JP2009210483A - Automatic analysis apparatus and temperature management method of liquid sample - Google Patents

Automatic analysis apparatus and temperature management method of liquid sample Download PDF

Info

Publication number
JP2009210483A
JP2009210483A JP2008055453A JP2008055453A JP2009210483A JP 2009210483 A JP2009210483 A JP 2009210483A JP 2008055453 A JP2008055453 A JP 2008055453A JP 2008055453 A JP2008055453 A JP 2008055453A JP 2009210483 A JP2009210483 A JP 2009210483A
Authority
JP
Japan
Prior art keywords
liquid sample
temperature
reagent
sample
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008055453A
Other languages
Japanese (ja)
Inventor
Takahiro Misu
貴浩 三須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008055453A priority Critical patent/JP2009210483A/en
Publication of JP2009210483A publication Critical patent/JP2009210483A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic analysis apparatus and a temperature management method of a liquid sample for speedily making the temperature of the liquid sample into a target temperature without separately disposing a preheating means of the liquid sample when a reaction tub for keeping the liquid sample at the target temperature is used. <P>SOLUTION: The automatic analysis apparatus having the reaction tub and the temperature management method of the liquid sample are provided. The automatic analysis apparatus 1 includes: a stirring device 20 for stirring the liquid sample with sound wave issued by a surface acoustic wave element 24 attached to each reaction vessel 5; and a stirring control section for controlling the driving condition of the surface acoustic wave element. In stirring the liquid sample, the stirring control section controls the driving condition of the surface acoustic wave element so that insufficient heat quantity calculated from the difference between the target temperature of the reaction tub 4 and the temperature of the liquid sample, the amount of the liquid sample, and specific heat is equal to the heat quantity of temperature increase of the liquid sample by absorption of sound wave. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動分析装置と液体試料の温度管理方法に関するものである。   The present invention relates to an automatic analyzer and a temperature management method for a liquid sample.

従来、自動分析装置は、反応容器に分注された検体と試薬を含む液体試料を目標温度(例えば、37℃)に加温して反応させるため、いわゆるドライバス方式の下に目標温度に制御した反応槽に反応容器を保持しているものがある(例えば、特許文献1参照)。ここで、自動分析装置は、試薬を収容した試薬容器を反応槽よりも低温の試薬保冷庫で保冷している。このため、ドライバス方式の反応槽を使用した自動分析装置は、低温の試薬を分注すると反応容器やその周辺の温度が低下し、ウェットバス方式の反応槽に比べて液体試料が目標温度へ到達するのに時間が掛かり検査結果にばらつきが生じてしまうことから、予熱手段を設けて液体試料の温度を目標温度となるように加温している。   Conventionally, an automatic analyzer controls a liquid sample containing a sample and a reagent dispensed in a reaction container by heating to a target temperature (for example, 37 ° C.) and reacting it to a target temperature under a so-called dry method. Some reaction vessels hold reaction vessels (see, for example, Patent Document 1). Here, the automatic analyzer cools the reagent container containing the reagent in a reagent cooler cooler than the reaction tank. For this reason, automatic analyzers that use dry bath reaction vessels drop the temperature of the reaction vessel and its surroundings when dispensing low-temperature reagents, and the liquid sample reaches the target temperature compared to wet bath reaction vessels. Since it takes a long time to reach the target and the inspection results vary, a preheating means is provided to heat the temperature of the liquid sample to the target temperature.

特開2007−248252号公報JP 2007-248252 A

ところで、自動分析装置は、多くの構成部材を備えていることから設計上の自由度に制限があり、予熱手段を設けるためには、設計上多くの難しさがあった。   By the way, since the automatic analyzer is provided with many components, the degree of freedom in design is limited, and there are many design difficulties in providing the preheating means.

本発明は、上記に鑑みてなされたものであって、液体試料を目標温度に保温する反応槽を使用している場合、液体試料の予熱手段を別途設けなくとも、液体試料の温度を速やかに目標温度とすることが可能な自動分析装置と液体試料の温度管理方法を提供することを目的とする。   The present invention has been made in view of the above, and when a reaction vessel that keeps a liquid sample at a target temperature is used, the temperature of the liquid sample can be quickly increased without providing a separate preheating means for the liquid sample. An object of the present invention is to provide an automatic analyzer capable of setting a target temperature and a temperature management method for a liquid sample.

上述した課題を解決し、目的を達成するために、本発明の自動分析装置は、検体と試薬を含む液体試料が分注される複数の反応容器を保持し、前記液体試料を目標温度に保温する反応槽を備え、前記液体試料を撹拌して反応させ、反応液を分析する自動分析装置であって、前記各反応容器に取り付けた表面弾性波素子が発する音波によって前記液体試料を撹拌する撹拌手段と、前記表面弾性波素子の駆動条件を制御する制御手段と、を備え、前記制御手段は、前記液体試料の撹拌の際の前記音波の吸収による前記液体試料の温度上昇を利用し、前記目標温度よりも低温の前記液体試料との温度差、前記液体試料の量及び比熱から演算される不足熱量を補うように前記表面弾性波素子の駆動条件を制御することを特徴とする。   In order to solve the above-described problems and achieve the object, the automatic analyzer of the present invention holds a plurality of reaction containers into which a liquid sample containing a specimen and a reagent is dispensed, and keeps the liquid sample at a target temperature. An automatic analyzer for agitating and reacting the liquid sample and analyzing the reaction liquid, wherein the liquid sample is agitated by a sound wave generated by a surface acoustic wave element attached to each reaction vessel. And a control means for controlling the driving condition of the surface acoustic wave element, wherein the control means utilizes the rise in temperature of the liquid sample due to absorption of the sound wave during stirring of the liquid sample, and The driving condition of the surface acoustic wave element is controlled so as to compensate for a temperature difference from the liquid sample lower than a target temperature, an amount of the liquid sample, and an insufficient heat amount calculated from specific heat.

また、本発明の自動分析装置は、上記の発明において、前記制御手段は、当該分析装置の環境温度を前記検体の温度、前記試薬を収容した試薬保冷庫の温度又は前記試薬保冷庫の温度と前記試薬を希釈すべく試薬分注装置が吐出する希釈水の温度とから算定される温度を前記試薬の温度とし、前記検体と前記試薬の温度、前記検体と前記試薬の分注量情報及び比熱情報をもとに前記反応容器ごとに前記不足熱量を演算し、当該不足熱量を補うように前記表面弾性波素子の駆動条件を制御することを特徴とする。   In the automatic analyzer of the present invention, in the above invention, the control means may be configured such that the environmental temperature of the analyzer is the temperature of the sample, the temperature of the reagent cooler storing the reagent, or the temperature of the reagent cooler. The temperature calculated from the temperature of the dilution water discharged from the reagent dispensing device to dilute the reagent is set as the temperature of the reagent, the temperature of the sample and the reagent, the dispensing amount information of the sample and the reagent, and the specific heat The deficient heat amount is calculated for each reaction vessel based on the information, and the driving condition of the surface acoustic wave element is controlled so as to compensate for the deficient heat amount.

