   The atmosphere for growing the gallium oxide single crystal is a mixed gas atmosphere of oxygen and inert gas. By making the atmosphere containing oxygen, evaporation of gallium oxide itself is suppressed, and a gallium oxide single crystal having excellent crystallinity can be obtained. The inert gas is preferably at least one selected from nitrogen, argon, helium and the like. As such a mixed gas, for example, air or dry air can be used.

一方、FZ法で用いる種結晶については、別途FZ法で得た酸化ガリウム単結晶を用いるのが好ましい。また、原料棒及び種結晶の回転速度については、それぞれ10〜60rpmであるのがよく、互いに逆向きに回転させるのが好ましい。   On the other hand, for the seed crystal used in the FZ method, it is preferable to use a gallium oxide single crystal obtained separately by the FZ method. Moreover, about the rotational speed of a raw material stick | rod and a seed crystal, it is good that it is 10-60 rpm respectively, and it is preferable to make it rotate mutually reverse.

本発明における酸化ガリウム単結晶の用途については特に制限されず、発光素子を得るための基板やガスセンサ等の高機能デバイス用の各種半導体材料として用いることができるが、例えば酸化ガリウム単結晶の表面を窒化処理して、酸化ガリウム単結晶の表層部に窒化ガリウム(GaN)層を備えた窒化物半導体用基板としてもよい。本発明の酸化ガリウム単結晶は結晶性に優れるため、その表面を窒化処理することによって欠陥の少ない高品質の窒化ガリウム層を得ることができる。このような窒化ガリウム層を備えた基板であれば、例えば窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化インジウム(InN)、又はこれらの混晶からなるような窒化物半導体を成長させる基板として好適であり、既存の基板であるサファイアやシリコンカーバイド等と比較して格子不整合が少なく、高品質の窒化物半導体をエピタキシャル成長させることができる点で有利である。   The use of the gallium oxide single crystal in the present invention is not particularly limited and can be used as various semiconductor materials for high-functional devices such as a substrate and a gas sensor for obtaining a light emitting element. A nitride semiconductor substrate having a gallium nitride (GaN) layer on the surface layer of a gallium oxide single crystal may be nitrided. Since the gallium oxide single crystal of the present invention is excellent in crystallinity, a high-quality gallium nitride layer with few defects can be obtained by nitriding the surface. If the substrate includes such a gallium nitride layer, for example, as a substrate for growing a nitride semiconductor made of gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), or a mixed crystal thereof. This is advantageous in that it has fewer lattice mismatches compared to existing substrates such as sapphire and silicon carbide, and can epitaxially grow a high-quality nitride semiconductor.

窒化処理の手段については特に制限されないが、例えばアンモニアガス雰囲気中で酸化ガリウム単結晶を加熱するアンモニアガス加熱処理、ECR(電子サイクロトロン共鳴:Electron Cyclotron Resonance)プラズマ又はRF(高周波:Radio Frequency)プラズマで励起した窒素プラズマを用いる窒素プラズマ処理、窒素イオンをイオン注入する窒素イオン注入処理等を具体例として挙げることができる。   The means for nitriding is not particularly limited. For example, ammonia gas heat treatment for heating a gallium oxide single crystal in an ammonia gas atmosphere, ECR (Electron Cyclotron Resonance) plasma, or RF (Radio Frequency) plasma. Specific examples include nitrogen plasma treatment using excited nitrogen plasma and nitrogen ion implantation treatment for implanting nitrogen ions.

このうち、アンモニアガス加熱処理では、酸化ガリウム単結晶をアンモニアガス雰囲気中で例えば700〜1000℃の温度で加熱すればよい。この際、アンモニアガスと共に窒素ガスを含むようにするのがよい。アンモニアガスが窒素ガスによって希釈されることによって、アンモニアが容器内中に残留する水分と反応するのを抑制することができる。   Among these, in the ammonia gas heat treatment, the gallium oxide single crystal may be heated at a temperature of, for example, 700 to 1000 ° C. in an ammonia gas atmosphere. At this time, nitrogen gas is preferably included together with ammonia gas. By diluting the ammonia gas with the nitrogen gas, it is possible to suppress the ammonia from reacting with moisture remaining in the container.

一方、窒素プラズマ処理では、例えば窒素源として用いる窒素ガス、アンモニアガス、窒素に水素を添加した混合ガス等を所定の磁場で励起して窒素プラズマを発生させて、酸化ガリウム単結晶の表面を処理するようにすればよい。例えば窒素源として窒素ガスを用いてECR−MBE(molecular beam epitaxy)装置のチャンバーでプラズマ処理する場合、分子状窒素(N2)に2.45GHzの磁場(875G)をかけて励起したプラズマを発生させ、マイクロ波パワー100〜300W、窒素流量8〜20sccm(standard cc/min)、基板温度(酸化ガリウム単結晶の温度)300〜800℃、及び処理時間3〜120分の各条件でGaN層を形成することができる。 On the other hand, in nitrogen plasma treatment, for example, nitrogen gas used as a nitrogen source, ammonia gas, a mixed gas obtained by adding hydrogen to nitrogen is excited by a predetermined magnetic field to generate nitrogen plasma, and the surface of the gallium oxide single crystal is treated. You just have to do it. For example, when plasma processing is performed in a chamber of an ECR-MBE (molecular beam epitaxy) apparatus using nitrogen gas as a nitrogen source, plasma excited by applying a 2.45 GHz magnetic field (875 G) to molecular nitrogen (N 2 ) is generated. The GaN layer is formed under conditions of microwave power 100 to 300 W, nitrogen flow rate 8 to 20 sccm (standard cc / min), substrate temperature (temperature of the gallium oxide single crystal) 300 to 800 ° C., and processing time 3 to 120 minutes. Can be formed.

