JP2003088881A - Method and apparatus for treating sewage - Google Patents

Method and apparatus for treating sewage

Info

Publication number
JP2003088881A
JP2003088881A JP2001285172A JP2001285172A JP2003088881A JP 2003088881 A JP2003088881 A JP 2003088881A JP 2001285172 A JP2001285172 A JP 2001285172A JP 2001285172 A JP2001285172 A JP 2001285172A JP 2003088881 A JP2003088881 A JP 2003088881A
Authority
JP
Japan
Prior art keywords
bromine
sewage
prepared
present
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001285172A
Other languages
Japanese (ja)
Inventor
Norihiro Yaide
乃大 矢出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001285172A priority Critical patent/JP2003088881A/en
Publication of JP2003088881A publication Critical patent/JP2003088881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for surely and stably removing the COD component of sewage by treating the sewage. SOLUTION: This sewage treating method comprises a step to prepare a bromine-based oxidizer by electrolyzing an aqueous solution of a bromine compound and a step to add the prepared bromine-based oxidizer to the dirty water having the COD component or the treated water of the sewage to remove the COD component. This sewage treating apparatus is provided with an electrolyzer for preparing the bromine-based oxidizer by electrolyzing the aqueous solution of the bromine compound and a bromine-based oxidizer adding unit for adding the bromine-based oxidizer prepared by the electrolyzer to the sewage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、COD成分を含む
汚水又はその処理水を処理して、COD成分を除去する
技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for removing COD components by treating sewage containing COD components or treated water thereof.

【0002】[0002]

【従来の技術】汚水などのように最終的に河川や海など
の公共用水域に放流される排水においては、環境上の理
由から、COD成分を除去する必要がある。従来の汚水
の処理方法においては、まず汚水を運転コストの安い生
物処理や凝集沈殿処理にかけ、次に得られた処理水中に
残留するCOD成分を活性炭吸着処理や化学酸化処理に
よって除去していた。更に、最近においては、東京湾な
どの閉鎖系海域ではCOD総量規制が定められており、
これを遵守するためには、汚水処理水のような低いCO
D濃度を有する排水からも更にCOD成分を除去して規
制値を満足することが求められている。
2. Description of the Related Art In waste water such as sewage that is finally discharged into public water areas such as rivers and seas, it is necessary to remove COD components for environmental reasons. In the conventional sewage treatment method, the sewage is first subjected to biological treatment or coagulation-sedimentation treatment at low operating cost, and then COD components remaining in the obtained treated water are removed by activated carbon adsorption treatment or chemical oxidation treatment. Furthermore, recently, the COD total amount regulation has been established in closed sea areas such as Tokyo Bay,
To comply with this, low CO such as sewage treatment water
It is required to further remove the COD component from the waste water having D concentration to satisfy the regulation value.

【0003】従来、汚水のCOD成分の除去に用いられ
ている酸化剤としては、次亜塩素酸ソーダ、塩素などの
塩素系酸化剤や過酸化水素などが挙げられる。これらの
酸化剤は単独でも使用されるが、過酸化水素については
第1鉄塩と併用した化学酸化処理、所謂フェントン処理
が実用化されている。
Conventionally, as the oxidizing agent used for removing the COD component of wastewater, sodium hypochlorite, chlorine-based oxidizing agents such as chlorine, hydrogen peroxide and the like can be mentioned. These oxidizing agents are used alone, but for hydrogen peroxide, a chemical oxidation treatment in combination with a ferrous salt, so-called Fenton treatment, has been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】これらの従来の酸化剤
は、被処理物に添加しても全てが反応して消滅するので
はなく、処理水中に残留するために、残留酸化剤を除去
する後処理を行わなければならない。処理水中の残留酸
化剤を除去するためには、還元剤を添加して還元する操
作が必要である。また、塩素系酸化剤の幾つかは粉末状
のものであるが、このような粉末状の酸化剤を用いる場
合には、酸化剤を溶解する装置が必要であったり、薬剤
のハンドリングが問題であった。加えて、塩素系酸化剤
は、汚水中のアンモニア性窒素と先に反応してクロラミ
ンを生成するので、COD成分の除去効果が低下すると
いう問題があった。更には、元々COD濃度が低い処理
水を酸化剤で処理する場合には、処理水中に含まれるC
OD成分に対して過剰の酸化剤を投入する必要があり、
その結果、処理水中に酸化剤が多く残留して、放流先の
環境に悪影響を与える恐れがあった。
These conventional oxidizers do not completely disappear by reacting even when added to the object to be treated, but remain in the treated water, so that the residual oxidant is removed. Post-treatment must be done. In order to remove the residual oxidizing agent in the treated water, it is necessary to add a reducing agent to carry out reduction. Also, some of the chlorine-based oxidizers are powdery, but when using such powdery oxidizers, a device for dissolving the oxidizers is required and handling of the drug is a problem. there were. In addition, since the chlorine-based oxidizing agent first reacts with the ammoniacal nitrogen in the wastewater to produce chloramine, there is a problem that the effect of removing the COD component is reduced. Furthermore, when the treated water, which originally has a low COD concentration, is treated with an oxidant, C contained in the treated water is contained.
It is necessary to add an excess of oxidizing agent to the OD component,
As a result, a large amount of the oxidant remains in the treated water, which may adversely affect the environment at the discharge destination.

【0005】そこで、本発明は、COD成分を含む汚水
を処理してCOD成分を確実に且つ安定に除去すること
のできる方法及び装置を提供することを目的とする。
Therefore, it is an object of the present invention to provide a method and an apparatus capable of treating sewage containing a COD component to remove the COD component reliably and stably.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、臭素化合物の水溶液を電気分解して臭
素系酸化剤を調製し、調製された臭素系酸化剤を、CO
D成分を含む汚水又はその処理水に加えてCOD成分を
除去することを特徴とする、汚水の処理方法を提供す
る。
In order to achieve the above object, the present invention prepares a bromine-based oxidizing agent by electrolyzing an aqueous solution of a bromine compound,
A method for treating sewage, which comprises removing COD components in addition to sewage containing D component or its treated water.

【0007】[0007]

【発明の実施の形態】以下、本発明を更に具体的に説明
するが、本発明はこれに限定されるものではない。な
お、COD(chemical oxygen demand:化学的酸素要求
量)は、JIS−K0102工場排水試験方法に記載さ
れた100℃における過マンガン酸カリウムによる酸素
消費量(CODMn)、アルカリ性過マンガン酸カリウム
による酸素消費量(CODOH)、二クロム酸カリウムに
よる酸素消費量(CODCr)のいずれかによって測定さ
れる値である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below, but the present invention is not limited thereto. COD (chemical oxygen demand) is the oxygen consumption by potassium permanganate (COD Mn ) at 100 ° C. described by JIS-K0102 factory drainage test method, and oxygen by alkaline potassium permanganate. It is a value measured by either the amount of consumption (COD OH ) or the amount of oxygen consumption by potassium dichromate (COD Cr ).

【0008】本発明によって処理することのできる汚水
とは、各種産業排水、屎尿、埋め立て処分場浸出水、脱
水濾液、液状廃棄物、及び一般家庭や事業場等から排出
される汚水や、汚水と雨水の混合した下水(雨天時下
水)、雨水、地下水などが含まれる。また、汚水の処理
水とは、上記各種汚水の凝集沈殿処理水、加圧浮上処理
水、活性炭吸着処理水、化学酸化処理水、各種膜分離処
理水などを指す。更に、各種産業排水や屎尿や浄化槽汚
泥やその他の液状廃棄物に対して、本発明を適用して処
理を行うこともできる。
The sewage that can be treated by the present invention includes various industrial effluents, human waste, landfill landfill leachate, dehydrated filtrate, liquid waste, and sewage discharged from general households and businesses, and sewage. Includes mixed sewage (rainwater sewage), rainwater, groundwater, etc. In addition, the treated water of the sewage refers to the above-described various sewage coagulation-sedimentation treated water, pressurized floating treatment water, activated carbon adsorption treated water, chemical oxidation treated water, various membrane separation treated water, and the like. Further, various industrial wastewater, human waste, septic tank sludge, and other liquid wastes can be treated by applying the present invention.

【0009】本発明によって処理され、COD成分が除
去された処理水は、そのまま放流してもよいし、或いは
再利用水として製造工程等で使用してもよい。本発明
は、臭素化合物の水溶液を電解装置で電気分解して臭素
系酸化剤を調製することを特徴としている。この方法に
よって調製された臭素系酸化剤の主成分は臭素化合物で
あるが、原料となる臭素化合物中の不純物や或いは溶解
水からの不純物によって、電解時に発生するハロゲンに
関連する酸化性物質を含んでいてもよい。本発明に係る
酸化剤が含んでいてもよい臭素以外のハロゲン化合物と
しては、次亜塩素酸、次亜塩素酸塩、次亜塩素酸イオ
ン、次亜ヨウ素酸、次亜ヨウ素酸塩、次亜ヨウ素酸イオ
ンなどが挙げられる。また、塩化ナトリウムのような塩
素化合物や海水などから電気分解して得られる、次亜塩
素酸、次亜塩素酸イオン、次亜塩素酸塩などの塩素系酸
化剤を、本発明の臭素系酸化剤に含ませることもでき
る。これらの塩素系酸化剤は、反応性の点で本発明に係
る臭素系酸化剤に劣るものであるが、塩素系酸化剤を併
用することにより、本発明に係る臭素系酸化剤の酸化効
果をより高めることができる。なお、塩素化合物は、電
解によって塩素や次亜塩素酸、次亜塩素酸塩などが生成
するが、これらの塩素系酸化物は、本発明に係る酸化剤
の効果に悪影響を与えるものではない。
The treated water from which the COD component has been removed, which has been treated according to the present invention, may be discharged as it is, or may be used as recycled water in the manufacturing process or the like. The present invention is characterized in that an aqueous solution of a bromine compound is electrolyzed by an electrolytic device to prepare a bromine-based oxidant. The main component of the bromine-based oxidizing agent prepared by this method is a bromine compound, but it contains an oxidizing substance related to halogen generated during electrolysis due to impurities in the bromine compound as a raw material or impurities from dissolved water. You can leave. Examples of the halogen compound other than bromine, which may be contained in the oxidizing agent according to the present invention, include hypochlorous acid, hypochlorite, hypochlorite ion, hypoiodic acid, hypoiodite, hypochlorite. Examples thereof include iodate ion. In addition, a chlorine-based oxidizing agent of the present invention may be used for the chlorine-based oxidizing agent such as hypochlorous acid, hypochlorite ion, or hypochlorite, which is obtained by electrolyzing a chlorine compound such as sodium chloride or seawater. It can also be included in the agent. These chlorine-based oxidants are inferior to the bromine-based oxidant according to the present invention in terms of reactivity, but by using the chlorine-based oxidant together, the oxidative effect of the bromine-based oxidant according to the present invention can be obtained. It can be increased. Note that chlorine, hypochlorous acid, hypochlorite, and the like are generated from the chlorine compound by electrolysis, but these chlorine-based oxides do not adversely affect the effect of the oxidizing agent according to the present invention.

【0010】本発明に係る臭素系酸化剤を調製するため
に行われる電気分解の条件は、電圧が5〜20V,電流
密度が1〜5A/dm2、電極間隔が5〜20mmが好まし
い。電気分解に用いることのできる電極の材料として
は、炭素や白金を挙げることができる。また、本発明に
おいては、電気分解温度や電解液濃度、電気分解装置の
寸法などによって、電気分解条件を任意に変更すること
ができる。このように電気分解条件を変更することによ
って、調製される臭素系酸化剤の濃度を制御することが
できる。したがって、本発明においては、汚水に対する
臭素系酸化剤の添加率を、電気分解装置の運転条件、即
ち電気分解装置の電圧や電流密度や電解液濃度を適宜変
更することによって、極めて容易に且つ簡便・迅速に調
整することができ、被処理汚水の水質変動や水量の変動
に即座に対応することが可能である。
The electrolysis conditions for preparing the bromine-based oxidant according to the present invention are preferably a voltage of 5 to 20 V, a current density of 1 to 5 A / dm 2 , and an electrode interval of 5 to 20 mm. Examples of the electrode material that can be used for electrolysis include carbon and platinum. Further, in the present invention, the electrolysis conditions can be arbitrarily changed depending on the electrolysis temperature, the concentration of the electrolytic solution, the size of the electrolyzer, and the like. By changing the electrolysis conditions in this way, the concentration of the brominated oxidant prepared can be controlled. Therefore, in the present invention, the addition ratio of the bromine-based oxidizer to the wastewater is extremely easily and simply changed by appropriately changing the operating conditions of the electrolyzer, that is, the voltage and current density and the electrolyte concentration of the electrolyzer. -It can be adjusted quickly, and it is possible to immediately respond to changes in the water quality of treated wastewater and changes in the amount of water.

【0011】本発明において、臭素系酸化剤の調製のた
めに電気分解にかけることのできる臭素化合物として
は、臭化ナトリウム、臭化カリウム、臭化マグネシウ
ム、臭化アンモニウム、臭化水素水、その他水溶性の臭
素化合物を用いることができる。また、臭素化合物を含
む廃液なども、本発明において、臭素系酸化剤の調製の
ための臭素化合物として用いることができる。
In the present invention, as the bromine compound which can be subjected to electrolysis for the preparation of the bromine-based oxidizing agent, sodium bromide, potassium bromide, magnesium bromide, ammonium bromide, hydrogen bromide water, etc. Water-soluble bromine compounds can be used. Also, a waste liquid containing a bromine compound can be used as a bromine compound for the preparation of the bromine-based oxidizing agent in the present invention.

【0012】本発明において、臭素系酸化剤の調製のた
めに電気分解にかける電解液としては、臭素化合物を主
体として、塩素化合物、塩化ナトリウムなどを含ませる
こともできる。塩素化合物は、電気分解によって塩素や
次亜塩素酸、次亜塩素酸塩を生成するが、このようにし
て生成する塩素系化合物も、本発明に係る臭素系酸化剤
の効果に対して悪影響を与えるものではない。これは、
未反応の臭素化合物と塩素や次亜塩素酸、次亜塩素酸塩
が反応することによっても、本発明に係る臭素系酸化剤
が生成するからである。なお、この場合、電解液中の臭
素化合物と塩素化合物との混合比率には、制限はない。
In the present invention, the electrolytic solution to be electrolyzed for the preparation of the bromine-based oxidizing agent may contain a bromine compound as a main component and a chlorine compound, sodium chloride or the like. Chlorine compounds produce chlorine, hypochlorous acid, and hypochlorite salts by electrolysis, but the chlorine-based compounds thus produced also have an adverse effect on the effect of the bromine-based oxidizing agent according to the present invention. Not something to give. this is,
This is because the bromine-based oxidizing agent according to the present invention is also produced by the reaction of unreacted bromine compound with chlorine, hypochlorous acid, or hypochlorite. In this case, there is no limitation on the mixing ratio of the bromine compound and the chlorine compound in the electrolytic solution.

【0013】本発明において、臭素系酸化剤を調製する
ために電気分解にかけられる臭素化合物水溶液中の臭素
化合物の濃度は、臭素換算濃度として、概ね1〜20重
量%が好ましい。水溶液中の臭素換算濃度が1重量%以
下であると電解処理効率が低下して、得られる臭素系酸
化剤の濃度が低くなり、COD成分の分解処理に際して
酸化剤の必要添加量が増大する。逆に臭素換算濃度が2
0重量%以上であると、電解装置内部でスケールトラブ
ルが発生するおそれがある。
In the present invention, the concentration of the bromine compound in the aqueous bromine compound solution that is subjected to electrolysis to prepare the bromine-based oxidizing agent is preferably about 1 to 20% by weight in terms of bromine equivalent. When the bromine conversion concentration in the aqueous solution is 1% by weight or less, the electrolytic treatment efficiency decreases, the concentration of the obtained bromine-based oxidizing agent decreases, and the necessary addition amount of the oxidizing agent increases in the decomposition treatment of the COD component. Conversely, the bromine equivalent concentration is 2
If it is 0% by weight or more, scale trouble may occur inside the electrolysis apparatus.

【0014】なお、電気分解にかける臭素化合物水溶液
は、pHが8以下であることが好ましく、必要に応じ
て、硫酸などの鉱酸によってpHを調整することが好ま
しい。本発明において、臭素化合物の水溶液の電気分解
によって得られる臭素系酸化剤は、酸化有効成分とし
て、次亜臭素酸、次亜臭素酸イオン、次亜臭素酸塩を含
んでいる。
The pH of the aqueous bromine compound solution to be electrolyzed is preferably 8 or less, and if necessary, it is preferable to adjust the pH with a mineral acid such as sulfuric acid. In the present invention, the bromine-based oxidizing agent obtained by electrolysis of an aqueous solution of a bromine compound contains hypobromite, hypobromite ion, and hypobromite as oxidizing active ingredients.

【0015】このようにして調製された臭素系酸化剤の
添加率は、被処理対象の汚水又は汚水処理水の水量に対
して、塩素換算値で1〜100mg/Lが好ましい。添加率
が1mg/L以下ではCOD成分の除去効果が低く、100
mg/L以上では薬剤コストが問題となるし、処理水に臭素
系酸化剤が残留する可能性が高まり、残留酸化剤を還元
除去するための還元剤の添加が必要になる。
The addition rate of the bromine-based oxidizing agent thus prepared is preferably 1 to 100 mg / L in terms of chlorine with respect to the amount of wastewater to be treated or treated wastewater. If the addition rate is 1 mg / L or less, the effect of removing COD components is low and 100%
If it is more than mg / L, the chemical cost becomes a problem, and the possibility that the bromine-based oxidizing agent remains in the treated water increases, and it is necessary to add a reducing agent to reduce and remove the residual oxidizing agent.

【0016】本発明において、臭素化合物の水溶液を電
気分解して調製された臭素系酸化剤を汚水又はその処理
水に混合する際は、調製された液状の臭素系酸化剤を、
汚水又はその処理水の水流によって混合撹拌することが
できる。また、臭素系酸化剤を、処理水や工業用水や汚
水の一部で希釈してから、これを汚水に加えることもで
きる。
In the present invention, when the bromine-based oxidizer prepared by electrolyzing an aqueous solution of a bromine compound is mixed with sewage or treated water thereof, the prepared liquid bromine-based oxidizer is
Mixing and stirring can be carried out by the flow of waste water or its treated water. It is also possible to dilute the bromine-based oxidizer with a part of the treated water, industrial water, and sewage, and then add this to the sewage.

【0017】本発明の好ましい態様においては、臭素化
合物の水溶液を、汚水処理のオンサイト(現場)で電気
分解して臭素系酸化剤を調製し、速やかに使用すること
が好ましい。電気分解して調製される臭素系酸化剤は、
生成初期が酸化効果が最も高いので、使用場所で調製す
るのが好ましい。本発明の好ましい態様に係る方法にお
いては、電気分解によって調製された臭素系酸化剤は、
一般に、調製後120分以内、より好ましくは30分以
内、更に好ましくは5分以内に汚水又はその処理水に加
えることが好ましい。
In a preferred embodiment of the present invention, it is preferable that an aqueous solution of a bromine compound is electrolyzed at an on-site (situ) of sewage treatment to prepare a bromine-based oxidizing agent, which is used immediately. Brominated oxidizer prepared by electrolysis is
Since the oxidation effect is highest in the initial stage of formation, it is preferable to prepare it at the place of use. In the method according to a preferred embodiment of the present invention, the brominated oxidant prepared by electrolysis is
In general, it is preferable to add the sewage or its treated water within 120 minutes, more preferably within 30 minutes, and further preferably within 5 minutes after preparation.

【0018】上記のように、本発明によれば、臭素化合
物の電気分解によって調製された臭素系酸化剤を、CO
D成分を含む汚水又はその処理水に加えることによっ
て、汚水中のCOD成分を分解することができる。
As described above, according to the present invention, a bromine-based oxidizing agent prepared by electrolysis of a bromine compound is used as CO
The COD component in the wastewater can be decomposed by adding it to the wastewater containing the D component or its treated water.

【0019】また、本発明によって臭素系酸化剤が加え
られた汚水又はその処理水を、次に活性炭と接触させる
ことによって、更に汚水の清浄化処理を行うことができ
る。即ち、本発明の他の態様は、臭素化合物の電気分解
によって調製された臭素系酸化剤を汚水又はその処理水
に添加した後、活性炭と接触させることを特徴とする汚
水の処理方法に関する。かかる処理方法において、活性
炭の主たる機能は、COD成分の吸着除去ではなく、C
OD成分と臭素系酸化剤との反応の促進と、残留酸化剤
の吸着除去を目的とする。
Further, the sewage water to which the bromine-based oxidant has been added according to the present invention or the treated water thereof can be further contacted with activated carbon to further purify the sewage water. That is, another embodiment of the present invention relates to a method for treating sewage, which comprises adding a bromine-based oxidizing agent prepared by electrolysis of a bromine compound to sewage or its treated water and then contacting it with activated carbon. In such a treatment method, the main function of activated carbon is not removal of COD components by adsorption, but C
The purpose is to accelerate the reaction between the OD component and the brominated oxidant and to remove the residual oxidant by adsorption.

【0020】本発明の他の態様に係る方法において用い
られる活性炭は、粉末状でも粒状でも或いは破砕状でも
よい。好ましくは、粒径0.1〜10mmの活性炭を充填
した活性炭塔に、臭素系酸化剤を加えた汚水を通水接触
させる。この活性炭塔への通水の際の通水速度は、空間
速度SVとして1〜40h-1が好ましい。通水速度が1h
-1未満では必要な活性炭塔が過大になり、40h-1を超
えると接触時間が少なくなるので、COD成分除去効果
や残留酸化剤除去効果が低下する。
The activated carbon used in the method according to another aspect of the present invention may be in the form of powder, particles or crushed form. Preferably, the activated carbon tower filled with activated carbon having a particle size of 0.1 to 10 mm is brought into contact with sewage containing a brominated oxidant. The water flow rate at the time of water flow to the activated carbon tower is preferably 1 to 40 h -1 as a space velocity SV. Water flow rate is 1h
If it is less than -1 , the required activated carbon tower becomes too large, and if it exceeds 40 h -1 , the contact time becomes short, so that the COD component removing effect and the residual oxidant removing effect decrease.

【0021】本発明は、更に、上記に説明した汚水又は
その処理水の処理方法を実施するための装置を提供す
る。即ち、本発明の他の態様は、臭素化合物の水溶液を
電気分解して臭素系酸化剤を調製するための電気分解装
置と、該電気分解装置において調製された臭素系酸化剤
を汚水に添加するための臭素系酸化剤添加装置とを具備
することを特徴とする、汚水の処理装置に関する。
The present invention further provides an apparatus for carrying out the method for treating sewage or treated water thereof as described above. That is, another aspect of the present invention is to add an electrolyzer for electrolyzing an aqueous solution of a bromine compound to prepare a bromine-based oxidizer, and to add the bromine-based oxidizer prepared in the electrolyzer to sewage. And a bromine-based oxidizer addition device for the treatment of sewage.

【0022】図1に、本発明に係る汚水処理装置の概念
を示す。本発明に係る汚水処理装置は、臭素化合物の水
溶液を受入れて電気分解にかける電気分解装置と、電気
分解装置で調製された臭素系酸化剤を汚水中に添加する
ための臭素系酸化剤添加装置とを具備する。臭素系酸化
剤と汚水とは混合槽内で混合され、臭素系酸化剤とCO
D成分との反応が行われる。また、図1に示すように、
必要に応じて混合槽の後段に、活性炭塔を設置すること
もできる。
FIG. 1 shows the concept of the sewage treatment apparatus according to the present invention. The sewage treatment apparatus according to the present invention is an electrolyzer for receiving an aqueous solution of a bromine compound and subjecting it to electrolysis, and a bromine-based oxidant addition apparatus for adding a bromine-based oxidant prepared by the electrolyzer into wastewater. And. The bromine-based oxidizer and wastewater are mixed in a mixing tank, and the bromine-based oxidizer and CO
The reaction with the D component is carried out. Also, as shown in FIG.
If necessary, an activated carbon tower can be installed in the latter stage of the mixing tank.

【0023】[0023]

【実施例】以下の実施例により、本発明を更に具体的に
説明するが、本発明はこれらの実施例に限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0024】実施例1 図1に示す汚水処理装置において、混合槽として容量が
約0.5m3の容器を用い、また活性炭塔は配置せずに、
小規模下水二次処理水試料を処理した。被処理対象の小
規模下水二次処理水試料の性状を表1に示す。
Example 1 In the sewage treatment apparatus shown in FIG. 1, a vessel having a capacity of about 0.5 m 3 was used as a mixing tank, and an activated carbon tower was not arranged,
A small-scale sewage secondary treated water sample was treated. Table 1 shows the properties of the small-scale sewage secondary treated water sample to be treated.

【0025】[0025]

【表1】 [Table 1]

【0026】臭素系酸化剤として、市販の次亜塩素酸ソ
ーダ、有効塩素10重量%の次亜塩素酸ソーダ水溶液に
臭化ナトリウムを次亜塩素酸ソーダと等量分添加して反
応させることによって調製した次亜臭素酸(調製次亜臭
素酸)、及び本発明による電気分解によって調製した臭
素系酸化剤(電解臭素系酸化剤)を用いた。電解臭素系
酸化剤は、電解液として10重量%の臭化ナトリウム水
溶液を用い、電解温度25℃、電圧10V、電流密度2A
/dm2、炭素電極間の間隔を5mmとして電気分解反応を行
うことによって調製した。
As the bromine-based oxidizer, commercially available sodium hypochlorite, an aqueous solution of sodium hypochlorite containing 10% by weight of available chlorine, is added with sodium bromide in the same amount as sodium hypochlorite and reacted. The prepared hypobromous acid (prepared hypobromous acid) and the bromine-based oxidizing agent (electrolytic bromine-based oxidizing agent) prepared by electrolysis according to the present invention were used. As the electrolytic bromine-based oxidizing agent, an aqueous solution of 10% by weight of sodium bromide was used as an electrolytic solution, and the electrolytic temperature was 25 ° C, the voltage was 10 V, and the current density was 2 A.
/ dm 2 , and the distance between the carbon electrodes was set to 5 mm, and the electrolysis reaction was performed.

【0027】処理装置の混合槽に、汚水試料を0.5〜
5m3/時で連続的に供給し、上記の各種酸化剤を表2に
示す割合で混合槽に添加した。添加する各酸化剤の薬剤
濃度は塩素換算値で8%とした。電解臭素系酸化剤は、
電解による調製の後2分以内に混合槽に添加した。混合
槽出口水のCOD濃度(CODMn)と残留酸化剤濃度と
を測定した。なお、酸化剤添加率及び残留酸化剤濃度
は、JIS−K0102に記載のヨウ素滴定法によって
求めた塩素換算値である。結果を表2に示す。
The sewage sample is added to the mixing tank of the treatment device at 0.5 to 0.5%.
It was continuously supplied at 5 m 3 / hour, and the above-mentioned various oxidizing agents were added to the mixing tank in the proportions shown in Table 2. The chemical concentration of each oxidant added was 8% in terms of chlorine. The electrolytic bromine-based oxidizer is
Addition to the mixing tank within 2 minutes after preparation by electrolysis. The COD concentration (COD Mn ) of the outlet water of the mixing tank and the concentration of the residual oxidant were measured. The oxidant addition rate and the residual oxidant concentration are chlorine conversion values obtained by the iodometric titration method described in JIS-K0102. The results are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】表2に示す結果から、本発明によって臭素
化合物の電解処理によって調製した臭素系酸化剤を用い
ると、市販の次亜塩素酸ソーダや、化学反応によって調
製した調製次亜臭素酸と比較して、COD成分の除去効
率が高いことが分かる。
From the results shown in Table 2, when the bromine-based oxidizing agent prepared by electrolytic treatment of the bromine compound according to the present invention was used, it was compared with commercially available sodium hypochlorite and prepared hypobromous acid prepared by chemical reaction. It can be seen that the COD component removal efficiency is high.

【0030】実施例2 図1に示す汚水処理装置において、粒径約1mmの活性炭
を0.5m3充填した活性炭塔を配置して、実施例1と同
様に汚水処理試験を行った。汚水試料は、混合槽へ2〜
10m3/時の流量で供給し、次に混合槽から同じ流量で
活性炭塔にSV=2〜20h-1で上向き流に通水した。
活性炭塔の出口水のCOD濃度と残留酸化剤濃度とを測
定した。結果を表3に示す。
Example 2 In the sewage treatment apparatus shown in FIG. 1, an sewage treatment test was conducted in the same manner as in Example 1 except that an activated carbon tower filled with 0.5 m 3 of activated carbon having a particle size of about 1 mm was arranged. Dirty water sample to the mixing tank
It was supplied at a flow rate of 10 m 3 / hour, and then water was passed upward from the mixing tank at the same flow rate to the activated carbon tower at SV = 2 to 20 h −1 .
The COD concentration and the residual oxidant concentration of the outlet water of the activated carbon tower were measured. The results are shown in Table 3.

【0031】[0031]

【表3】 [Table 3]

【0032】表3に示す結果から、本発明によって臭素
化合物の電解処理によって調製した臭素系酸化剤を用
い、更に活性炭塔処理を行うと、市販の次亜塩素酸ソー
ダや、化学反応によって調製した調製次亜臭素酸と比較
して、効果的にCOD成分を除去することができ、しか
も処理水の残留酸化剤の低減を図ることができたことが
分かる。
From the results shown in Table 3, when a bromine-based oxidizing agent prepared by electrolytic treatment of a bromine compound according to the present invention was used and further activated carbon tower treatment was carried out, it was prepared by commercially available sodium hypochlorite or a chemical reaction. It can be seen that the COD component can be effectively removed and the residual oxidant of the treated water can be reduced as compared with the prepared hypobromite.

【0033】[0033]

【発明の効果】本発明の方法によれば、次のような効果
が得られる。 (1) 汚水又はその処理水のCOD成分を効率よく除去す
ることができ、COD成分の処理性能の安定化が図れ
る。
According to the method of the present invention, the following effects can be obtained. (1) The COD component of sewage or its treated water can be efficiently removed, and the treatment performance of the COD component can be stabilized.

【0034】(2) 酸化剤を汚水処理の現場で電気分解し
て調製することにより、危険な薬剤の大量貯蔵を避ける
ことができ、運転管理が容易である。 (3) 本発明に係る臭素系酸化剤の原料は、臭化ソーダな
ど、長期保管してもその性状が変化せず安定しているも
のである。したがって、本発明に係る臭素系酸化剤は、
安定した原料を使用して、必要な場合に必要な量だけ電
気分解によって製造して使用することができるので、次
亜塩素酸ソーダなどのように保管中に劣化してしまう従
来の酸化剤に比べて、安定した汚水処理が可能となる。
(2) By preparing an oxidizer by electrolyzing it at the site of wastewater treatment, it is possible to avoid a large amount of storage of dangerous chemicals, and the operation management is easy. (3) The raw material of the bromine-based oxidizing agent according to the present invention is, for example, sodium bromide, which is stable and does not change its properties even after long-term storage. Therefore, the bromine-based oxidizing agent according to the present invention,
Since stable raw materials can be used to produce and use only the required amount by electrolysis when needed, it can be used with conventional oxidizers that deteriorate during storage such as sodium hypochlorite. In comparison, stable sewage treatment is possible.

【0035】(4) 処理水中の残留酸化剤量が少なく、放
流先の環境の保全を図ることができ、また再利用に際し
ての腐食などのトラブルがない。 (5) 臭素系酸化剤添加率は、電解装置の運転条件を変更
することによって容易に調整することができ、処理対象
の汚水の水質変動や水量の変動に対応できる。
(4) The amount of residual oxidant in the treated water is small, the environment at the discharge destination can be preserved, and there is no trouble such as corrosion at the time of reuse. (5) The bromine-based oxidant addition rate can be easily adjusted by changing the operating conditions of the electrolyzer, and can respond to fluctuations in the water quality and quantity of the wastewater to be treated.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の一態様に係る汚水処理装置の
構成を示す概念図である。
FIG. 1 is a conceptual diagram showing a configuration of a sewage treatment apparatus according to one aspect of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D024 AA04 AB02 AB14 BA02 BB01 BC01 CA01 DB09 DB24 4D050 AA12 AB07 BB03 CA06 CA10 4D061 DA08 DB09 EA02 EB04 EB19 EB29 EB30 EB39 ED12 FA06 FA16 GC14    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D024 AA04 AB02 AB14 BA02 BB01                       BC01 CA01 DB09 DB24                 4D050 AA12 AB07 BB03 CA06 CA10                 4D061 DA08 DB09 EA02 EB04 EB19                       EB29 EB30 EB39 ED12 FA06                       FA16 GC14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 臭素化合物の水溶液を電気分解して臭素
系酸化剤を調製し、調製された臭素系酸化剤を、COD
成分を含む汚水又はその処理水に加えてCOD成分を除
去することを特徴とする、汚水の処理方法。
1. An aqueous solution of a bromine compound is electrolyzed to prepare a bromine-based oxidant, and the prepared bromine-based oxidant is treated with COD.
A method for treating sewage, which comprises removing COD components in addition to sewage containing components or treated water thereof.
【請求項2】 該臭素化合物が、臭化ナトリウム、臭化
カリウム、臭化マグネシウム、臭化アンモニウム、臭化
水素水から選択される請求項1の汚水の処理方法。
2. The method for treating sewage according to claim 1, wherein the bromine compound is selected from sodium bromide, potassium bromide, magnesium bromide, ammonium bromide, and hydrogen bromide water.
【請求項3】 臭素化合物水溶液の電気分解を、汚水処
理の現場で行って、調製された臭素系酸化剤を速やかに
汚水に加えることを特徴とする請求項1又は2に記載の
汚水の処理方法。
3. The treatment of sewage according to claim 1 or 2, wherein the electrolysis of the aqueous bromine compound solution is carried out at the sewage treatment site to rapidly add the prepared brominated oxidant to the sewage. Method.
【請求項4】 臭素系酸化剤を汚水又はその処理水に添
加した後、活性炭と接触させることを特徴とする請求項
1〜3のいずれかに記載の汚水の処理方法。
4. The method for treating sewage according to any one of claims 1 to 3, wherein the bromine-based oxidizing agent is added to sewage or its treated water and then contacted with activated carbon.
【請求項5】 臭素化合物の水溶液を電気分解して臭素
系酸化剤を調製するための電気分解装置と、該電気分解
装置において調製された臭素系酸化剤を汚水に添加する
ための臭素系酸化剤添加装置とを具備することを特徴と
する、汚水の処理装置。
5. An electrolyzer for preparing a bromine-based oxidizer by electrolyzing an aqueous solution of a bromine compound, and a bromine-based oxidizer for adding the bromine-based oxidizer prepared in the electrolyzer to wastewater. A treatment device for sewage, comprising an agent addition device.
JP2001285172A 2001-09-19 2001-09-19 Method and apparatus for treating sewage Pending JP2003088881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285172A JP2003088881A (en) 2001-09-19 2001-09-19 Method and apparatus for treating sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001285172A JP2003088881A (en) 2001-09-19 2001-09-19 Method and apparatus for treating sewage

Publications (1)

Publication Number Publication Date
JP2003088881A true JP2003088881A (en) 2003-03-25

Family

ID=19108372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285172A Pending JP2003088881A (en) 2001-09-19 2001-09-19 Method and apparatus for treating sewage

Country Status (1)

Country Link
JP (1) JP2003088881A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208072A (en) * 2008-02-06 2009-09-17 Omega:Kk Water treatment method and device
JP2009255068A (en) * 2008-03-26 2009-11-05 Omega:Kk Water treatment system
JP2012251780A (en) * 2011-05-31 2012-12-20 Omega:Kk Method of treating water contaminated by radioactive substance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208072A (en) * 2008-02-06 2009-09-17 Omega:Kk Water treatment method and device
JP2009255068A (en) * 2008-03-26 2009-11-05 Omega:Kk Water treatment system
JP2012251780A (en) * 2011-05-31 2012-12-20 Omega:Kk Method of treating water contaminated by radioactive substance

Similar Documents

Publication Publication Date Title
Cotillas et al. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation
Lacasa et al. Electrochemical denitrificacion with chlorides using DSA and BDD anodes
Ghernaout et al. On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment
US6348143B1 (en) Hydrothermal electrolysis method and apparatus
JP4040028B2 (en) Method and system for treating water to be treated containing organic matter and nitrogen compound
US6984326B2 (en) Nitrogen treating method and nitrogen treating system
KR20170139676A (en) Process for treating ammonia nitrogen-containing wastewater and ammonia nitrogen decomposition
JP2018035024A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
Mehrkhah et al. Prospective performance assessment of enhanced electrochemical oxidation technology: Insights into fundamentals and influencing factors for reducing energy requirements in industrial wastewater treatment
JP2018153749A (en) Water treatment method and water treatment system using reverse osmosis membrane
Uğurlu et al. Experimental Investigation of Chemical Oxygen Demand, Lignin and Phenol Removal from Paper Mill Effluents Using Three-Phase Three-Dimensional Electrode Reactor.
KR101046942B1 (en) Water treatment method using electrolysis
JP5122074B2 (en) Water treatment method and system
JP2003088881A (en) Method and apparatus for treating sewage
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
JP2008264668A (en) Method and apparatus for electrolytic treatment of wastewater
JP2001300553A (en) Method for treating cyanide-containing wastewater
JP2005021744A (en) Method and apparatus for electrolyzing emulsion
KR100545306B1 (en) Electrochemical process for wastewater containing nitric acid
JP4062690B2 (en) Organic wastewater treatment method
KR20170099615A (en) Electrochemical Process for high concentration of nitrate containing wastewater treatment, and Apparatus therefor
JP2009028629A (en) Treatment method of waste water containing nitrate nitrogen and calcium ion
KR100579605B1 (en) Apparatus for purificating the mine water of abandoned mine and control method for purificating thereof by using oxidizer
JP2005144366A (en) Waste water treatment system
JP2000263049A (en) Method and apparatus for cleaning barn effluent