JPH08192162A - Waste solution treatment mechanism - Google Patents

Waste solution treatment mechanism

Info

Publication number
JPH08192162A
JPH08192162A JP431995A JP431995A JPH08192162A JP H08192162 A JPH08192162 A JP H08192162A JP 431995 A JP431995 A JP 431995A JP 431995 A JP431995 A JP 431995A JP H08192162 A JPH08192162 A JP H08192162A
Authority
JP
Japan
Prior art keywords
waste liquid
treatment
storage tank
tank
waste soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP431995A
Other languages
Japanese (ja)
Other versions
JP3668902B2 (en
Inventor
Kazuyuki Ebara
和幸 江原
Kazuhisa Nakao
和久 中尾
Tamotsu Iwata
保 岩田
Shinichi Nakamura
信一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T R P KK
Mitsubishi Paper Mills Ltd
Original Assignee
T R P KK
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T R P KK, Mitsubishi Paper Mills Ltd filed Critical T R P KK
Priority to JP00431995A priority Critical patent/JP3668902B2/en
Publication of JPH08192162A publication Critical patent/JPH08192162A/en
Application granted granted Critical
Publication of JP3668902B2 publication Critical patent/JP3668902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a waste soln. treatment mechanism excellent in the reduction efficiency of COD or the like and extended in electrode life by circulating the waste soln. in a waste soln. storage tank between the storage tank and an electrolytic cell and oxidatively decomposing the waste soln. by active oxygen formed in the electrolytic cell and successively sending out the waste soln. to the electrolytic cell from the waste soln. previously returned from the electrolytic cell in the waste soln. storage tank. CONSTITUTION: A cylindrical waste soln. storage tank 1 is demarcated into upper and lower waste soln. storage regions 2, 4 at the almost central part thereof and the waste soln. returned from an electrolytic cell and overflowing the upper waste soln. storage region 2 is transferred to the lower waste soln. storage region from a central hole part 3. The waste soln. transferred from the upper waste soln. storage region 2 to the lower waste soln. storage regions 4 is sent to the electrolytic cell. The waste soln. is supplied to the waste soln. storage tank 1 from a raw waste soln. tank by a pump P to be circulated between the waste soln. storage tank 1 and the electrolytic cell. The waste soln. is successively transferred through the respective waste soln. storage regions of the waste soln. storage tank 1. An electrolyte (chloride or bromide) is added to the waste soln. storage tank 1 from an electrolytic tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、CODなどの低減の
効率に優れる廃液処理機構に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste liquid treatment mechanism which is excellent in reducing COD and the like.

【0002】[0002]

【従来の技術】従来、廃液を処理するための方法とし
て、減圧加熱して濃縮・減量化を行う蒸発濃縮法などの
技術が知られている。
2. Description of the Related Art Conventionally, as a method for treating a waste liquid, a technique such as an evaporative concentration method of heating under reduced pressure for concentration / reduction is known.

【0003】一方、図10に示すように、廃液中のCO
DやBODなどを低減させるための機構として、廃液を
貯留する廃液貯留槽40を設け、前記廃液貯留槽中の廃液
を電解槽との間で循環させることが考えられる。この機
構は、循環する廃液中に活性酸素を生成せしめるように
電解槽内で電気分解を行ない、生成した活性酸素の酸化
分解作用を廃液に及ぼしめることにより、そのCODな
どを低減させようとするものである。
On the other hand, as shown in FIG. 10, CO in the waste liquid is
As a mechanism for reducing D and BOD, it is conceivable to provide a waste liquid storage tank 40 for storing waste liquid and circulate the waste liquid in the waste liquid storage tank with the electrolytic cell. In this mechanism, electrolysis is performed in the electrolytic cell so as to generate active oxygen in the circulating waste liquid, and the oxidative decomposition action of the generated active oxygen is exerted on the waste liquid to reduce COD and the like. It is a thing.

【0004】そして、電解槽で廃液を電気分解する際に
気泡(例えば塩素ガスなど)が発生し、この気泡の或る
程度の部分は廃液と共に系中を循環する。
When the waste liquid is electrolyzed in the electrolytic cell, bubbles (for example, chlorine gas) are generated, and a certain part of the bubbles circulates in the system together with the waste liquid.

【0005】しかし、このものは、従来の蒸発濃縮法と
比較すると、濃縮液の二次処理などの必要がなく、その
まま下水等へ排出し得るように処理することが可能であ
るという利点を有するものの、廃液と共に系中を循環す
る気泡の存在は特に電解槽で悪影響を及ぼすものと推測
され、また、廃液貯留槽内での未処理の廃液の滞留も考
えられ、このため、時間当たりのCODなどの低減の効
率が未だ十分に満足のいくものではないと共に電極寿命
があまり長くないという問題があった。
However, this method has an advantage over the conventional evaporative concentration method in that it does not require a secondary treatment of the concentrated solution and can be treated so that it can be directly discharged to sewage or the like. However, the presence of bubbles circulating in the system together with the waste liquid is presumed to have an adverse effect particularly in the electrolytic cell, and it is also considered that untreated waste liquid may remain in the waste liquid storage tank. There is a problem that the reduction efficiency is not yet sufficiently satisfactory and the electrode life is not so long.

【0006】[0006]

【発明が解決しようとする課題】そこで、この発明は、
未処理の廃液の滞留を抑制すると共に気泡による悪影響
の多くを回避することにより、時間当たりのCODなど
の低減の効率に優れ且つ電極寿命がより長い廃液処理機
構を提供しようとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention
It is an object of the present invention to provide a waste liquid treatment mechanism that is excellent in the efficiency of reducing COD per unit time and has a longer electrode life by suppressing retention of untreated waste liquid and avoiding many adverse effects of bubbles.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
この発明では次のような技術的手段を講じている。
In order to solve the above problems, the present invention takes the following technical means.

【0008】この発明の廃液処理機構は、廃液を貯留す
る廃液貯留槽中の廃液を電解槽との間で循環させ、循環
する廃液中に活性酸素を生成せしめるように電解槽内で
電気分解を行ない、生成した活性酸素の酸化分解作用を
廃液に及ぼしめるように構成されると共に、前記廃液貯
留槽は、先に電解槽から戻ってきた廃液から順次、電解
槽へ送り出されるように構成されたことを特徴とする。
According to the waste liquid treatment mechanism of the present invention, the waste liquid in the waste liquid storage tank for storing the waste liquid is circulated between the waste liquid and the electrolytic cell, and electrolysis is performed in the electrolytic cell so as to generate active oxygen in the circulating waste liquid. The waste liquid storage tank is configured so that the oxidative decomposition action of the generated active oxygen is exerted on the waste liquid, and the waste liquid storage tank is sequentially sent out to the electrolysis tank from the waste liquid returned from the electrolysis tank earlier. It is characterized by

【0009】また、前記廃液貯留槽が、電解槽から戻っ
てくる廃液の貯留域から、電解槽へ送り出される廃液の
貯留域への廃液の移行が可能な状態で区画されているこ
ととして実施することもできる。
It is also assumed that the waste liquid storage tank is partitioned so that the waste liquid can be transferred from the waste liquid storage area returned from the electrolytic cell to the waste liquid storage area sent to the electrolytic cell. You can also

【0010】また、処理中の廃液の電気伝導度を約50
〜500mS/cm、電流密度を約2〜10A/dm2
とし、その循環流量を約10〜30リットル/分として
処理を行うこととして実施することもできる。
Further, the electric conductivity of the waste liquid during processing is about 50.
~500mS / cm, a current density of about 2~10A / dm 2
It is also possible to carry out the treatment by setting the circulating flow rate to about 10 to 30 liters / minute.

【0011】また、処理すべき廃液中に活性酸素を生成
せしめるような電解液を処理前に添加すると共に、処理
中にも添加するようにしたこととして実施することもで
きる。
It is also possible to add the electrolytic solution which produces active oxygen to the waste liquid to be treated before the treatment and also to add it during the treatment.

【0012】また、処理すべき廃液に対して活性酸素を
生成せしめるような電解液として塩化ナトリウム、塩化
カリウム、臭化ナトリウム、又は臭化カリウムの水溶液
を添加すると共に、アルカリ性の溶液を貯留すべき曝気
槽を設け、処理中に発生した塩素ガス又は臭素ガスをア
ルカリ性の液中に曝気して溶解させると共に、次亜塩素
酸又は次亜臭素酸を塩化ナトリウム、塩化カリウム、臭
化ナトリウム、又は臭化カリウムに変える触媒を前記曝
気槽中に具備せしめ、残余の塩素ガス又は臭素ガスを吸
着する活性炭フィルターを曝気槽の開口に設けたことと
して実施することもできる。
Further, an aqueous solution of sodium chloride, potassium chloride, sodium bromide or potassium bromide should be added as an electrolytic solution for producing active oxygen to the waste liquid to be treated, and an alkaline solution should be stored. Provide an aeration tank to aerate and dissolve chlorine gas or bromine gas generated during the treatment in an alkaline liquid, and to dissolve hypochlorous acid or hypobromite in sodium chloride, potassium chloride, sodium bromide, or odor. It can also be carried out by providing a catalyst for converting to potassium iodide in the aeration tank and providing an activated carbon filter for adsorbing residual chlorine gas or bromine gas at the opening of the aeration tank.