また、本発明の自動分析装置は、上記の発明において、前記制御手段は、分注される前記検体及び前記試薬の量を当該自動分析装置に入力される分析項目ごとの分注量から取得することを特徴とする。   In the automatic analyzer of the present invention, in the above invention, the control means acquires the amount of the sample and the reagent to be dispensed from the dispensed amount for each analysis item input to the automatic analyzer. It is characterized by that.

また、本発明の自動分析装置は、上記の発明において、前記制御手段は、前記表面弾性波素子の駆動条件として、少なくとも駆動時間,駆動電圧,駆動電力,駆動周波数のいずれか一つを制御することを特徴とする。   In the automatic analyzer according to the present invention as set forth in the invention described above, the control means controls at least one of a driving time, a driving voltage, a driving power, and a driving frequency as a driving condition of the surface acoustic wave element. It is characterized by that.

また、上述した課題を解決し、目的を達成するために、本発明の液体試料の温度管理方法は、検体と試薬を含む液体試料が分注される複数の反応容器を保持し、前記液体試料を目標温度に保温する反応槽を備え、前記液体試料を撹拌して反応させ、反応液を分析する自動分析装置における前記反応容器に分注された液体試料の温度管理方法であって、前記目標温度よりも低温の前記液体試料との温度差、前記液体試料の量及び比熱から前記液体試料の不足熱量を演算する演算工程と、前記演算工程で算出した不足熱量を補うように前記表面弾性波素子の駆動条件を制御して前記液体試料を加温する加温工程と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, the temperature management method for a liquid sample of the present invention holds a plurality of reaction containers into which a liquid sample containing a specimen and a reagent is dispensed, and the liquid sample A temperature control method for the liquid sample dispensed into the reaction vessel in an automatic analyzer that analyzes the reaction liquid by stirring and reacting the liquid sample. A calculation step of calculating a deficient heat amount of the liquid sample from a temperature difference with the liquid sample lower than the temperature, a quantity of the liquid sample and a specific heat, and the surface acoustic wave so as to compensate for the deficient heat amount calculated in the calculation step And a heating step of heating the liquid sample by controlling the driving conditions of the element.

ここで、本発明において、検体と試薬を含む液体試料とは、検体の分析を目的として反応容器に分注される検体や試薬(濃縮試薬を含む)をいうものとし、また、洗浄水とは、分注プローブの洗浄を目的とする水をいい、希釈水とは、液体試料の希釈を目的として分注機構が吐出する水をいう。   Here, in the present invention, a liquid sample containing a specimen and a reagent means a specimen or reagent (including a concentrated reagent) dispensed into a reaction container for the purpose of analyzing the specimen. Water for the purpose of washing the dispensing probe is referred to as “dilution water” means water discharged by the dispensing mechanism for the purpose of diluting the liquid sample.

本発明の自動分析装置は、各反応容器に取り付けた表面弾性波素子が発する音波によって液体試料を撹拌する撹拌手段と、表面弾性波素子の駆動条件を制御する制御手段とを備え、制御手段は、液体試料の撹拌の際の音波の吸収による液体試料の温度上昇を利用し、目標温度よりも低温の液体試料との温度差、液体試料の量及び比熱から演算される不足熱量を補うように表面弾性波素子の駆動条件を制御し、液体試料の温度管理方法は、目標温度よりも低温の前記液体試料との温度差、前記液体試料の量及び比熱から前記液体試料の不足熱量を演算する演算工程と、前記演算工程で算出した不足熱量を補うように前記表面弾性波素子の駆動条件を制御して前記液体試料を加温する加温工程と、を含むので、反応槽の温度管理をするための液体試料の予熱手段を別途設けなくとも、液体試料撹拌用の表面弾性波素子の駆動条件を制御することにより目標温度よりも低温の液体試料の温度を速やかに目標温度とすることができるという効果を奏する。   The automatic analyzer of the present invention includes a stirring unit that stirs a liquid sample by sound waves generated by the surface acoustic wave elements attached to each reaction vessel, and a control unit that controls the driving conditions of the surface acoustic wave elements. Using the rise in temperature of the liquid sample due to absorption of sound waves during stirring of the liquid sample, the temperature difference from the liquid sample lower than the target temperature, the amount of liquid sample, and the shortage of heat calculated from the specific heat are compensated The driving condition of the surface acoustic wave device is controlled, and the temperature management method of the liquid sample calculates the insufficient heat amount of the liquid sample from the temperature difference from the liquid sample lower than the target temperature, the amount of the liquid sample, and the specific heat. Since it includes a calculation step and a heating step for heating the liquid sample by controlling the driving conditions of the surface acoustic wave element so as to compensate for the insufficient heat amount calculated in the calculation step, Liquid to do Even if a preheating means for the sample is not separately provided, the temperature of the liquid sample lower than the target temperature can be quickly set to the target temperature by controlling the driving conditions of the surface acoustic wave element for stirring the liquid sample. Play.

以下、本発明の自動分析装置と液体試料の温度管理方法にかかる実施の形態について、図面を参照して詳細に説明する。図1は、本発明に係る自動分析装置の概略構成図である。図2は、図1の自動分析装置の構成を示すブロック図である。図3は、図1の自動分析装置で使用され、表面弾性波素子が取り付けられた反応容器の斜視図である。   Hereinafter, embodiments of the automatic analyzer and the temperature management method for a liquid sample according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an automatic analyzer according to the present invention. FIG. 2 is a block diagram showing a configuration of the automatic analyzer of FIG. FIG. 3 is a perspective view of a reaction vessel used in the automatic analyzer of FIG. 1 and having a surface acoustic wave element attached thereto.

自動分析装置1は、図1及び図2に示すように、試薬保冷庫2,3、反応槽4、検体容器移送機構8、分析光学系12、洗浄機構13、制御部15及び撹拌装置20を備えており、自動分析装置1の環境温度を検出する図示しない温度センサが検体容器移送機構8の近傍に設けられている。温度センサが検出した環境温度は、検体の温度情報として制御部15へ出力される。   As shown in FIGS. 1 and 2, the automatic analyzer 1 includes reagent cold storages 2 and 3, a reaction tank 4, a specimen container transfer mechanism 8, an analysis optical system 12, a cleaning mechanism 13, a control unit 15, and a stirring device 20. A temperature sensor (not shown) for detecting the environmental temperature of the automatic analyzer 1 is provided in the vicinity of the sample container transfer mechanism 8. The environmental temperature detected by the temperature sensor is output to the control unit 15 as temperature information of the specimen.

