JP2009208072A - Water treatment method and device - Google Patents
Water treatment method and device Download PDFInfo
- Publication number
- JP2009208072A JP2009208072A JP2009024740A JP2009024740A JP2009208072A JP 2009208072 A JP2009208072 A JP 2009208072A JP 2009024740 A JP2009024740 A JP 2009024740A JP 2009024740 A JP2009024740 A JP 2009024740A JP 2009208072 A JP2009208072 A JP 2009208072A
- Authority
- JP
- Japan
- Prior art keywords
- water
- treated
- chlorine gas
- chlorine
- diaphragm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
- C02F1/4674—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/46115—Electrolytic cell with membranes or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/06—Sludge reduction, e.g. by lysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
この発明は、生物処理によらず汚泥が殆ど出ない有用な水処理方法及び機構に関するものである。 The present invention relates to a useful water treatment method and mechanism that produces almost no sludge regardless of biological treatment.
従来より、排水処理技術に関して各種の提案がなされているが(例えば特許文献1)、ある液晶製造工場では次のような水処理が行われている。
すなわち、地域のポンプ場から工業用水として地下水が液晶製造工場へと送水されてくる。このうち半分強が工場内の工水処理設備に供給され、シリカやカルシウム・マグネシウムなどの成分が除去される。そして、純水製造・供給設備へと送られ超純水が製造される。工場へ供給された用水のうち半分弱は空調用冷却塔へと供給され、大気への蒸発により、冷房用の冷水を作る装置で発生する熱を放散し、その残余分は活性炭濾過をし更に純水で希釈して川へと放流される。
前記超純水は液晶の製造工程でのガラス基板の洗浄、スクラバー排気の洗浄、冷却水製造装置などに使用される。超純水の排水は排水回収設備へと回収され、前記純水製造・供給設備との間で循環・再利用がなされる。
この液晶製造工場では大量の超純水が使用されており、その排水中には現像廃液その他の有機化合物が含有されている。これらの有機排水は生物処理により浄化しているが、凝集汚泥が多く発生するという問題があった。
このような水処理に関する問題は前記液晶製造工場のみならず、スイミング・プールの水質管理や食品加工場の排水その他における各種の水に共通する課題であり、あらゆる産業分野にわたった普遍的なものである。
That is, groundwater is sent from the local pumping station to the liquid crystal manufacturing factory as industrial water. Over half of this is supplied to the industrial water treatment facility in the factory, and components such as silica, calcium and magnesium are removed. And it is sent to a pure water production and supply facility, and ultrapure water is produced. Slightly less than half of the water supplied to the factory is supplied to the cooling tower for air conditioning, and by evaporation to the atmosphere, the heat generated by the device for producing cold water for cooling is dissipated, and the remainder is filtered with activated carbon. Diluted with pure water and released into the river.
The ultrapure water is used in glass substrate cleaning, scrubber exhaust cleaning, cooling water manufacturing equipment, and the like in the liquid crystal manufacturing process. The ultrapure water drainage is collected into a wastewater collection facility, and is circulated and reused with the pure water production / supply facility.
A large amount of ultrapure water is used in this liquid crystal manufacturing factory, and the wastewater contains a developing waste liquid and other organic compounds. These organic wastewaters are purified by biological treatment, but there is a problem that a large amount of coagulated sludge is generated.
These water treatment problems are common not only to the above-mentioned liquid crystal manufacturing factories, but also to various waters in water quality management of swimming pools, wastewater from food processing plants, etc., and are universal to all industrial fields. It is.
そこでこの発明は、従来のようには汚泥が発生しない水処理方法及び機構を提供しようとするものである。 Therefore, the present invention is intended to provide a water treatment method and mechanism that does not generate sludge as in the prior art.
前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この水処理方法は、有隔膜電流印加槽で塩素が溶存する水に電流を流してその陽極側から塩素ガスを発生せしめ(塩素ガス発生工程)、前記塩素ガスを回収して直接的又は間接的に被処理水に及ぼし汚れ評価指標を低減させる(汚れ評価指標低減工程)ようにしたことを特徴とする。
この水処理機構は、塩素が溶存する水に電流を流してその陽極側から塩素ガスを発生せしめる有隔膜電流印加槽を具備し、前記塩素ガスを回収して直接的又は間接的に被処理水に及ぼし汚れ評価指標を低減させるようにしたことを特徴とする。
前記塩素が溶存する水として、食塩水や次亜塩素酸ナトリウムが溶存する水を例示することができる。ここで、有隔膜電流印加槽で塩素が溶存する水(被処理水等)に電流を流すと陽極側が酸性雰囲気となり、塩素ガスを発生せしめることができる。前記塩素ガスを回収して直接的又は間接的に被処理水に及ぼし、その酸化作用により被処理水の汚れ評価指標を低減させることができる。
In order to solve the above problems, the present invention takes the following technical means.
(1) In this water treatment method, a current is passed through water in which chlorine is dissolved in a diaphragm membrane current application tank to generate chlorine gas from the anode side (chlorine gas generation step), and the chlorine gas is recovered directly. Alternatively, it is characterized in that it is indirectly applied to the water to be treated and the stain evaluation index is reduced (dirt evaluation index reduction step).