窒素イオン注入処理では、窒素を陽イオン化したN2 +を酸化ガリウム単結晶の表面にイオン注入すればよい。この際、イオン注入を行う注入室を2×10-6〜5×10-6Torr程度になるまで排気し、窒素イオンの加速エネルギーを10〜100keV、窒素イオンの注入量を1×1017〜1×1018ions/cm2としてイオン注入を行えばGaN層を形成することができる。 In the nitrogen ion implantation process, N 2 + cationized from nitrogen may be implanted into the surface of the gallium oxide single crystal. At this time, the ion implantation chamber is evacuated to about 2 × 10 −6 to 5 × 10 −6 Torr, the acceleration energy of nitrogen ions is 10 to 100 keV, and the implantation amount of nitrogen ions is 1 × 10 17 to If ion implantation is performed at 1 × 10 18 ions / cm 2 , a GaN layer can be formed.

窒化処理する酸化ガリウム単結晶の表面については、酸化ガリウム単結晶の(100)面であるのが好ましい。酸化ガリウム単結晶の(100)面は酸化ガリウム単結晶の成長方向に対して平行な面であることから、酸化ガリウム単結晶は(100)面にへき開しやすく、また、例えば半導体レーザ等のレーザ発振するときに用いる光共振器のミラーをGaN結晶のへき開面で形成する場合に好適である。また、窒化処理に先駆けて、当該表面を研磨処理してもよい。研磨しておくことで欠陥形成を抑えてGaN層を形成することができる。このような研磨については一般的に行なわれる手段を用いることができるが、好ましくは砥粒などの粒子による機械的な除去作用と加工液による化学的な溶去作用を重畳させた化学的機械研磨(Chemical Mechanical Polishing:CMP)であるのがよい。   The surface of the gallium oxide single crystal to be nitrided is preferably the (100) plane of the gallium oxide single crystal. Since the (100) plane of the gallium oxide single crystal is a plane parallel to the growth direction of the gallium oxide single crystal, the gallium oxide single crystal is easily cleaved into the (100) plane. For example, a laser such as a semiconductor laser is used. This is suitable when the mirror of the optical resonator used for oscillation is formed by a cleavage plane of the GaN crystal. Further, prior to the nitriding treatment, the surface may be polished. By polishing, a GaN layer can be formed while suppressing defect formation. Generally used means can be used for such polishing, but preferably chemical mechanical polishing in which the mechanical removal action by particles such as abrasive grains and the chemical removal action by the processing liquid are superimposed. (Chemical Mechanical Polishing: CMP).

窒化処理により形成されるGaN層の膜厚については、成長させる窒化物半導体膜を良質なものにせしめる観点から、好ましくは1〜3nmであるのがよい。1nmより少ないと結晶性に優れた窒化物半導体を成長させるのには別途バッファー層を形成する必要が生じるおそれがあり、反対に3nmより厚くなると、窒化物半導体を結晶成長させる基板としては効果が飽和し、処理時間やコストの面で不利となる。なお、GaN層の膜厚については、例えば二次イオン質量分析法(SIMS)、オージェ電子分光法(AES)、X線光電子分光法(XPS)等による深さ方向分析から算出することができ、あるいは電子顕微鏡による断面観察から算出することもできる。   The film thickness of the GaN layer formed by nitriding is preferably 1 to 3 nm from the viewpoint of improving the quality of the grown nitride semiconductor film. If the thickness is less than 1 nm, it may be necessary to separately form a buffer layer in order to grow a nitride semiconductor having excellent crystallinity. Conversely, if it is thicker than 3 nm, it is effective as a substrate for crystal growth of the nitride semiconductor. Saturation is disadvantageous in terms of processing time and cost. The film thickness of the GaN layer can be calculated from, for example, depth direction analysis by secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Or it can also calculate from cross-sectional observation with an electron microscope.

本発明における酸化ガリウム単結晶は、従来においてその両立が難しいとされた優れた結晶性及び導電性を同時に兼ね備える。すなわち、本発明においては、酸化ガリウム粉末を焼結して得た焼結体を原料棒にしてFZ法により酸化ガリウム単結晶を得る際、酸化ガリウム粉末に特定の添加物を加えて、焼結温度及び結晶成長時の速度を所定の範囲で組み合わせることで、酸化物半導体では相反する特性であるとされた結晶性と導電性とを両立させることに成功した。そして、本発明における酸化ガリウム単結晶は、結晶性に優れて可視域における透明性に優れ、かつ、電気抵抗率が低くて導電性も優れる。   The gallium oxide single crystal in the present invention has both excellent crystallinity and conductivity that are conventionally considered to be difficult to achieve both. That is, in the present invention, when a gallium oxide single crystal is obtained by the FZ method using a sintered body obtained by sintering gallium oxide powder as a raw material rod, a specific additive is added to the gallium oxide powder and sintered. By combining the temperature and the speed during crystal growth within a predetermined range, the oxide semiconductor succeeded in achieving both crystallinity and conductivity, which are considered to be contradictory properties. The gallium oxide single crystal in the present invention has excellent crystallinity and excellent transparency in the visible region, and has low electrical resistivity and excellent conductivity.

以下、実施例に基づいて、本発明をより具体的に説明する。   Hereinafter, based on an Example, this invention is demonstrated more concretely.