【0013】[0013]

【作用】この発明は、以下のような作用を有する。 (請求項1)この発明の廃液処理機構では、廃液貯留槽
は、先に電解槽から戻ってきた廃液から順次、電解槽へ
送り出されるように構成されているので、未処理の廃液
の滞留を抑制することができる。また、電解槽で廃液を
電気分解する際に電極で気泡が発生し、この気泡が廃液
と共に系中を循環しようとしても、電解槽から戻ってき
た廃液は、その中の気泡が時間と共に上方に浮いて抜け
出したものから順次、電解槽へと送り出され、廃液は、
気泡がより少ない状態で電解槽へと送られるので、気泡
による悪影響の多くを回避することができる。 (請求項2)廃液貯留槽が、電解槽から戻ってくる廃液
の貯留域から、電解槽へ送り出される廃液の貯留域への
廃液の移行が可能な状態で区画されていることとする
と、電解槽から気泡と共に戻ってきた廃液が、電解槽へ
送り出される廃液の貯留域へと直ぐに拡散することはな
いので、未処理の廃液の滞留を抑制することができると
共に気泡による悪影響の多くを回避することができる。
The present invention has the following actions. (Claim 1) In the waste liquid treatment mechanism of the present invention, since the waste liquid storage tank is configured so as to be sequentially sent out to the electrolytic tank from the waste liquid that has returned from the electrolytic tank first, the unprocessed waste liquid is retained. Can be suppressed. Further, when the waste liquid is electrolyzed in the electrolytic cell, bubbles are generated in the electrodes, and even if the bubbles try to circulate in the system together with the waste liquid, the waste liquid returned from the electrolytic cell has the bubbles in the upward direction with time. The liquid that floats and escapes is sequentially sent to the electrolyzer, and the waste liquid is
Since the bubbles are sent to the electrolytic cell with less bubbles, many of the adverse effects of bubbles can be avoided. (Claim 2) If the waste liquid storage tank is partitioned such that the waste liquid can be transferred from the waste liquid storage area returned from the electrolysis tank to the waste liquid storage area sent to the electrolysis tank. The waste liquid returned from the tank along with the bubbles does not immediately diffuse to the storage area of the waste liquid sent to the electrolytic cell, so that it is possible to suppress the retention of untreated waste liquid and avoid many adverse effects of the bubbles. be able to.

【0014】また、前記廃液貯留槽を、先に電解槽から
戻ってきた廃液から順次、電解槽へ送り出されるよう
に、簡易に構成することができる。 (請求項3)処理中の廃液の電気伝導度を約50〜50
0mS/cm、電流密度を約2〜10A/dm2 とし、
その循環流量を約10〜30リットル/分として処理を
行うと、時間当たりのCODの低減の効率をより向上さ
せることができるという利点がある。なお、廃液の循環
流量を約10リットル/分未満とすると、電解槽で電極
の焼き付きが生じやすい傾向がある。 (請求項4)処理すべき廃液中に活性酸素を生成せしめ
るような電解液を処理前に添加すると共に、処理中にも
添加するようにすると、処理の効率を向上させることが
できる。これは、廃液中には分解され易さが異なる含有
成分が混在している場合が多いので、処理すべき廃液の
酸化分解に適合するような電気伝導度に調整するように
適宜電解液を供給することができるからである。なお、
処理中に添加する電解液は連続的に添加するものとして
もよいし、一定時間毎に間欠的に添加するものとしても
よい。 (請求項5)処理すべき廃液に対して活性酸素を生成せ
しめるような電解液として塩化ナトリウム水溶液、塩化
カリウム水溶液、臭化ナトリウム水溶液、又は臭化カリ
ウム水溶液を添加すると、電気分解の処理中に塩素ガス
又は臭素ガスが発生する。この処理中に発生した塩素ガ
ス又は臭素ガスを、曝気槽のアルカリ性の液中に曝気し
て溶解させることにより除去する。処理すべき廃液がア
ルカリ性の場合は、アルカリ性の溶液として前記廃液の
原液を使用することができる。
Further, the waste liquid storage tank can be simply constructed so that the waste liquid returned from the electrolysis tank first is sequentially sent to the electrolysis tank. (Claim 3) The electric conductivity of the waste liquid during processing is about 50 to 50.
0 mS / cm, current density is about 2-10 A / dm 2 ,
Performing the treatment at a circulation flow rate of about 10 to 30 liters / minute has an advantage that the efficiency of COD reduction per hour can be further improved. When the circulation flow rate of the waste liquid is less than about 10 liters / minute, the electrodes are apt to burn in the electrolytic cell. (Claim 4) The efficiency of the treatment can be improved by adding the electrolytic solution that generates active oxygen in the waste liquid to be treated before the treatment and also during the treatment. This is because the waste liquid often contains mixed components with different easiness of decomposition, so supply the electrolytic solution as appropriate to adjust the electric conductivity to suit the oxidative decomposition of the waste liquid to be treated. Because you can do it. In addition,
The electrolytic solution added during the treatment may be continuously added or intermittently added at regular intervals. (Claim 5) When an aqueous solution of sodium chloride, an aqueous solution of potassium chloride, an aqueous solution of sodium bromide, or an aqueous solution of potassium bromide is added as an electrolytic solution for generating active oxygen to the waste liquid to be treated, the electrolytic treatment is performed. Chlorine gas or bromine gas is generated. Chlorine gas or bromine gas generated during this treatment is removed by aeration and dissolution in the alkaline liquid in the aeration tank. When the waste liquid to be treated is alkaline, the stock solution of the waste liquid can be used as the alkaline solution.

【0015】アルカリ性の液中に溶解した塩素ガス又は
臭素ガスは触媒の作用により次亜塩素酸又は次亜臭素酸
に変化して、最終的に無害な塩化ナトリウム、塩化カリ
ウム、臭化ナトリウム、又は臭化カリウムに変化する。
Chlorine gas or bromine gas dissolved in an alkaline liquid is converted into hypochlorous acid or hypobromite by the action of a catalyst, and finally harmless sodium chloride, potassium chloride, sodium bromide, or Change to potassium bromide.

【0016】そして、残余の塩素ガス又は臭素ガスは、
曝気槽の開口に設けた活性炭フィルターにより吸着・除
去される。
The residual chlorine gas or bromine gas is
It is adsorbed and removed by an activated carbon filter installed at the opening of the aeration tank.

【0017】[0017]

【実施例】以下、この発明の構成を実施例として示した
図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described below with reference to the accompanying drawings.

【0018】電気分解により廃液のCODなどを低減す
る機構は次の通りである。処理しようとする廃液に、電
解質としてハロゲン塩(例えば、塩化ナトリウムや臭化
ナトリウム)を添加して電気分解すると、電解槽の陽極
電極では廃液中に塩素ガス又は臭素ガスが発生する。
The mechanism for reducing COD of waste liquid by electrolysis is as follows. When a halogen salt (for example, sodium chloride or sodium bromide) is added as an electrolyte to the waste liquid to be treated and electrolyzed, chlorine gas or bromine gas is generated in the waste liquid at the anode electrode of the electrolytic cell.

【0019】2Cl- →Cl2 +2e- 2Br- →Br2 +2e- 廃液中に溶け込んだ塩素或いは臭素は、次亜塩素酸或い
は次亜臭素酸に変化する。
[0019] 2Cl - → Cl 2 + 2e - 2Br - → Br 2 + 2e - chlorine or bromine but dissolved in the waste liquid is changed to a hypochlorous acid or hypobromous acid.

【0020】 Cl2 +H2 O→H+ +Cl- +HClO Br2 +H2 O→H+ +Br- +HBrO この次亜塩素酸或いは次亜臭素酸から生成する活性酸素
が有機物を分解し、廃液中のCODやBODなどを低減
せしめる。また、電解槽の陰極電極ではナトリウムイオ
ンと水との反応により、苛性ソーダと水素ガスが生ず
る。
Cl 2 + H 2 O → H + + Cl + HClO Br 2 + H 2 O → H + + Br + HBrO The active oxygen generated from the hypochlorous acid or hypobromite decomposes the organic matter, and COD in the waste liquid. And BOD can be reduced. At the cathode electrode of the electrolytic cell, sodium ion and water react to generate caustic soda and hydrogen gas.

【0021】 2Na+ +2H2 O+2e- →2NaOH+H2 ↑ 電解槽での反応で陽極電極の近傍は酸性雰囲気下とな
り、陰極電極の近傍はアルカリ性雰囲気下となるが、陽
極電極と陰極電極とを仕切る隔壁膜は設けおらず、また
液循環があるので、電極反応による液pH変化は起こら
ない。しかし、電気分解によって生成した活性酸素は有
機物を分解し、その分解物は酸に変化するため、処理の
経過と共に廃液のpHは低下していく。
2Na + + 2H 2 O + 2e → 2NaOH + H 2 ↑ By the reaction in the electrolytic cell, the vicinity of the anode electrode is under an acidic atmosphere and the vicinity of the cathode electrode is under an alkaline atmosphere, but a partition wall separating the anode electrode and the cathode electrode Since no membrane is provided and there is liquid circulation, the liquid pH does not change due to the electrode reaction. However, the active oxygen generated by electrolysis decomposes organic substances, and the decomposed products change to acids, so that the pH of the waste liquid decreases with the progress of the treatment.