This water treatment mechanism is equipped with a diaphragm current application tank that allows a current to flow through water in which chlorine is dissolved to generate chlorine gas from the anode side, and collects the chlorine gas to directly or indirectly treat water to be treated. This is characterized in that the soil evaluation index is reduced.
Examples of the water in which chlorine is dissolved include water in which saline and sodium hypochlorite are dissolved. Here, when an electric current is passed through water in which chlorine is dissolved (treated water or the like) in the diaphragm membrane current application tank, the anode side becomes an acidic atmosphere, and chlorine gas can be generated. The chlorine gas is recovered and directly or indirectly applied to the water to be treated, and the oxidation evaluation index of the water to be treated can be reduced by the oxidation action.
この水処理方法及び機構は、有隔膜電流印加槽の陽極側から発生する塩素ガスを大気中に開放せずに回収し被処理水に及ぼして汚れ成分の結合を化学的に切断していくことにより汚れ評価指標が低減されるので、生物処理の場合のような汚泥(微生物の死骸等)は発生しない。また、陰極側の被処理水中の塩素イオン等の陰イオンは隔膜を介して陽極側に電気的に吸引され分離低減することができる(陰イオン低減作用)。
ここで、前記有隔膜電流印加槽の陰極側に汚れ評価指標の低減後の被処理水を供給するようにすると、その残留塩素濃度を塩基性雰囲気下で低減させることができ、被処理水中の余分なイオン(塩素イオン等)を後工程で膜により分離除去する際に膜がいたみ難いようにしてそのライフを伸ばすことができる。
前記被処理水として工場系排水、飲食店系排水、一般家庭系排水、PCBその他の汚染土壌系排水、塗装工場その他のVOCガスをスクラバー(scrubber、排ガス洗浄装置)により水中に置換した排水、プール水、浴場水などを例示することができ、何らかの浄化をする必要がある水は全て含まれるものであって、必ずしも捨てるものに限られるのではなく、工場系排水などのように浄化して再利用するものやプール水や浴場水のように浄化しつつ循環利用するものなども含まれるものとする。
また、被処理水中の汚れ成分として通常の有機成分(ホルムアルデヒドなど)や、ベンゼン、トルエン、ダイオキシン類、PCBなどの難分解性有機化合物、人体の皮膚表面などから溶出した汚れ成分、またアンモニア性窒素その他の無機成分を例示することができる。前記有隔膜電流印加槽には、食塩のような塩化物や次亜塩素酸を共存させて電気分解することができる。前記汚れ評価指標として、COD(化学的酸素要求量)やTOCなどを例示することができる。
In this water treatment method and mechanism, chlorine gas generated from the anode side of the diaphragm current application tank is recovered without opening it into the atmosphere, and is applied to the water to be treated to chemically cut off the binding of dirt components. As a result, the dirt evaluation index is reduced, so that sludge (such as dead microorganisms) is not generated as in the case of biological treatment. Further, anions such as chlorine ions in the water to be treated on the cathode side can be electrically attracted to the anode side through the diaphragm and separated and reduced (anion reduction action).
Here, if the treated water after the reduction of the dirt evaluation index is supplied to the cathode side of the diaphragm current application tank, the residual chlorine concentration can be reduced in a basic atmosphere, When excess ions (chlorine ions, etc.) are separated and removed by a membrane in a later step, the life of the membrane can be extended so that the membrane is difficult to be damaged.
Industrial wastewater, restaurant wastewater, general household wastewater, PCB and other contaminated soil wastewater, paint plant and other VOC gas replaced with water by scrubber (exhaust gas cleaning device) as the treated water, pool Water, bathhouse water, etc. can be exemplified, and all water that needs to be purified is included and is not necessarily limited to waste, but can be purified and reused as factory wastewater. It also includes items that are used and those that are recycled while being purified, such as pool water and bath water.
In addition, normal organic components (formaldehyde, etc.) as soil components in water to be treated, persistent organic compounds such as benzene, toluene, dioxins and PCBs, soil components eluted from human skin surfaces, and ammonia nitrogen Other inorganic components can be exemplified. The diaphragm current application tank can be electrolyzed in the presence of chloride such as sodium chloride or hypochlorous acid. Examples of the dirt evaluation index include COD (chemical oxygen demand) and TOC.