[酸化ガリウム単結晶の作製]
純度99.99%の酸化ガリウム粉末(株式会社高純度化学研究所製)に対して純度99.99%のSnO2粉末(株式会社高純度化学研究所製)が10mol%となるようにそれぞれ秤量し混合して粉末材料を用意した。この粉末材料を直径10mmのラバーチューブに入れ、プレス機を用いて静水圧60MPaで3分間プレス成形して円柱状に固めた。次いで、この円柱状に固めた粉末材料をラバーチューブから取り出し、これを電気炉に入れて大気中1500℃で10時間焼結し、酸化ガリウム焼結体を得た。
[Preparation of gallium oxide single crystal]
Weighing so that the purity of 99.99% of SnO 2 powder (manufactured by Kojundo Chemical Laboratory Co., Ltd.) is 10 mol% with respect to the purity of 99.99% gallium oxide powder (manufactured by Kojundo Chemical Laboratory Co., Ltd.). And mixed to prepare a powder material. This powder material was put into a rubber tube having a diameter of 10 mm, and pressed using a press machine at a hydrostatic pressure of 60 MPa for 3 minutes to be solidified into a cylindrical shape. Next, this cylindrically solidified powder material was taken out from the rubber tube, put in an electric furnace and sintered at 1500 ° C. for 10 hours in the atmosphere to obtain a gallium oxide sintered body.

酸化ガリウム単結晶を作製するために、双楕円の赤外線集光加熱炉を用いて光FZ(フローティングゾーン:浮遊帯域溶融)法により酸化ガリウム単結晶の育成を行った。
上記で得た酸化ガリウム焼結体を原料棒として赤外線集光加熱炉の上軸に設置し、下軸には種結晶として酸化ガリウム単結晶の[001]方向が軸方向に向くように設置した。なお、この種結晶は、予め酸化ガリウム多結晶に対して光加熱帯域溶融を施して得た単結晶部分を切出したものである。
In order to produce a gallium oxide single crystal, a gallium oxide single crystal was grown by an optical FZ (floating zone: floating zone melting) method using a double elliptical infrared condensing heating furnace.
The gallium oxide sintered body obtained above was installed as a raw material rod on the upper axis of an infrared condensing heating furnace, and the lower axis was installed as a seed crystal so that the [001] direction of the gallium oxide single crystal was in the axial direction. . This seed crystal is obtained by cutting out a single crystal portion obtained by subjecting a gallium oxide polycrystal to light heating zone melting in advance.

結晶育成雰囲気については窒素と酸素との混合ガス(N2:79vol%、O2:21vol%)となるようにして、赤外線集光加熱炉の透明石英管内にこの混合ガスを500ml/minで供給した。また、原料棒と種結晶のそれぞれの先端を炉中心になるように移動させて溶解接触させ、原料棒と種結晶とをそれぞれ20rpmの回転速度で互いに逆向きに回転させながら、<001>方向に結晶成長速度が10mm/hとなるように上下軸を移動させて1気圧下で酸化ガリウム単結晶の育成を行った。これにより、長さ37mm×幅7mm×厚さ5mmの酸化ガリウム単結晶を得た。 The crystal growth atmosphere is a mixed gas of nitrogen and oxygen (N 2 : 79 vol%, O 2 : 21 vol%), and this mixed gas is supplied into the transparent quartz tube of the infrared condensing heating furnace at 500 ml / min. did. In addition, the tips of the raw material rod and the seed crystal are moved so as to be in the center of the furnace and brought into contact with melting, and the raw material rod and the seed crystal are rotated in opposite directions at a rotational speed of 20 rpm, respectively, in the <001> direction. The gallium oxide single crystal was grown under 1 atm by moving the vertical axis so that the crystal growth rate was 10 mm / h. Thus, a gallium oxide single crystal having a length of 37 mm, a width of 7 mm, and a thickness of 5 mm was obtained.

[物性評価]
上記で得られた酸化ガリウム単結晶について、スズの組成分析を水素化物発生原子吸光法にて行なった。この分析には還元気化装置(Varian社製VGA77)を用いて水素化物発生させ、原子吸光光度計(Varian社製 SpectrAA-220)で評価した。ガリウムについてはICP発光分光分析装置(SII ナノテクノロジー社製SPS 3100)を用いて評価した。その結果、Sn:0.006%(m/m)、Ga:77.9%(m/m)であった。
[Evaluation of the physical properties]
The gallium oxide single crystal obtained above was subjected to tin composition analysis by hydride generation atomic absorption. In this analysis, hydride was generated using a reduction vaporizer (VGA77 manufactured by Varian) and evaluated by an atomic absorption photometer (SpectrAA-220 manufactured by Varian). Gallium was evaluated using an ICP emission spectroscopic analyzer (SPS 3100 manufactured by SII Nanotechnology). As a result, Sn: 0.006% (m / m), Ga: 77.9% (m / m).

次に、上記で得られた酸化ガリウム単結晶の(100)面を切り出し、図1に示すように、厚さ(d)が0.4mmであって、約8mm×7mmの酸化ガリウム単結晶試料基板1を用意した。この試料基板1について、紫外可視分光光度計(島津製作所製 UV-3100PC)を用い、室温にて内部透過率を測定した。結果を図2に示す。
図2から明らかなように、本実施例1で得られた酸化ガリウム単結晶はas grownの状態で300〜620nmの波長領域での内部透過率が80%以上であり、透明性に優れていることが確認された。
Next, the (100) plane of the gallium oxide single crystal obtained above was cut out, and as shown in FIG. 1, the gallium oxide single crystal sample having a thickness (d) of 0.4 mm and about 8 mm × 7 mm. A substrate 1 was prepared. About this sample board | substrate 1, the internal transmittance | permeability was measured at room temperature using the ultraviolet visible spectrophotometer (Shimadzu Corporation UV-3100PC). The results are shown in FIG.
As can be seen from FIG. 2, the gallium oxide single crystal obtained in Example 1 has an internal transmittance of 80% or more in the wavelength range of 300 to 620 nm in an as grown state, and is excellent in transparency. It was confirmed.