【0022】なお、写真・製版用現像廃液を処理する場
合には廃液のpHが通常10〜13と高いので、電気分
解による処理によってpHが下がり過ぎて塩素ガス等が
過剰に発生することを抑えることができ、好適に処理す
ることができる。
In the case of treating a developing waste liquid for photo and plate making, since the pH of the waste liquid is usually as high as 10 to 13, it is possible to suppress excessive generation of chlorine gas and the like due to the electrolytic treatment to lower the pH. It can be processed appropriately.

【0023】すなわち、この実施例の廃液処理機構でア
ルカリ性の廃液を処理すると、有機物を分解しCODな
どを低減せしめながら、且つpHも中和することができ
る。したがって、pHの点に関しても処理後の廃液を下
水に放流しうるという利点がある。
That is, when the alkaline waste liquid is treated by the waste liquid treating mechanism of this embodiment, the pH can be neutralized while decomposing organic substances to reduce COD and the like. Therefore, also in terms of pH, there is an advantage that the waste liquid after treatment can be discharged to sewage.

【0024】廃液中の有機物の含有量が少ない場合、そ
の循環処理中に廃液のpHがあまり下がらないことがあ
るが、この場合、電解液中に塩酸を添加したらよい。
When the content of organic substances in the waste liquid is small, the pH of the waste liquid may not be lowered so much during the circulation treatment. In this case, hydrochloric acid may be added to the electrolytic solution.

【0025】NaOH+HCl→NaCl+H2 O ところで、廃液貯留槽の廃液を電解槽で電気分解しつつ
循環処理する場合、廃液貯留槽の構造によって処理すべ
き廃液のCODやBODの低減の度合いに差異が生ず
る。つまり、電解槽から廃液貯留槽に戻ってきたばかり
の廃液が、廃液貯留槽中に貯留されていた廃液に先んじ
て電解槽に送り出されるようになるとCODなどの低減
の効率が悪い。
NaOH + HCl → NaCl + H 2 O When the waste liquid in the waste liquid storage tank is electrolyzed and circulated, the structure of the waste liquid storage tank makes a difference in the degree of reduction of COD and BOD of the waste liquid to be processed. . That is, if the waste liquid that has just returned from the electrolytic tank to the waste liquid storage tank is sent out to the electrolytic tank prior to the waste liquid stored in the waste liquid storage tank, the efficiency of reducing COD and the like will be poor.

【0026】そこで、廃液貯留槽に次のような構造を持
たせることによって、廃液のCODを効率よく低減する
ことができる。
Therefore, by providing the waste liquid storage tank with the following structure, the COD of the waste liquid can be efficiently reduced.

【0027】つまり、廃液貯留槽を複数の廃液の貯留域
に分割し、それらを直列に連結したような構造とする。
すなわち、図1及び図2に示すように、円筒状の廃液貯
留槽1を略中央で区画する。そして、電解槽から戻って
きて、上方の廃液の貯留域2からオーバー・フローして
溢れた廃液が、中央の穴部3より下方の廃液の貯留域4
に移行するようにして実施することができる。上方の廃
液の貯留域2から下方の廃液の貯留域4に移行した廃液
は、電解槽へと送られる。
That is, the waste liquid storage tank is divided into a plurality of waste liquid storage areas, and these are connected in series.
That is, as shown in FIGS. 1 and 2, the cylindrical waste liquid storage tank 1 is partitioned substantially at the center. Then, the waste liquid that has returned from the electrolytic cell and overflowed and overflowed from the upper waste liquid storage area 2 is stored in the waste liquid storage area 4 below the central hole 3.
It is possible to carry out by shifting to. The waste liquid transferred from the upper waste liquid storage region 2 to the lower waste liquid storage region 4 is sent to the electrolytic cell.

【0028】また、図3に示すように、円筒状の廃液貯
留槽1を略中央で斜め方向に隔壁5で区画し、上方の廃
液の貯留域2の廃液が前記隔壁5の下方位置に穿設され
た穴部3から下方の廃液の貯留域4に移行するようにし
て実施することができる。また、図4に示すように、円
筒状の廃液貯留槽1を4枚の隔壁5で仕切ると共に、こ
れらの隔壁5の互い違いの位置から、上方の廃液の貯留
域2の廃液が下方の廃液の貯留域4へと移行するように
して実施することができる。さらに、図5に示すよう
に、4個の小型の廃液の貯留域6を垂直方向に連結して
実施することもできる。
Further, as shown in FIG. 3, a cylindrical waste liquid storage tank 1 is divided by a partition wall 5 in an oblique direction at a substantially central portion, and the waste liquid in an upper waste liquid storage area 2 is opened at a position below the partition wall 5. It can be carried out so as to move from the provided hole portion 3 to the waste liquid storage area 4 below. As shown in FIG. 4, the cylindrical waste liquid storage tank 1 is partitioned by four partition walls 5, and the waste liquid in the upper waste liquid storage area 2 is separated from the lower waste liquid from the alternating positions of these partition walls 5. It can be carried out so as to move to the storage area 4. Further, as shown in FIG. 5, four small waste liquid storage areas 6 can be connected in the vertical direction.

【0029】また、図6に示すように、円筒状の廃液貯
留槽1の中間部に、上方で連通させるようにした仕切り
板7を設けて廃液の貯留域に分画し、廃液貯留槽1中の
未処理廃液の大部分と循環後の処理廃液とが廃液貯留槽
1の中で容易に混ざらないようにして実施することがで
きる。このものでは、このような円筒状の廃液貯留槽1
を2つ連結している。廃液は各廃液の貯留域の仕切り板
7の上を順に移行する間に気泡が次第に上方に離脱して
いき、再び電解槽に送られる際には、気泡の多くが除去
されている。なお、液面の水位を検知させるレベル・セ
ンサーSを設け、液面が低下すると廃液貯留槽1の下方
の開閉弁(図示せず)が閉じるようにしている。各図に
おいて、Pはポンプ、Fはフィルタを示す。
As shown in FIG. 6, a partition plate 7 is provided in the middle of the cylindrical waste liquid storage tank 1 so that the partition plate 7 is communicated with the waste liquid storage tank 1 at the upper portion to divide the waste liquid storage area into the waste liquid storage tank 1. Most of the untreated waste liquid therein and the treated waste liquid after the circulation can be carried out without being easily mixed in the waste liquid storage tank 1. In this case, such a cylindrical waste liquid storage tank 1
Two are connected. Bubbles gradually separate upward while the waste liquid sequentially moves over the partition plate 7 in each waste liquid storage region, and most of the bubbles are removed when the waste liquid is sent to the electrolytic cell again. A level sensor S for detecting the water level of the liquid surface is provided so that the opening / closing valve (not shown) below the waste liquid storage tank 1 is closed when the liquid surface is lowered. In each figure, P indicates a pump and F indicates a filter.

【0030】さらに、廃液貯留槽の廃液の流路の長さを
長くし、できる限り細長い形状にして実施することもで
きる(図示せず)。この場合も横方向に廃液が移行して
いくようにするよりも、上下垂直方向に廃液が移行して
いくように廃液貯留槽を立てた方が好ましい。また、こ
の廃液貯留槽の形状も、立方体状よりも円柱状の方が廃
液の停滞が少なく好ましい。
Further, the length of the waste liquid flow path in the waste liquid storage tank may be increased so that the shape of the waste liquid flow path is as long as possible (not shown). Also in this case, it is preferable to stand the waste liquid storage tank so that the waste liquid moves vertically and vertically, rather than the waste liquid moves laterally. Also, the shape of this waste liquid storage tank is preferably columnar rather than cubic so that the waste liquid is less stagnant.

【0031】ところで、発生した塩素ガスの気泡が循環
ポンプに混入すると、ポンプに負担がかかってしまう。
よって、気泡の発生を抑えるために消泡剤を添加しても
よいが、この実施例の廃液貯留槽1のように構成する
と、循環中に気泡が逃げていくので、添加する必要は必
ずしもない。また、消泡剤の使用は、コストの面やCO
D、BODが上がる可能性のあるので不利な面もある。
By the way, if the generated chlorine gas bubbles are mixed in the circulation pump, the pump is burdened.
Therefore, an antifoaming agent may be added in order to suppress the generation of air bubbles, but when the waste liquid storage tank 1 of this embodiment is configured, the air bubbles escape during circulation, so it is not always necessary to add it. . In addition, the use of antifoaming agents is costly and CO
There is also a disadvantage because D and BOD may increase.