(2)回収した前記塩素ガスを被処理水に直接及ぼすようにしてもよい(塩素ガスによる直接的な処理態様)。例えば回収した塩素ガスを被処理水に直接吹き込むことができる。吹き込まれた塩素ガスは、汚れ成分に遭遇して直接的に分解したり、被処理水中の水や水酸イオンと化合して次亜塩素酸となって汚れ成分である有機化合物等を酸化してその結合を切断していくことにより汚れ評価指標を低減させることができる。
(3)回収した前記塩素ガスにより生成させた次亜塩素酸又は/及び次亜塩素酸ナトリウムを被処理水に及ぼすようにしてもよい(塩素ガスによる間接的な処理態様)。例えば、塩素ガスと水や水酸イオンにより次亜塩素酸が生成した酸化能を有する水を生成させて、これを被処理水に作用させることができる。また、回収した塩素ガスと水酸化ナトリウムを合わせることにより次亜塩素酸ナトリウムを生成せしめ、この次亜塩素酸ナトリウムを被処理水に及ぼすようにすることができる。
(2) The recovered chlorine gas may be directly applied to the water to be treated (direct treatment mode with chlorine gas). For example, the recovered chlorine gas can be directly blown into the water to be treated. The injected chlorine gas encounters dirt components and decomposes directly, or combines with water and hydroxide ions in the water to be treated to form hypochlorous acid and oxidize organic compounds that are dirt components. By cutting the bond, the dirt evaluation index can be reduced.
(3) Hypochlorous acid or / and sodium hypochlorite produced by the recovered chlorine gas may be applied to the water to be treated (indirect treatment mode with chlorine gas). For example, water having the oxidizing ability produced by hypochlorous acid can be generated by chlorine gas and water or hydroxide ions, and this can be applied to the water to be treated. Moreover, sodium hypochlorite can be produced by combining the recovered chlorine gas and sodium hydroxide, and this sodium hypochlorite can be applied to the water to be treated.
(4)前記被処理水を電気分解し陽極酸化して有隔膜電流印加槽の陰極側に送るようにしてもよい。このように構成すると、電気分解によって被処理水を直接陽極酸化して汚れ評価指標を低減せしめることができると共に、陽極酸化によって被処理水中に生成した残留塩素を有隔膜電流印加槽の陰極側で低減することができる。
(5)前記有隔膜電流印加槽の陰極側の被処理水からRO膜その他の分離膜によってイオンを分離するように構成すると、工業用水や飲料水などとして再利用することができる。
また、被処理水中に残存する残留塩素を活性炭触媒によって低減することができる。
(6)前記電気分解をする際に臭素が溶存するようにしてもよい。このように構成すると、電気分解の際の次亜塩素酸による酸化能の作用領域を、次亜臭素酸によって広いpH範囲に拡大することができる。すなわち、次亜塩素酸の酸化能はpH5.5で最大となりここを山の頂点として両側に向け減少していくが、臭素が共存すると次亜臭素酸が生成して酸化能の山の頂点をpH5.5からpH8程度まで引っ張って台形状に拡張することができる。つまり、臭化ナトリウム、臭化カリウム、次亜臭素酸などのように臭素を共存させておくと、有効塩素の活性領域を有効臭素によって中性領域からアルカリ性領域にまで拡大させることができる。
(7)前記被処理水は、水とプロトン性の両親媒性溶媒と非プロトン性の両親媒性溶媒と疎水性有機成分とを相溶させたものであることとしてもよい。
このように構成すると、汚れ成分が疎水性有機成分であって水に溶解し難い場合であっても水中に相溶させて浄化処理を行うことができる。すなわち、両親媒性溶媒としてプロトン性のものと非プロトン性のものを共に相溶させるようにすると、プロトン性の両親媒性溶媒(IPAなど)は疎水性有機成分(ベンゼンなど)側に疎水基が配位し水側にプロトン性の親水基(水酸基など)が配位することとなり、非プロトン性の両親媒性溶媒(DMSOなど)は疎水性有機成分(ベンゼンなど)側に疎水基が配位し水側に非プロトン性の親水基(カルボニル酸素など)が配位することとなり、水側に配位する親水基はプロトン性か非プロトン性かのどちらかだけに偏ることはないので相互間の親和性が増大することとなり、疎水性有機成分と水との相溶性を向上させることができる。
具体的には、水とプロトン性の両親媒性溶媒(IPAなど)のみで(非プロトン性は配合せず)疎水性有機成分(ベンゼンなど)を相溶させようとするとなかなか相溶せずかなりの量の溶媒が必要となり、水と非プロトン性の両親媒性溶媒(DMSOなど)のみで(プロトン性は配合せず)疎水性有機成分(ベンゼンなど)を相溶させようとするとなかなか相溶せずかなりの量の溶媒が必要となったが、両親媒性溶媒としてプロトン性のものと非プロトン性のものを共に相溶させることにより、これら溶媒の量が単独の場合より相対的に少ない場合でも疎水性有機成分を相溶させることができるようになった。この両親媒性溶媒は、疎水性有機成分を電気分解するため水中に導入するという意義の他に浄化されるべき有機成分としての一面を有しており、その量を少なくできると最終的な浄化度(例えばCOD量など)の向上に寄与することができる。
また、分子間力などにより会合していた疎水性有機成分(ベンゼンなど)相互間に両親媒性溶媒(IPA、DMSOなど)と水が介在し相溶させた状態で電気分解することとなり、会合していた疎水性有機成分の分子の相互間は分離・離反され元々の集合が細分化されていることとなり、疎水性有機成分の分子は酸化作用を周囲からダイレクトに受けて分子内の結合が分断されていくこととなる。両親媒性溶媒は電気分解時に水と疎水性有機成分との間に介在する助剤として作用し、疎水性有機成分は酸化作用を有効に及ぼしめられる。
ここで、前記両親媒性溶媒としてプロトン性のIPA(イソプロピルアルコール)、エタノール、メタノール、MEA(モノエタノールアミン)、非プロトン性のDMSO(ジメチルスルホキシド)、DMAc(ジメチルアセトアミド)などを例示することができ、これらプロトン性と非プロトン性とを適宜に組み合わせて使用することができる。
前記疎水性有機成分としてベンゼン、トルエン、キシレン、スチレンなどを例示することができる。また、土壌汚染が問題となっているダイオキシン類、PCBなどの難分解性有機化合物、人体の皮膚表面などから溶出した汚れ成分などを例示することができる。前記汚染された土壌を水とプロトン性の両親媒性溶媒と非プロトン性の両親媒性溶媒で洗浄し、この洗浄水を前記のようにして浄化することができる。
(4) The treated water may be electrolyzed, anodized, and sent to the cathode side of the diaphragm current application tank. With this configuration, the water to be treated can be directly anodized by electrolysis to reduce the dirt evaluation index, and residual chlorine generated in the water to be treated by anodization can be reduced on the cathode side of the diaphragm current application tank. Can be reduced.