試薬保冷庫2,3は、図1に示すように、それぞれ周方向に配置される複数の試薬容器2a,3aが保持され、図示しない駆動手段に回転されて試薬容器2a,3aを周方向に搬送するターンテーブルを有している。このとき、試薬保冷庫2には、第1試薬を収容した試薬容器2aが保持され、試薬保冷庫3には、第2試薬を収容した試薬容器3aが保持されている。また、試薬保冷庫2,3は、内部を所定温度に冷却する冷却装置と、冷却温度を検出する温度センサがそれぞれ設けられ、それぞれの冷却装置から供給される冷気によって試薬が所定温度に保冷されている。各温度センサが検出した冷却温度は温度情報として制御部15へ出力される。試薬保冷庫2,3は、これらの温度情報をもとに、冷却装置を制御部15によって制御することにより、内部が所定温度に冷却されている。従って、反応容器5に分注される検体と試薬を含む液体試料は、常に反応槽4の目標温度よりも低温状態にある。   As shown in FIG. 1, the reagent coolers 2 and 3 hold a plurality of reagent containers 2a and 3a arranged in the circumferential direction, respectively, and are rotated by driving means (not shown) to move the reagent containers 2a and 3a in the circumferential direction. It has a turntable to convey. At this time, the reagent cooler 2 holds the reagent container 2a containing the first reagent, and the reagent cooler 3 holds the reagent container 3a containing the second reagent. The reagent coolers 2 and 3 are each provided with a cooling device that cools the inside to a predetermined temperature and a temperature sensor that detects the cooling temperature, and the reagent is kept at a predetermined temperature by the cold air supplied from each cooling device. ing. The cooling temperature detected by each temperature sensor is output to the control unit 15 as temperature information. The reagent coolers 2 and 3 are internally cooled to a predetermined temperature by controlling the cooling device by the control unit 15 based on the temperature information. Therefore, the liquid sample containing the specimen and the reagent dispensed into the reaction vessel 5 is always at a lower temperature than the target temperature of the reaction vessel 4.

反応槽4は、制御部15によって制御される加熱手段によって予め設定した目標温度(例えば、37℃)に加温され、図1に示すように、複数の反応容器5を周方向に沿って配列して図示しない駆動手段によって矢印で示す方向に正転或いは逆転され、反応容器5を加温状態で搬送するドライバス方式の反応槽である。   The reaction tank 4 is heated to a preset target temperature (for example, 37 ° C.) by heating means controlled by the control unit 15, and as shown in FIG. 1, a plurality of reaction vessels 5 are arranged along the circumferential direction. Thus, this is a dry bath type reaction tank that is forwardly or reversely rotated in a direction indicated by an arrow by a driving means (not shown) and conveys the reaction vessel 5 in a heated state.

反応容器5は、図3に示すように、光学的に透明な素材から成形され、液体を保持する保持部5aを有する四角筒からなる容器であり、側壁5cに表面弾性波素子24が一体に取り付けられている。反応容器5は、後述する分析光学系12から出射された分析光に含まれる光の80%以上を透過する素材、例えば、耐熱ガラスを含むガラス,環状オレフィンやポリスチレン等の合成樹脂が使用される。反応容器5は、表面弾性波素子24を取り付けた部分に隣接する下部側の点線によって囲まれた部分が前記分析光を透過させる測光用の窓5bとして利用される。反応容器5は、表面弾性波素子24を外側に向けて反応槽4にセットされ、図1に示すように、試薬分注機構6,7によって試薬保冷庫2,3の試薬容器2a,3aから試薬が分注される。   As shown in FIG. 3, the reaction vessel 5 is a vessel made of an optically transparent material and made of a square cylinder having a holding portion 5a for holding a liquid, and the surface acoustic wave element 24 is integrated with the side wall 5c. It is attached. The reaction vessel 5 is made of a material that transmits 80% or more of the light contained in the analysis light emitted from the analysis optical system 12 to be described later, such as glass including heat-resistant glass, synthetic resin such as cyclic olefin and polystyrene. . The reaction vessel 5 is used as a photometric window 5b in which a portion surrounded by a dotted line on the lower side adjacent to a portion to which the surface acoustic wave element 24 is attached transmits the analysis light. The reaction container 5 is set in the reaction tank 4 with the surface acoustic wave element 24 facing outward, and as shown in FIG. 1, the reagent dispensing mechanisms 6 and 7 remove the reagent containers 2a and 3a from the reagent containers 2a and 3a. Reagent is dispensed.

試薬分注機構6,7は、それぞれ水平面内を矢印方向に回動するアーム6a,7aに試薬を分注するプローブ6b,7bが設けられ、洗浄水によってプローブ6b,7bを洗浄する洗浄手段(図示せず)を有している。希釈水は、試薬を希釈することに使用する。また、希釈水は、プローブ6b,7bを洗浄することにも使用する。希釈水は、試薬を分注した際に余分に吐出することによって、分注した試薬を所望濃度に希釈するのに使用される。このとき、試薬分注機構6,7は、希釈水をそれぞれの希釈水タンクからプローブ6b,7bへ導く配管に希釈水の温度を検出する温度センサが設けられている。温度センサは、前記配管のプローブ6b,7b側に設けることが好ましい。   The reagent dispensing mechanisms 6 and 7 are provided with probes 6b and 7b for dispensing reagents on arms 6a and 7a that rotate in the direction of the arrow in the horizontal plane, respectively, and a cleaning means for cleaning the probes 6b and 7b with cleaning water ( (Not shown). Dilution water is used to dilute the reagent. The dilution water is also used for cleaning the probes 6b and 7b. The dilution water is used to dilute the dispensed reagent to a desired concentration by discharging the reagent excessively when the reagent is dispensed. At this time, the reagent dispensing mechanisms 6 and 7 are provided with temperature sensors that detect the temperature of the dilution water in pipes that guide the dilution water from the respective dilution water tanks to the probes 6b and 7b. The temperature sensor is preferably provided on the probe 6b, 7b side of the pipe.

検体容器移送機構8は、図1に示すように、フィーダ9に配列した複数のラック10を矢印方向に沿って1つずつ移送する移送手段であり、ラック10を歩進させながら移送する。ラック10は、検体を収容した複数の検体容器10aを保持している。検体容器10aが保持した検体は、検体容器移送機構8によって移送されるラック10の歩進が停止するごとに、検体分注機構11によって各反応容器5へ分注される。ここで、検体容器移送機構8の近傍には、自動分析装置1の環境温度を検出する図示しない温度センサが設けられている。温度センサが検出した環境温度は、検体の温度情報として制御部15へ出力される。   As shown in FIG. 1, the sample container transfer mechanism 8 is a transfer unit that transfers a plurality of racks 10 arranged in the feeder 9 one by one along the arrow direction, and transfers the racks 10 while stepping. The rack 10 holds a plurality of sample containers 10a containing samples. The sample held in the sample container 10a is dispensed to each reaction container 5 by the sample dispensing mechanism 11 every time the step of the rack 10 transferred by the sample container transfer mechanism 8 stops. Here, a temperature sensor (not shown) for detecting the environmental temperature of the automatic analyzer 1 is provided in the vicinity of the specimen container transfer mechanism 8. The environmental temperature detected by the temperature sensor is output to the control unit 15 as temperature information of the specimen.

検体分注機構11は、図1に示すように、水平方向に回動するアーム11aとプローブ11bとを有しており、検体分注後のプローブ11bを洗浄水によって洗浄する洗浄手段(図示せず)がプローブ11bの移動経路に配置されている。   As shown in FIG. 1, the sample dispensing mechanism 11 has an arm 11a that rotates in the horizontal direction and a probe 11b, and a cleaning means (not shown) for cleaning the probe 11b after sample dispensing with cleaning water. Are arranged on the movement path of the probe 11b.