【0032】次に、この実施例の電解槽は下記のように
構成している。図7に示すように、陽極板8(陽極電
極)の両側に陰極板9(陰極電極)を配設していると共
に、電解槽はこれら両電極相互の間に形成している。陽
極板8と陰極板9には、公知の整流器により電流が供給
される。陽極板8と陰極板9との間の間隔は約1〜10
mm程度の範囲内で設定している。また、電解槽の電極
面積は1機20dm2 に設定しており、このものを2機
直列に連結し40dm2 として使用している。
Next, the electrolytic cell of this embodiment is constructed as follows. As shown in FIG. 7, a cathode plate 9 (cathode electrode) is arranged on both sides of the anode plate 8 (anode electrode), and an electrolytic cell is formed between these electrodes. A current is supplied to the anode plate 8 and the cathode plate 9 by a known rectifier. The distance between the anode plate 8 and the cathode plate 9 is about 1-10.
It is set within a range of about mm. Further, the electrode area of the electrolytic cell is set to 20 dm 2 per machine, and two of these are connected in series and used as 40 dm 2 .

【0033】両電極の材質として、チタン合金に白金を
メッキしたものを用いている。両電極の間には短絡防止
のためにパッキン10を介装しており、このパッキン10は
外組み部分を残して内部をくり抜いた枠形状としてい
る。くり抜いた内部の部分が電解槽を形成する。両陰極
板9の外側には、パッキン11及び塩化ビニール板12を介
してステンレス板13を外装している。
As a material for both electrodes, a titanium alloy plated with platinum is used. A packing 10 is interposed between both electrodes to prevent a short circuit, and the packing 10 has a frame shape in which the inside is hollowed out leaving an externally assembled portion. The hollowed out internal part forms the electrolytic cell. A stainless steel plate 13 is provided outside the both cathode plates 9 via a packing 11 and a vinyl chloride plate 12.

【0034】廃液貯留槽中の廃液は、ポンプにより一方
のステンレス板13の下方に貫通する孔Hから流入させ、
塩化ビニール板12、陰極板9のそれぞれを貫通する孔H
を通り、陽極板8と接触し、陰極板9と陽極板8との間
の電解槽(パッキン10の内部の部分)を通り、陽極板8
の上方を貫通する孔Hを通り、陽極板8の逆面に至る。
この逆面側の陰極板9と陽極板8との間の電解槽(パッ
キン10の内部の部分)を通り、前記と同様に陰極板9、
塩化ビニール板12、ステンレス板13のそれぞれの下方を
貫通する孔(図示せず)を通り流出する。
The waste liquid in the waste liquid storage tank is caused to flow by a pump through a hole H penetrating below one of the stainless steel plates 13,
Hole H penetrating each of vinyl chloride plate 12 and cathode plate 9
Through the electrolytic cell (portion inside the packing 10) between the cathode plate 9 and the anode plate 8 and the anode plate 8
Through a hole H penetrating above the anode plate 8 to reach the opposite surface of the anode plate 8.
It passes through the electrolytic cell (inside the packing 10) between the cathode plate 9 and the anode plate 8 on the opposite surface side, and the cathode plate 9,
The vinyl chloride plate 12 and the stainless steel plate 13 flow out through holes (not shown) penetrating the respective lower parts.

【0035】廃液中には、重炭酸カルシウム等の電極に
付着し易い物質も含まれていることがある。これらの物
質が電気分解されると炭酸カルシウムが陰極電極の表面
に付着・堆積し、電解電流が流れにくくなる。このよう
な現象を防止する為に、電極に通電するときの極性を一
定周期で反転させて表面状の付着物を除去している。極
性の反転周期は通常1〜30分程度が適当であり、5〜
15分程度が好ましい。
The waste liquid may contain a substance such as calcium bicarbonate which easily adheres to the electrode. When these substances are electrolyzed, calcium carbonate adheres to and deposits on the surface of the cathode electrode, making it difficult for the electrolytic current to flow. In order to prevent such a phenomenon, the polarity at the time of energizing the electrodes is reversed at a constant cycle to remove the surface deposits. About 1 to 30 minutes is usually suitable for the polarity inversion cycle, and
About 15 minutes is preferable.

【0036】つまり、電解槽を画定する陽極板8と陰極
板9との電極極性は公知の電気的方法で可変とし、一定
時間毎に転換した。このように構成することにより電解
槽の流水中にある荷電物質が、対応する反対荷電電極に
析出成長することを防止し、活性酸素の生成の低下を防
止し、継続的に一定の洗浄力を有する洗浄用水を供給す
ることができる。また、両電極板の極性を固定とした場
合は陽極側に選定した電極板ばかりが溶滅していく片減
り現象が生じるが、電極極性を可変としたことにより交
互に陽極となった側が溶滅していく。したがって、両電
極の経時的な消耗の割合いをほぼ均等にすることができ
る。
That is, the electrode polarities of the anode plate 8 and the cathode plate 9 defining the electrolytic cell were made variable by a known electric method, and changed at regular intervals. With this configuration, charged substances in the flowing water of the electrolytic cell are prevented from depositing and growing on the corresponding oppositely charged electrodes, the generation of active oxygen is prevented from decreasing, and a constant detergency is maintained. The cleaning water it has can be supplied. Also, when the polarities of both electrode plates are fixed, only the electrode plate selected on the anode side will melt away, which causes a one-sided phenomenon, but by changing the electrode polarity, the side that became the anode will melt away. To go. Therefore, the rate of wear of both electrodes over time can be made substantially equal.

【0037】図1及び図6に示すように、先ず廃液は、
ポンプPにより原廃液槽14から廃液貯留槽1へと供給さ
れる。そして、循環ポンプPにより、廃液貯留槽1と電
解槽との間で循環される。廃液は、廃液貯留槽1(図6
のものは、2つの廃液貯留槽1を連結)の各廃液の貯留
域を順に移行していく。電解槽は、処理効率を向上させ
ると共に電極の寿命を延ばす目的などから2槽を直列に
連結している。
As shown in FIGS. 1 and 6, first, the waste liquid is
It is supplied from the original waste liquid tank 14 to the waste liquid storage tank 1 by the pump P. Then, the circulation pump P circulates between the waste liquid storage tank 1 and the electrolytic tank. The waste liquid is stored in the waste liquid storage tank 1 (see FIG. 6).
In this case, the two waste liquid storage tanks 1 are connected to each other and the waste liquid storage areas are sequentially moved. Two electrolytic cells are connected in series for the purpose of improving treatment efficiency and extending the life of the electrodes.

【0038】この実施例では、酸化作用の強い活性酸素
を生成せしめて廃液中の有機成分の分解を行わせるた
め、電解液として、塩化ナトリウム水溶液(塩化カリウ
ム、臭化ナトリウム、臭化カリウムなどを用いてもよ
い)を添加している。すなわち、電解液(上記の塩化物
や臭化物など)を、電解液槽15から廃液貯留槽1へと添
加する。
In this embodiment, in order to generate active oxygen having a strong oxidizing action to decompose organic components in the waste liquid, an aqueous solution of sodium chloride (potassium chloride, sodium bromide, potassium bromide, etc.) is used as the electrolytic solution. May be used) is added. That is, an electrolytic solution (such as the above chloride or bromide) is added from the electrolytic solution tank 15 to the waste liquid storage tank 1.

【0039】また、廃液の電気伝導度が低い場合、電極
に負荷がかかり過ぎて破損したり高熱が発生して処理効
率が低下したりする傾向があるため、その電気伝導度を
50mS/cm程度以上に上げることが好ましい。そこ
で、処理すべき廃液の電気伝導度を上げるためにも、廃
液に電解液を添加する。したがって、廃液自体が、電気
伝導度が元々高いと共に電気分解により活性酸素を生成
するような成分を予め含有しているような場合は、あら
ためて電解液を添加する必要はない。
Further, when the electric conductivity of the waste liquid is low, the electrode may be overloaded and may be damaged or high heat may be generated to lower the treatment efficiency. Therefore, the electric conductivity thereof is about 50 mS / cm. It is preferable to increase the above. Therefore, in order to increase the electric conductivity of the waste liquid to be treated, the electrolytic solution is added to the waste liquid. Therefore, when the waste liquid itself originally has a high electric conductivity and also contains a component that generates active oxygen by electrolysis, it is not necessary to add the electrolytic solution again.

【0040】廃液の電気分解の条件は、次の通りであ
る。循環ポンプPによる廃液の循環の流速は、時間当た
りのCODの低減の効率の点で10〜30リットル/分
程度が好ましく、電極の寿命が延びる点で12〜20リ
ットル/分程度がより好ましい。そして、電解槽の陽極
電極と陰極電極との間に、50〜200Aの直流電流を
流す。電流密度は、2〜10A/dm2 、電圧は1〜1
0Vを印加する。電解液の濃度は、1〜10モル/リッ
トルが時間当たりのCODの低減の効率の点で好まし
く、3〜7モル/リットルの濃度がより好ましい。
The conditions for electrolysis of the waste liquid are as follows. The flow rate of circulation of the waste liquid by the circulation pump P is preferably about 10 to 30 liters / minute from the viewpoint of the efficiency of COD reduction per hour, and more preferably about 12 to 20 liters / minute from the viewpoint of extending the life of the electrode. Then, a direct current of 50 to 200 A is passed between the anode electrode and the cathode electrode of the electrolytic cell. The current density is 2 to 10 A / dm 2 , and the voltage is 1 to 1.
Apply 0V. The concentration of the electrolytic solution is preferably 1 to 10 mol / liter in terms of the efficiency of COD reduction per hour, and more preferably 3 to 7 mol / liter.