(5) If ions are separated from the water to be treated on the cathode side of the diaphragm membrane current application tank by an RO membrane or other separation membrane, it can be reused as industrial water or drinking water.
Further, residual chlorine remaining in the water to be treated can be reduced by the activated carbon catalyst.
(6) Bromine may be dissolved during the electrolysis. If comprised in this way, the action | operation area | region of the oxidation ability by hypochlorous acid in the case of electrolysis can be expanded to a wide pH range with hypochlorous acid. In other words, the oxidation capacity of hypochlorous acid becomes maximum at pH 5.5 and decreases toward both sides at the peak of this peak, but when bromine coexists, hypobromous acid is generated and the peak of the oxidation capacity peak is reached. It can be extended to a trapezoidal shape by pulling from about pH 5.5 to about pH 8. That is, when bromine is present together such as sodium bromide, potassium bromide, and hypobromite, the active region of effective chlorine can be expanded from the neutral region to the alkaline region by effective bromine.
(7) The water to be treated may be a mixture of water, a protic amphiphilic solvent, an aprotic amphiphilic solvent, and a hydrophobic organic component.
If comprised in this way, even if a stain | pollution | contamination component is a hydrophobic organic component and it is hard to melt | dissolve in water, it can be made to melt | dissolve in water and a purification process can be performed. In other words, if both the protic and aprotic solvents are mixed together as the amphiphilic solvent, the protic amphiphilic solvent (IPA, etc.) will become hydrophobic on the hydrophobic organic component (benzene, etc.) side. Coordinates to a protic hydrophilic group (such as a hydroxyl group) on the water side, and an aprotic amphiphilic solvent (such as DMSO) coordinates a hydrophobic group on the hydrophobic organic component (such as benzene) side. The aprotic hydrophilic groups (carbonyl oxygen, etc.) are coordinated to the water side, and the hydrophilic groups coordinated to the water side are not biased to either protic or aprotic. The compatibility between the hydrophobic organic component and water can be improved.
Specifically, when water and a protic amphiphilic solvent (such as IPA) are used alone (aproticity is not blended) and a hydrophobic organic component (such as benzene) is tried to be compatible, it is quite incompatible. The amount of the solvent is required, and it is quite compatible if the hydrophobic organic component (such as benzene) is compatible with only water and an aprotic amphiphilic solvent (such as DMSO) (does not contain protic). A considerable amount of solvent was required, but the amount of these solvents was relatively less than that of a single solvent by compatibilizing the protic and aprotic solvents together. Even in this case, the hydrophobic organic component can be dissolved. This amphiphilic solvent has one aspect as an organic component to be purified in addition to the significance of introducing a hydrophobic organic component into water for electrolysis, and if the amount can be reduced, the final purification This can contribute to improvement of the degree (for example, COD amount).
In addition, hydrophobic organic components (such as benzene) that have been associated due to intermolecular forces and the like are electrolyzed in a state in which an amphiphilic solvent (such as IPA and DMSO) and water are present and incompatible with each other. The molecules of the hydrophobic organic component were separated and separated from each other and the original assembly was subdivided, and the molecules of the hydrophobic organic component were directly subjected to oxidation from the surroundings, and the bonds within the molecule were It will be divided. The amphiphilic solvent acts as an auxiliary agent interposed between water and the hydrophobic organic component during electrolysis, and the hydrophobic organic component effectively exerts an oxidizing action.
Examples of the amphiphilic solvent include protic IPA (isopropyl alcohol), ethanol, methanol, MEA (monoethanolamine), aprotic DMSO (dimethyl sulfoxide), DMAc (dimethylacetamide), and the like. These protic and aprotic can be used in appropriate combination.
Examples of the hydrophobic organic component include benzene, toluene, xylene, styrene and the like. Further, examples include dioxins in which soil contamination is a problem, persistent organic compounds such as PCB, dirt components eluted from the skin surface of the human body, and the like. The contaminated soil can be washed with water, a protic amphiphilic solvent and an aprotic amphiphilic solvent, and the washing water can be purified as described above.