また、上記酸化ガリウム単結晶基板1を用いてVan Der Pauw法によってホール係数の測定を行なった。上記基板1の電気抵抗率、キャリア濃度、及び移動度を測定した。結果を表1に示す。   The Hall coefficient was measured by the Van Der Pauw method using the gallium oxide single crystal substrate 1. The electrical resistivity, carrier concentration, and mobility of the substrate 1 were measured. The results are shown in Table 1.

Figure 2007254174
Figure 2007254174

表1で明らかなように、本実施例1で得た酸化ガリウム単結晶は電気抵抗率が極めて低い値であって、導電性に優れることが確認された。   As is clear from Table 1, the gallium oxide single crystal obtained in Example 1 has a very low electrical resistivity and was confirmed to be excellent in conductivity.

上記で得られた酸化ガリウム単結晶について、X線ロッキングカーブ測定の結果を図3に示す。これによれば、(400)面に対する回折があり、その半値幅(FWHM)は162arcsecと小さく、ピークもシングルであり、かつ、ピーク割れもないことから、この酸化ガリウム単結晶は結晶ドメインがシングルであり、結晶性もかなり良いことが確認された。   FIG. 3 shows the result of X-ray rocking curve measurement for the gallium oxide single crystal obtained above. According to this, there is diffraction with respect to the (400) plane, its half-value width (FWHM) is as small as 162 arcsec, the peak is single, and there is no peak cracking, so this gallium oxide single crystal has a single crystal domain. It was confirmed that the crystallinity was also quite good.

更にまた、上記で得られた酸化ガリウム単結晶について、カソードルミネッセンス測定(CL測定)を行った。測定は島津製作所EPMA装置EPMA-1600に搭載されたCL-900を用い、室温にて行った。電子ビームの加速電圧を15kV、測定波長範囲は300〜600nmとした。得られた結果を図4に示す。波長390nmの位置に鋭い発光ピークを示す青色発光が確認され、スペクトルからも結晶性も優れていることが読み取れた。   Furthermore, cathodoluminescence measurement (CL measurement) was performed on the gallium oxide single crystal obtained above. The measurement was performed at room temperature using CL-900 mounted on Shimadzu Corporation EPMA apparatus EPMA-1600. The acceleration voltage of the electron beam was 15 kV, and the measurement wavelength range was 300 to 600 nm. The obtained results are shown in FIG. Blue light emission showing a sharp emission peak at a wavelength of 390 nm was confirmed, and it was read from the spectrum that the crystallinity was excellent.

酸化ガリウム粉末に対するSnO2粉末の割合が2mol%となるように粉末材料を用意し、直径12mmのラバーチューブを用いる以外は実施例1と同様にして焼結体を得た。そして、得られた焼結体を成長速度12.5mm/hで単結晶育成する以外は実施例1と同様にして単結晶育成を行い、直径約10mm×長さ約30mmの酸化ガリウム単結晶を得た。得られた酸化ガリウム単結晶について、実施例1と同様にして、組成分析、透過率測定、ホール係数測定、X線ロッキングカーブ測定、及びカソードルミネッセンス測定を行なった。 A powder material was prepared so that the ratio of SnO 2 powder to gallium oxide powder was 2 mol%, and a sintered body was obtained in the same manner as in Example 1 except that a rubber tube having a diameter of 12 mm was used. Then, the single crystal was grown in the same manner as in Example 1 except that the obtained sintered body was grown at a growth rate of 12.5 mm / h, and a gallium oxide single crystal having a diameter of about 10 mm × length of about 30 mm was obtained. Obtained. The resulting gallium oxide single crystal was subjected to composition analysis, transmittance measurement, Hall coefficient measurement, X-ray rocking curve measurement, and cathodoluminescence measurement in the same manner as in Example 1.

組成分析の結果、本実施例2で得られた酸化ガリウム単結晶に含まれるSnは0.003%(m/m)、Gaは76.0%(m/m)であった。また、透過率測定の結果は図2に示すとおりであり、as grownの状態で波長300〜864nmの領域における内部透過率は85%を超えており、可視域における透明性は優れていることが確認された。X線ロッキングカーブ測定の結果は図3に示すように(400)面に対応するピークの半値幅(FWHM)43arcsecであり、不純物無添加で高品質の単結晶と同等の結晶性を示した。更に、ホール係数の測定から得られた結果は表1に示すとおりであり、電気抵抗率が極めて低い値であって、導電性に優れることが確認された。更にまた、カソードルミネッセンス測定の結果は図4に示すとおりであり、波長390nmの位置に鋭い発光ピークを示す青色発光が確認され、スペクトルからも結晶性も優れていることが読み取れた。   As a result of composition analysis, Sn contained in the gallium oxide single crystal obtained in Example 2 was 0.003% (m / m), and Ga was 76.0% (m / m). Moreover, the result of the transmittance measurement is as shown in FIG. 2, and the internal transmittance in the wavelength range of 300 to 864 nm exceeds 85% in the as grown state, and the transparency in the visible range is excellent. confirmed. The result of the X-ray rocking curve measurement was a peak half-value width (FWHM) of 43 arcsec corresponding to the (400) plane as shown in FIG. 3, and showed crystallinity equivalent to that of a high-quality single crystal without addition of impurities. Furthermore, the results obtained from the measurement of the Hall coefficient are as shown in Table 1. It was confirmed that the electrical resistivity was a very low value and the conductivity was excellent. Furthermore, the result of the cathodoluminescence measurement is as shown in FIG. 4. Blue light emission showing a sharp emission peak at a wavelength of 390 nm was confirmed, and it was read from the spectrum that the crystallinity was excellent.