【0041】廃液処理槽への電解液の供給の仕方とし
て、処理前にのみ添加する方法、処理中にのみ連続的に
添加する方法、処理前に添加すると共に処理中にも連続
的に添加する方法などがあるが、CODの低減の効率の
点から、処理前に予め添加すると共に処理中にも連続的
に添加する方法が最も好ましい。
As a method of supplying the electrolytic solution to the waste liquid treatment tank, a method of adding only before the treatment, a method of continuously adding during the treatment, a method of adding before the treatment and also during the treatment are continuously added. From the viewpoint of the efficiency of COD reduction, the method of adding in advance before the treatment and continuously adding during the treatment is the most preferable.

【0042】電解液を処理中に連続して添加する場合、
その添加の流量は100ml/時以上とすることが好ま
しい。電解液が多ければ液量の増量による廃液の希釈効
果と電気伝導度が高くなることにより、CODの低減の
処理効率が増加する傾向にある。しかし、電解液のコス
トとの兼ね合いもあり、200ml/時程度の添加量が
あれば、十分効果的に処理することがが可能である。ま
た、最終的に廃液中に添加された電解液量は、時間当た
りのCODの低減の効率、廃液量の増加の抑制、塩素ガ
スや臭素ガスの過剰な発生の抑制の点で廃液に対して5
〜20%が好ましく、12〜17%がより好ましい。
When the electrolytic solution is continuously added during the treatment,
The flow rate of the addition is preferably 100 ml / hour or more. If the amount of the electrolytic solution is large, the effect of diluting the waste liquid due to the increase in the amount of the liquid and the electric conductivity are increased, so that the treatment efficiency for reducing COD tends to increase. However, there is a tradeoff with the cost of the electrolytic solution, and if the addition amount is about 200 ml / hour, the treatment can be sufficiently effective. In addition, the amount of electrolytic solution finally added to the waste liquid is higher than that of the waste liquid in terms of efficiency of COD reduction per hour, suppression of increase in waste liquid amount, and suppression of excessive generation of chlorine gas and bromine gas. 5
-20% is preferable, and 12-17% is more preferable.

【0043】なお、廃液の処理の経過では、比較的に酸
化されやすい有機成分が先に分解せしめられ、その後比
較的に酸化されにくい有機成分が分解されるようであ
る。
It should be noted that in the course of the treatment of the waste liquid, it seems that the organic components that are relatively easily oxidized are first decomposed, and then the organic components that are relatively difficult to be oxidized are decomposed.

【0044】この廃液の処理機構によると、例えば以下
のような種類の廃液を好適に処理することができる。
According to this waste liquid treatment mechanism, for example, the following types of waste liquid can be favorably treated.

【0045】1.黒白、カラー写真用の現像廃液、定着
廃液、漂白廃液、安定廃液、水洗廃液など。
1. Black and white, development waste for color photography, fixing waste, bleach waste, stable waste, washing waste, etc.

【0046】2.印刷製版用の現像廃液、安定廃液、エ
ッチング廃液、湿し水、その他の有機溶剤など。
2. Development waste liquid, stabilization waste liquid, etching waste liquid, fountain solution, and other organic solvents for printing plate making.

【0047】3.半導体製造業などから排出される鍍金
廃液。 4.食品加工工業などから排出される有機廃液。
3. Plating waste liquid discharged from the semiconductor manufacturing industry. 4. Organic waste liquid discharged from food processing industry.

【0048】次に、この実施例の廃液処理機構の使用状
態を、より具体的に説明する。 (実施例1)銀塩拡散転写現像液(商品名:シルバーマ
スター−AC、三菱製紙社製)と安定剤(商品名:シル
バーマスター−ST、三菱製紙社製)を用い、銀塩拡散
転写式印刷用刷版(商品名:シルバーマスター−R2、
三菱製紙社製)を30℃で30秒間現像処理を行ない、
最終的に液の現像能力である8m2 /リットルまで通紙
して、廃液として完全に疲労させた。そして、この現像
液と安定液とを1:1に混合した。
Next, the state of use of the waste liquid treatment mechanism of this embodiment will be described more specifically. (Example 1) Silver salt diffusion transfer developer using a silver salt diffusion transfer developer (trade name: Silver Master-AC, Mitsubishi Paper Mills) and a stabilizer (trade name: Silver Master-ST, Mitsubishi Paper Mills). Printing plate (Product name: Silver Master-R2,
Developed by Mitsubishi Paper Mills Co., Ltd.) at 30 ° C. for 30 seconds,
Finally, the solution was passed to a developing capacity of 8 m 2 / liter, and was exhausted as a waste solution to be completely exhausted. Then, the developing solution and the stabilizing solution were mixed at a ratio of 1: 1.

【0049】この原廃液は、pH…11.8、COD…
10520、電気伝導度…48.9、色…黒茶色であっ
た。
This raw waste liquid has a pH of 11.8, COD ...
10520, electric conductivity ... 48.9, color ... black brown.

【0050】前記原廃液5リットルを、図1及び図2に
示す構造の廃液処理機構を用い、次の条件で5時間循環
処理した。なお、電解液として塩化ナトリウム水溶液
(濃度200g/リットル)を処理前に50mL添加
し、かつ処理中に150mL/時の添加速度で連続的に
添加した(総量800mL)。
5 liters of the original waste liquid was circulated for 5 hours under the following conditions by using the waste liquid treatment mechanism having the structure shown in FIGS. An aqueous solution of sodium chloride (concentration: 200 g / liter) was added as an electrolytic solution in an amount of 50 mL before the treatment and was continuously added during the treatment at an addition rate of 150 mL / hour (a total amount of 800 mL).

【0051】供給電圧…200V、電圧…6V、電流…
100A、電極面積…40dm2 (20dm2 ×2
機)、電流密度…5A/dm2 、廃液循環速度…15リ
ットル/分、電極反転周期…10分間隔、極間距離…2
mm。 (比較例1)図10に示すような構造の廃液処理機構を
用い、実施例1と同じ原廃液を同様の条件で循環処理し
た。なお、電解液として塩化ナトリウム水溶液(濃度2
00g/リットル)を処理前に50mL添加し、かつ処
理中に150mL/時の添加速度で連続的に添加した
(総量800mL)。 〔処理の結果〕実施例1のものの処理後には、pH…
8.35、COD…100、電気伝導度…82.7、色
…無色透明となった。電極は、汚染されていなかった。
Supply voltage: 200 V, voltage: 6 V, current:
100 A, electrode area ... 40 dm 2 (20 dm 2 × 2)
Machine), current density ... 5A / dm 2, waste circulation rate ... 15 l / min, the electrode inversion period ... 10 minutes, interpole distance ... 2
mm. (Comparative Example 1) Using the waste liquid treatment mechanism having the structure shown in FIG. 10, the same raw waste liquid as in Example 1 was circulated under the same conditions. An aqueous solution of sodium chloride (concentration 2
50 g before the treatment and continuously during the treatment at an addition rate of 150 ml / h (total volume 800 ml). [Results of treatment] After the treatment of Example 1, the pH was ...
8.35, COD ... 100, electric conductivity ... 82.7, color ... colorless and transparent. The electrodes were uncontaminated.

【0052】比較例1のものは処理後には、pH…8.
76、COD…560、電気伝導度…83.2、色…無
色透明となった。電極は、汚染されていなかった。
The sample of Comparative Example 1 had a pH of 8.
76, COD ... 560, electrical conductivity ... 83.2, color ... colorless and transparent. The electrodes were uncontaminated.

【0053】つまり、実施例1のものは、同じ処理時間
でありながら比較例1のものよりも、CODが非常に多
く低減されており、水質汚濁防止法の排出規制項目の基
準(CODが160以下)を充足し、処理後の廃液を下
水に放流することができるという利点がある。
That is, the COD of Example 1 is much more reduced than that of Comparative Example 1 even though the treatment time is the same, and the emission control item standard (COD is 160) of the Water Pollution Control Law is reduced. There is an advantage that the waste liquid after treatment can be discharged to sewage by satisfying the following.

【0054】次に、電解液の添加の仕方をかえて廃液の
循環処理を行った。 (実施例2)図1及び図2に示す構造の廃液処理機構を
用い、実施例1と同じ原廃液を実施例1の条件と同様に
して循環処理を行った。電解液として、実施例1と同じ
もの50mlを処理前に添加し、処理中には添加しなか
った。 (実施例3)図1及び図2に示す構造の廃液処理機構を
用い、実施例1と同じ原廃液を実施例1の条件と同様に
して循環処理を行った。電解液として実施例1と同じも
のを用い、処理前には添加せず処理中に150ml/時
の添加速度で連続的に供給した。 〔処理の結果〕実施例2のものの処理後には、pH…
8.5、COD…450、電気伝導度…80.5、色…
無色透明となった。電極は、汚染されていなかった。
Next, the waste liquid was circulated by changing the method of adding the electrolytic solution. (Example 2) Using the waste liquid treatment mechanism having the structure shown in FIGS. 1 and 2, the same raw waste liquid as in Example 1 was circulated under the same conditions as in Example 1. As the electrolytic solution, 50 ml of the same electrolyte as in Example 1 was added before the treatment, and was not added during the treatment. Example 3 Using the waste liquid treatment mechanism having the structure shown in FIGS. 1 and 2, the same raw waste liquid as in Example 1 was circulated under the same conditions as in Example 1. The same electrolytic solution as in Example 1 was used and was not added before the treatment and was continuously supplied at an addition rate of 150 ml / hour during the treatment. [Results of Treatment] After the treatment of Example 2, the pH ...
8.5, COD ... 450, electric conductivity ... 80.5, color ...
It became colorless and transparent. The electrodes were uncontaminated.