この発明は上述のような構成であり、次の効果を有する。
被処理水中の汚れ成分の結合を化学的に切断していくことにより汚れ評価指標が低減されるので、従来の生物処理のような汚泥(微生物の死骸等)は発生しない水処理方法及び機構を提供することができる。
The present invention is configured as described above and has the following effects.
Since the soil evaluation index is reduced by chemically cutting the binding of soil components in the water to be treated, a water treatment method and mechanism that does not generate sludge (such as dead microorganisms) as in conventional biological treatment. Can be provided.
以下、この発明の実施の形態を図面を参照して説明する。
図1に示すように、この実施形態では、被処理水(N,N−ジメチルアセトアミドとモノエタノールアミンを含有する有機排水)は原水槽1に貯留せしめられ、この原水槽1からポンプPにより第1反応槽2へと送られる(流量140cc/分)。前記原水槽1と第1反応槽2との間の配管には、食塩水3がポンプPにより合流せしめられる。第1反応槽2のCODは、約300ppmであった。ここで、食塩水の代わりに次亜塩素酸ナトリウム水を用いてもよい。なお図中、Sは水位センサー、Vはバルブを示す。
この水処理機構は、食塩が溶存する水(食塩濃度約1〜30%)に電流(電流密度約1〜80A/dm2)を流してその陽極側から塩素ガス4を発生せしめる有隔膜電流印加槽5を具備する。この有隔膜電流印加槽5で食塩が溶存する水に電流を流すと、陽極側が酸性雰囲気(pH1〜3程度)となり塩素ガス4が発生する。一方、陰極側は塩基性雰囲気となる(pH12〜14程度)。この陽極側水は循環させておらず、流入した分は一方通行で槽内でストップするようにしている。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, in this embodiment, water to be treated (organic drainage containing N, N-dimethylacetamide and monoethanolamine) is stored in a raw water tank 1, and the water is supplied from the raw water tank 1 by a pump P. 1 sent to reaction tank 2 (flow rate 140 cc / min). A saline solution 3 is joined by a pump P to a pipe between the raw water tank 1 and the first reaction tank 2. The COD of the first reaction tank 2 was about 300 ppm. Here, sodium hypochlorite water may be used instead of saline. In the figure, S indicates a water level sensor and V indicates a valve.
This water treatment mechanism applies a diaphragm current that generates chlorine gas 4 from the anode side by passing a current (current density of about 1 to 80 A / dm 2 ) through water in which salt is dissolved (salt concentration of about 1 to 30%). A tank 5 is provided. When a current is passed through water in which salt is dissolved in the diaphragm current application tank 5, the anode side becomes an acidic atmosphere (pH about 1 to 3), and chlorine gas 4 is generated. On the other hand, the cathode side has a basic atmosphere (about pH 12 to 14). This anode side water is not circulated, and the inflow is stopped in the tank by one way.
そして、陽極側で発生した前記塩素ガス4は気密性を担保して回収し直接的、間接的に被処理水に及ぼし、その酸化作用により被処理水のCODを低減させるようにしている。
すなわち第一に、回収した前記塩素ガス4を被処理水に直接及ぼすようにしている。具体的には、有隔膜電流印加槽5の陽極側で発生した塩素ガス4をエアポンプAPにより配管を介して被処理水に吹き込み、第1反応槽2でよく混合させるようにしている(被処理水は一定時間滞留される)。吹き込まれた塩素ガスは、汚れ成分(有機化合物)に遭遇して直接分解せしめ、また被処理水中の水や水酸イオンと化合して次亜塩素酸(HOCl)となって汚れ成分を攻撃してその結合を切断していくことによりCODを低減させる。
The chlorine gas 4 generated on the anode side is recovered while ensuring airtightness and directly or indirectly exerts on the water to be treated, and its oxidizing action reduces the COD of the water to be treated.
That is, first, the recovered chlorine gas 4 is directly applied to the water to be treated. Specifically, the chlorine gas 4 generated on the anode side of the diaphragm current application tank 5 is blown into the water to be treated through the piping by the air pump AP and is well mixed in the first reaction tank 2 (the treatment target). Water is retained for a certain time). The injected chlorine gas encounters dirt components (organic compounds) and decomposes them directly, and also combines with water and hydroxide ions in the treated water to form hypochlorous acid (HOCl) and attack the dirt components. The COD is reduced by breaking the bond.