分析光学系12は、試薬と検体とが反応した反応容器5内の液体試料を分析するための分析光を出射するもので、図1に示すように、発光部12a,分光部12b及び受光部12cを有している。発光部12aから出射された分析光は、反応容器5内の液体試料を透過し、分光部12bと対向する位置に設けた受光部12cによって受光される。受光部12cは、制御部15と接続されている。   The analysis optical system 12 emits analysis light for analyzing the liquid sample in the reaction vessel 5 in which the reagent and the sample have reacted. As shown in FIG. 1, the light emitting unit 12a, the spectroscopic unit 12b, and the light receiving unit. 12c. The analysis light emitted from the light emitting unit 12a passes through the liquid sample in the reaction vessel 5 and is received by the light receiving unit 12c provided at a position facing the spectroscopic unit 12b. The light receiving unit 12 c is connected to the control unit 15.

洗浄機構13は、ノズル13aによって反応容器5内の液体試料を吸引して排出した後、ノズル13aによって洗剤や洗浄水等を繰り返し注入及び吸引することにより、分析光学系12による分析が終了した反応容器5を洗浄する。   The cleaning mechanism 13 sucks and discharges the liquid sample in the reaction vessel 5 with the nozzle 13a, and then repeatedly injects and sucks detergent, washing water, and the like with the nozzle 13a, thereby completing the analysis by the analysis optical system 12. The container 5 is washed.

制御部15は、図2に示すように、自動分析装置1の各部と接続されて各部の作動を制御すると共に、発光部12aの出射光量と受光部12cが受光した光量に基づく反応容器5内の液体試料の吸光度に基づいて検体の成分や濃度等を分析するものであり、例えば、マイクロコンピュータ等の制御手段が使用される。制御部15は、図1及び図2に示すように、キーボード等の入力部16及びディスプレイパネル等の表示部17と接続され、駆動制御部15a、情報管理部15b、演算部15c及び撹拌制御部15dを有している。   As shown in FIG. 2, the control unit 15 is connected to each unit of the automatic analyzer 1 to control the operation of each unit, and in the reaction container 5 based on the amount of light emitted from the light emitting unit 12 a and the amount of light received by the light receiving unit 12 c. Based on the absorbance of the liquid sample, the component and concentration of the specimen are analyzed. For example, a control means such as a microcomputer is used. As shown in FIGS. 1 and 2, the control unit 15 is connected to an input unit 16 such as a keyboard and a display unit 17 such as a display panel, and includes a drive control unit 15a, an information management unit 15b, a calculation unit 15c, and an agitation control unit. 15d.

駆動制御部15aは、試薬保冷庫2,3等、自動分析装置1における各種駆動部の駆動を制御する。情報管理部15bは、検体や試薬に関する温度情報や分注量情報等の管理情報を管理する。即ち、情報管理部15bは、検体容器移送機構8の近傍に設けた温度センサから入力される検体温度情報、試薬保冷庫2,3に設けた温度センサから入力される試薬の温度情報や試薬分注機構6,7の配管に設けた温度センサから入力される希釈水の温度情報、反応槽4の目標温度情報、ホストコンピュータから制御部15へ入力される検体の分析情報に基づく各反応容器5に分注される検体や試薬の量並びに希釈水の量に関する分注量情報、予め入力されている複数の検体や複数の試薬に関する比熱情報等の管理情報を管理する。   The drive control unit 15a controls driving of various drive units in the automatic analyzer 1, such as the reagent cold storages 2 and 3. The information management unit 15b manages management information such as temperature information and dispensed amount information related to the specimen and the reagent. That is, the information management unit 15b receives the sample temperature information input from the temperature sensor provided in the vicinity of the sample container transfer mechanism 8, the temperature information of the reagent input from the temperature sensor provided in the reagent coolers 2 and 3, and the reagent amount. Each reaction container 5 based on the temperature information of the dilution water input from the temperature sensor provided in the piping of the injection mechanisms 6 and 7, the target temperature information of the reaction tank 4, and the analysis information of the sample input from the host computer to the control unit 15. Management information such as the amount of sample and reagent to be dispensed and the amount of dispensing water related to the amount of dilution water, and specific heat information relating to a plurality of samples and reagents inputted in advance are managed.

演算部15cは、情報管理部15bが管理している温度情報、分注量情報、反応槽4の目標温度情報、各温度センサから入力される試薬,検体及び希釈水の温度情報、検体や試薬の比熱情報、更には検体分注量や試薬分注量等の管理情報をもとに反応容器5ごとに不足熱量を演算する。この不足熱量の演算に際し、試薬を希釈水によって希釈する場合、演算部15cは、試薬保冷庫の温度、希釈水の温度、試薬の量及び希釈水の量をもとに算定される温度を試薬の温度として使用する。   The calculation unit 15c includes temperature information, dispensing amount information, target temperature information of the reaction tank 4, temperature information of reagents and samples and dilution water input from each temperature sensor, samples and reagents managed by the information management unit 15b. The calorific value is calculated for each reaction vessel 5 based on the specific heat information and the management information such as the sample dispensing amount and the reagent dispensing amount. When the reagent is diluted with diluting water in the calculation of the insufficient heat amount, the calculating unit 15c calculates the temperature calculated based on the temperature of the reagent cold storage, the temperature of the diluting water, the amount of the reagent, and the amount of the diluting water. Use as a temperature.

撹拌制御部15dは、液体試料を撹拌する際の音波の吸収による液体試料の温度上昇を利用し、反応槽4の目標温度よりも低温である液体試料との温度差、液体試料の量及び比熱から演算された不足熱量を補うように表面弾性波素子24の駆動条件を制御する制御手段であり、送電体21を制御し、数MHz〜数百MHz程度の高周波信号からなる駆動電力を表面弾性波素子24に出力させる。このとき、撹拌制御部15dは、入力部16から入力される制御信号に基づいて表面弾性波素子24の駆動条件を制御する。例えば、撹拌制御部15dは、表面弾性波素子24の少なくとも駆動時間,駆動電圧,駆動電力,駆動周波数のいずれか一つを制御する。このため、撹拌制御部15dには、予め目標温度と液体試料との温度差、液体試料の量及び比熱から求まる不足熱量と駆動時間,駆動電圧,駆動電力,駆動周波数との関係についての対応表やグラフが記憶されている。   The stirring control unit 15d utilizes the temperature rise of the liquid sample due to absorption of sound waves when stirring the liquid sample, the temperature difference from the liquid sample that is lower than the target temperature of the reaction tank 4, the amount of liquid sample, and the specific heat Is a control means for controlling the driving conditions of the surface acoustic wave element 24 so as to compensate for the insufficient heat quantity calculated from the above, and controls the power transmission body 21 to generate a driving power consisting of a high-frequency signal of about several MHz to several hundred MHz to surface elasticity. The wave element 24 is made to output. At this time, the stirring control unit 15 d controls the driving condition of the surface acoustic wave element 24 based on the control signal input from the input unit 16. For example, the agitation control unit 15d controls at least one of the driving time, driving voltage, driving power, and driving frequency of the surface acoustic wave element 24. For this reason, the stirring control unit 15d has a correspondence table regarding the relationship between the shortage of heat obtained from the temperature difference between the target temperature and the liquid sample, the amount of the liquid sample, and the specific heat, and the driving time, driving voltage, driving power, and driving frequency. And graphs are stored.

撹拌装置20は、反応容器5に分注される検体と試薬を含む液体試料を音波によって非接触で撹拌する撹拌手段であり、図1に示すように、送電体21と表面弾性波素子24とを有している。   The stirrer 20 is a stirrer that stirs a liquid sample containing a specimen and a reagent dispensed into the reaction vessel 5 in a non-contact manner using sound waves. As shown in FIG. 1, as shown in FIG. have.

送電体21は、反応槽4外周の互いに対向する位置に反応容器5と水平方向に対向させて配置され、電源から供給される電力をもとに数MHz〜数百MHz程度の高周波駆動信号からなる駆動電力を表面弾性波素子24に送電する。送電体21は、図4に示すように、表面弾性波素子24の電気端子24cに当接するブラシ状の接触子21aを有している。このとき、送電体21は、図1に示すように、配置決定部材22に支持されており、反応槽4の回転が停止したときに接触子21aから電気端子24cに駆動電力を送電する。   The power transmission body 21 is disposed in a position facing the reaction vessel 5 in the horizontal direction at positions facing each other on the outer periphery of the reaction tank 4, and from a high frequency drive signal of about several MHz to several hundred MHz based on power supplied from a power source. Is transmitted to the surface acoustic wave element 24. As shown in FIG. 4, the power transmission body 21 has a brush-like contactor 21 a that abuts on the electrical terminal 24 c of the surface acoustic wave element 24. At this time, as shown in FIG. 1, the power transmission body 21 is supported by the arrangement determining member 22, and transmits driving power from the contact 21 a to the electrical terminal 24 c when the reaction tank 4 stops rotating.

配置決定部材22は、制御部15に作動が制御され、送電体21から電気端子24cに駆動電力を送電する送電時に、送電体21を移動させて送電体21と電気端子24cとの反応槽4の周方向並びに半径方向における相対配置を調整するもので、例えば、2軸ステージが使用される。具体的には、配置決定部材22は、反応槽4が回転し、送電体21から電気端子24cに駆動電力を送電していない非送電時は、作動が停止されて、送電体21と電気端子24cとを一定の距離に保持している。そして、配置決定部材22は、反応槽4が停止し、送電体21から電気端子24cに駆動電力を送電する送電時には、制御部15の制御の下に作動して送電体21を移動させ、送電体21と電気端子24cとが対向するように反応槽4の周方向に沿った位置を調整すると共に、送電体21と電気端子24cとを近接させて接触子21aと電気端子24cとを接触させることで送電体21と電気端子24cとの相対配置を決定する。   The operation of the arrangement determining member 22 is controlled by the control unit 15, and during power transmission in which driving power is transmitted from the power transmission body 21 to the electrical terminal 24 c, the reaction tank 4 between the power transmission body 21 and the electrical terminal 24 c is moved by moving the power transmission body 21. For example, a two-axis stage is used. Specifically, the arrangement determining member 22 is stopped during non-power transmission when the reaction tank 4 rotates and the driving power is not transmitted from the power transmission body 21 to the electric terminal 24c. 24c is kept at a constant distance. And the arrangement | positioning determination member 22 act | operates under control of the control part 15, and moves the power transmission body 21 at the time of the power transmission which the reaction tank 4 stops and transmits the drive power from the power transmission body 21 to the electrical terminal 24c. The position along the circumferential direction of the reaction tank 4 is adjusted so that the body 21 and the electrical terminal 24c face each other, and the contactor 21a and the electrical terminal 24c are brought into contact with each other by bringing the power transmission body 21 and the electrical terminal 24c close to each other. Thus, the relative arrangement of the power transmission body 21 and the electrical terminal 24c is determined.

表面弾性波素子24は、図3に示すように、基板24aの表面に櫛型電極(IDT)からなる振動子24bが設けられている。振動子24bは、送電体21から送電された電力を表面弾性波(超音波)に変換する音波発生手段であり、受電手段となる電気端子24cとの間が導体回路24dによって接続されている。表面弾性波素子24は、振動子24b,電気端子24c及び導体回路24dを外側に向け、エポキシ樹脂等の音響整合層を介して反応容器5の側壁5cに取り付けられる。   As shown in FIG. 3, the surface acoustic wave element 24 is provided with a vibrator 24b made of a comb electrode (IDT) on the surface of a substrate 24a. The vibrator 24b is a sound wave generating unit that converts electric power transmitted from the power transmitting body 21 into a surface acoustic wave (ultrasonic wave), and is connected to an electric terminal 24c serving as a power receiving unit by a conductor circuit 24d. The surface acoustic wave element 24 is attached to the side wall 5c of the reaction vessel 5 through an acoustic matching layer such as an epoxy resin with the vibrator 24b, the electric terminal 24c and the conductor circuit 24d facing outward.

ここで、表面弾性波素子24が発生した表面弾性波(超音波)は、側壁5cから反応容器5内の液体試料へ漏れ出すことよって液体試料を撹拌するが、一部は液体試料に吸収されることによって液体試料の温度を上昇させる。本発明は、液体試料の撹拌に際し、この液体試料の温度上昇を利用して液体試料の不足熱量を補完し、液体試料を目標温度に加温するものである。従って、反応容器5は、予め撹拌に使用される表面弾性波(超音波)と液体試料の温度上昇に使用される表面弾性波(超音波)の割合を把握しておく。そして、撹拌制御部15dは、この割合を考慮して表面弾性波素子24の駆動条件を制御する。   Here, the surface acoustic wave (ultrasonic wave) generated by the surface acoustic wave element 24 leaks from the side wall 5c to the liquid sample in the reaction vessel 5 to stir the liquid sample, but a part is absorbed by the liquid sample. To increase the temperature of the liquid sample. In the present invention, when the liquid sample is stirred, the insufficient heat quantity of the liquid sample is complemented by using the temperature rise of the liquid sample, and the liquid sample is heated to the target temperature. Therefore, the reaction vessel 5 grasps in advance the ratio between the surface acoustic wave (ultrasonic wave) used for stirring and the surface acoustic wave (ultrasonic wave) used for increasing the temperature of the liquid sample. The agitation control unit 15d controls the driving conditions of the surface acoustic wave element 24 in consideration of this ratio.

以上のように構成される自動分析装置1は、回転する反応槽4によって周方向に沿って搬送されてくる複数の反応容器5に試薬分注機構6が試薬容器2aから第1試薬を順次分注した後、複数の反応容器5に検体分注機構11によってラック10に保持された複数の検体容器10aから順次検体を分注する。検体を分注した後、自動分析装置1は、複数の反応容器5に試薬分注機構7が試薬容器3aから第2試薬を順次分注してゆく。この間、反応容器5は、第1試薬の分注後、検体分注後及び第2試薬の分注後の各タイミングにおいて撹拌装置20によって分注された試薬や検体を含む液体試料が撹拌されると共に、試薬と検体とが反応し、反応槽4が再び回転したときに分析光学系12を通過する。反応容器5が分析光学系12を通過するとき、反応容器5内の液体試料は、受光部12cで側光され、制御部15によって成分や濃度等が分析される。そして、分析が終了した反応容器5は、洗浄機構13によって洗浄された後、再度検体の分析に使用される。   In the automatic analyzer 1 configured as described above, the reagent dispensing mechanism 6 sequentially dispenses the first reagent from the reagent container 2a to the plurality of reaction containers 5 conveyed along the circumferential direction by the rotating reaction tank 4. After the injection, the specimens are sequentially dispensed from the plurality of specimen containers 10 a held in the rack 10 by the specimen dispensing mechanism 11 into the plurality of reaction containers 5. After dispensing the sample, in the automatic analyzer 1, the reagent dispensing mechanism 7 sequentially dispenses the second reagent from the reagent container 3a into the plurality of reaction containers 5. During this time, in the reaction container 5, the liquid sample containing the reagent and the sample dispensed by the stirring device 20 is stirred at each timing after dispensing the first reagent, after dispensing the sample, and after dispensing the second reagent. At the same time, when the reagent and the sample react and the reaction tank 4 rotates again, it passes through the analysis optical system 12. When the reaction container 5 passes through the analysis optical system 12, the liquid sample in the reaction container 5 is side-lighted by the light receiving unit 12c, and the control unit 15 analyzes the component, concentration, and the like. Then, after the analysis is completed, the reaction vessel 5 is washed by the washing mechanism 13 and then used again for analyzing the specimen.

このとき、制御部15は、以下のようにして反応容器5に分注された液体試料の温度を管理する。以下、制御部15による液体試料の温度管理方法を、図7に示すフローチャートを参照して説明する。   At this time, the control unit 15 manages the temperature of the liquid sample dispensed into the reaction vessel 5 as follows. Hereinafter, the temperature management method of the liquid sample by the control unit 15 will be described with reference to the flowchart shown in FIG.

制御部15は、情報管理部15bが管理している反応容器5ごとに分注される検体や試薬に関する温度情報、比熱情報及び分注量情報に関する管理情報を演算部15cが取得する(ステップS100)。次に、制御部15は、演算部15cが取得した管理情報をもとに演算部15cが不足熱量を演算する(ステップS102)。そして、制御部15は、表面弾性波素子24を駆動して液体試料を撹拌する際、演算部15cが算出した不足熱量を補完するように、撹拌制御部15dが反応容器5ごとに表面弾性波素子24の駆動条件を制御し、液体試料を加温する(ステップS104)。この制御部15による液体試料の温度管理方法は、反応槽4に保持された複数の反応容器5のそれぞれについて個々に実行される。   In the control unit 15, the calculation unit 15 c acquires management information related to temperature information, specific heat information, and dispensed amount information related to the sample and reagent dispensed for each reaction container 5 managed by the information management unit 15 b (Step S <b> 100). ). Next, in the control unit 15, the calculation unit 15c calculates an insufficient heat amount based on the management information acquired by the calculation unit 15c (step S102). Then, when the control unit 15 drives the surface acoustic wave element 24 to stir the liquid sample, the stirring control unit 15d supplements the surface acoustic wave for each reaction vessel 5 so as to complement the insufficient heat amount calculated by the calculation unit 15c. The driving condition of the element 24 is controlled, and the liquid sample is heated (step S104). The liquid sample temperature management method by the control unit 15 is individually executed for each of the plurality of reaction vessels 5 held in the reaction vessel 4.

従って、反応容器5に分注する液体試料、例えば、反応槽4の目標温度との差が小さい微量の試薬の場合、撹拌制御部15dによって駆動条件を制御しながら表面弾性波素子24を駆動して撹拌する。すると、表面弾性波素子24の発生した表面弾性波(超音波)が試薬に吸収されることによる試薬の温度上昇によって試薬の不足熱量が補完されるので、試薬の温度は、図5に実線で示すように、分注直後に一時的に低下するが、速やかに目標温度Ttに到達する(実線矢印参照)。このとき、試薬の温度は、反応容器5に挿入したサーミスタ等の温度センサを用いて分注直後から測定する。これに対し、同温、同量の同じ試薬を分注した反応容器5を表面弾性波素子24を駆動することなく放置し、反応槽4によって加温すると、試薬の温度は、図5に破線で示すように変化し、目標温度Ttに到達するのに時間を要する(点線矢印参照)。   Accordingly, in the case of a liquid sample to be dispensed into the reaction vessel 5, for example, a very small amount of reagent having a small difference from the target temperature of the reaction tank 4, the surface acoustic wave element 24 is driven while controlling the driving condition by the stirring control unit 15d. And stir. Then, since the surface heat wave (ultrasonic wave) generated by the surface acoustic wave element 24 is absorbed by the reagent, the insufficient heat quantity of the reagent is complemented by the temperature rise of the reagent, so the temperature of the reagent is indicated by a solid line in FIG. As shown, it temporarily decreases immediately after dispensing, but quickly reaches the target temperature Tt (see solid arrow). At this time, the temperature of the reagent is measured immediately after dispensing using a temperature sensor such as a thermistor inserted into the reaction vessel 5. On the other hand, when the reaction vessel 5 in which the same reagent of the same temperature and the same amount is dispensed is left without driving the surface acoustic wave element 24 and heated by the reaction tank 4, the temperature of the reagent is shown by a broken line in FIG. It takes time to reach the target temperature Tt (see dotted arrows).

一方、反応槽4の目標温度との差が大きく、図5に示す微量の場合の数倍の量の試薬の場合、演算部15cが算出する不足熱量が大きくなるので、撹拌制御部15dは、表面弾性波素子24を駆動する駆動条件、例えば、駆動電力を増加させる。このため、試薬の温度は、図6に実線で示すように、分注直後に一時的に大きく低下するが、不足熱量が補完されるので、図5に示す場合と略同じ時間で速やかに目標温度Ttに到達する(実線矢印参照)。これに対し、同温、同量の同じ試薬を分注した反応容器5を反応槽4のみによって加温すると、試薬の温度は、図6に破線で示すように変化し、目標温度Ttに到達するのに要する時間が長くなる(点線矢印参照)。   On the other hand, the difference between the target temperature of the reaction tank 4 is large, and in the case of a reagent that is several times the amount of the reagent shown in FIG. 5, the amount of insufficient heat calculated by the calculation unit 15c is large. Driving conditions for driving the surface acoustic wave element 24, for example, driving power is increased. For this reason, as shown by the solid line in FIG. 6, the temperature of the reagent is temporarily greatly reduced immediately after dispensing, but the shortage of heat is supplemented, so that the target temperature can be quickly reached in substantially the same time as shown in FIG. The temperature Tt is reached (see solid arrow). In contrast, when the reaction vessel 5 in which the same temperature and the same amount of the same reagent are dispensed is heated only by the reaction tank 4, the temperature of the reagent changes as shown by a broken line in FIG. 6 and reaches the target temperature Tt. It takes longer time to do (see dotted arrows).

以上のように、自動分析装置1は、制御部15によって表面弾性波素子24の駆動条件を制御することで、撹拌に伴う液体試料の温度上昇を利用して液体試料の不足熱量を補完し、液体試料を目標温度に加温している。このため、自動分析装置1は、ドライバス方式の反応槽4を使用していても、液体試料の予熱手段を別途設けなくとも、液体試料の温度を速やかに目標温度とすることができる。また、自動分析装置1は、目標温度に加温した試薬と検体を含む液体試料を反応させるので、試薬と検体が常に同じ温度で反応を開始するので、測定値の信頼性が向上する。   As described above, the automatic analyzer 1 controls the driving condition of the surface acoustic wave element 24 by the control unit 15 to supplement the insufficient heat amount of the liquid sample by utilizing the temperature rise of the liquid sample accompanying stirring. The liquid sample is heated to the target temperature. For this reason, the automatic analyzer 1 can quickly set the temperature of the liquid sample to the target temperature without using a separate preheating means for the liquid sample even if the dry bath type reaction tank 4 is used. In addition, since the automatic analyzer 1 reacts the liquid sample containing the reagent and the sample heated to the target temperature, the reagent and the sample always start the reaction at the same temperature, thereby improving the reliability of the measurement value.

尚、上述の実施の形態で説明した自動分析装置1は、反応槽4の目標温度よりも低温の検体と試薬を含む液体試料の不足熱量を補うものであるから、例えば、試薬分注機構が濃縮試薬を分注するのに併せて洗浄水を吐出し、希釈水によって濃縮試薬を希釈した希釈試薬の不足熱量を補うのに使用する使用態様もある。また、反応槽4は、ドライバス方式の反応槽の場合について説明したが、本発明の自動分析装置1は、反応槽4がドライバス方式でない反応槽であってもよい。   Note that the automatic analyzer 1 described in the above embodiment compensates for the insufficient heat quantity of the liquid sample containing the specimen and the reagent at a temperature lower than the target temperature of the reaction tank 4, so that, for example, a reagent dispensing mechanism is provided. There is also a usage mode in which washing water is discharged in conjunction with dispensing of the concentrated reagent and used to compensate for the insufficient heat quantity of the diluted reagent obtained by diluting the concentrated reagent with the diluted water. Moreover, although the reaction tank 4 demonstrated the case of the dry bath type reaction tank, the automatic analyzer 1 of this invention may be a reaction tank in which the reaction tank 4 is not a dry bath type.

また、自動分析装置1は、第1試薬の分注後、検体分注後及び第2試薬の分注後の各タイミングにおいて表面弾性波素子による撹拌と熱量を補うための加温を行った。しかし、第1試薬や検体の量が少なく、かつ、これらの温度と反応層の目標温度との温度差が小さい場合には、自動分析装置1は、第2試薬を分注した後のみ、表面弾性波素子による撹拌と熱量を補うための加温とを行うようにしてもよい。   In addition, the automatic analyzer 1 performed stirring by the surface acoustic wave element and heating for supplementing the amount of heat at each timing after dispensing the first reagent, after dispensing the sample, and after dispensing the second reagent. However, when the amount of the first reagent or the sample is small and the temperature difference between these temperatures and the target temperature of the reaction layer is small, the automatic analyzer 1 can remove the surface only after dispensing the second reagent. You may make it perform the stirring by an elastic wave element, and the heating for supplementing a calorie | heat amount.

本発明に係る自動分析装置の概略構成図である。It is a schematic block diagram of the automatic analyzer which concerns on this invention. 図1の自動分析装置の構成を示すブロック図である。It is a block diagram which shows the structure of the automatic analyzer of FIG. 図1の自動分析装置で使用され、表面弾性波素子が取り付けられた反応容器の斜視図である。FIG. 2 is a perspective view of a reaction vessel used in the automatic analyzer of FIG. 1 and having a surface acoustic wave element attached thereto. 送電体が接触子によって容器の表面弾性波素子の電気端子に当接した状態を示す斜視図である。It is a perspective view which shows the state which the power transmission body contact | abutted to the electrical terminal of the surface acoustic wave element of a container with a contactor. 反応槽の目標温度との差が小さい微量の試薬における温度変化を示す図である。It is a figure which shows the temperature change in the trace amount reagent with a small difference with the target temperature of a reaction tank. 反応槽の目標温度との差が大きく、図5に示す微量の場合の数倍の量の試薬における温度変化を示す図である。It is a figure which shows the temperature change in the quantity of the reagent of the amount of several times the difference with the target temperature of a reaction tank being large, and the trace amount shown in FIG. 本発明の液体試料の温度管理方法を説明するフローチャートである。It is a flowchart explaining the temperature management method of the liquid sample of this invention.

符号の説明Explanation of symbols

1 自動分析装置
2,3 試薬保冷庫
4 反応槽
5 反応容器
6,7 試薬分注機構
8 検体容器移送機構
9 フィーダ
10 ラック
11 検体分注機構
12 分析光学系
13 洗浄機構
15 制御部
16 入力部
17 表示部
20 撹拌装置
21 送電体
22 配置決定部材
24 表面弾性波素子
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2,3 Reagent cooler 4 Reaction tank 5 Reaction container 6,7 Reagent dispensing mechanism 8 Specimen container transfer mechanism 9 Feeder 10 Rack 11 Specimen dispensing mechanism 12 Analytical optics 13 Cleaning mechanism 15 Control part 16 Input part Reference Signs List 17 Display Unit 20 Stirrer 21 Power Transmitter 22 Arrangement Determination Member 24 Surface Acoustic Wave Element

Claims (5)

検体と試薬を含む液体試料が分注される複数の反応容器を保持し、前記液体試料を目標温度に保温する反応槽を備え、前記液体試料を撹拌して反応させ、反応液を分析する自動分析装置であって、
前記各反応容器に取り付けた表面弾性波素子が発する音波によって前記液体試料を撹拌する撹拌手段と、
前記表面弾性波素子の駆動条件を制御する制御手段と、
を備え、前記制御手段は、前記液体試料の撹拌の際の前記音波の吸収による前記液体試料の温度上昇を利用し、前記目標温度よりも低温の前記液体試料との温度差、前記液体試料の量及び比熱から演算される不足熱量を補うように前記表面弾性波素子の駆動条件を制御することを特徴とする自動分析装置。
An automatic analyzer that holds a plurality of reaction vessels in which liquid samples containing a sample and a reagent are dispensed, and that includes a reaction tank that keeps the liquid sample at a target temperature, and the reaction is performed by stirring and reacting the liquid sample. An analyzer,
A stirring means for stirring the liquid sample by a sound wave generated by a surface acoustic wave element attached to each reaction vessel;
Control means for controlling the driving conditions of the surface acoustic wave device;
And the control means utilizes a temperature rise of the liquid sample due to absorption of the sound wave during stirring of the liquid sample, a temperature difference with the liquid sample lower than the target temperature, and the liquid sample An automatic analyzer for controlling a driving condition of the surface acoustic wave device so as to compensate for an insufficient heat amount calculated from the amount and specific heat.
前記制御手段は、当該分析装置の環境温度を前記検体の温度、前記試薬を収容した試薬保冷この温度又は前記試薬保冷庫の温度と前記試薬を希釈すべく試薬分注装置が吐出する希釈水の温度とから算定される温度を前記試薬の温度とし、前記検体と前記試薬の温度、前記検体と前記試薬の分注量情報及び比熱情報をもとに前記反応容器ごとに前記不足熱量を演算し、当該不足熱量を補うように前記表面弾性波素子の駆動条件を制御することを特徴とする請求項1に記載の自動分析装置。   The control means is configured such that the environmental temperature of the analyzer is the temperature of the sample, the temperature of the reagent that is stored in the reagent, or the temperature of the reagent that is stored in the reagent, and the dilution water that is discharged from the reagent dispensing device to dilute the reagent. The temperature calculated from the temperature is used as the temperature of the reagent, and the calorific value is calculated for each reaction vessel based on the temperature of the sample and the reagent, the dispensed amount information and specific heat information of the sample and the reagent. The automatic analyzer according to claim 1, wherein a driving condition of the surface acoustic wave element is controlled so as to compensate for the insufficient heat quantity. 前記制御手段は、分注される前記検体及び前記試薬の量を当該自動分析装置に入力される分析項目ごとの分注量から取得することを特徴とする請求項2に記載の自動分析装置。   The automatic analyzer according to claim 2, wherein the control means acquires the amount of the sample and the reagent to be dispensed from a dispensed amount for each analysis item input to the automatic analyzer. 前記制御手段は、前記表面弾性波素子の駆動条件として、少なくとも駆動時間,駆動電圧,駆動電力,駆動周波数のいずれか一つを制御することを特徴とする請求項2に記載の自動分析装置。   The automatic analyzer according to claim 2, wherein the control unit controls at least one of a driving time, a driving voltage, a driving power, and a driving frequency as a driving condition of the surface acoustic wave element. 検体と試薬を含む液体試料が分注される複数の反応容器を保持し、前記液体試料を目標温度に保温する反応槽を備え、前記液体試料を撹拌して反応させ、反応液を分析する自動分析装置における前記反応容器に分注された液体試料の温度管理方法であって、
前記目標温度よりも低温の前記液体試料との温度差、前記液体試料の量及び比熱から前記液体試料の不足熱量を演算する演算工程と、
前記演算工程で算出した不足熱量を補うように前記表面弾性波素子の駆動条件を制御して前記液体試料を加温する加温工程と、
を含むことを特徴とする液体試料の温度管理方法。
An automatic analyzer that holds a plurality of reaction vessels in which liquid samples containing a sample and a reagent are dispensed, and that includes a reaction tank that keeps the liquid sample at a target temperature, and the reaction is performed by stirring and reacting the liquid sample. A temperature management method for a liquid sample dispensed into the reaction container in an analyzer,
A calculation step of calculating a shortage of heat of the liquid sample from a temperature difference with the liquid sample lower than the target temperature, an amount of the liquid sample and specific heat;
A heating step of heating the liquid sample by controlling a driving condition of the surface acoustic wave element so as to compensate for the insufficient heat amount calculated in the calculation step;
A temperature management method for a liquid sample, comprising:
JP2008055453A 2008-03-05 2008-03-05 Automatic analysis apparatus and temperature management method of liquid sample Pending JP2009210483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008055453A JP2009210483A (en) 2008-03-05 2008-03-05 Automatic analysis apparatus and temperature management method of liquid sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008055453A JP2009210483A (en) 2008-03-05 2008-03-05 Automatic analysis apparatus and temperature management method of liquid sample

Publications (1)

Publication Number Publication Date
JP2009210483A true JP2009210483A (en) 2009-09-17

Family

ID=41183782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008055453A Pending JP2009210483A (en) 2008-03-05 2008-03-05 Automatic analysis apparatus and temperature management method of liquid sample

Country Status (1)

Country Link
JP (1) JP2009210483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020010380A1 (en) * 2018-07-13 2020-01-16 Meon Medical Solutions Gmbh & Co Kg Method and device for mixing and temperature-controlling liquid media

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274152A (en) * 2004-03-22 2005-10-06 Juki Corp Thermostatic tank for analyzer
JP2006098236A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Heater temperature control method and incubator
JP2007248252A (en) * 2006-03-15 2007-09-27 Olympus Corp Agitator and analyzer
JP2007303964A (en) * 2006-05-11 2007-11-22 Olympus Corp Surface acoustic wave element, stirring device and analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274152A (en) * 2004-03-22 2005-10-06 Juki Corp Thermostatic tank for analyzer
JP2006098236A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Heater temperature control method and incubator
JP2007248252A (en) * 2006-03-15 2007-09-27 Olympus Corp Agitator and analyzer
JP2007303964A (en) * 2006-05-11 2007-11-22 Olympus Corp Surface acoustic wave element, stirring device and analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020010380A1 (en) * 2018-07-13 2020-01-16 Meon Medical Solutions Gmbh & Co Kg Method and device for mixing and temperature-controlling liquid media

Similar Documents

Publication Publication Date Title
JP5140497B2 (en) Analysis apparatus and analysis method
JP6549329B2 (en) Automatic analyzer
JP2009025248A (en) Automatic analyzer and dispensation method
JP5220014B2 (en) Analyzing device and its abnormality handling method
JP5222848B2 (en) Agitation determination apparatus, agitation determination method, and analysis apparatus
US7802479B2 (en) Stirring apparatus, abnormality determining method of same, and analyzer
JP2008003057A (en) Analyzer and analysis method
JP7051495B2 (en) Automatic analyzer and dispensing method
JP2009210483A (en) Automatic analysis apparatus and temperature management method of liquid sample
JP2010217050A (en) Automatic analyzer and method for inhibiting temperature rise of liquid sample thereof
US8092079B2 (en) Method for determining whether a liquid is properly stirred
JP2009150730A (en) Agitation determination method and analyzer
JP5219955B2 (en) Analyzing device and method for driving the stirring device
JP2009042117A (en) Thermostatic chamber and automatic analyzer
JP2007232523A (en) Stirrer and analyzer
JP7309467B2 (en) automatic analyzer
US20210341501A1 (en) Automatic analyzing apparatus
JP7361575B2 (en) Calibration curve generator and automatic analyzer
JP7109937B2 (en) automatic analyzer
JP2007303965A (en) Analyzer, and method of regulating liquid temperature in reaction container
JP2008292314A (en) Stirrer and auto-analyzer
JP2022164188A (en) Autoanalyzer
JP2007248251A (en) Agitator and analyzer
JP2009074872A (en) Cleaning mechanism, autoanalyzer and cleaning method
JP2009042048A (en) Autoanalyzer and stirring quality determining method of autoanalyzer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20100205

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Effective date: 20110304

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120614

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120618

A02 Decision of refusal

Effective date: 20121205

Free format text: JAPANESE INTERMEDIATE CODE: A02