【0055】実施例3のものの処理後には、pH…9.
06、COD…360、電気伝導度…82.8、色…無
色透明となった。電極は、汚染されていなかった。。
After the treatment of Example 3, pH ... 9.
06, COD ... 360, electric conductivity ... 82.8, color ... colorless and transparent. The electrodes were uncontaminated. .

【0056】実施例1の結果と比較すると、電解液は処
理前に添加しておくと共に処理中にも連続的に添加する
と、CODの低減の効果が高いことが分かる。 (実施例4)カラーペーパー用処理液(発色現像液、商
品名PS−1、漂白定着液、商品名PS−2、安定液、
商品名PS−3、いずれも三菱製紙社製)とカラーネガ
フィルム用処理液(発色現像液、商品名FS−1、漂白
液、商品名FS−2、定着液、商品名FS−3、安定
液、商品名FS−4、いずれも三菱製紙社製)をそれぞ
れ使用して現像処理を行ない、完全に疲労させ、排出さ
れるオーバーフロー液を混合して廃液とした。
Comparing with the results of Example 1, it can be seen that the effect of reducing COD is high when the electrolytic solution is added before the treatment and continuously during the treatment. (Example 4) Processing solution for color paper (color developing solution, trade name PS-1, bleach-fix solution, trade name PS-2, stabilizer,
Product name PS-3, both manufactured by Mitsubishi Paper Mills, and color negative film processing solution (color developing solution, product name FS-1, bleaching solution, product name FS-2, fixing solution, product name FS-3, stabilizing solution). , FS-4 (trade name, manufactured by Mitsubishi Paper Mills Co., Ltd.) were used for development processing to completely exhaust fatigue, and the discharged overflow liquid was mixed to form a waste liquid.

【0057】この原廃液は、pH…10.73、COD
…23000、電気伝導度…55.9、色…赤褐色であ
った。
This raw waste liquid has a pH of 10.73, COD
... 23000, electric conductivity ... 55.9, color ... reddish brown.

【0058】図1及び図2に示す構造の廃液処理機構を
用いて、前記写真用の廃液(使用済みのカラー現像処理
液)を、実施例1の条件と同様(但し、処理時間は10
時間とした)にして処理を行った。なお、電解液として
塩化ナトリウム水溶液(濃度200g/リットル)を処
理前に50mL添加し、かつ処理中に150mL/時の
添加速度で連続的に添加した(総量800mL)。 (比較例2)図10に示すような構造の廃液処理機構を
用い、実施例4と同じ原廃液を同様の条件で循環処理し
た。なお、電解液として塩化ナトリウム水溶液(濃度2
00g/リットル)を処理前に50mL添加し、かつ処
理中に150mL/時の添加速度で連続的に添加した
(総量800mL)。 〔処理の結果〕実施例4のものは処理後には、pH…
8.23、COD…84、電気伝導度…102.7、色
…無色透明となった。電極は、汚染されていなかった。
Using the waste liquid treatment mechanism having the structure shown in FIGS. 1 and 2, the waste liquid for photography (used color developing treatment liquid) was treated under the same conditions as in Example 1 (however, the treatment time was 10 times).
It was set as time) and the treatment was performed. An aqueous solution of sodium chloride (concentration: 200 g / liter) was added as an electrolytic solution in an amount of 50 mL before the treatment and was continuously added during the treatment at an addition rate of 150 mL / hour (a total amount of 800 mL). (Comparative Example 2) Using the waste liquid treatment mechanism having the structure shown in FIG. 10, the same raw waste liquid as in Example 4 was circulated under the same conditions. An aqueous solution of sodium chloride (concentration 2
50 g before the treatment and continuously during the treatment at an addition rate of 150 ml / h (total volume 800 ml). [Result of Treatment] In the case of Example 4, after treatment, the pH ...
It became 8.23, COD ... 84, electric conductivity ... 102.7, color ... colorless and transparent. The electrodes were uncontaminated.

【0059】比較例2のものは処理後には、pH…8.
11、COD…764、電気伝導度…110.2、色…
無色透明となった。電極は、汚染されていなかった。
The sample of Comparative Example 2 had a pH of 8.
11, COD ... 764, electric conductivity ... 110.2, color ...
It became colorless and transparent. The electrodes were uncontaminated.

【0060】すなわち、実施例4のものは、同じ処理時
間でありながら比較例2のものよりもCODが非常に多
く低減されていることが分かる。
That is, it can be seen that the COD of the example 4 is much more reduced than that of the comparative example 2 at the same processing time.

【0061】また、図10に示すような比較例の構造の
廃液処理機構を用いると、総計100〜200時間程度
の循環処理を行った時点で電極の表面が腐食して局部的
に粗くなる点食状態が認められると共に循環処理中に当
初の6Vから10V以上への電圧の上昇(定電流を流す
ように電圧を制御している)が発生したが、図1及び図
2に示す実施例の構造の廃液処理機構を用いた場合には
1000時間以上の循環処理を行った時点でも電極の腐
食は殆ど認められないと共に循環処理中の電圧の上昇は
殆ど発生せず円滑な処理が可能であった。
When the waste liquid treatment mechanism having the structure of the comparative example as shown in FIG. 10 is used, the surface of the electrode is corroded and locally roughened after the circulation treatment for a total of about 100 to 200 hours. Although the food state was recognized and the voltage increased from the initial 6 V to 10 V or more (the voltage was controlled so as to flow a constant current) during the circulation process, the voltage of the embodiment shown in FIGS. When the waste liquid treatment mechanism having the structure is used, the electrode is hardly corroded even after the circulation treatment is performed for 1000 hours or more, and the voltage rise hardly occurs during the circulation treatment, and the smooth treatment is possible. It was

【0062】これは、比較例のものでは廃液の循環処理
中に電極に気泡が付着し易く、この気泡が付着している
箇所以外の箇所のみからしか電流が流れないので局部的
に過大な電流が流れて電極を傷めてしまうのに対し、実
施例のものでは比較例のものより電極に気泡が付着し難
いので、不具合が生じにくいためと考えられる。
This is because in the comparative example, bubbles tend to adhere to the electrode during the waste liquid circulation process, and the current flows only from the places other than the places where the bubbles are attached, so that the current is locally excessive. It is considered that, while air flows and damages the electrodes, air bubbles are less likely to adhere to the electrodes in the example than in the comparative example, so that a problem is less likely to occur.

【0063】次に、図8に示すように、廃液貯留槽1の
ガスの廃液出口16(なお、図6に、違う構造の廃液貯留
槽1を用いた廃液処理機構に適用した場合を示す)と、
アルカリ性の溶液を貯留すべき曝気槽17とを配管で連結
した。
Next, as shown in FIG. 8, a waste liquid outlet 16 of the gas of the waste liquid storage tank 1 (note that FIG. 6 shows a case where the waste liquid processing mechanism using the waste liquid storage tank 1 having a different structure is applied). When,
The aeration tank 17 for storing the alkaline solution was connected by a pipe.

【0064】そして、廃液貯留槽1での循環処理中に発
生した塩素ガス或いは臭素ガスを、曝気槽17のアルカリ
性の液中に曝気して溶解させるようにした。また、次亜
塩素酸を塩化ナトリウムに変える公知の粒状の過酸化ニ
ッケル触媒(図示せず)を前記曝気槽中に設けた。さら
に、残余の塩素ガス或いは臭素ガスを吸着する活性炭フ
ィルタ18(シート状、カセット状などのいずれの形状で
もよく、やしがら活性炭などのいずれの種類でもよい)
を曝気槽17の開口に設けて塞いだ。そして、最後に吸引
ポンプP(吸排両用型、排気量は1〜30リットル/
分、(株) テクノ高槻製、商品名 小型吸排ポンプHI
BLOW EBIS型)を取り付けた。
Then, chlorine gas or bromine gas generated during the circulation treatment in the waste liquid storage tank 1 is aerated and dissolved in the alkaline liquid in the aeration tank 17. Further, a known granular nickel peroxide catalyst (not shown) for converting hypochlorous acid into sodium chloride was provided in the aeration tank. Further, activated carbon filter 18 that adsorbs residual chlorine gas or bromine gas (may be in any shape such as a sheet shape or a cassette shape, and may be any type such as coconut shell activated carbon)
Was installed at the opening of the aeration tank 17 to close it. Finally, a suction pump P (suction / exhaust type, displacement of 1 to 30 liters /
Min., Manufactured by Techno Takatsuki Co., Ltd., product name Small suction pump HI
BLOW EBIS type) was attached.