第二に、回収した前記塩素ガス4により次亜塩素酸ナトリウム(NaOCl)や次亜塩素酸を生成させ、この次亜塩素酸ナトリウム等を処理水に及ぼすようにしている。すなわち、回収した塩素ガスを次亜塩素酸生成槽6(水酸化ナトリウム水溶液を貯留しておく)に導入することにより次亜塩素酸ナトリウムを生成せしめ、この次亜塩素酸ナトリウムをポンプPにより配管を介して被処理水に及ぼし、第1反応槽2でよく混合させるようにしている(被処理水は一定時間滞留される)。ここで、前記次亜塩素酸生成槽6へは、有隔膜電流印加槽5の陰極側の処理水の一部を補充できるようにしている。この次亜塩素酸生成槽6で、補充された陰極側のアルカリ水と塩素ガスとが化合し次亜塩素酸が生成することとなる。 Secondly, sodium hypochlorite (NaOCl) or hypochlorous acid is generated by the recovered chlorine gas 4 and this sodium hypochlorite or the like is applied to the treated water. That is, the recovered chlorine gas is introduced into a hypochlorous acid generation tank 6 (a sodium hydroxide aqueous solution is stored) to generate sodium hypochlorite, and this sodium hypochlorite is piped by a pump P. The first reaction tank 2 is mixed well so that the water to be treated is retained for a certain period of time. Here, the hypochlorous acid production tank 6 can be supplemented with a part of the treated water on the cathode side of the diaphragm current application tank 5. In this hypochlorous acid production tank 6, the supplemented alkaline water on the cathode side and chlorine gas combine to produce hypochlorous acid.
そして、前記第1反応槽2で塩素ガスにより直接的、間接的に分解された被処理水を無隔膜の電解槽7に送り、この電解槽7で電気分解(陽極酸化)してCODを低減せしめ(電流密度約1〜80A/dm2)、有隔膜電流印加槽5に送るようにしている。すなわち被処理水のCODは、塩素ガス自体、塩素ガスに起因する次亜塩素酸、電解陽極酸化のそれぞれにより低減せしめられる。
ところで、電解槽7における電気分解によって被処理水中に残留塩素(Cl2、HOCl)が生成しCODが低減されるが、この残留塩素を既述の有隔膜電流印加槽5の陰極側で低減するようにしている。すなわち、前記有隔膜電流印加槽5の陰極側に被処理水を供給すると、その残留塩素濃度を塩基性雰囲気下で低減させることができる。なお、被処理水の一部は陽極側へと還流するようにしている。
Then, the water to be treated, which is directly or indirectly decomposed by chlorine gas in the first reaction tank 2, is sent to the electrolyzed electrolytic tank 7, which is electrolyzed (anodized) to reduce COD. It is made to send to the diaphragm membrane current application tank 5 with a caulking (current density of about 1 to 80 A / dm 2 ). That is, the COD of the water to be treated is reduced by the chlorine gas itself, hypochlorous acid caused by the chlorine gas, and electrolytic anodic oxidation.
By the way, residual chlorine (Cl 2 , HOCl) is generated in the water to be treated by electrolysis in the electrolytic cell 7, and COD is reduced. This residual chlorine is reduced on the cathode side of the diaphragm current application tank 5 described above. I am doing so. That is, when water to be treated is supplied to the cathode side of the diaphragm membrane current application tank 5, the residual chlorine concentration can be reduced in a basic atmosphere. A part of the water to be treated is refluxed to the anode side.
前記有隔膜電流印加槽5の陰極側に通した処理後の被処理水は、還元剤(重亜流酸ナトリウム)8をポンプPで注入して第2反応槽9(被処理水は一定時間滞留される)でよく混合させて残留塩素濃度をより低減せしめ、次の活性炭触媒槽10で更に残留塩素を除去し第3反応槽11(被処理水は一定時間滞留される)を経て、RO膜その他の脱塩膜12によってイオンを分離する。最終的にCODは5ppm以下となった。この最終処理水の一部は、配管を通じて第1反応槽2の前にフィード・バックして循環させられるようにしている。すなわち、最終処理水のフィード・バック経路13はそのまま原水槽1へと送られるようにし、フィード・バック経路14は既述の塩素ガス4を混合させて第1反応槽2へと送られるようにしている。
なお、被処理水にアンモニア性窒素も含有されている場合、次亜塩素酸によって最終的に窒素ガスに分解されるものと推測された。
The treated water that has passed through the cathode side of the diaphragm current application tank 5 is treated with a reducing agent (sodium bisulfite) 8 injected by a pump P, and the second reaction tank 9 (treated water stays for a certain period of time). The residual chlorine concentration is further reduced by mixing in step 3), the residual chlorine is further removed in the next activated carbon catalyst tank 10, and the RO membrane is passed through the third reaction tank 11 (the treated water is retained for a certain period of time). Ions are separated by other desalting membranes 12. Finally, the COD was 5 ppm or less. A part of this final treated water is fed back and circulated in front of the first reaction tank 2 through a pipe. That is, the final treated water feed-back path 13 is sent to the raw water tank 1 as it is, and the feed-back path 14 is mixed with the chlorine gas 4 described above and sent to the first reaction tank 2. ing.
In addition, when ammonia nitrogen was also contained in to-be-processed water, it was estimated that it will be decomposed | disassembled finally to nitrogen gas by hypochlorous acid.
