JP2009208171A - L-shaped microneedle device and its manufacturing method - Google Patents

L-shaped microneedle device and its manufacturing method Download PDF

Info

Publication number
JP2009208171A
JP2009208171A JP2008051262A JP2008051262A JP2009208171A JP 2009208171 A JP2009208171 A JP 2009208171A JP 2008051262 A JP2008051262 A JP 2008051262A JP 2008051262 A JP2008051262 A JP 2008051262A JP 2009208171 A JP2009208171 A JP 2009208171A
Authority
JP
Japan
Prior art keywords
microneedle
mold
shape
matrix
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008051262A
Other languages
Japanese (ja)
Inventor
Fumikazu Ohira
文和 大平
Yutaka Mihara
豊 三原
Hidenori Yoshimura
英徳 吉村
Kenji Osuga
健士 大須賀
Kazuyuki Okada
和志 岡田
Hidetoshi Hamamoto
英利 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MedRx Co Ltd
Kagawa University NUC
Original Assignee
MedRx Co Ltd
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MedRx Co Ltd, Kagawa University NUC filed Critical MedRx Co Ltd
Priority to JP2008051262A priority Critical patent/JP2009208171A/en
Publication of JP2009208171A publication Critical patent/JP2009208171A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles

Abstract

<P>PROBLEM TO BE SOLVED: To mass-produce, using biodegradable resin, a microneedle which is free from a defect at the tip of the microneedle and stable in quality. <P>SOLUTION: A two-stage manufacturing method of the microneedle includes a step of firstly preparing a microneedle device structured as a lattice window and having the microneedle extending horizontally, and a step of then setting the needle to be vertical by bending the direction of the needle to 90° by a tool. Thus, the microneedle which hardly have a defect at the tip and is highly reliable in product standard can be produced. Further, the method can manufacture a microneedle which has been conventionally difficult to make. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はL字型微小針デバイスの製造方法に関するものである。特に、生体分解性の材料によるL字型微小針デバイスの製造方法に関する。   The present invention relates to a method for manufacturing an L-shaped microneedle device. In particular, the present invention relates to a method for manufacturing an L-shaped microneedle device using a biodegradable material.

これまで微小針の製造方法に関して、色々な方法が報告されている。当初には、特許文献1に示されるように半導体部品を作製する際に用いられるエッチングなどの方法を使用して、シリコン製、ガラス製、金属製の微小針を作製していた。しかし、この製法では微小針の製造コストが高額となり、また破損等の問題で残留した微小針の破片が人体に障害を与えることになる。
そこで、近年では、例えば特許文献2では、ポリメタアクリル酸メチル(PMMA)を用いて微小針の母型を作製し、これに金属メッキを施して母型を外し、金属の鋳型を作製し、この金属の鋳型にポリマー材料を加熱押圧して、目的の樹脂製の微小針を作製している。
しかし、このような非貫通孔の鋳型を使用した微小針の製造方法では、鋳型から微小針を取り出す際に、摩擦応力が懸かって、微小針の先端部が欠けやすくなっている。そのため、品質のよい、先端部の欠損がない微小針を得ることは、困難な状況にあった。
Various methods have been reported so far regarding methods for producing microneedles. Initially, as shown in Patent Document 1, silicon, glass, and metal microneedles were produced using a method such as etching that is used when producing a semiconductor component. However, in this manufacturing method, the manufacturing cost of the microneedles is high, and fragments of the microneedles remaining due to problems such as breakage damage the human body.
Therefore, in recent years, for example, in Patent Document 2, a microneedle matrix is prepared using polymethylmethacrylate (PMMA), a metal plating is applied to the matrix to remove the matrix, and a metal mold is manufactured. A polymer material is heated and pressed against the metal mold to produce a target resin microneedle.
However, in the method of manufacturing a microneedle using such a non-through-hole mold, frictional stress is applied when the microneedle is taken out of the mold, and the tip portion of the microneedle is easily chipped. For this reason, it has been difficult to obtain a microneedle having a good quality and having no tip defect.

そこで、特許文献3では、鋳型として可撓性のある材質のPDMS(ポリジメチルシロキサン)を使用し、光硬化性高分子を用いて微小針を作製したことが示されている。
更に、非特許文献1では、同様に鋳型としてPDMSを使用し、生体分解性樹脂としてポリ乳酸、ポリグリコール酸を用いて微小針を作製したことが示されている。そこでは、PDMS製鋳型が柔軟であるので、樹脂に対する圧着転写を避けて、樹脂を溶解し減圧下で非貫通孔の鋳型に流し込む方法が取られている。
Therefore, Patent Document 3 shows that PDMS (polydimethylsiloxane), which is a flexible material, is used as a mold and a microneedle is manufactured using a photocurable polymer.
Further, Non-Patent Document 1 shows that PDMS was similarly used as a template, and microneedles were produced using polylactic acid and polyglycolic acid as biodegradable resins. Here, since the mold made of PDMS is flexible, a method is adopted in which the resin is melted and poured into a non-through-hole mold under reduced pressure while avoiding pressure transfer to the resin.

このPDMS製鋳型を作製するための母型は、SU−8(IBM社で開発されたホトレジスト)、ポリウレタンを用いて作製されている。しかし、非貫通孔の鋳型を作るために、母型の加工として、微小針の先端部の加工に多くの工程が費やされている。しかし、どれだけ母型の作製に注意を払っても、製造される微小針を見れば、鋳型からの剥離の際に摩擦応力の歪みが大きく微小針に影響し、微小針の先端部が欠けたり、曲がったりすることが多く見られる状況である。このようなことから、従来の製法では品質的に安定した製品を作ることは難しい状況であった。   The matrix for producing this PDMS mold is produced using SU-8 (a photoresist developed by IBM) and polyurethane. However, in order to make a non-through-hole mold, many processes are spent on the processing of the tip of the microneedle as the processing of the mother die. However, no matter how much attention is paid to the fabrication of the master mold, if you look at the manufactured microneedles, the strain of frictional stress greatly affects the microneedles when peeling from the mold, and the tip of the microneedles is missing. It is a situation where there are many cases where people are often bent or bent. For these reasons, it has been difficult to produce a product that is stable in quality by the conventional manufacturing method.

また、上述するような鋳型からの剥離の問題があるため、従来の鋳型を用いて作成される微小針は、鋳型からの剥離が容易な、円錐、円錐台、角錐、角錐台が中心となり、それ以外の形状はほとんど見出せない状況であった。
従って、生体分解性樹脂の微小針が安定して製造できるような、新たな製造方法と共に、微小針の自由な形状(微小針の形状の自由度)が求められていた。
In addition, because there is a problem of peeling from the mold as described above, the microneedle created using the conventional mold is easy to peel from the mold, the cone, truncated cone, pyramid, pyramid is the center, The other shapes were hardly found.
Accordingly, there has been a demand for a free shape of the microneedle (degree of freedom of the shape of the microneedle) as well as a new manufacturing method that can stably manufacture the microneedle of the biodegradable resin.

特表2002-517300号公報Special Table 2002-517300 特表2003-501163号公報Special Table 2003-501163 特表2004-526581号公報Special Publication 2004-526581 J.Controlled Release,104,51-66(2005)J. Controlled Release, 104, 51-66 (2005)

本発明の課題は、生体分解性樹脂を用いて、任意の形状の剣山型微小針を安価且つ量産規模で製造することを目的とする。   An object of the present invention is to produce a Kenyama microneedle having an arbitrary shape at a low cost and on a mass production scale using a biodegradable resin.

本発明者らは、上記課題を達成すべく鋭意検討を行った結果、微小針の先端が欠落する原因の主要なものが、前述するように、以下の二つであることを見出している。
(1)鋳型に生体分解性樹脂を圧着転写する際に、微小針鋳型の先端部にまで該樹脂が充填され難い。従って、充分に充填を行なうため、減圧下で該樹脂の圧着転写を行なう必要がある。
(2)微小針鋳型の先端部まで減圧下に該樹脂を充填すると、該鋳型から該樹脂製微小針を取り出す際に、今度はぴったりと鋳型に充填されているだけに、余計に摩擦応力が懸かることになってしまう。そのため、該微小針の先端部が欠けやすくなっている。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the main causes of the loss of the tip of the microneedle are the following two as described above.
(1) When the biodegradable resin is pressure-transferred to the mold, it is difficult to fill the tip of the microneedle mold with the resin. Therefore, in order to perform sufficient filling, it is necessary to perform pressure transfer of the resin under reduced pressure.
(2) When the resin is filled up to the tip of the microneedle mold under reduced pressure, when the resin microneedle is taken out of the mold, the frictional stress is excessively increased just because the mold is filled exactly. It will be hanging. Therefore, the tip portion of the microneedle is easily chipped.

そこで、本発明者らは、鋭意検討の結果、従来の鋳型のように、微小針が基板に垂直に立った鋳型を作ることを止め、まず、微小針が水平方向に伸びたものを作製し、その後、加熱して力を加え、針の先を垂直方向に曲げることを試みた。即ち、L字型の微小針の作製を行なった。このようなL字型微小針を作製するために、まず以下の特徴a),b)を有する生体分解性材料の連子窓状微小針デバイスを作製し、冶具にて針部分をL字型に変形させた。
a)複数の連子窓状の格子を持ち、
b)該格子には、複数の微小針が、隣接する格子に向かって設置されている、
Therefore, as a result of intensive studies, the present inventors stopped making a mold in which microneedles stand perpendicular to the substrate as in a conventional mold, and first produced a microneedle extending in the horizontal direction. Then, heating was applied to apply force, and the needle tip was bent in the vertical direction. That is, an L-shaped microneedle was produced. In order to fabricate such an L-shaped microneedle, first, a biodegradable material continuous window microneedle device having the following features a) and b) is fabricated, and the needle portion is deformed into an L-shape by a jig. I let you.
a) having a plurality of grid windows;
b) In the lattice, a plurality of microneedles are installed toward the adjacent lattice.

このように、まず先端部分に欠けがない微小針を作製し、その微小針をL字型に曲げて垂直方向に針を突出させる、と言う2段階の微小針製造方法を採用することにより、必ずしも、圧着転写時の減圧下の作業は必要がなくなった。更に、減圧下の必要がないことから、使用する生体分解性材料の材質に応じて鋳型をPDMS製あるいは金属製と、鋳型の材質を換えることができる。このように、2段階での微小針の製造方法は、微小針の品質管理の上で非常に安定した製造方法であることを見出した。しかも、微小針の形状は、色々な形状のものが作製できることを見出した。即ち、従来方法では作製できない銛状、蚊の針状等の、微小針にぎざぎざ(鋸歯状の凹凸)の付いたものを容易に作製することができる。本発明者は以上のことを見出し、本発明を完成した。   In this way, by adopting a two-step microneedle manufacturing method in which a microneedle having no chip at the tip is first produced, the microneedle is bent into an L shape, and the needle protrudes in the vertical direction. The work under reduced pressure at the time of pressure transfer is no longer necessary. Furthermore, since it is not necessary to reduce the pressure, the template material can be changed from PDMS or metal to the template depending on the material of the biodegradable material to be used. As described above, it was found that the microneedle manufacturing method in two steps is a very stable manufacturing method in terms of quality control of the microneedles. In addition, the inventors have found that various shapes of microneedles can be produced. That is, it is possible to easily produce a microneedle with jagged edges (saw-toothed irregularities) such as a spider-like shape or a mosquito needle shape that cannot be produced by a conventional method. The present inventors have found the above and completed the present invention.

本発明の要旨は以下の通りである。
[1]次の工程(1)〜(4)を含む、L字型微小針デバイスの製造方法。
(1)ホトレジスト製又はSi製母型の作製工程:以下のa)ホトレジスト製母型の作製工程か、又は、b)Si製母型の作製工程を実施する。
a)ホトレジスト製母型の作製工程:
i)厚膜ホトレジストを基板に塗布し乾燥させて、レジスト膜を形成する、
ii) レジスト膜に、連子窓状のパターンを露光し、ベーキングした後に現像して、ホトレジスト製の母型を得る、
b)Si製母型の作製工程:
i)Si基板に、ホトレジストをスピンコート法により成膜する、
ii)連子窓状のパターンを描画し、現像する、
iii)エッチングプロセスにより、連子窓状の描画パターンをSi基板に転写する、
iv)残存するレジストを除去する、
(2)PDMS製又は金属製鋳型の作製工程:以下のa)PDMS製鋳型の作製工程か、又は、b)金属製鋳型の作製工程を実施する。
a)PDMS製鋳型の作製工程:
i)上記工程(1)で得られた厚膜ホトレジスト製母型に、未重合のPDMSを流し込んで熱硬化させる、
ii)硬化後にPDMSと母型を剥離して、PDMS製鋳型を作製する、
b)金属製鋳型の作製工程:
i)上記(1)で得られたホトレジスト製又はSi製母型に金属メッキ加工を行い、該母型を金属で被覆充填する、
ii)母型と金属メッキによる被覆物を剥離し、金属製鋳型を作製する、
(3)連子窓状の微小針デバイスの作製工程:
i)上記(2)で得られた鋳型の凹部に加熱融解した生体分解性樹脂を塗布する、
ii)冷却後、凹部のみに生体分解性樹脂を残す、
iii)鋳型から生体分解性樹脂製の連子窓状の微小針デバイスを剥離する、
(4)連子窓状の微小針デバイスからL字型微小針デバイスを作製する工程:
i)上記(3)で得られた連子窓状のデバイスの一部又は該デバイスに押し当てるために用意した冶具を生体分解性樹脂の遷移点以上で融点以下の温度に加熱する、
ii)連子窓状のデバイスの微小針部分に該冶具を押し当て微小針の方向を変える、
iii)冷却後、これらの治具を外し、微小針がL字型の微小針デバイスを得る、
[2]生体分解性樹脂がポリ乳酸、ポリグリコール酸及び乳酸−グリコール酸の共重合体から選ばれる1種又は2種以上である、上記[1]記載の製造方法。
[3]微小針の形が、半円柱状、半円錐状、角錐状、銛状又は蚊の針状である、上記[1]又は[2]に記載の製造方法。
[4]金属メッキの金属が、ニッケル、銅、金又はクロムである、上記[1]〜[3]のいずれかに記載の製造方法。
[5]金属メッキのメッキ加工が、電解メッキ又は無電解メッキである、上記[1]〜[4]のいずれかに記載の製造方法。
[6]以下の特徴を有する、生体分解性樹脂製の連子窓状L字型微小針デバイス。
a)複数の連子窓状の格子を持ち、
b)該格子には、複数の微小針が、隣接する格子に向かって設置されており、
c)微小針の先端は連子窓に直交する方向に伸びており、L字型の微小針を形成している。
[7]生体分解性樹脂がポリ乳酸、ポリグリコール酸及び乳酸−グリコール酸の共重合体から選ばれる1種又は2種以上である、上記[6]記載の連子窓状L字型微小針デバイス。
[8]微小針の形が、半円柱状、半円錐状、角錐状、銛状又は蚊の針状である、上記[6]又は[7]記載の連子窓状L字型微小針デバイス。
The gist of the present invention is as follows.
[1] A method for producing an L-shaped microneedle device, comprising the following steps (1) to (4).
(1) Photoresist or Si matrix fabrication process: The following a) photoresist matrix fabrication process or b) Si matrix fabrication process is carried out.
a) Production process of photoresist matrix:
i) A thick film photoresist is applied to the substrate and dried to form a resist film.
ii) A resist window pattern is exposed on the resist film, baked and then developed to obtain a matrix made of photoresist.
b) Si matrix fabrication process:
i) A photoresist is formed on the Si substrate by a spin coating method.
ii) Draw and develop a continuous window-like pattern,
iii) transferring the drawing pattern in a continuous window shape to the Si substrate by an etching process;
iv) remove the remaining resist,
(2) PDMS or metal mold production process: The following a) PDMS mold production process or b) metal mold production process is performed.
a) PDMS mold production process:
i) Pour unpolymerized PDMS into the thick-film photoresist mold obtained in the above step (1) and heat cure.
ii) After curing, the PDMS and the master mold are peeled off to produce a PDMS mold.
b) Metal mold production process:
i) Metal plating is performed on the photoresist or Si matrix obtained in (1) above, and the matrix is covered and filled with metal.
ii) peeling off the matrix and metal plating coating to produce a metal mold,
(3) Manufacturing process of a continuous needle-like microneedle device:
i) A biodegradable resin melted by heating is applied to the concave portion of the mold obtained in (2) above.
ii) After cooling, leave the biodegradable resin only in the recesses,
iii) peeling the biodegradable resin-made gland window-like microneedle device from the mold,
(4) A step of producing an L-shaped microneedle device from a continuous window-like microneedle device:
i) heating a jig prepared for pressing a part of the concentric window-like device obtained in (3) above or a temperature above the transition point of the biodegradable resin and below the melting point;
ii) Pressing the jig against the microneedle portion of the continuous window-like device to change the direction of the microneedle,
iii) After cooling, remove these jigs to obtain an L-shaped microneedle device.
[2] The production method of the above-mentioned [1], wherein the biodegradable resin is one or more selected from polylactic acid, polyglycolic acid and a copolymer of lactic acid-glycolic acid.
[3] The production method according to the above [1] or [2], wherein the shape of the micro needle is a semi-cylindrical shape, a semi-conical shape, a pyramid shape, a hook shape, or a mosquito needle shape.
[4] The manufacturing method according to any one of [1] to [3], wherein the metal of the metal plating is nickel, copper, gold, or chromium.
[5] The manufacturing method according to any one of [1] to [4], wherein the plating process of the metal plating is electrolytic plating or electroless plating.
[6] A continuous window L-shaped microneedle device made of biodegradable resin having the following characteristics.
a) having a plurality of grid windows;
b) In the lattice, a plurality of microneedles are installed toward the adjacent lattice,
c) The tip of the microneedle extends in a direction perpendicular to the continuous window, forming an L-shaped microneedle.
[7] The continuous window L-shaped microneedle device according to the above [6], wherein the biodegradable resin is one or more selected from polylactic acid, polyglycolic acid and a copolymer of lactic acid-glycolic acid.
[8] The comb-shaped window-shaped L-shaped microneedle device according to the above [6] or [7], wherein the microneedle has a semi-cylindrical shape, a semi-conical shape, a pyramid shape, a hook shape, or a mosquito needle shape.

[9]厚膜レジストがSU−8あるいはPMERであることを特徴とする、[1]〜[5]のいずれかに記載の製造方法。
[10]金属製鋳型がコーテイングされていることを特徴とする、上記[1]〜[5]のいずれかに記載の製造方法。
[11]コーテイングが有機超薄膜であることを特徴とする、上記[10]記載の製造方法。
[12])連子窓状の微小針デバイスの製造工程において、鋳型の凸部にマスクを掛けることを特徴とする、上記[1]〜[5]のいずれかに記載の製造方法。
[13]マスクを掛けることが、有機超薄膜加工あるいはスクリーン印刷用マスクの設置である、上記[12]に記載の製造方法。
[9] The manufacturing method according to any one of [1] to [5], wherein the thick film resist is SU-8 or PMER.
[10] The method according to any one of [1] to [5], wherein the metal mold is coated.
[11] The production method of the above-mentioned [10], wherein the coating is an organic ultrathin film.
[12] The manufacturing method according to any one of [1] to [5] above, wherein a mask is applied to the convex portion of the mold in the manufacturing process of the continuous needle-shaped microneedle device.
[13] The manufacturing method according to [12], wherein applying the mask is an organic ultra-thin film processing or a screen printing mask.

本発明の製造方法は、まず水平方向に横に伸びた微小針を持つ連子窓状の基板を作製し、次いで加熱押圧して微小針をL字型に曲げ、基板の垂直方法に微小針が突出するように加工する、2段階の製造方法である。最初の段階で、先端まで一様に揃った微小針を品質良く、安定に作製することができる。次の段階では、加熱して軟化した生体分解性樹脂の微小針を冶具等で押圧して、垂直方向に立った微小針を作製することができる。更に、連子窓の大きさや、微小針の長さ、また冶具の大きさ等によって、自由にL字型の微小針を作製することができる。特に、これまで作製が困難であった銛状又は蚊の針状等の微小針にぎざぎざの突起が付いた形態の微小針を本発明の方法で容易に作製できるようになった。これらのことから、規格的に信頼性の高く、しかも多様な形態の微小針製品を製造できる方法である。   In the manufacturing method of the present invention, a substrate window-like substrate having microneedles extending horizontally in the horizontal direction is first manufactured, then heated and pressed to bend the microneedles into an L shape, and the microneedles project in the vertical direction of the substrate. This is a two-stage manufacturing method. In the first stage, microneedles that are evenly aligned up to the tip can be stably manufactured with high quality. In the next stage, the microneedles of the biodegradable resin softened by heating can be pressed with a jig or the like to produce the microneedles standing in the vertical direction. Furthermore, L-shaped microneedles can be freely produced according to the size of the continuous window, the length of the microneedles, the size of the jig, and the like. In particular, it has become possible to easily produce microneedles in a form in which jagged projections are attached to microneedles such as rod-shaped or mosquito needles that have been difficult to produce. From these facts, it is a method that is highly reliable in terms of standards and that can manufacture various types of microneedle products.

以下に、本発明のL字型微小針デバイスの製造方法を図面を参照して説明する。
まず、半導体プロセスにて、厚膜レジスト製の微小針デバイス形状を作製する。すなわち、例えば、厚膜ホトレジストを基板1に塗布し乾燥させて、レジスト膜2を形成し、次いで、マスク・アライナーで、連子窓状のパターンを露光し、ベーキングした後に現像して、ホトレジスト製の母型3を得る(図1(a)、(b)、図2(a))。ここでレジスト膜の厚みは30μm〜200μmの範囲が好ましい。
Below, the manufacturing method of the L-shaped microneedle device of this invention is demonstrated with reference to drawings.
First, a microneedle device shape made of a thick film resist is manufactured by a semiconductor process. That is, for example, a thick film photoresist is applied to the substrate 1 and dried to form a resist film 2, and then a mask window aligner is used to expose the pattern of the continuous window shape, and after baking, the pattern is developed. A mold 3 is obtained (FIGS. 1A, 1B, 2A). Here, the thickness of the resist film is preferably in the range of 30 μm to 200 μm.

なお、上記ホトレジスト製の母型3に代えてSi製母型を作製してもよい。
Si製母型を作製する場合、Si基板に、ホトレジストをスピンコート法により成膜し、マスク・アライナーで、連子窓状のパターンを描画し、現像した後、エッチングプロセスにより、連子窓状の描画パターンをSi基板に転写し、最後に残存するレジストを除去すればよい。
In place of the above-described photoresist matrix 3, a Si matrix may be fabricated.
When fabricating a Si matrix, a photoresist is formed on a Si substrate by spin coating, a concentric window-like pattern is drawn with a mask aligner, developed, and an etching process is performed to form a contiguous window-like drawing pattern. Transfer to the Si substrate and finally the remaining resist may be removed.

次に、上記デバイスにPDMS(ポリジメチルシロキサン)を塗布し、平板をその上に重ねて、PMDSの樹脂厚みを一定にして、加熱硬化させる。そして、PMDS硬化樹脂を厚膜ホトレジスト製の微小針デバイス形状から剥離し、PDMS鋳型を作製する。すなわち、厚膜ホトレジスト製母型3(又はSi製母型)に、未重合のPDMS4を流し込んで熱硬化させ、硬化後にPDMSと母型を剥離して、PDMS製鋳型5を作製する(図1(c)、(d)、図2(b))。   Next, PDMS (polydimethylsiloxane) is applied to the device, a flat plate is overlaid thereon, and the resin thickness of the PMDS is made constant to be cured by heating. Then, the PMDS curable resin is peeled off from the shape of the microneedle device made of thick film photoresist to produce a PDMS mold. That is, unpolymerized PDMS 4 is poured into a thick film photoresist matrix 3 (or Si matrix) and thermally cured, and after curing, the PDMS and the matrix are peeled off to produce a PDMS mold 5 (FIG. 1). (C), (d), FIG. 2 (b)).

なお、上記PDMS製鋳型5に代えて金属製鋳型を作製してもよい。
金属製鋳型を作製する場合、ホトレジスト製又はSi製母型に金属メッキ加工を行って、該母型を金属で被覆充填し、その後、母型と金属メッキによる被覆物を剥離して、金属製鋳型を作製すればよい。
Note that a metal mold may be fabricated instead of the PDMS mold 5.
When producing a metal mold, a metal mold is applied to a photoresist or Si mold, and the matrix is coated and filled with metal, and then the matrix and the metal plating coating are peeled off to form a metal mold. What is necessary is just to produce a casting_mold | template.

次に、上記PDMS製鋳型5(又は金属製鋳型)の凹部に加熱融解した生体分解性樹脂を塗布し、冷却後、凹部のみに生体分解性樹脂6を残し(図1(e))、鋳型5から生体分解性樹脂6を剥離して連子窓状の微小針デバイス7(図1(f)、図2(c))を得る。   Next, the biodegradable resin heated and melted is applied to the concave portion of the PDMS mold 5 (or metal mold), and after cooling, the biodegradable resin 6 is left only in the concave portion (FIG. 1 (e)). The biodegradable resin 6 is peeled from 5 to obtain a continuous window-like microneedle device 7 (FIG. 1 (f), FIG. 2 (c)).

例えば、生体分解性樹脂としてポリ乳酸樹脂を使用する場合、ポリ乳酸樹脂を120℃以上に加熱融解して常圧下でPDMS製鋳型5に塗布し、充填するのが好ましい。   For example, when a polylactic acid resin is used as the biodegradable resin, it is preferable to heat and melt the polylactic acid resin to 120 ° C. or higher, and apply and fill the PDMS mold 5 under normal pressure.

次に、上記で得られた生体分解性樹脂製の連子窓状の微小針デバイス7の一部又は微小針デバイスに押し当てるために用意した冶具9を生体分解性樹脂の遷移点以上で融点以下の温度に加熱し、連子窓状のデバイス7の微小針部分7aに冶具9を押し当て微小針の方向を変える。そして、冷却後、治具9を外すと、微小針がL字型に変形された微小針デバイス8が得られる(図2(d))。   Next, the jig 9 prepared for pressing against a part of the biodegradable resin-made microscopic needle device 7 or the microneedle device obtained above is not lower than the transition point of the biodegradable resin and below the melting point. The temperature is heated, and the jig 9 is pressed against the microneedle portion 7a of the continuous window-like device 7 to change the direction of the microneedle. When the jig 9 is removed after cooling, the microneedle device 8 in which the microneedle is deformed into an L shape is obtained (FIG. 2D).

このように、本発明の製造方法の主要な特徴は、生体分解性樹脂からなる薄板(基材)の平面に対して水平方向に延びる微小針を作製し、その微小針の方向を冶具で曲げて所望の剣山型微小針を製造する、2段階の製造工程にある。   As described above, the main feature of the manufacturing method of the present invention is that a microneedle extending in the horizontal direction with respect to the plane of the thin plate (base material) made of biodegradable resin is produced, and the direction of the microneedle is bent with a jig. Thus, there are two stages of manufacturing processes for manufacturing the desired Kenzan-type microneedle.

本明細書中に開示される微小針を作製する際に使用できるプロセスとしては、リソグラフィー、スパッタリング、電気めっき等が挙げられ、これらの技術は一般的な成書に記載されており、例えば、谷口淳「はじめてのナノインプリント技術」(工業調査会、2005年)、M.エルベンスポーク「シリコンマイクロ加工の基礎」(シュプリンガー・フェアラーク東京、2001年)、Jaeger,Introduction to Microelectronic Fabrication(Addison−Wesley Publishing Co.,Reading MA 1988);Runyan,ら、Semiconductor Integrated Circuit Processing Technology(Addison−Wesley Publishing Co.,Reading MA 1990);Proceedings of the IEEE Micro Electro Mechanical Systems Conference 1987−1998;Rai−Choudhury編、Handbook of Microlithography,Micromachining & Microfabrication(SSPIE Optical Engineering Press,Bellingham,WA 1997)を参照、準用して行うことができる。   Processes that can be used in making the microneedles disclosed herein include lithography, sputtering, electroplating, etc., and these techniques are described in general literature, for example, Taniguchi.淳 “First Nanoimprint Technology” (Industry Research Committee, 2005), M.M. Elben Spoke "Silicon Microfabrication Fundamentals" (Springer Fairlark Tokyo, 2001), Jaeger, Induction to Microelectronic Fabrication (Addison-Wesley Publishing Co., Reading MA 1988); Addison-Wesley Publishing Co., Reading MA 1990); Proceedings of the IEEE Micro Electro Mechanical Systems 1987-1998; Rai-Chudhury. See Handbook of Microlithography, Micromachining & Microfabrication (SSPIE Optical Engineering Press, Bellingham, WA 1997).

本発明で言う「連子窓状の微小針デバイス」とは、複数の格子を持つ連子窓状において、その格子の側壁に複数の微小針が隣接する格子に突出した形状の、デバイスを意味する。   In the present invention, the term "continuous window-shaped microneedle device" means a device having a shape of a plurality of grids in which a plurality of microneedles protrudes from a grid adjacent to the side wall of the grid.

この微小針の形状は、鋳型から剥離しやすい形状のものであれば特に限定されるものではないが、例えば、半円柱状、半円錐状、円錐台状、角柱状、角錐状、角錐台状、銛状又は蚊の針状の形状(ぎざぎざ(鋸歯状の凹凸)が付いた微小針)等の今までの製造方法では達成できないような微小針の形状を取り得る。   The shape of the microneedles is not particularly limited as long as it is a shape that can be easily peeled off from the mold. For example, a semi-cylindrical shape, a semi-conical shape, a truncated cone shape, a prismatic shape, a pyramidal shape, a truncated pyramid shape The shape of a microneedle that cannot be achieved by the conventional manufacturing method such as a hook-like or mosquito needle-like shape (a microneedle with a jagged surface).

微小針の大きさは、一般に、微小針の基底部(格子に繋がる根元部)の幅が50〜200μm程度であり、微小針の先端から基底部までの長さが30μm〜2mm程度である。剣山型を構成するための微小針の総本数は10〜500本程度である。好ましくは、微小針の基底部の幅は80〜150μm程度、微小針の先端から基底部までの長さは300μm〜1mm程度、剣山型を構成する場合の微小針の総本数は100〜400本程度である。   The size of the microneedles is generally such that the width of the base of the microneedles (the base connected to the lattice) is about 50 to 200 μm, and the length from the tip of the microneedles to the base is about 30 μm to 2 mm. The total number of microneedles for constituting the sword mountain type is about 10 to 500. Preferably, the width of the base portion of the microneedle is about 80 to 150 μm, the length from the tip of the microneedle to the base portion is about 300 μm to 1 mm, and the total number of microneedles in the case of the Kenyama type is 100 to 400 Degree.

本発明で言う「L字型の微小針デバイス」とは、上記連子窓状のデバイスの微小針の向きが、冶具を連子窓に押し当てることにより、連子窓に直交する方向に変えられて、L字型になったものを言う。L字型の微小針としては、30μm以上の長さの針先が連子窓の平面に対して垂直方向(直交方向)に突出することが好ましい。垂直方向に突出する長さは、より好ましくは300μm〜1mmである。   The “L-shaped microneedle device” referred to in the present invention means that the direction of the microneedles of the above-mentioned device in the form of a conjunctive window is changed to a direction perpendicular to the conjunctive window by pressing a jig against the conjunctive window. Say what became. As an L-shaped microneedle, it is preferable that a needle tip having a length of 30 μm or more protrudes in a perpendicular direction (orthogonal direction) with respect to the plane of the continuous window. The length protruding in the vertical direction is more preferably 300 μm to 1 mm.

本発明で言う「ホトレジスト」とは、光(紫外線、X線等)が当たると性質が変化する性質を持つ感光性樹脂液のことを言う。ホトレジストには光硬化形(ネガタイプ)と光溶解形(ポジタイプ)がある。例えば、Si基板上に光硬化形ホトレジストを塗布し、写真焼付けによりレジストパターンを形成させ、光の感光した部分を残して非感光部分を除去する。これにより、レジストパターンに対応した微小針デバイスをSi基板上に作製することができる。なお、ホトレジストおよびその塗布方法、露光(感光)、ベーキング、現像等については、公知慣用の手段、条件によって目的を達することができる。   The term “photoresist” as used in the present invention refers to a photosensitive resin liquid having properties that change properties when exposed to light (ultraviolet rays, X-rays, etc.). There are two types of photoresist: a photo-curing type (negative type) and a photo-dissolving type (positive type). For example, a photo-curable photoresist is applied on a Si substrate, a resist pattern is formed by photographic printing, and a non-photosensitive portion is removed while leaving a portion exposed to light. Thereby, the microneedle device corresponding to a resist pattern can be produced on a Si substrate. The purpose of the photoresist and its coating method, exposure (photosensitization), baking, development and the like can be achieved by known and commonly used means and conditions.

本発明で言う「厚膜ホトレジスト」は、好ましくは光硬化形(ネガタイプ)ホトレジストであり、市販品をそのまま使用することができる。例えば、SU−8(IBM社製、商品名)、PMER(東京応化工業社製、商品名)等を挙げることができる。写真焼付け用の現像液はNaCO水溶液、剥離液はNaOH水溶液というような一般的なものが使用される。 The “thick film photoresist” referred to in the present invention is preferably a photo-curing type (negative type) photoresist, and a commercially available product can be used as it is. For example, SU-8 (made by IBM company, brand name), PMER (product name made by Tokyo Ohka Kogyo Co., Ltd.) etc. can be mentioned. A common developer such as a Na 2 CO 3 aqueous solution is used as a developing solution for photographic printing, and an aqueous NaOH solution is used as a stripping solution.

本発明で言う「Si基板」とは、シリコン製の平板のことを言う。また、本発明で言う「PDMS(ポリジメチルシロキサン)」とは、ジメチルシロキサンのオリゴマーが触媒等で重合、硬化して得られた樹脂のことを言う。市販のPDMSを用いることが出来、例えば、シルガード184(Sylgard 184、ダウ・コーニング社製)を用いて、加熱処理を行うことによって樹脂化できる。   In the present invention, the “Si substrate” refers to a flat plate made of silicon. The term “PDMS (polydimethylsiloxane)” used in the present invention refers to a resin obtained by polymerizing and curing a dimethylsiloxane oligomer with a catalyst or the like. Commercially available PDMS can be used, and for example, it can be resinized by heat treatment using Sylgard 184 (Sylgard 184, manufactured by Dow Corning).

本発明で言う「Si基板上のホトレジスト」として、好ましくは光溶解形(ポジタイプ)ホトレジストであり、例えば、ナフトキノンジアジド、PMMA、例えばFEP−171(富士フィルム社製、商品名)等の化学増幅系ポジ型レジスト、例えばZEP520(日本ゼオン社製、商品名)等の電子線レジスト等を挙げることができる。   The “photoresist on the Si substrate” referred to in the present invention is preferably a photo-dissolving type (positive type) photoresist, such as a chemical amplification system such as naphthoquinone diazide, PMMA, for example, FEP-171 (trade name, manufactured by Fuji Film) A positive resist, for example, an electron beam resist such as ZEP520 (trade name, manufactured by Zeon Corporation) can be used.

本発明で使用可能な「マスク」としては、適宜、印刷等で汎用されるものを使用できるが、例えば、有機化合物の単分子膜が積層された高密度固体薄膜の有機超薄膜の形成又はスクリーン印刷用のマスクを使用してもよい。有機超薄膜としては、例えば、ペンタセン、グラファイト、テトラセン等を挙げることができる。また、スクリーン印刷用のマスクとしては、例えば、金属製や紙製のマスク等を挙げることができる。   As the “mask” that can be used in the present invention, those commonly used in printing or the like can be used as appropriate. For example, formation of a high-density solid thin organic ultrathin film in which monomolecular films of organic compounds are laminated or screen A printing mask may be used. Examples of the organic ultrathin film include pentacene, graphite, and tetracene. Examples of screen printing masks include metal and paper masks.

本発明で言う「粘着性の表面を持った冶具」とは、例えば、粘着物質が塗布されたテープ形状のもの、又は粘着物質が表面に塗布されたロール状のものを挙げることができる。   Examples of the “tool having an adhesive surface” according to the present invention include a tape-shaped article coated with an adhesive substance, and a roll-shaped article coated with an adhesive substance on the surface.

本発明で言うL字型微小針作製用の「冶具」とは、遷移点以上で融点より低い温度に加熱されて、ポリ乳酸製の微小針をL字型に曲げる道具であり、以下の形状を持つものである。
a)連子窓状デバイスの格子と窓枠とで形成される空間に挿入できる、複数の凸部を有する。
b)凸部の形状が、格子や窓枠で形成される間隔より、わずかに狭い。
c)微小針に接触する凸部の先端部は、微小針を曲げやすくするため、直方体やかまぼこ状になっていても良い。
The “tool” for producing an L-shaped microneedle referred to in the present invention is a tool for bending a polylactic acid microneedle into an L shape by being heated to a temperature lower than the melting point above the transition point. It has something.
a) It has a plurality of convex portions that can be inserted into a space formed by the lattice and the window frame of the continuous window device.
b) The shape of the convex portion is slightly narrower than the interval formed by the lattice or the window frame.
c) The tip of the convex portion that comes into contact with the microneedles may have a rectangular parallelepiped shape or a semi-cylindrical shape so that the microneedles are easily bent.

本発明で言う「生体分解性樹脂」とは、生体内で分解して完全に溶解する高分子樹脂の中で、その分解物が生体に有害でないものになるものを言う。例えば、ポリ乳酸、ポリグリコール酸、乳酸−グリコール酸の共重合体、ポリカプロラクトン、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンサクシネート/カーボネート)、ポリエチレンサクシネート、ポリアスパラギン酸等の化学合成高分子、例えば、コラーゲン等の天然高分子等を挙げることができる。薬効成分を混合することを考慮すれば、遷移点が低いものが望ましい。好ましいものとしては、例えば、ポリ乳酸、ポリグリコール酸、乳酸−グリコール酸の共重合体、ポリカプロラクトン、ポリアスパラギン酸、ポリ(3-ヒドロキシブタン酸)等を挙げることができる。より好ましくは、ポリ乳酸、ポリグリコール酸、乳酸−グリコール酸の共重合体を挙げることができる。なお、これらはいずれか1種の単独物であっても、2種以上の混合物であってもよい。   The “biodegradable resin” referred to in the present invention refers to a polymer resin that decomposes and dissolves completely in a living body, and the degradation product is not harmful to the living body. For example, polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, polycaprolactone, polybutylene succinate, poly (butylene succinate / adipate), poly (butylene succinate / carbonate), polyethylene succinate, polyasparagine Examples include chemically synthesized polymers such as acids, natural polymers such as collagen, and the like. In consideration of mixing medicinal components, those having a low transition point are desirable. Preferable examples include polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, polycaprolactone, polyaspartic acid, poly (3-hydroxybutanoic acid) and the like. More preferable examples include polylactic acid, polyglycolic acid, and lactic acid-glycolic acid copolymers. These may be any one kind alone or a mixture of two or more kinds.

なお、生体分解性の樹脂を塗布する場合、樹脂の融点以上の温度に加熱し、溶液状の樹脂を常圧下、鋳型に塗布注入することを言う。溶融した樹脂が鋳型に密着するため、一般に離型時の摩擦抵抗が大きくなる傾向にあるが、本発明の場合、微小針が水平方向に存在するため、鋳型からの剥離は非常に容易である。それ故、微小針の先端部分の欠落はほとんど見られない状態になる。   In addition, when apply | coating biodegradable resin, it heats to the temperature more than melting | fusing point of resin, and means application | coating injection | pouring of solution-like resin to a casting_mold | template under normal pressure. Since the molten resin is in close contact with the mold, the frictional resistance at the time of mold release generally tends to increase, but in the case of the present invention, since the microneedles exist in the horizontal direction, peeling from the mold is very easy. . Therefore, almost no omission of the tip of the microneedle is observed.

本発明で言う「金属」とは、金属メッキに汎用される金属のことを言い、例えばNi、NiFe、Au又はCuを挙げることができる。好ましいものとして、Niを挙げることができる。   The “metal” referred to in the present invention refers to a metal widely used for metal plating, and examples thereof include Ni, NiFe, Au, and Cu. A preferable example is Ni.

本発明で言う「金属メッキ」とは、当該分野の一般的な手法を応用でき、例えば、Frazier,ら、「Two Dimensional metallic microelectrode arrays for extracellular stimulation and recording of neurons」IEEE Proceeding of the Micro Electro Mechanical Systems Conference 195−200頁(1993)に記載の方法に準じて行うことができる。   “Metal plating” as used in the present invention can be applied to a general technique in the field, for example, Frazier, et al., “Two Dimensional metallic microarray array for extra cellular engineering and recording of the first generation of the Efforts”. It can carry out according to the method as described in Conference 195-200 pages (1993).

本発明のL字型微小針を大量に製造するためには、その鋳型となるPDMS製の微小針鋳型を数多く製造する必要がある。何故なら、PDMS製鋳型は強度的に弱い材質のものであるため、十数回で使えなくなる状況にあるからである。そこで、PDMS製の鋳型を大量に製造するための金属母型が望まれることになる。金属製の微小針母型としては、例えば、図3〜5に記載の方法で容易に所望の微小針母型を作成することができる。すなわち、図3はSi母型の作製工程を示し、図4はスパッタリングによる皮膜形成工程を示し、図5はNiメッキによる転写と母型の除去工程を示す。図3〜図5において、11はSi基板、12はレジスト、13はTi/TiN膜、14はPd膜、15はNiメッキ膜であり、図3(a)はレジスト塗布工程、図3(b)はパターニング工程、図3(c)はエッチング工程を示す。また、図5(a)はNiメッキによる転写工程、図5(b)はSi母型の除去工程を示す。   In order to manufacture a large amount of the L-shaped microneedles of the present invention, it is necessary to manufacture a large number of PDMS microneedle molds as the molds. This is because the PDMS mold is made of a material that is weak in strength and can no longer be used after a dozen times. Therefore, a metal matrix for producing a large amount of PDMS molds is desired. As the metal microneedle matrix, for example, a desired microneedle matrix can be easily created by the method shown in FIGS. That is, FIG. 3 shows the manufacturing process of the Si matrix, FIG. 4 shows the film formation process by sputtering, and FIG. 5 shows the transfer process by Ni plating and the removal process of the matrix. 3 to 5, 11 is a Si substrate, 12 is a resist, 13 is a Ti / TiN film, 14 is a Pd film, 15 is a Ni plating film, FIG. 3 (a) is a resist coating process, and FIG. ) Shows a patterning step, and FIG. 3C shows an etching step. FIG. 5A shows a transfer process by Ni plating, and FIG. 5B shows a process of removing the Si matrix.

図3、4の工程としては、具体的には、例えば、ICP−RIEを用いてSi基板をエッチングし、四角柱状の微小針作製のための四角形の溝をSi基板上に形成させることが挙げられる。図13は、エッチングされたSi基板の断面の写真(該当する四角形の溝部分)である。図5の工程としては、具体的には、例えば、Ti、Pdを下地金属としたNiメッキを行い、Si基板を除去して、Ni製の微小針母型を得ることができる。図14はNi製母型を斜めから見た写真(四角柱状の先端部分)である。   3 and 4, specifically, for example, etching the Si substrate using ICP-RIE to form a square groove on the Si substrate for manufacturing a quadrangular columnar microneedle. It is done. FIG. 13 is a photograph of a cross section of an etched Si substrate (corresponding square groove). Specifically, as the process of FIG. 5, for example, Ni plating using Ti and Pd as a base metal is performed, and the Si substrate is removed, thereby obtaining a Ni microneedle matrix. FIG. 14 is a photograph (a quadrangular columnar tip portion) of the Ni mother die seen from an oblique direction.

本発明の連子窓状L字型微小針デバイスにおいて、好適態様は以下の通りである。
L字型の微小針は、複数の格子を持つ連子窓状の基板の中、各格子の側壁に複数の微小針が設置されている。最初、微小針の先端は隣接する格子の方向に向いているが、冶具により、微小針は折り曲げられ、微小針の先端の向きが連子窓の平面に対して垂直方向(直交方向)に変えられて、L字型になっている。L字型の微小針としては、連子窓の平面より30μm以上の長さの針先が垂直方向に突出することが好ましい。突出長さは、より好ましくは300μm〜1mmである。デバイス1個当たりのL字型微小針の数は、必要に応じて増減可能であるが、剣山型のデバイスを構成する場合10〜500本程度(好ましくは100〜400本程度)である。
また、格子の本数は複数が好ましく、L字型の微小針の長さに応じて、適宜その本数を増減することができる。
また、格子1本当たりに設けられる微小針の本数としては、格子の側壁(片面)当たり20〜200本程度である。微小針の材質強度や微小針の根元の太さ等の形状に応じて、適宜、微小針の本数を増減でき、好ましくは、格子の側壁(片面)当たり25〜100本程度である。
In the continuous window L-shaped microneedle device of the present invention, preferred embodiments are as follows.
In the L-shaped microneedle, a plurality of microneedles are provided on the side wall of each lattice in a continuous window-like substrate having a plurality of lattices. At first, the tip of the microneedle is oriented in the direction of the adjacent lattice, but the microneedle is bent by the jig, and the direction of the tip of the microneedle is changed to the vertical direction (orthogonal direction) with respect to the plane of the continuous window. , L-shaped. As an L-shaped microneedle, it is preferable that a needle tip having a length of 30 μm or more protrudes in the vertical direction from the plane of the continuous window. The protrusion length is more preferably 300 μm to 1 mm. The number of L-shaped microneedles per device can be increased or decreased as necessary, but is about 10 to 500 (preferably about 100 to 400) when constituting a Kenyama type device.
Also, the number of lattices is preferably plural, and the number can be increased or decreased as appropriate according to the length of the L-shaped microneedle.
Further, the number of microneedles provided per grid is about 20 to 200 per side wall (one side) of the grid. The number of microneedles can be appropriately increased or decreased depending on the material strength of the microneedles, the thickness of the base of the microneedles, and the like, and preferably about 25 to 100 per side wall (one side) of the lattice.

本発明の微小針の形状は、2段階の折り曲げ方式を実施することから、従来の1段階の鋳型工法では得られないような形状のものも容易に作成することができる。例えば、銛状、蚊の針状等の任意の形状の微小針を作成できる。好ましいものとしては、半円柱状、半円錐状、角錐状、銛状又は蚊の針状を挙げることができる。   Since the shape of the microneedle of the present invention is a two-stage bending method, a shape that cannot be obtained by the conventional one-step mold method can be easily created. For example, a microneedle having an arbitrary shape such as a spider or a mosquito needle can be created. Preferable examples include a semi-cylindrical shape, a semi-conical shape, a pyramid shape, a hook shape, or a mosquito needle shape.

以下、実施例を示して本発明をより具体的に説明する。但し、本発明は以下の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(実施例1:ポリ乳酸製連子状微小針の作製)
(1)SU−8微小針母型の作製
感光性ホトレジスト(SU−8)をスピンコート法により、厚さ500μmのSi平板(直径4インチ)に用いて厚さ約100μmに被膜した。連子窓状の微小針のパターンをUV露光で描画した。デッピング法により現像し、該連子窓状微小針の形状に対応する感光性レジストを残した。得られたSU−8微小針母型を図6と図7に示す。
(2)PDMS製の微小針鋳型の作製
上記(1)で得られたSU−8製微小針母型を用いて、PDMS(SILPOT 184W/C(ダウ・コーニング社製、商品名))と重合触媒を10:1で混合し、該母型が隠れるところまで、該混合液を流し込んで平板上にする。温度を30分間70℃に設定し、PDMSを硬化させる。冷却後、該母型と離型させることにより、PDMS製の微小針鋳型を作製することができた。得られたPDMS製の微小針鋳型を図8と図9に示す。
(3)ポリ乳酸製微小針の作製
上記(2)で得られたPDMS製鋳型を使用し、ポリ乳酸樹脂を120℃近傍に加熱し、該PDMS鋳型に塗布する。ポリ乳酸樹脂の温度が50℃近傍に低下した時点で鋳型とポリ乳酸樹脂を離型させる。離型に際しては粘着性の表面を持った冶具を必要に応じて使用し、ポリ乳酸製微小針を離型させる。得られた微小針に付着するポリ乳酸樹脂の不要なバリをカットして、ポリ乳酸樹脂製の平面状微小針を得た。得られたポリ乳酸樹脂製微小針を図10と図11に示す。
(Example 1: Production of polylactic acid continuous needles)
(1) Production of SU-8 microneedle matrix Photosensitive photoresist (SU-8) was coated on a Si flat plate (diameter 4 inches) with a thickness of about 100 μm by spin coating. The pattern of the continuous needle-like microneedles was drawn by UV exposure. Development was performed by a dipping method to leave a photosensitive resist corresponding to the shape of the continuous window-like microneedles. The obtained SU-8 microneedle matrix is shown in FIGS.
(2) Production of PDMS microneedle mold Using the SU-8 microneedle mold obtained in (1) above, polymerization with PDMS (SILPOT 184W / C (Dow Corning, trade name)) and polymerization The catalyst is mixed 10: 1 and the mixture is poured onto a flat plate until the matrix is hidden. The temperature is set at 70 ° C. for 30 minutes to cure the PDMS. After cooling, the microneedle mold made of PDMS could be produced by releasing from the mother mold. The obtained PDMS microneedle mold is shown in FIGS.
(3) Production of polylactic acid microneedles Using the PDMS mold obtained in (2) above, the polylactic acid resin is heated to around 120 ° C. and applied to the PDMS mold. When the temperature of the polylactic acid resin is lowered to around 50 ° C., the mold and the polylactic acid resin are released from the mold. When releasing, a jig having an adhesive surface is used as necessary to release the polylactic acid microneedles. Unnecessary burrs of the polylactic acid resin adhering to the obtained microneedles were cut to obtain planar microneedles made of polylactic acid resin. The obtained polylactic acid resin microneedles are shown in FIGS.

(実施例2:ポリ乳酸製L字型微小針の作製)
実施例1で得られたポリ乳酸製微小針又は冶具を約80〜100℃に加熱し、連子窓に冶具を押し付けた。これにより、微小針の方向を約90度曲げる操作を行ない、L字型のポリ乳酸製微小針を得た。得られたL字微小針を図12に示す。
(Example 2: Production of L-shaped micro needle made of polylactic acid)
The polylactic acid microneedle or jig obtained in Example 1 was heated to about 80 to 100 ° C., and the jig was pressed against the continuous window. Thereby, the operation of bending the direction of the microneedle by about 90 degrees was performed, and an L-shaped polylactic acid microneedle was obtained. The obtained L-shaped microneedle is shown in FIG.

(実施例3:金属鋳型によるポリ乳酸製連子状微小針の作製)
(1)金属製の微小針鋳型の作製
実施例1(1)で得られたSU−8製微小針母型を用いて、pH4.5のニッケルメッキ水溶液(スルファミン酸ニッケル、ホウ酸、ラウリル硫酸ナトリウム)に浸漬し、50℃で20時間、メッキ処理を行う。
メッキ処理されたSi板をHNO/HF溶液でウェットエッチングを行い、SiおよびSU−8を除去した。これにより、微小針のニッケル鋳型を作製する。
(2)ポリ乳酸製微小針の作製
上記実施例1(3)と同様にしてニッケル製鋳型を使用し、ポリ乳酸樹脂を120℃近傍に加熱し、該鋳型に塗布する。ポリ乳酸樹脂の温度が50℃近傍に低下した時点で該鋳型とポリ乳酸樹脂を離型させる。離型したポリ乳酸樹脂の不要なバリをカットして、ポリ乳酸樹脂製の微小針を得た。
(3)ポリ乳酸製L字型微小針の作製
上記実施例2と同様にして、ポリ乳酸製L字型微小針を作製することができる。
(Example 3: Production of polylactic acid continuous microneedle using metal mold)
(1) Production of metal microneedle mold Using the SU-8 microneedle matrix obtained in Example 1 (1), a pH 4.5 nickel plating aqueous solution (nickel sulfamate, boric acid, lauryl sulfate) (Sodium) and plating is performed at 50 ° C. for 20 hours.
The plated Si plate was wet etched with an HNO 3 / HF solution to remove Si and SU-8. Thereby, a nickel mold of a micro needle is produced.
(2) Preparation of polylactic acid microneedle A nickel mold is used in the same manner as in Example 1 (3), and a polylactic acid resin is heated to around 120 ° C. and applied to the mold. When the temperature of the polylactic acid resin is lowered to around 50 ° C., the mold and the polylactic acid resin are released. Unnecessary burrs of the released polylactic acid resin were cut to obtain microneedles made of polylactic acid resin.
(3) Preparation of polylactic acid L-shaped microneedle In the same manner as in Example 2, a polylactic acid L-shaped microneedle can be manufactured.

(実施例4:金属製微小針母型を用いるL字型微小針の製造)
(1)PDMS製の微小針鋳型の作製
上記金属製微小針母型を用いて、実施例1に準じて、PDMS(SILPOT 184W/C)処理を行い、PDMS製の微小針鋳型を作製する。
(2)ポリ乳酸製微小針の作製
上記PDMS製鋳型を使用し、実施例1に準じて、ポリ乳酸樹脂を用い、ポリ乳酸樹脂製の微小針を作製する。
(3)ポリ乳酸製L字型微小針の作製
上記ポリ乳酸製微小針を用いて、実施例1に準じて、微小針の方向を約90度曲げる操作を行ない、L字型微小針の作製を行うことができる。
(Example 4: Production of an L-shaped microneedle using a metal microneedle matrix)
(1) Production of PDMS microneedle mold Using the metal microneedle matrix, PDMS (SILPOT 184W / C) treatment is performed according to Example 1 to produce a PDMS microneedle mold.
(2) Production of polylactic acid microneedles Using the above-mentioned PDMS mold, polylactic acid resin is used and polylactic acid resin microneedles are produced according to Example 1.
(3) Preparation of L-shaped microneedle made of polylactic acid Using the above-mentioned microneedle made of polylactic acid, an operation of bending the direction of the microneedle by about 90 degrees was performed in accordance with Example 1 to produce an L-shaped microneedle. It can be performed.

本発明の微小針デバイスの2段階製造方法の工程別の概略断面図である。It is a schematic sectional drawing according to process of the two-stage manufacturing method of the microneedle device of the present invention. 本発明の微小針デバイスの2段階製造方法の工程別の概略斜視図である。It is a schematic perspective view according to process of the two-stage manufacturing method of the microneedle device of this invention. 金属製微小針母型の製造方法の概略である。It is the outline of the manufacturing method of a metal microneedle mother die. 金属製微小針母型の製造方法の概略図である。It is the schematic of the manufacturing method of metal microneedle mother molds. 金属製微小針母型の製造方法の概略図である。It is the schematic of the manufacturing method of metal microneedle mother molds. SU−8製の微小針母型の形態(写真)である。It is a form (photograph) of a micro needle matrix made of SU-8. SU−8製の微小針母型の拡大写真である。It is an enlarged photograph of a micro needle matrix made of SU-8. PDMS製の微小針鋳型の形態(写真)である。It is a form (photograph) of a microneedle mold made of PDMS. PDMS製の微小針鋳型の拡大写真である。It is an enlarged photograph of the micro needle mold made from PDMS. ポリ乳酸製の微小針の形態(写真)である。It is the form (photograph) of the microneedle made from polylactic acid. ポリ乳酸製の微小針の拡大写真である。It is an enlarged photograph of the micro needle made from polylactic acid. L字型ポリ乳酸製微小針の形態(写真)である。It is a form (photograph) of an L-shaped polylactic acid microneedle. エッチングされたSi基板の形態(エッチング個所の断面写真)である。It is the form (cross-sectional photograph of the etching part) of the etched Si substrate. Ni製母型の写真(エッチング個所の先端部分の斜視写真)である。It is a photograph (a perspective photograph of the tip part of an etching location) of a mother die made of Ni.

符号の説明Explanation of symbols

1 基板
2 レジスト膜
3 ホトレジスト製母型
4 PDMS
5 PDMS製鋳型
6 生体分解性樹脂
7 連子窓状の微小針デバイス

1 Substrate 2 Resist film 3 Photoresist matrix 4 PDMS
5 PDMS mold 6 Biodegradable resin 7 Conduit window-shaped microneedle device

Claims (8)

次の工程(1)〜(4)を含む、L字型微小針デバイスの製造方法。
(1)ホトレジスト製又はSi製母型の作製工程:以下のa)ホトレジスト製母型の作製工程か、又は、b)Si製母型の作製工程を実施する。
a)ホトレジスト製母型の作製工程:
i)厚膜ホトレジストを基板に塗布し乾燥させて、レジスト膜を形成する、
ii) レジスト膜に、連子窓状のパターンを露光し、ベーキングした後に現像して、ホトレジスト製の母型を得る、
b)Si製母型の作製工程:
i)Si基板に、ホトレジストをスピンコート法により成膜する、
ii)連子窓状のパターンを描画し、現像する、
iii)エッチングプロセスにより、連子窓状の描画パターンをSi基板に転写する、
iv)残存するレジストを除去する、
(2)PDMS製又は金属製鋳型の作製工程:以下のa)PDMS製鋳型の作製工程か、又は、b)金属製鋳型の作製工程を実施する。
a)PDMS製鋳型の作製工程:
i)上記工程(1)で得られた厚膜ホトレジスト製母型に、未重合のPDMSを流し込んで熱硬化させる、
ii)硬化後にPDMSと母型を剥離して、PDMS製鋳型を作製する、
b)金属製鋳型の作製工程:
i)上記(1)で得られたホトレジスト製又はSi製母型に金属メッキ加工を行い、該母型を金属で被覆充填する、
ii)母型と金属メッキによる被覆物を剥離し、金属製鋳型を作製する、
(3)連子窓状の微小針デバイスの作製工程:
i)上記(2)で得られた鋳型の凹部に加熱融解した生体分解性樹脂を塗布する、
ii)冷却後、凹部のみに生体分解性樹脂を残す、
iii)鋳型から生体分解性樹脂製の連子窓状の微小針デバイスを剥離する、
(4)連子窓状の微小針デバイスからL字型微小針デバイスを作製する工程:
i)上記(3)で得られた連子窓状のデバイスの一部又は該デバイスに押し当てるために用意した冶具を生体分解性樹脂の遷移点以上で融点以下の温度に加熱する、
ii)連子窓状のデバイスの微小針部分に該冶具を押し当て微小針の方向を変える、
iii)冷却後、これらの治具を外し、微小針がL字型の微小針デバイスを得る、
A method for producing an L-shaped microneedle device, comprising the following steps (1) to (4).
(1) Photoresist or Si matrix fabrication process: The following a) photoresist matrix fabrication process or b) Si matrix fabrication process is carried out.
a) Production process of photoresist matrix:
i) A thick film photoresist is applied to the substrate and dried to form a resist film.
ii) A resist window pattern is exposed on the resist film, baked and then developed to obtain a matrix made of photoresist.
b) Si matrix fabrication process:
i) A photoresist is formed on the Si substrate by a spin coating method.
ii) Draw and develop a continuous window-like pattern,
iii) transferring the drawing pattern in a continuous window shape to the Si substrate by an etching process;
iv) remove the remaining resist,
(2) PDMS or metal mold production process: The following a) PDMS mold production process or b) metal mold production process is performed.
a) PDMS mold production process:
i) Pour unpolymerized PDMS into the thick-film photoresist mold obtained in the above step (1) and heat cure.
ii) After curing, the PDMS and the master mold are peeled off to produce a PDMS mold.
b) Metal mold production process:
i) Metal plating is performed on the photoresist or Si matrix obtained in (1) above, and the matrix is covered and filled with metal.
ii) peeling off the matrix and metal plating coating to produce a metal mold,
(3) Manufacturing process of a continuous needle-like microneedle device:
i) A biodegradable resin melted by heating is applied to the concave portion of the mold obtained in (2) above.
ii) After cooling, leave the biodegradable resin only in the recesses,
iii) peeling the biodegradable resin-made gland window-like microneedle device from the mold,
(4) A step of producing an L-shaped microneedle device from a continuous window-like microneedle device:
i) heating a jig prepared for pressing a part of the concentric window-like device obtained in (3) above or a temperature above the transition point of the biodegradable resin and below the melting point;
ii) Pressing the jig against the microneedle portion of the continuous window-like device to change the direction of the microneedle,
iii) After cooling, remove these jigs to obtain an L-shaped microneedle device.
生体分解性樹脂がポリ乳酸、ポリグリコール酸及び乳酸−グリコール酸の共重合体から選ばれる1種又は2種以上である、請求項1記載の製造方法。   The manufacturing method of Claim 1 whose biodegradable resin is 1 type (s) or 2 or more types chosen from the copolymer of polylactic acid, polyglycolic acid, and lactic acid-glycolic acid. 微小針の形が、半円柱状、半円錐状、角錐状、銛状又は蚊の針状である、請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein the shape of the micro needle is a semi-cylindrical shape, a semi-conical shape, a pyramid shape, a hook shape, or a mosquito needle shape. 金属メッキの金属が、ニッケル、銅、金又はクロムである、請求項1〜3のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 1-3 whose metal of metal plating is nickel, copper, gold | metal | money, or chromium. 金属メッキのメッキ加工が、電解メッキ又は無電解メッキである、請求項1〜4のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 1-4 whose plating process of metal plating is electrolytic plating or electroless plating. 以下の特徴を有する、生体分解性樹脂製の連子窓状L字型微小針デバイス。
a)複数の連子窓状の格子を持ち、
b)該格子には、複数の微小針が、隣接する格子に向かって設置されており、
c)微小針の先端は連子窓に直交する方向に伸びており、L字型の微小針を形成している。
A continuous window L-shaped microneedle device made of biodegradable resin having the following characteristics.
a) having a plurality of grid windows;
b) In the lattice, a plurality of microneedles are installed toward the adjacent lattice,
c) The tip of the microneedle extends in a direction perpendicular to the continuous window, forming an L-shaped microneedle.
生体分解性樹脂がポリ乳酸、ポリグリコール酸及び乳酸−グリコール酸の共重合体から選ばれる1種又は2種以上である、請求項6記載の連子窓状L字型微小針デバイス。   7. The continuous window L-shaped microneedle device according to claim 6, wherein the biodegradable resin is one or more selected from polylactic acid, polyglycolic acid and a copolymer of lactic acid-glycolic acid. 微小針の形が、半円柱状、半円錐状、角錐状、銛状又は蚊の針状である、請求項6又は7記載の連子窓状L字型微小針デバイス。   The conical window-shaped L-shaped microneedle device according to claim 6 or 7, wherein the shape of the microneedle is a semi-cylindrical shape, a semi-conical shape, a pyramid shape, a hook shape, or a mosquito needle shape.
JP2008051262A 2008-02-29 2008-02-29 L-shaped microneedle device and its manufacturing method Pending JP2009208171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051262A JP2009208171A (en) 2008-02-29 2008-02-29 L-shaped microneedle device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051262A JP2009208171A (en) 2008-02-29 2008-02-29 L-shaped microneedle device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009208171A true JP2009208171A (en) 2009-09-17

Family

ID=41181828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051262A Pending JP2009208171A (en) 2008-02-29 2008-02-29 L-shaped microneedle device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009208171A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017074023A (en) * 2015-10-16 2017-04-20 国立大学法人 香川大学 Method for manufacturing sap collection device
JP2018011712A (en) * 2016-07-20 2018-01-25 凸版印刷株式会社 Percutaneous administration device
CN109693324A (en) * 2018-12-27 2019-04-30 深圳职业技术学院 A kind of production method of polymer micro needle mold
JP2020505081A (en) * 2017-05-17 2020-02-20 ユニヴァーシティ メディカル ファーマスーティカル コーポレイション System and method for manufacturing a microneedle device
CN114146301A (en) * 2021-12-27 2022-03-08 广州纳丽生物科技有限公司 D-type microneedle and application thereof in ultramicro needle sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017074023A (en) * 2015-10-16 2017-04-20 国立大学法人 香川大学 Method for manufacturing sap collection device
JP2018011712A (en) * 2016-07-20 2018-01-25 凸版印刷株式会社 Percutaneous administration device
JP2020505081A (en) * 2017-05-17 2020-02-20 ユニヴァーシティ メディカル ファーマスーティカル コーポレイション System and method for manufacturing a microneedle device
CN109693324A (en) * 2018-12-27 2019-04-30 深圳职业技术学院 A kind of production method of polymer micro needle mold
CN114146301A (en) * 2021-12-27 2022-03-08 广州纳丽生物科技有限公司 D-type microneedle and application thereof in ultramicro needle sheet

Similar Documents

Publication Publication Date Title
EP2627605B1 (en) Process for producing highly ordered nanopillar or nanohole structures on large areas
JP5064743B2 (en) Manufacturing method of structure having recess pattern
JP5499668B2 (en) Imprint mold and pattern forming method using the mold
JP2009208171A (en) L-shaped microneedle device and its manufacturing method
JP2009241357A (en) Method for producing functional sheet
JP2006269919A (en) Pattern forming method
KR100537722B1 (en) Method and device for ultraviolet continuous curing method for fabrication of micro patterns using drum-type stamper
JP2009061745A (en) Method of manufacturing microneedle
JP2010260279A (en) Method of manufacturing mold stamper, mold stamper and method of producing molding
JP5747670B2 (en) Molded member and manufacturing method thereof
JP2009061197A (en) Production method of microneedle matrix made of uv cured resin
Lee et al. 3D replication using PDMS mold for microcoil
JP2008110494A (en) Method for producing member having uneven surface
KR101069545B1 (en) Fabrication device and method of flexible replica stamp for imprint lithography
JP2006334951A (en) Method for producing minute mold and minute mold
JP2006150807A (en) Mold for molding fine structure, preparation method of mold for molding fine structure and molding method of fine structure
KR100927481B1 (en) Method of manufacturing micro-nano metal structures
JP2006095901A (en) Plastic molding method, plastic molding device, and molding die
JP2005041164A (en) Resin mold for molding, manufacturing method for resin mold for molding and manufacturing method for lens sheet using resin mold for molding
KR101334120B1 (en) Stamp for imprint lithography and method of fabricating the stamp
JP6036865B2 (en) Imprint mold
JP2005053198A (en) Method for molding minute uneven shape
KR101008647B1 (en) A production method of A curved stamper having a curved surface
WO2016035524A1 (en) Roll mold manufacturing method and roll mold
JP2010147295A (en) Method for forming three-dimensional microstructure, and method for manufacturing liquid ejecting head