【0065】アルカリ性の液中に溶解した塩素ガス或い
は臭素ガスは触媒の作用により次亜塩素酸或いは次亜臭
素酸に変化し、次第に分解して活性酸素を生成し、最終
的に無害な塩化ナトリウム或いは臭化ナトリウムとな
る。アルカリ性の溶液として前記廃液の原液を使用した
場合、発生した活性酸素は廃液の原液に酸化分解作用を
及ぼし、そのCODなどを低減せしめる。そして、残余
の塩素ガス或いは臭素ガスは、曝気槽17の開口に設けた
活性炭フィルタ18により吸着・除去される。
Chlorine gas or bromine gas dissolved in an alkaline liquid is changed into hypochlorous acid or hypobromite by the action of a catalyst, and is gradually decomposed to produce active oxygen, which is finally harmless sodium chloride. Alternatively, it is sodium bromide. When the waste liquid stock solution is used as an alkaline solution, the generated active oxygen exerts an oxidative decomposition action on the waste solution stock solution to reduce its COD and the like. Then, the residual chlorine gas or bromine gas is adsorbed and removed by the activated carbon filter 18 provided at the opening of the aeration tank 17.

【0066】廃液として、印刷版用現像液(商品名、S
LM−AC、三菱製紙社製)と、印刷版用安定液(商品
名、SLM−ST、三菱製紙社製)の使用済廃液を1:
1の容量で混合したものを使用した。
As a waste liquid, a printing plate developer (trade name, S
LM-AC, manufactured by Mitsubishi Paper Mills) and used waste liquid of printing plate stabilizer (trade name, SLM-ST, manufactured by Mitsubishi Paper Mills) are 1:
A mixture of 1 volume was used.

【0067】この原廃液は、pH…12、COD…96
00、電気伝導度…43mS/cm、色…暗褐色であっ
た。なお、曝気槽17には、アルカリ性であるこの原廃液
を貯留した(図6参照)。
This raw waste liquid has a pH of 12, COD of 96.
00, electric conductivity ... 43 mS / cm, color ... dark brown. The aeration tank 17 stored this alkaline waste liquid (see FIG. 6).

【0068】前記原廃液5リットルを、図8及び図2に
示す構造の廃液処理機構を用い、次の条件で5時間循環
処理した。なお、電解液として塩化ナトリウム水溶液
(濃度200g/リットル)を、処理前に50mL添加
し、かつ処理中に150mL/時の添加速度で連続的に
添加した(総量800mL)。
5 liters of the original waste liquid was circulated for 5 hours under the following conditions by using the waste liquid treatment mechanism having the structure shown in FIGS. 8 and 2. An aqueous sodium chloride solution (concentration: 200 g / liter) was added as an electrolytic solution in an amount of 50 mL before the treatment and continuously during the treatment at an addition rate of 150 mL / hour (total amount: 800 mL).

【0069】供給電圧…200V、電圧…6V、電流…
100A、電極面積…40dm2 (20dm2 ×2
機)、電流密度…5A/dm2 、廃液循環速度…15リ
ットル/分、電極反転周期…10分間隔、極間距離…2
mm。
Supply voltage ... 200 V, voltage ... 6 V, current ...
100 A, electrode area ... 40 dm 2 (20 dm 2 × 2)
Machine), current density ... 5A / dm 2, waste circulation rate ... 15 l / min, the electrode inversion period ... 10 minutes, interpole distance ... 2
mm.

【0070】そして、廃液の循環処理中に、廃液貯留槽
1の廃液出口16、曝気槽17内、活性炭フィルタ18を出た
後での塩素ガスの濃度をガス検知管(北川式)で測定し
た。すなわち、NaOH溶液(1M)600ccに触媒
500gを添加し、この中に発生した気体を曝気するこ
とにより塩素ガスの濃度を測定した。測定結果を、図9
のグラフに示す。なお、塩素ガスの濃度の測定反応機構
は次の通りである。
Then, during the circulation processing of the waste liquid, the concentration of chlorine gas after being discharged from the waste liquid outlet 16 of the waste liquid storage tank 1, the aeration tank 17 and the activated carbon filter 18 was measured by a gas detector tube (Kitagawa type). . That is, the concentration of chlorine gas was measured by adding 500 g of the catalyst to 600 cc of a NaOH solution (1M) and aerating the gas generated therein. The measurement results are shown in FIG.
Is shown in the graph. The reaction mechanism for measuring the concentration of chlorine gas is as follows.

【0071】 Cl2 +H2 O→HCl+HClO(塩素ガスの吸収) HClO+NaOH→NaCl+H2 O+1/2O
2 (触媒による作用) 図9に示すグラフ中、廃液貯留槽の排気出口での塩素ガ
スの濃度の測定結果を●で、曝気槽内の塩素ガスの濃度
の測定結果を◇で、活性炭フィルタを出た後の塩素ガス
の濃度の測定結果を◎で示す。
Cl 2 + H 2 O → HCl + HClO (absorption of chlorine gas) HClO + NaOH → NaCl + H 2 O + 1 / 2O
2 (Action by catalyst) In the graph shown in Fig. 9, the measurement result of chlorine gas concentration at the exhaust outlet of the waste liquid storage tank is indicated by ●, the measurement result of chlorine gas concentration in the aeration tank is indicated by ◇, and the activated carbon filter is indicated. The measurement result of the chlorine gas concentration after the gas is discharged is indicated by ⊚.

【0072】ここで、曝気槽を設けずに活性炭フィルタ
のみを装着した場合でも十分に塩素ガスを吸収すること
ができたが、活性炭フィルタの寿命の問題もあるので、
活性炭フィルタと曝気槽との両方を組み合わせた方がよ
り長時間の使用が可能であり好ましい。
Here, chlorine gas could be sufficiently absorbed even when only the activated carbon filter was installed without providing the aeration tank, but there is a problem of the life of the activated carbon filter.
A combination of both the activated carbon filter and the aeration tank is preferable because it can be used for a longer time.

【0073】なお、曝気槽中のアルカリ性の原廃液は徐
々にpHが低下した(上記の条件で廃液5リットルを処
理した時点で、pHが12から10.5に変化した)た
め、5時間の循環処理を2回繰り返した時点でアルカリ
剤(苛性ソーダNaOH、濃度40g/リットル)を1
00mL添加した。
The pH of the alkaline raw waste liquid in the aeration tank gradually decreased (the pH changed from 12 to 10.5 when 5 liters of the waste liquid was treated under the above conditions). When the circulation treatment was repeated twice, the alkaline agent (caustic soda NaOH, concentration 40 g / liter) was added to 1
00 mL was added.

【0074】この実施例のように構成すると、処理後の
廃液の水質及び排気する塩素ガスの両面にわたって環境
汚染が少ないという利点がある。
The structure as in this embodiment has an advantage that environmental pollution is small on both the water quality of the waste liquid after treatment and the chlorine gas to be exhausted.

【0075】[0075]

【発明の効果】この発明の廃液処理機構は上述のような
構成であり、次の効果を有する。
The waste liquid treatment mechanism of the present invention is constructed as described above and has the following effects.

【0076】未処理の廃液の滞留を抑制することができ
ると共に気泡による悪影響の多くを回避することができ
るので、時間当たりのCODなどの低減の効率に優れ且
つ電極寿命がより長い廃液処理機構を提供することがで
きる。
Since the retention of untreated waste liquid can be suppressed and many of the adverse effects of bubbles can be avoided, a waste liquid treatment mechanism that is excellent in reducing COD per unit time and has a longer electrode life is provided. Can be provided.

【0077】また、請求項5記載の構成も採用すると、
処理中に発生した塩素ガス又は臭素ガスの殆どを除去す
ることができる。
Further, when the configuration according to claim 5 is adopted,
Most of chlorine gas or bromine gas generated during the treatment can be removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の廃液処理機構の実施例を説明するた
めのシステム・フロー図。
FIG. 1 is a system flow chart for explaining an embodiment of a waste liquid treatment mechanism of the present invention.

【図2】図1の廃液貯留槽の構造を説明するための概略
斜視図。
FIG. 2 is a schematic perspective view for explaining the structure of the waste liquid storage tank of FIG.

【図3】他の廃液貯留槽の構造を説明するための概略斜
視図。
FIG. 3 is a schematic perspective view for explaining the structure of another waste liquid storage tank.

【図4】他の廃液貯留槽の構造を説明するための概略斜
視図。
FIG. 4 is a schematic perspective view for explaining the structure of another waste liquid storage tank.

【図5】他の廃液貯留槽の構造を説明するための概略斜
視図。
FIG. 5 is a schematic perspective view for explaining the structure of another waste liquid storage tank.

【図6】この発明の廃液処理機構の他の実施例を説明す
るシステム・フロー図。
FIG. 6 is a system flow chart for explaining another embodiment of the waste liquid treatment mechanism of the present invention.