次に、この実施形態の水処理機構の使用状態を説明する。
この水処理方法は、有隔膜電流印加槽5で食塩が溶存する水に電流を流してその陽極側から塩素ガス4を発生せしめ、前記塩素ガス4を回収して直接的、間接的に被処理水に及ぼしCODを低減させると共に、前記有隔膜電流印加槽5の陰極側にCODの低減後の被処理水を供給してその残留塩素濃度を低減させるようにしている。
この水処理方法及び機構は、有隔膜電流印加槽5の陽極側から発生する塩素ガス4を大気中に開放せずに回収し被処理水に及ぼして汚れ成分の結合を化学的に切断していくことによりCODが低減されるので、生物処理の場合のような汚泥(微生物の死骸等)は発生しないという利点がある。
Next, the use state of the water treatment mechanism of this embodiment will be described.
In this water treatment method, in the diaphragm current application tank 5, a current is passed through water in which salt is dissolved to generate chlorine gas 4 from the anode side, and the chlorine gas 4 is recovered and directly or indirectly treated. COD is reduced by exerting on water, and treated water after COD reduction is supplied to the cathode side of the diaphragm current application tank 5 to reduce the residual chlorine concentration.
In this water treatment method and mechanism, the chlorine gas 4 generated from the anode side of the diaphragm current application tank 5 is recovered without opening it to the atmosphere, and is applied to the water to be treated to chemically break the bond of dirt components. Since COD is reduced by going, there is an advantage that sludge (such as dead bodies of microorganisms) is not generated as in the case of biological treatment.
また、有隔膜電流印加槽5の陰極側にCODの低減後の被処理水を供給してその残留塩素濃度を低減させるようにしたので、被処理水中の余分なイオン(塩素イオンやナトリウムイオン等)を膜等により分離除去する際に膜等がいたみ難いようにしてそのライフを伸ばすことができるという利点がある。
さらに、COD低減後の被処理水を前記有隔膜電流印加槽5の陰極側に供給し、陰極側の被処理水中の塩素イオン等の陰イオンは隔膜を介して陽極側に電気的に吸引され移行していき分離・低減することができるという利点がある。
そのうえ、有隔膜電流印加槽5の陽極側で塩素ガス4を発生させ、COD低減後の被処理水を陰極側に供給して陰イオンを分離・低減させるようにしたので、有隔膜電流印加槽5の陽極側と陰極側とを巧妙に活用することができるという利点がある。
In addition, since the treated water after COD reduction is supplied to the cathode side of the diaphragm membrane current application tank 5 to reduce the residual chlorine concentration, excess ions (chlorine ions, sodium ions, etc.) in the treated water are reduced. ) With a membrane or the like, there is an advantage that the life of the membrane can be extended in such a way that the membrane or the like is hardly damaged.
Further, the water to be treated after the reduction of COD is supplied to the cathode side of the diaphragm current application tank 5, and anions such as chloride ions in the water to be treated on the cathode side are electrically attracted to the anode side through the diaphragm. There is an advantage that it can be separated and reduced as it moves.
In addition, since the chlorine gas 4 is generated on the anode side of the diaphragm current application tank 5 and the treated water after COD reduction is supplied to the cathode side to separate and reduce anions, the diaphragm current application tank There is an advantage that the anode side and the cathode side of 5 can be used skillfully.
ところで、生物処理では被処理水のCODの濃度が基準の濃度よりも高い場合は栄養過多となって事実上微生物による処理は不可能となるが、この発明によると電解槽7での印加電流を増大させることによって濃度変化に容易に対応することができるので、広い範囲の被処理水に適応することができる。
また、被処理水の処理量が増大した場合、生物処理ではピットを増設する必要があり、その工事のためには多額の費用が必要となるが、この発明によると有隔膜電流印加槽や電解槽の追加など生物処理よりも低廉な費用で対応することができる。
By the way, in the biological treatment, when the COD concentration of the water to be treated is higher than the standard concentration, the treatment with microorganisms becomes practically impossible due to overnutrition. By increasing the concentration, it is possible to easily cope with a change in concentration, so that it can be applied to a wide range of water to be treated.
In addition, when the amount of water to be treated increases, it is necessary to add pits for biological treatment, and a large amount of money is required for the construction. It can be handled at a lower cost than biological treatment, such as adding a tank.
従来の生物処理のようには汚泥が発生しないことによって、種々の工場用水、飲料水のみならず、スイミング・プールの水質管理、梅・うどんその他の食品加工場の排水、地下水その他のあらゆる産業分野にわたった普遍的な用途に適用することができる。 As sludge is not generated like conventional biological treatment, not only various factory water and drinking water, but also water quality management of swimming pools, drainage of plums, udon and other food processing plants, groundwater and all other industrial fields It can be applied to universal purposes.