[比較例1]
酸化ガリウム粉末に対するSnO2粉末の割合が3mol%となるように粉末材料を用意し、1300℃で16時間焼結して酸化ガリウム焼結体を得た以外は実施例1と同様にして酸化ガリウム焼結体を得た後、実施例1と同様にしてFZ法を行い、直径約9mm×長さ約55mmの酸化ガリウム単結晶を得た。この得られた酸化ガリウム単結晶は、全体的に青色に着色しており、結晶成長方向に青みの濃淡部分が縞状に分布していた。
[Comparative Example 1]
Gallium oxide was prepared in the same manner as in Example 1 except that a powder material was prepared so that the ratio of SnO 2 powder to gallium oxide powder was 3 mol% and sintered at 1300 ° C. for 16 hours to obtain a gallium oxide sintered body. After obtaining the sintered body, the FZ method was performed in the same manner as in Example 1 to obtain a gallium oxide single crystal having a diameter of about 9 mm and a length of about 55 mm. The obtained gallium oxide single crystal was colored blue as a whole, and bluish shades were distributed in stripes in the crystal growth direction.

ところで、上記で得られた焼結体は、外観上、焼結による収縮が殆どなかったため、その焼結密度は低く、実際に、原料棒とした焼結体の先端を集光加熱して溶融させた際、溶融部直上が収縮してクラックが発生した。また、単結晶を成長させる際には溶融帯が焼結体(原料棒)に吸い上がってしまい、当該部分が膨張してクラックが発生した。このような状況から推測すると、焼結体に含まれていたガスやSnO2が気泡として溶融帯中に取り込まれ、この溶融帯中の気泡が消滅するたびに溶融帯の体積及び表面積が大きく変動したため、結晶性及び透明性が低下し、また、表1からも明らかなように導電性も劣るものと考えられる。 By the way, since the sintered body obtained above had almost no shrinkage due to sintering in appearance, its sintered density was low, and actually the tip of the sintered body used as a raw material rod was condensed and heated to be melted. When this was done, cracks occurred due to the shrinkage directly above the melted part. Further, when the single crystal was grown, the molten zone was sucked up into the sintered body (raw material rod), and the portion expanded to generate cracks. Presuming from this situation, the gas and SnO 2 contained in the sintered body are taken into the melt zone as bubbles, and the volume and surface area of the melt zone fluctuate greatly each time the bubbles in the melt zone disappear. Therefore, crystallinity and transparency are lowered, and as is clear from Table 1, the conductivity is considered to be inferior.

[比較例2]
添加物を加えずに純度99.99%の酸化ガリウム粉末(株式会社高純度化学研究所製)からなる粉末材料を用意し、実施例1と同様にして酸化ガリウム焼結体を得た。この焼結体を原料棒として、結晶育成雰囲気を窒素と酸素との混合ガス(N2:500ml/min、O2:20ml/min)、成長速度を17.5mm/hとした以外は実施例1と同様にして酸化ガリウム単結晶を育成し、直径約9mm×長さ約50mmの単結晶を得た。得られた酸化ガリウム単結晶について、実施例1と同様にして、内部透過率測定(図2)及びホール係数測定(表1)を行なった。図2より、得られた酸化ガリウム単結晶の透過率は優れた結果であったが、電気抵抗率は実施例1及び2と比べて一桁大きい値であった。
[Comparative Example 2]
A powder material made of gallium oxide powder having a purity of 99.99% (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was prepared without adding any additives, and a gallium oxide sintered body was obtained in the same manner as in Example 1. Example except that this sintered body was used as a raw material rod, the crystal growth atmosphere was a mixed gas of nitrogen and oxygen (N 2 : 500 ml / min, O 2 : 20 ml / min), and the growth rate was 17.5 mm / h. In the same manner as in Example 1, a gallium oxide single crystal was grown to obtain a single crystal having a diameter of about 9 mm and a length of about 50 mm. The obtained gallium oxide single crystal was subjected to internal transmittance measurement (FIG. 2) and Hall coefficient measurement (Table 1) in the same manner as in Example 1. From FIG. 2, the transmittance of the obtained gallium oxide single crystal was an excellent result, but the electrical resistivity was an order of magnitude larger than those in Examples 1 and 2.

本発明における酸化ガリウム単結晶は、結晶性に優れた酸化ガリウム単結晶であって透明性に優れ、かつ、電気抵抗率が低く導電性に優れるため、発光ダイオード(LED)やレーザーダイオード(LD)をはじめとした種々の発光素子を得るための半導体用基板や、フラットパネルディスプレー、光学的エミッター、太陽電池等で使用される透明導電体、レーザ光共振キャビティ等の光学材料、高温酸素ガスセンサ材料等のほか、各種電極、基板、導電体、ガスセンサ、光記録材料等の高性能デバイス用の半導体材料として極めて有用である。特に、その表層部にGaN層を形成して窒化物半導体用基板とすれば、例えば窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化インジウム(InN)、又はこれらの混晶からなるような窒化物半導体を成長させる基板として好適であり、いわゆる垂直型素子構造の発光素子を得ることができる。すなわち、窒化物半導体用基板がそのまま電極になり得て、素子作製のプロセスが簡略化でき工業的に極めて有用であり、発光効率を従来のものより向上させることができる。   The gallium oxide single crystal in the present invention is a gallium oxide single crystal excellent in crystallinity, excellent in transparency, low in electrical resistivity, and excellent in conductivity, so that it is a light emitting diode (LED) or laser diode (LD). Semiconductor substrates for obtaining various light emitting devices such as flat panel displays, optical emitters, transparent conductors used in solar cells, optical materials such as laser light resonant cavities, high-temperature oxygen gas sensor materials, etc. In addition, it is extremely useful as a semiconductor material for high-performance devices such as various electrodes, substrates, conductors, gas sensors, and optical recording materials. In particular, if a nitride semiconductor substrate is formed by forming a GaN layer on the surface layer portion, for example, nitridation made of gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), or a mixed crystal thereof. It is suitable as a substrate for growing a physical semiconductor, and a light-emitting element having a so-called vertical element structure can be obtained. That is, the substrate for nitride semiconductor can be used as an electrode as it is, the process for producing the device can be simplified, it is industrially extremely useful, and the luminous efficiency can be improved as compared with the conventional one.

図1は、本発明の実施例に係る酸化ガリウム単結晶基板を示す斜視説明図である。FIG. 1 is a perspective explanatory view showing a gallium oxide single crystal substrate according to an embodiment of the present invention. 図2は、本発明の実施例に係る酸化ガリウム単結晶(厚さ0.4mm時)の透過率(及び反射率)を示すグラフである。FIG. 2 is a graph showing the transmittance (and reflectance) of a gallium oxide single crystal (when the thickness is 0.4 mm) according to an example of the present invention. 図3は、本発明の実施例に係る酸化ガリウム単結晶の放射光を用いて測定したX線ロッキングカーブである。FIG. 3 is an X-ray rocking curve measured using synchrotron radiation of a gallium oxide single crystal according to an example of the present invention. 図4は、本発明の実施例に係る酸化ガリウム単結晶の発光スペクトル(CL測定)である。FIG. 4 is an emission spectrum (CL measurement) of a gallium oxide single crystal according to an example of the present invention.

符号の説明Explanation of symbols

1 酸化ガリウム単結晶試料基板   1 Gallium oxide single crystal sample substrate

Claims (9)

電気抵抗率が0.05Ω・cm以下であり、かつ、厚さ0.4mmにおける300〜620nmの波長領域での内部透過率が80%以上であることを特徴とする酸化ガリウム単結晶。   A gallium oxide single crystal having an electrical resistivity of 0.05 Ω · cm or less and an internal transmittance of 80% or more in a wavelength region of 300 to 620 nm at a thickness of 0.4 mm. X線ロッキングカーブ測定により得られるX線ロッキングカーブの半値幅が180arcsec以下である請求項1に記載の酸化ガリウム単結晶。   The gallium oxide single crystal according to claim 1, wherein the half width of the X-ray rocking curve obtained by the X-ray rocking curve measurement is 180 arcsec or less. 請求項1又は2に記載の酸化ガリウム単結晶の表層部にGaN層を設けたことを特徴とする窒化物半導体用基板。   3. A nitride semiconductor substrate comprising a GaN layer provided on a surface layer portion of the gallium oxide single crystal according to claim 1. 酸化ガリウム粉末にSn、Ge、Si又はこれらの酸化物から選ばれた1種以上からなる添加物を添加した粉末材料を圧縮成形し、これを1400〜1600℃で焼結して酸化ガリウム焼結体を得て、この酸化ガリウム焼結体を原料棒としてFZ法により酸素と不活性ガスとの混合ガス雰囲気下で、成長速度vを5mm/h<v<15mm/hとして酸化ガリウム単結晶を育成することを特徴とする酸化ガリウム単結晶の製造方法。   A gallium oxide powder is compression-molded by adding a powder material in which one or more additives selected from Sn, Ge, Si or oxides thereof are added, and sintered at 1400 to 1600 ° C. to sinter gallium oxide. Using this gallium oxide sintered body as a raw material rod, a gallium oxide single crystal was grown at a growth rate v of 5 mm / h <v <15 mm / h by an FZ method in a mixed gas atmosphere of oxygen and inert gas. A method for producing a gallium oxide single crystal, characterized by growing. 添加物がSnO2粉末であり、酸化ガリウム粉末に対して上記SnO2粉末を0.1〜10mol%添加する請求項4に記載の酸化ガリウム単結晶の製造方法。 Additives is SnO 2 powder, oxidation method for producing a single-crystal gallium according to claim 4, adding 0.1 to 10 mol% of the SnO 2 powder with respect to gallium oxide powder. 得られる酸化ガリウム単結晶が、電気抵抗率0.05Ω・cm以下、かつ、厚さ0.4mmにおける300〜620nmの波長領域での内部透過率が80%以上である請求項4又は5に記載の酸化ガリウム単結晶の製造方法。   The obtained gallium oxide single crystal has an electric resistivity of 0.05 Ω · cm or less, and an internal transmittance in a wavelength region of 300 to 620 nm at a thickness of 0.4 mm is 80% or more. Of producing a single crystal of gallium oxide. 得られる酸化ガリウム単結晶が、X線ロッキングカーブ測定により得られるX線ロッキングカーブの半値幅が180arcsec以下である請求項4〜6のいずれかに記載の酸化ガリウム単結晶の製造方法。   The method for producing a gallium oxide single crystal according to any one of claims 4 to 6, wherein the obtained gallium oxide single crystal has a half width of an X-ray rocking curve obtained by X-ray rocking curve measurement of 180 arcsec or less. 請求項4〜7のいずれかに記載の方法により得られた酸化ガリウム単結晶の表面を窒化処理して、酸化ガリウム単結晶の表層部にGaN層を形成することを特徴とする窒化物半導体用基板の製造方法。   A surface of the gallium oxide single crystal obtained by the method according to claim 4 is nitrided to form a GaN layer on a surface layer portion of the gallium oxide single crystal. A method for manufacturing a substrate. 窒化処理が、アンモニアガス雰囲気中で加熱するアンモニアガス加熱処理、ECR又はRFで励起した窒素プラズマを用いる窒素プラズマ処理、又は窒素イオンをイオン注入する窒素イオン注入処理のいずれかである請求項8に記載の窒化物半導体用基板の製造方法。   9. The nitriding treatment is any one of ammonia gas heating treatment for heating in an ammonia gas atmosphere, nitrogen plasma treatment using nitrogen plasma excited by ECR or RF, or nitrogen ion implantation treatment for implanting nitrogen ions. The manufacturing method of the board | substrate for nitride semiconductors of description.
JP2006077459A 2006-03-20 2006-03-20 Gallium oxide single crystal and its manufacturing method, and nitride semiconductor substrate and its manufacturing method Pending JP2007254174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077459A JP2007254174A (en) 2006-03-20 2006-03-20 Gallium oxide single crystal and its manufacturing method, and nitride semiconductor substrate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077459A JP2007254174A (en) 2006-03-20 2006-03-20 Gallium oxide single crystal and its manufacturing method, and nitride semiconductor substrate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007254174A true JP2007254174A (en) 2007-10-04

Family

ID=38628799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077459A Pending JP2007254174A (en) 2006-03-20 2006-03-20 Gallium oxide single crystal and its manufacturing method, and nitride semiconductor substrate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007254174A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212284A (en) 2008-03-04 2009-09-17 Hitachi Cable Ltd Gallium nitride substrate
JP2011153054A (en) * 2010-01-28 2011-08-11 Namiki Precision Jewel Co Ltd Method for producing gallium oxide single crystal and gallium oxide single crystal
WO2013054919A1 (en) * 2011-10-14 2013-04-18 株式会社タムラ製作所 Method for producing β-ga2o3 substrate and method for producing crystal laminate structure
JP2015179850A (en) * 2011-09-08 2015-10-08 株式会社タムラ製作所 β-GALLIUM OXIDE BASED MONOCRYSTAL AND β-GALLIUM OXIDE BASED MONOCRYSTAL BODY
KR20160002322A (en) * 2014-06-30 2016-01-07 가부시키가이샤 다무라 세이사쿠쇼 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JP2016013962A (en) * 2015-05-08 2016-01-28 株式会社タムラ製作所 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
WO2016199838A1 (en) * 2015-06-09 2016-12-15 株式会社タムラ製作所 β-Ga2O3 SUBSTRATE, SEMICONDUCTOR LAMINATE STRUCTURE, AND SEMICONDUCTOR ELEMENT
CN106868593A (en) * 2017-01-06 2017-06-20 中国科学院上海光学精密机械研究所 Codope gallium oxide crystal of high conductivity and preparation method thereof
JP2019182744A (en) * 2019-07-31 2019-10-24 株式会社タムラ製作所 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JP2020113570A (en) * 2019-01-08 2020-07-27 信越化学工業株式会社 Oxide semiconductor film, lamination body, and manufacturing method of the oxide semiconductor film
CN113035999A (en) * 2021-02-10 2021-06-25 杭州富加镓业科技有限公司 Al-doped gallium oxide X-ray detector and preparation method thereof
CN114686965A (en) * 2022-05-31 2022-07-01 浙江大学杭州国际科创中心 Growth device and growth method of iridium-free zone-melting gallium oxide crystal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251088A (en) * 1997-03-12 1998-09-22 Murata Mfg Co Ltd Method for growing single crystal
JPH1192287A (en) * 1997-09-12 1999-04-06 Sanyo Electric Co Ltd Optical memory material
JP2001213698A (en) * 2000-01-27 2001-08-07 Natl Inst Of Advanced Industrial Science & Technology Meti Inclination type function material and its manufacturing method
JP2004056098A (en) * 2002-05-31 2004-02-19 Koha Co Ltd Light emitting device and method of manufacture the same
JP2005064153A (en) * 2003-08-08 2005-03-10 Koha Co Ltd Semiconductor layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251088A (en) * 1997-03-12 1998-09-22 Murata Mfg Co Ltd Method for growing single crystal
JPH1192287A (en) * 1997-09-12 1999-04-06 Sanyo Electric Co Ltd Optical memory material
JP2001213698A (en) * 2000-01-27 2001-08-07 Natl Inst Of Advanced Industrial Science & Technology Meti Inclination type function material and its manufacturing method
JP2004056098A (en) * 2002-05-31 2004-02-19 Koha Co Ltd Light emitting device and method of manufacture the same
JP2005064153A (en) * 2003-08-08 2005-03-10 Koha Co Ltd Semiconductor layer

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212284A (en) 2008-03-04 2009-09-17 Hitachi Cable Ltd Gallium nitride substrate
JP2011153054A (en) * 2010-01-28 2011-08-11 Namiki Precision Jewel Co Ltd Method for producing gallium oxide single crystal and gallium oxide single crystal
JP2015179850A (en) * 2011-09-08 2015-10-08 株式会社タムラ製作所 β-GALLIUM OXIDE BASED MONOCRYSTAL AND β-GALLIUM OXIDE BASED MONOCRYSTAL BODY
US9926647B2 (en) 2011-10-14 2018-03-27 Tamura Corporation Method for producing β-Ga2O3 substrate and method for producing crystal laminate structure including cutting out β-Ga2O3 based substrate from β-Ga2O3 based crystal
WO2013054919A1 (en) * 2011-10-14 2013-04-18 株式会社タムラ製作所 Method for producing β-ga2o3 substrate and method for producing crystal laminate structure
KR20140077962A (en) * 2011-10-14 2014-06-24 가부시키가이샤 다무라 세이사쿠쇼 METHOD FOR PRODUCING β-GA_2 O_3SUBSTRATE AND METHOD FOR PRODUCING CRYSTAL LAMINATE STRUCTURE
CN103917700A (en) * 2011-10-14 2014-07-09 株式会社田村制作所 Method for producing beta-Ga2O3 substrate and method for producing crystal laminate structure
KR101997302B1 (en) 2011-10-14 2019-07-05 가부시키가이샤 다무라 세이사쿠쇼 METHOD FOR PRODUCING β-GA₂O₃SUBSTRATE AND METHOD FOR PRODUCING CRYSTAL LAMINATE STRUCTURE
KR20160002322A (en) * 2014-06-30 2016-01-07 가부시키가이샤 다무라 세이사쿠쇼 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
KR102479398B1 (en) * 2014-06-30 2022-12-21 가부시키가이샤 다무라 세이사쿠쇼 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JP2016013932A (en) * 2014-06-30 2016-01-28 株式会社タムラ製作所 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
KR102298563B1 (en) * 2014-06-30 2021-09-07 가부시키가이샤 다무라 세이사쿠쇼 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
KR20210110547A (en) * 2014-06-30 2021-09-08 가부시키가이샤 다무라 세이사쿠쇼 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
KR102654261B1 (en) * 2014-06-30 2024-04-04 가부시키가이샤 다무라 세이사쿠쇼 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
KR20230002183A (en) * 2014-06-30 2023-01-05 가부시키가이샤 다무라 세이사쿠쇼 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JP2016013962A (en) * 2015-05-08 2016-01-28 株式会社タムラ製作所 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
WO2016199838A1 (en) * 2015-06-09 2016-12-15 株式会社タムラ製作所 β-Ga2O3 SUBSTRATE, SEMICONDUCTOR LAMINATE STRUCTURE, AND SEMICONDUCTOR ELEMENT
CN106868593A (en) * 2017-01-06 2017-06-20 中国科学院上海光学精密机械研究所 Codope gallium oxide crystal of high conductivity and preparation method thereof
JP2020113570A (en) * 2019-01-08 2020-07-27 信越化学工業株式会社 Oxide semiconductor film, lamination body, and manufacturing method of the oxide semiconductor film
JP7105703B2 (en) 2019-01-08 2022-07-25 信越化学工業株式会社 Oxide semiconductor film, laminate, and method for manufacturing oxide semiconductor film
JP2019182744A (en) * 2019-07-31 2019-10-24 株式会社タムラ製作所 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
CN113035999A (en) * 2021-02-10 2021-06-25 杭州富加镓业科技有限公司 Al-doped gallium oxide X-ray detector and preparation method thereof
CN114686965B (en) * 2022-05-31 2022-09-27 浙江大学杭州国际科创中心 Growth device and growth method of iridium-free zone-melting gallium oxide crystal
CN114686965A (en) * 2022-05-31 2022-07-01 浙江大学杭州国际科创中心 Growth device and growth method of iridium-free zone-melting gallium oxide crystal

Similar Documents

Publication Publication Date Title
JP2007254174A (en) Gallium oxide single crystal and its manufacturing method, and nitride semiconductor substrate and its manufacturing method
Roro et al. Influence of metal organic chemical vapor deposition growth parameters on the luminescent properties of ZnO thin films deposited on glass substrates
US11168411B2 (en) Impurity control during formation of aluminum nitride crystals and thermal treatment of aluminum nitride crystals
US7172813B2 (en) Zinc oxide crystal growth substrate
US20090302314A1 (en) P-type zinc oxide thin film and method for forming the same
KR20070010067A (en) Gallium oxide single crystal composite, process for producing the same, and process for producing nitride semiconductor film utilizing gallium oxide single cristal composite
JP2007073672A (en) Semiconductor light emitting element and its manufacturing method
JP2010272807A (en) Method for growing zinc oxide-based semiconductor and method for manufacturing semiconductor light emitting element
US20110081549A1 (en) Ain bulk single crystal, semiconductor device using the same and method for producing the same
EP2276061A1 (en) PROCESS FOR PRODUCING SI(1-V-W-X)CWALXNV BASE MATERIAL, PROCESS FOR PRODUCING EPITAXIAL WAFER, SI(1-V-W-X)CWALXNV BASE MATERIAL, AND EPITAXIAL WAFER&amp; xA;
KR102361371B1 (en) N-type aluminum nitride monocrystalline substrate
TW200933754A (en) Zno-based thin film and semiconductor element
JP2008037725A (en) Method for producing gallium oxide single crystal
JP2007137728A (en) Method for production of gallium oxide single crystal composite, and method of producing nitride semiconductor film using the same
JP2004189541A (en) ZnO-BASED p-TYPE SEMICONDUCTOR CRYSTAL, SEMICONDUCTOR COMPOSITE BODY OBTAINED BY USING THE SAME, LIGHT EMITTING ELEMENT OBTAINED BY USING THE SAME AND ITS MANUFACTURING METHOD
KR100745811B1 (en) Formation Method of p-type ZnO Thin Film and Fabrication Method of Opto-Electronic Device Using the Same
JP4072620B2 (en) Zinc oxide ultrafine particles and method for producing zinc oxide ultrafine particles
EP2276060A1 (en) PROCESS FOR PRODUCING SI(1-V-W-X)CWALXNV BASE MATERIAL, PROCESS FOR PRODUCING EPITAXIAL WAFER, SI(1-V-W-X)CWALXNVBASE MATERIAL, AND EPITAXIAL WAFER &amp; xA;
JP2005039131A (en) Method for processing zinc oxide monocrystal wafer
JP2007137727A (en) Method for production of gallium oxide single crystal composite, and method of producing nitride semiconductor film using the same
Gruzintsev et al. ZnO Films Deposited by Electron-Beam Evaporation: The Effect of Ion Bombardment
JP2008045073A (en) Thin film, light emitting element and method for producing thin film
JP7160815B2 (en) Gallium nitride substrates, free-standing substrates and functional devices
JP2010056464A (en) Semiconductor light emitting element and method of manufacturing same
KR101760604B1 (en) Method for synthesizing horizontal ITO nanowires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301