【図7】図1、図6、図8の電解槽の構造を説明する斜
視図。
FIG. 7 is a perspective view illustrating the structure of the electrolytic cell of FIGS. 1, 6, and 8.

【図8】この発明の廃液処理機構の他の実施例を説明す
るシステム・フロー図。
FIG. 8 is a system flow chart for explaining another embodiment of the waste liquid treatment mechanism of the present invention.

【図9】廃液の処理時間と塩素ガス濃度の関係を示すグ
ラフ。
FIG. 9 is a graph showing the relationship between the treatment time of waste liquid and the chlorine gas concentration.

【図10】従来の廃液処理機構を説明するためのシステ
ム・フロー図。
FIG. 10 is a system flow chart for explaining a conventional waste liquid treatment mechanism.

【符号の説明】[Explanation of symbols]

1 廃液貯留槽 17 曝気槽 1 Waste liquid storage tank 17 Aeration tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中尾 和久 東京都千代田区丸の内3丁目4番2号 三 菱製紙株式会社内 (72)発明者 岩田 保 東京都千代田区丸の内3丁目4番2号 三 菱製紙株式会社内 (72)発明者 中村 信一 大阪府大阪市平野区長吉長原西1丁目5番 26号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kazuhisa Nakao, 3-4-2 Marunouchi, Chiyoda-ku, Tokyo Sanryo Paper Co., Ltd. (72) Yasushi Iwata 3-4-2, 3-4 Marunouchi, Chiyoda-ku, Tokyo Ryo Paper Co., Ltd. (72) Inventor Shinichi Nakamura 1-526, 1-chome Nagayoshi Nagahara Nishi, Hirano-ku, Osaka City, Osaka Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 廃液を貯留する廃液貯留槽中の廃液を電
解槽との間で循環させ、循環する廃液中に活性酸素を生
成せしめるように電解槽内で電気分解を行ない、生成し
た活性酸素の酸化分解作用を廃液に及ぼしめるように構
成されると共に、前記廃液貯留槽は、先に電解槽から戻
ってきた廃液から順次、電解槽へ送り出されるように構
成されたことを特徴とする廃液処理機構。
1. A waste liquid in a waste liquid storage tank for storing the waste liquid is circulated between the waste liquid and the electrolytic cell, and electrolysis is performed in the electrolytic tank so as to generate active oxygen in the circulating waste liquid. The waste liquid storage tank is configured so as to exert the oxidative decomposition action of the waste liquid on the waste liquid, and the waste liquid storage tank is configured to be sequentially sent out to the electrolysis tank from the waste liquid returned from the electrolysis tank first. Processing mechanism.
【請求項2】 前記廃液貯留槽が、電解槽から戻ってく
る廃液の貯留域から、電解槽へ送り出される廃液の貯留
域への廃液の移行が可能な状態で区画されている請求項
1記載の廃液処理機構。
2. The waste liquid storage tank is partitioned so that the waste liquid can be transferred from the waste liquid storage area returned from the electrolytic cell to the waste liquid storage area sent to the electrolytic cell. Waste liquid treatment mechanism.
【請求項3】 処理中の廃液の電気伝導度を約50〜5
00mS/cm、電流密度を約2〜10A/dm2
し、その循環流量を約10〜30リットル/分として処
理を行う請求項1又は2記載の廃液処理機構。
3. The electrical conductivity of waste liquid during processing is about 50-5.
The waste liquid treatment mechanism according to claim 1 or 2, wherein the treatment is carried out at a flow rate of about 10 to 30 liters / minute, with a current density of about 2 to 10 A / dm 2 .
【請求項4】 処理すべき廃液中に活性酸素を生成せし
めるような電解液を処理前に添加すると共に、処理中に
も添加するようにした請求項1乃至3のいずれかに記載
の廃液処理機構。
4. The waste liquid treatment according to claim 1, wherein an electrolytic solution for generating active oxygen is added to the waste liquid to be treated before the treatment and is also added during the treatment. mechanism.
【請求項5】 処理すべき廃液に対して活性酸素を生成
せしめるような電解液として塩化ナトリウム、塩化カリ
ウム、臭化ナトリウム、又は臭化カリウムの水溶液を添
加すると共に、アルカリ性の溶液を貯留すべき曝気槽を
設け、処理中に発生した塩素ガス又は臭素ガスをアルカ
リ性の液中に曝気して溶解させると共に、次亜塩素酸又
は次亜臭素酸を塩化ナトリウム、塩化カリウム、臭化ナ
トリウム、又は臭化カリウムに変える触媒を前記曝気槽
中に具備せしめ、残余の塩素ガス又は臭素ガスを吸着す
る活性炭フィルターを曝気槽の開口に設けた請求項1乃
至4のいずれかに記載の廃液処理機構。
5. An alkaline solution should be stored while an aqueous solution of sodium chloride, potassium chloride, sodium bromide or potassium bromide is added as an electrolytic solution for producing active oxygen to the waste liquid to be treated. Provide an aeration tank to aerate and dissolve chlorine gas or bromine gas generated during the treatment in an alkaline liquid, and to dissolve hypochlorous acid or hypobromite in sodium chloride, potassium chloride, sodium bromide, or odor. The waste liquid treatment mechanism according to any one of claims 1 to 4, wherein a catalyst for converting to potassium iodide is provided in the aeration tank, and an activated carbon filter for adsorbing residual chlorine gas or bromine gas is provided at the opening of the aeration tank.
JP00431995A 1995-01-13 1995-01-13 Waste liquid treatment mechanism Expired - Lifetime JP3668902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00431995A JP3668902B2 (en) 1995-01-13 1995-01-13 Waste liquid treatment mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00431995A JP3668902B2 (en) 1995-01-13 1995-01-13 Waste liquid treatment mechanism

Publications (2)

Publication Number Publication Date
JPH08192162A true JPH08192162A (en) 1996-07-30
JP3668902B2 JP3668902B2 (en) 2005-07-06

Family

ID=11581160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00431995A Expired - Lifetime JP3668902B2 (en) 1995-01-13 1995-01-13 Waste liquid treatment mechanism

Country Status (1)

Country Link
JP (1) JP3668902B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997782A2 (en) 2007-04-09 2008-12-03 Hitachi, Ltd. An apparatus, a system and a treatment method for organic compounds included in waste water
JP2009208072A (en) * 2008-02-06 2009-09-17 Omega:Kk Water treatment method and device
JP2009255068A (en) * 2008-03-26 2009-11-05 Omega:Kk Water treatment system
US7704373B2 (en) 2001-10-22 2010-04-27 Omega Co., Ltd. Waste fluid or waste water treatment method and its apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7704373B2 (en) 2001-10-22 2010-04-27 Omega Co., Ltd. Waste fluid or waste water treatment method and its apparatus
EP1997782A2 (en) 2007-04-09 2008-12-03 Hitachi, Ltd. An apparatus, a system and a treatment method for organic compounds included in waste water
US7722773B2 (en) 2007-04-09 2010-05-25 Hitachi, Ltd. Method of treating organic compounds in wastewater
US7993529B2 (en) 2007-04-09 2011-08-09 Hitachi, Ltd. Treatment apparatus of organic compounds included in waste water, and a treatment system of organic compounds included in waste water
JP2009208072A (en) * 2008-02-06 2009-09-17 Omega:Kk Water treatment method and device
JP2009255068A (en) * 2008-03-26 2009-11-05 Omega:Kk Water treatment system

Also Published As

Publication number Publication date
JP3668902B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
JP3716042B2 (en) Acid water production method and electrolytic cell
JP2007069199A (en) Apparatus for treating water
JP4932529B2 (en) Water treatment method
KR950027972A (en) Generation of Electrolytic Active Water and Wet Treatment of Semiconductor Substrates
JPS6039757B2 (en) Hydrochloric acid electrolysis method
JP2006320870A (en) Waste gas treatment system
JP2603760B2 (en) De-cyanation apparatus and method for removing cyanide from wastewater
JP3668902B2 (en) Waste liquid treatment mechanism
JP4394941B2 (en) Electrolytic ozonizer
JP2002275671A (en) Method for producing hydrogen peroxide aqueous solution
KR20030009158A (en) Hypochlorous Acid Generating Method and Device
JP2004010904A (en) Electrolytic cell for manufacturing hydrogen peroxide
JP2008161795A (en) Ozone water generator
RU2471718C1 (en) Method of removing nitrite ions from water solutions
CN112028187A (en) Electrocatalytic oxidation device and method
JP2001300538A (en) Decomposition treating method of waste water containing ammonium salt or ammonia
JPH07246039A (en) Device for enriching oxygen for water tank
JP2006088018A (en) Pretreatment device for organic matter-containing waste water
CN212374965U (en) Electrocatalytic oxidation device
JP3906732B2 (en) Electrolyzed water generator
RU2374340C1 (en) Method of reclaiming cyanide from aqueous solutions
JP2006239590A (en) Treatment method and treatment device for oxidizable substance-containing waste water
JP3518779B2 (en) Aquarium water disinfection equipment
JP2000070947A (en) Electrolyzed water forming device
JP3981424B2 (en) Decomposition method of halogenated ethylene

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term