4 塩素ガス
5 有隔膜電流印加槽
4 Chlorine gas 5 Separation membrane current application tank
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009024740A JP5237850B2 (en) | 2008-02-06 | 2009-02-05 | Water treatment method and mechanism |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008026256 | 2008-02-06 | ||
JP2008026256 | 2008-02-06 | ||
JP2009024740A JP5237850B2 (en) | 2008-02-06 | 2009-02-05 | Water treatment method and mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009208072A true JP2009208072A (en) | 2009-09-17 |
JP5237850B2 JP5237850B2 (en) | 2013-07-17 |
Family
ID=41181741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009024740A Active JP5237850B2 (en) | 2008-02-06 | 2009-02-05 | Water treatment method and mechanism |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5237850B2 (en) |
KR (2) | KR101064932B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011235229A (en) * | 2010-05-10 | 2011-11-24 | Omega:Kk | Remote management method for treated water purification |
JP2012139630A (en) * | 2010-12-28 | 2012-07-26 | Omega:Kk | Water purifying method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101064933B1 (en) * | 2008-02-06 | 2011-09-15 | 가부시키가이샤 오메가 | Method and apparatus for water treatment |
JP2024516139A (en) * | 2021-04-20 | 2024-04-12 | アクシン ウォーター テクノロジーズ インコーポレイテッド | Method and system for wastewater treatment with in situ cleaning of electrodes - Patents.com |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08192162A (en) * | 1995-01-13 | 1996-07-30 | Mitsubishi Paper Mills Ltd | Waste solution treatment mechanism |
JP2003088881A (en) * | 2001-09-19 | 2003-03-25 | Ebara Corp | Method and apparatus for treating sewage |
JP2004025123A (en) * | 2002-06-27 | 2004-01-29 | Mitsubishi Heavy Ind Ltd | Drainage treatment apparatus and drainage treatment method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002126740A (en) * | 2000-10-27 | 2002-05-08 | Omega:Kk | Method for cleaning and sterilizing service water or the like |
JP3609735B2 (en) | 2001-03-08 | 2005-01-12 | 日鉄鉱業株式会社 | Etching solution regeneration method |
JP4348195B2 (en) | 2004-01-07 | 2009-10-21 | ホシザキ電機株式会社 | Method and apparatus for treating chlorine gas generated by diaphragm electrolysis |
JP3921231B1 (en) * | 2006-09-15 | 2007-05-30 | 稔 菅野 | Sterilization method and sterilization treatment apparatus |
-
2009
- 2009-02-04 KR KR1020090008845A patent/KR101064932B1/en active IP Right Grant
- 2009-02-05 JP JP2009024740A patent/JP5237850B2/en active Active
-
2011
- 2011-02-28 KR KR1020110017834A patent/KR101070827B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08192162A (en) * | 1995-01-13 | 1996-07-30 | Mitsubishi Paper Mills Ltd | Waste solution treatment mechanism |
JP2003088881A (en) * | 2001-09-19 | 2003-03-25 | Ebara Corp | Method and apparatus for treating sewage |
JP2004025123A (en) * | 2002-06-27 | 2004-01-29 | Mitsubishi Heavy Ind Ltd | Drainage treatment apparatus and drainage treatment method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011235229A (en) * | 2010-05-10 | 2011-11-24 | Omega:Kk | Remote management method for treated water purification |
JP2012139630A (en) * | 2010-12-28 | 2012-07-26 | Omega:Kk | Water purifying method |
Also Published As
Publication number | Publication date |
---|---|
KR20110025808A (en) | 2011-03-11 |
JP5237850B2 (en) | 2013-07-17 |
KR20090086157A (en) | 2009-08-11 |
KR101064932B1 (en) | 2011-09-15 |
KR101070827B1 (en) | 2011-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220402794A1 (en) | Pfas treatment scheme using separation and electrochemical elimination | |
JP2008223115A (en) | Method for treating salt water | |
JP2012130891A (en) | Method and apparatus for treating organic waste water | |
JP2007098272A (en) | Ammonia-containing water treatment method and apparatus | |
JP5211518B2 (en) | Organic substance removing method and apparatus | |
JP5237850B2 (en) | Water treatment method and mechanism | |
JP2018035024A (en) | Method for producing sodium hypochlorite, and sodium hypochlorite production device | |
JP2009255069A (en) | Water treatment system | |
JP5137259B2 (en) | Water treatment system | |
JP2009208073A (en) | Water treatment method and mechanism | |
JP2011011167A (en) | Wastewater treatment method | |
TWI481567B (en) | Drainage treatment method | |
JP5153565B2 (en) | Wastewater treatment method | |
JP5545841B2 (en) | Wastewater treatment mechanism | |
KR101206399B1 (en) | Treatment method and treatment system of waste water | |
JP2010069457A (en) | Waste water treatment method | |
JP2010149069A (en) | Method for treating wastewater | |
JP2008200667A (en) | Method and apparatus for deodorizing, decolorizing and sterilizing water | |
KR101284129B1 (en) | Method for remote controlling the purification of sewage water | |
JP2007105613A (en) | Water treatment method coping with emergency, system therefor and on-vehicle type electrolyzer | |
JP2010063985A (en) | Method and mechanism for reducing halogen acids | |
JP2005074393A (en) | Method and apparatus for preventing seawater contamination | |
Milmo | Re-use or run out. | |
KR20120005717A (en) | Waste water treatment system | |
PT108969B (en) | METHOD FOR TREATING LEAVES FROM SANITARY LANDFILLS THROUGH THE ANODIC OXIDATION PROCESS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130329 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5237850 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160405 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |