JP2009208037A - Solvent recovering apparatus - Google Patents

Solvent recovering apparatus Download PDF

Info

Publication number
JP2009208037A
JP2009208037A JP2008056033A JP2008056033A JP2009208037A JP 2009208037 A JP2009208037 A JP 2009208037A JP 2008056033 A JP2008056033 A JP 2008056033A JP 2008056033 A JP2008056033 A JP 2008056033A JP 2009208037 A JP2009208037 A JP 2009208037A
Authority
JP
Japan
Prior art keywords
solvent
condenser
containing gas
refrigerant
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008056033A
Other languages
Japanese (ja)
Inventor
Junichi Morikawa
潤一 森川
Zenichi Takano
善一 高野
Hideji Kawaguchi
秀司 河口
Masahiro Tanaka
将博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morikawa Co Ltd
Original Assignee
Morikawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morikawa Co Ltd filed Critical Morikawa Co Ltd
Priority to JP2008056033A priority Critical patent/JP2009208037A/en
Publication of JP2009208037A publication Critical patent/JP2009208037A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently recover a solvent from solvent-containing gas. <P>SOLUTION: The solvent recovering apparatus recovering solvent from the solvent-containing gas has a gas flow passage 1 provided with a pre-cooler 2, a water cooler 3 and a condenser 4 for condensing the solvent-containing gas in this order. A coolant is supplied to the condenser 4 from a direct expanding type freezer system, so that the temperature of the condenser becomes 4 to 2°C. Thus, the solvent is efficiently recovered while preventing freezing of water contained in the gas. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、洗浄溶剤や反応溶剤等の溶剤(溶媒)、特に沸点が180〜250℃のパラフィン系炭化水素溶剤や、沸点が75〜150℃のアルコール系炭化水素溶剤を、数千ppm以上の高濃度の溶剤を含有する溶剤含有ガスからの溶剤の回収に好適な溶剤の回収装置の技術分野に属するものである。   In the present invention, a solvent (solvent) such as a cleaning solvent or a reaction solvent, particularly a paraffinic hydrocarbon solvent having a boiling point of 180 to 250 ° C., or an alcoholic hydrocarbon solvent having a boiling point of 75 to 150 ° C. The present invention belongs to the technical field of a solvent recovery apparatus suitable for recovering a solvent from a solvent-containing gas containing a high-concentration solvent.

ところでこのような有機溶剤は、化学工場、塗装工場、印刷工場、薬品工場、半導体製造工場、精密機械製造工場等の各種施設において、反応、抽出、コーティング、脱脂洗浄等の各種工程で広く溶剤として採用されている。そしてこのような溶剤の多くは、高沸点であるが故、液体としてそのまま回収されるが、一部が気化して空気と混じるものがあり、このようなものをそのまま大気に放出することは公害発生の要因となり、そこで何らかのかたちで回収することが必要になる。
そこでこのような大気に混じった溶剤を回収する手段として、ゼオライトや活性炭等の吸着剤を用い、これらに溶剤を吸脱着して回収するようにしたもの(例えば特許文献1、2)が知られているが、ゼオライト等の吸着剤は高価であるため、経済的な面での負担が大変であるという問題がある。またゼオライトや活性炭は、良い吸脱着媒体であると同時に優れた触媒機能を有しており、このため、溶剤を吸脱着するあいだに酸化する等して変質させてしまうという問題があり、特に沸点が200℃以上のような高沸点の溶剤の場合、脱着する際に高温雰囲気下での処理が必要になってより酸化が進行し、溶剤が早期に変質してしまうだけでなく、吸着剤の劣化も早く、溶剤および活性炭の繰り返しての使用回数が少なくなるという問題がある。
そこで、VOCガスがを、冷却器に冷媒が供給されていない側の第一凝縮器(熱交換器)に供給した後、冷却器に冷媒が供給されている側の第二凝縮器(熱交換器)に供給することを交互に繰返すようにし、第二凝縮器内では、ガス中に含まれる水分(水蒸気)が含有溶剤を取り込む状態で凍結して付着させる一方、第一凝縮器内では、前回凍結した水分を供給される溶剤含有ガスで昇温させて解凍し、溶剤含有液体として回収すると共に、該供給された溶剤含有ガスの前冷却をするようにしたものを提唱した(特許文献3参照)。
特開平5−15724号公報 特開平5−15725号公報 特開2006−167543号公報
By the way, such organic solvents are widely used as solvents in various processes such as reaction, extraction, coating, degreasing and cleaning in various facilities such as chemical factories, painting factories, printing factories, chemical factories, semiconductor manufacturing factories, and precision machinery manufacturing factories. It has been adopted. Many of these solvents are recovered as they are because they have a high boiling point. However, some of them are vaporized and mixed with air. It becomes a cause of occurrence, and it is necessary to collect it in some form.
Therefore, as means for recovering the solvent mixed in the atmosphere, an adsorbent such as zeolite or activated carbon is used, and the solvent is adsorbed and desorbed to recover the solvent (for example, Patent Documents 1 and 2). However, since adsorbents such as zeolite are expensive, there is a problem that the burden on the economy is serious. In addition, zeolite and activated carbon are good adsorption / desorption media and at the same time have an excellent catalytic function. For this reason, there is a problem that they are altered by oxidation during adsorption / desorption of the solvent. In the case of a solvent having a high boiling point such as 200 ° C. or higher, treatment under a high-temperature atmosphere is required at the time of desorption, so that the oxidation proceeds more and the solvent changes in quality early. There is a problem that the deterioration is quick and the number of repeated use of the solvent and activated carbon is reduced.
Therefore, after the VOC gas is supplied to the first condenser (heat exchanger) on the side where the refrigerant is not supplied to the cooler, the second condenser (heat exchange) on the side where the refrigerant is supplied to the cooler. In the second condenser, moisture (steam) contained in the gas is frozen and attached in a state of taking in the solvent, while in the first condenser, It was proposed that the previously frozen water was heated and thawed with the supplied solvent-containing gas and recovered as a solvent-containing liquid, and the supplied solvent-containing gas was precooled (Patent Document 3). reference).
Japanese Patent Laid-Open No. 5-15724 Japanese Patent Laid-Open No. 5-15725 JP 2006-167543 A

前記提唱したものは、高い回収能力を発揮し、溶剤回収の手段として有効であったが、このものは二塔の凝縮器を必要とするため装置全体が大型化すると共に、設備費も高騰することになって中小企業や零細企業のように資金的にも厳しく、また広い設置スペースを確保できないようなところでは設置するのに難しいという問題があり、ここに本発明が解決せんとする課題がある。   The above-mentioned proposal exhibited a high recovery capability and was effective as a means for solvent recovery. However, since this requires a two-column condenser, the entire apparatus becomes larger and the equipment cost increases. As a result, there is a problem that it is difficult to install in a place where it is difficult to secure a large installation space, such as SMEs and micro enterprises, and there is a problem that the present invention does not solve is there.

本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、請求項1の発明は、溶剤含有ガスから溶剤を回収するための回収装置であって、該回収装置は、溶剤含有ガスを凝縮するための凝縮器と、該凝縮器に冷媒を供給するための冷媒供給手段と、溶剤含有ガスを予冷却するための予冷脚手段とを供えると共に、冷媒供給手段は、凝縮器の温度が0℃を越えたものにして溶媒含有ガス中の水分が凍結しないよう冷媒の供給をするものとし、予冷脚手段は、凝縮器で溶剤回収されたガスが冷媒として供給されるよう凝縮器に接続されていることを特徴とする溶剤の回収装置である。
請求項2の発明は、溶剤含有ガスは、沸点が180〜250℃のパラフィン系炭化水素溶剤を1000〜10000ppm含むものであることを特徴とする請求項1記載の溶剤の回収装置である。
請求項3の発明は、溶剤含有ガスは、沸点が75〜150℃のアルコール系炭化水素溶剤を20000〜30000ppm含むものであることを特徴とする請求項1記載の溶剤の回収装置である。
請求項4の発明は、溶剤回収される溶剤含有ガスの流路は、予冷却手段、水冷却手段、凝縮器の順であることを特徴とする請求項1乃至3の何れか1記載の溶剤の回収装置である。
請求項5の発明は、凝縮器に供給する冷媒は、直膨式の冷凍機システムから連続して供給されるものであることを特徴とする請求項1乃至4の何れか1記載の溶剤の回収装置である。
The present invention was created in view of the above-described circumstances to solve these problems, and the invention of claim 1 is a recovery device for recovering a solvent from a solvent-containing gas. The recovery device includes a condenser for condensing the solvent-containing gas, a refrigerant supply means for supplying a refrigerant to the condenser, and a pre-cooling leg means for pre-cooling the solvent-containing gas. The refrigerant supply means supplies the refrigerant so that the moisture in the solvent-containing gas does not freeze when the temperature of the condenser exceeds 0 ° C., and the precooling leg means receives the gas recovered from the solvent by the condenser. The solvent recovery device is connected to a condenser so as to be supplied as a refrigerant.
The invention according to claim 2 is the solvent recovery apparatus according to claim 1, wherein the solvent-containing gas contains 1000 to 10,000 ppm of a paraffinic hydrocarbon solvent having a boiling point of 180 to 250 ° C.
The invention according to claim 3 is the solvent recovery apparatus according to claim 1, wherein the solvent-containing gas contains 20000 to 30000 ppm of an alcohol-based hydrocarbon solvent having a boiling point of 75 to 150 ° C.
According to a fourth aspect of the present invention, the solvent-containing gas flow path for recovering the solvent is in the order of precooling means, water cooling means, and condenser. This is a recovery device.
According to a fifth aspect of the invention, the refrigerant supplied to the condenser is continuously supplied from a direct expansion type refrigerator system, and the solvent according to any one of the first to fourth aspects is provided. It is a recovery device.

請求項1の発明とすることにより、凝縮器が1塔でありながら、該凝縮器内が水分凍結による閉鎖がない状態で長時間の運転ができると共に、凝縮器で溶剤回収されたガスが予冷却手段の冷媒として有効利用できることになって、溶剤回収装置の小型化、低価格化が達成できると同時にエネルギー効率の高いものにできることになる。
請求項2の発明とすることにより、沸点が180〜250℃のパラフィン系炭化水素溶剤を1000〜10000ppm含むものから効率よく溶剤回収をすることができる。
請求項3の発明とすることにより、沸点が75〜150℃のアルコール系炭化水素溶剤を20000〜30000ppm含むものから効率よく溶剤回収をすることができる。
請求項4の発明とすることにより、溶剤含有ガスの流路が予冷却手段、水冷却手段、凝縮器の順になってより効率のよい溶剤回収ができることになる。
請求項5の発明の発明とすることにより、製作コストが低廉でコンパクト化した回収装置にすることができる。
According to the first aspect of the present invention, while the condenser is a single tower, the condenser can be operated for a long time without being closed by moisture freezing, and the gas recovered from the solvent in the condenser is preliminarily used. Since it can be effectively used as a refrigerant for the cooling means, the solvent recovery device can be reduced in size and price, and at the same time can be made highly energy efficient.
By making it invention of Claim 2, solvent recovery can be efficiently carried out from what contains 1000-10000 ppm of paraffinic hydrocarbon solvents whose boiling point is 180-250 degreeC.
By making it invention of Claim 3, solvent recovery can be efficiently carried out from what contains 20000-30000 ppm of the alcohol-type hydrocarbon solvent whose boiling point is 75-150 degreeC.
According to the invention of claim 4, the solvent-containing gas flow path becomes the pre-cooling means, the water cooling means, and the condenser in this order, so that more efficient solvent recovery can be performed.
According to the invention of the fifth aspect of the invention, the collection device can be made compact with a low manufacturing cost.

次ぎに、本発明の実施の形態について図面に基づいて説明する。図中、1は気化した溶剤が混入していて溶剤回収が必要な溶剤含有ガスの流路であって、該流路1は、予冷却器(予冷凝縮器)2、冷媒を2℃の冷水とする水冷却器(水冷凝縮器)3を経由してメインの凝縮器(熱交換器)4に至るようになっている。そして凝縮器4の出口側流路1aにはブロア5が設けられているが、該ブロア5の吸排気作動によって、溶剤含有ガスを凝縮器4に吸引し、そして後述するように凝縮器4で溶剤回収がなされた処理済みガスを前記予冷却器2の冷媒として供給した後、排気するようになっている。   Next, embodiments of the present invention will be described with reference to the drawings. In the figure, reference numeral 1 denotes a flow path of a solvent-containing gas in which a vaporized solvent is mixed and the solvent needs to be recovered. The flow path 1 includes a precooler (precooled condenser) 2 and a coolant at 2 ° C. cold water. The main condenser (heat exchanger) 4 is reached via a water cooler (water-cooled condenser) 3. A blower 5 is provided in the outlet-side flow path 1a of the condenser 4. By the intake / exhaust operation of the blower 5, the solvent-containing gas is sucked into the condenser 4, and as described later, The treated gas from which the solvent has been recovered is supplied as a refrigerant for the precooler 2 and then exhausted.

6は冷媒タンクであって、該冷媒タンク6に貯留される冷媒は、直膨式の冷凍機7によって冷却される冷却器8に対し、ポンプ9の駆動によって連続的に供給されて冷却されたものが、前記凝縮器4の冷媒として供給されるようになっている。
また10は前記凝縮器4で回収された凝縮液タンクであって、該凝縮液タンク10に回収された凝縮液は、ポンプ11の駆動によって図示しない水分除去装置に供給され、該水分が除去された溶剤が回収されるようになっている。
6 is a refrigerant tank, and the refrigerant stored in the refrigerant tank 6 is continuously supplied to the cooler 8 cooled by the direct expansion type refrigerator 7 by driving the pump 9 and cooled. Things are supplied as refrigerant of the condenser 4.
Reference numeral 10 denotes a condensate tank recovered by the condenser 4, and the condensate recovered in the condensate tank 10 is supplied to a moisture removing device (not shown) by driving the pump 11 to remove the moisture. Solvent is recovered.

次に、具体的に溶剤回収の手段について説明するが、溶剤含有ガスとしては、沸点約196℃のパラフィン系炭化水素溶剤が5000ppmの濃度で含むものとし、そして60℃で前記流路1に供給される。そして該供給された溶剤含有ガスを、凝縮器4で凝縮して溶剤回収をすることになるが、凝縮器4の運転開始温度が18℃であり、ここに2℃に冷却した冷媒を供給すると、約2時間で凝縮器4の温度が約2℃になった。この状態を維持して溶剤の回収率を測定したところ、回収率は91.1%であった。そしてこの場合に、凝縮器4内において、溶剤含有ガスに含有する水分の凍結現象は運転開始から6時間を経ても発現せず、更なる運転が可能であった。   Next, the means for recovering the solvent will be described in detail. As the solvent-containing gas, a paraffinic hydrocarbon solvent having a boiling point of about 196 ° C. is contained at a concentration of 5000 ppm, and is supplied to the flow path 1 at 60 ° C. The The supplied solvent-containing gas is condensed by the condenser 4 to recover the solvent. When the condenser 4 starts operating at 18 ° C., a refrigerant cooled to 2 ° C. is supplied here. The temperature of the condenser 4 became about 2 ° C. in about 2 hours. When this state was maintained and the solvent recovery rate was measured, the recovery rate was 91.1%. In this case, in the condenser 4, the freezing phenomenon of the water contained in the solvent-containing gas did not appear even after 6 hours from the start of operation, and further operation was possible.

これに対し、運転開始温度が9℃の凝縮器4に−5℃の冷媒を供給して前記溶剤含有ガスの溶剤回収を試みたところ、凝縮器4が約2時間で凍結状態になって閉塞した。   On the other hand, when the recovery of the solvent-containing gas was attempted by supplying a refrigerant of −5 ° C. to the condenser 4 having an operation start temperature of 9 ° C., the condenser 4 became frozen in about 2 hours and was blocked. did.

このように、本発明が実施されたものにおいては、凝縮器4が1塔でありながら、該凝縮器4内の温度が約2℃に維持されることになって凝縮器4内は水分の凍結による閉塞がなく、長時間に亘って高回収率での回収運転ができることになる。しかも凝縮器4によって溶剤回収されたガスは、予冷却器2を冷却するための冷媒として有効利用される。
この結果、1塔の凝縮器4を用いて高効率の溶剤回収ができることになって設備の小型化、低廉化が達成できると共に、エネルギー効率も向上できることになる。
As described above, in the case where the present invention is implemented, although the condenser 4 is one tower, the temperature in the condenser 4 is maintained at about 2 ° C. There is no blockage due to freezing, and a recovery operation can be performed at a high recovery rate for a long time. Moreover, the solvent recovered by the condenser 4 is effectively used as a refrigerant for cooling the precooler 2.
As a result, it is possible to recover the solvent with high efficiency by using one tower of the condenser 4, thereby achieving downsizing and cost reduction of the equipment and improving energy efficiency.

次に、上記回収装置を用いて沸点82℃のイソプロパノールガスが25000ppmの濃度で含まれたもののイソプロパノールを回収しようとするものであり、そして50℃で前記流路1に供給される。そして該供給された溶剤含有ガスを、凝縮器4で凝縮して溶剤回収をすることになるが、凝縮器4の運転開始温度が18℃であり、ここに2℃に冷却した冷媒を供給すると、約2時間で凝縮器4の温度が約2℃になった。この状態を維持して溶剤の回収率を測定したところ、回収率は71.0%であった。そしてこの場合に、凝縮器4内において、溶剤含有ガスに含有する水分の凍結現象は運転開始から6時間を経ても発現せず、更なる運転が可能であった。   Next, the recovery apparatus is used to recover isopropanol containing isopropanol gas having a boiling point of 82 ° C. at a concentration of 25000 ppm, and is supplied to the flow path 1 at 50 ° C. The supplied solvent-containing gas is condensed by the condenser 4 to recover the solvent. When the condenser 4 starts operating at 18 ° C., a refrigerant cooled to 2 ° C. is supplied here. The temperature of the condenser 4 became about 2 ° C. in about 2 hours. When this state was maintained and the solvent recovery rate was measured, the recovery rate was 71.0%. In this case, in the condenser 4, the freezing phenomenon of the water contained in the solvent-containing gas did not appear even after 6 hours from the start of operation, and further operation was possible.

さらにまた、前記回収装置は、溶剤回収ガスの流路に予冷却器2、水冷却器3の順に配したものとしたが、これを水冷却器3、予冷却器2と逆に配したものとで溶剤回収率に差異があるかについて検討した。含有溶剤としては、沸点が200〜206℃のパラフィン系炭化水素溶剤を1000ppmの濃度で含有するものとし、予冷却器2と水冷却器3との配置を異ならしめた以外は、前記パラフィン系炭化水素溶剤の回収手法と同じにして回収率を比較した。これによると、予冷却器2、水冷却器3の順に配したものは回収率が86%であったのに対し、逆に水冷却器3、予冷却器2の順に配したものは回収率が78.8%と、若干ではあるが低いことが確認され、前者の方が回収効率が高いことが確認された。   Furthermore, the recovery device is arranged in the order of the precooler 2 and the water cooler 3 in the solvent recovery gas flow path, but this is arranged opposite to the water cooler 3 and the precooler 2. And whether there was a difference in the solvent recovery rate. As the contained solvent, the paraffinic carbonized solvent except that the boiling point is 200 to 206 ° C. paraffinic hydrocarbon solvent is contained at a concentration of 1000 ppm and the precooler 2 and the water cooler 3 are arranged differently. The recovery rate was compared in the same manner as the hydrogen solvent recovery method. According to this, what was arranged in the order of the precooler 2 and the water cooler 3 had a recovery rate of 86%, whereas conversely, what was arranged in the order of the water cooler 3 and the precooler 2 was the recovery rate. Was 88.8%, which was confirmed to be slightly low, and the former was confirmed to have higher recovery efficiency.

溶剤回収装置の回路図である。It is a circuit diagram of a solvent collection | recovery apparatus.

符号の説明Explanation of symbols

1 流路
2 予冷却器
3 水冷却器
4 凝縮器
5 冷媒タンク
1 Channel 2 Precooler 3 Water Cooler 4 Condenser 5 Refrigerant Tank

Claims (5)

溶剤含有ガスから溶剤を回収するための回収装置であって、該回収装置は、溶剤含有ガスを凝縮するための凝縮器と、該凝縮器に冷媒を供給するための冷媒供給手段と、溶剤含有ガスを予冷却するための予冷脚手段とを供えると共に、冷媒供給手段は、凝縮器の温度が0℃を越えたものにして溶媒含有ガス中の水分が凍結しないよう冷媒の供給をするものとし、予冷脚手段は、凝縮器で溶剤回収されたガスが冷媒として供給されるよう凝縮器に接続されていることを特徴とする溶剤の回収装置。   A recovery device for recovering a solvent from a solvent-containing gas, the recovery device comprising: a condenser for condensing the solvent-containing gas; a refrigerant supply means for supplying a refrigerant to the condenser; Precooling leg means for precooling the gas is provided, and the refrigerant supply means supplies the refrigerant so that the temperature of the condenser exceeds 0 ° C. and the water in the solvent-containing gas does not freeze. The pre-cooling leg means is connected to the condenser so that the gas recovered from the solvent in the condenser is supplied as a refrigerant. 溶剤含有ガスは、沸点が180〜250℃のパラフィン系炭化水素溶剤を1000〜10000ppm含むものであることを特徴とする請求項1記載の溶剤の回収装置。   2. The solvent recovery apparatus according to claim 1, wherein the solvent-containing gas contains 1000 to 10,000 ppm of a paraffinic hydrocarbon solvent having a boiling point of 180 to 250 ° C. 溶剤含有ガスは、沸点が75〜150℃のアルコール系炭化水素溶剤を20000〜30000ppm含むものであることを特徴とする請求項1記載の溶剤の回収装置。   2. The solvent recovery apparatus according to claim 1, wherein the solvent-containing gas contains 20000 to 30000 ppm of an alcohol-based hydrocarbon solvent having a boiling point of 75 to 150 ° C. 溶剤回収される溶剤含有ガスの流路は、予冷却手段、水冷却手段、凝縮器の順であることを特徴とする請求項1乃至3の何れか1記載の溶剤の回収装置。   The solvent recovery apparatus according to any one of claims 1 to 3, wherein the flow path of the solvent-containing gas for solvent recovery is in the order of pre-cooling means, water cooling means, and condenser. 凝縮器に供給する冷媒は、直膨式の冷凍機システムから連続して供給されるものであることを特徴とする請求項1乃至4の何れか1記載の溶剤の回収装置。   5. The solvent recovery apparatus according to claim 1, wherein the refrigerant supplied to the condenser is continuously supplied from a direct expansion type refrigerator system.
JP2008056033A 2008-03-06 2008-03-06 Solvent recovering apparatus Pending JP2009208037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056033A JP2009208037A (en) 2008-03-06 2008-03-06 Solvent recovering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056033A JP2009208037A (en) 2008-03-06 2008-03-06 Solvent recovering apparatus

Publications (1)

Publication Number Publication Date
JP2009208037A true JP2009208037A (en) 2009-09-17

Family

ID=41181710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056033A Pending JP2009208037A (en) 2008-03-06 2008-03-06 Solvent recovering apparatus

Country Status (1)

Country Link
JP (1) JP2009208037A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101187A (en) * 2010-11-11 2012-05-31 Takasago Thermal Eng Co Ltd Solvent recovery device
KR200469356Y1 (en) 2011-04-21 2013-10-08 옌-춘 라이 A waste gas recovery machine
JP2014087746A (en) * 2012-10-30 2014-05-15 Taikisha Ltd Solvent recovery facility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159409A (en) * 1986-12-23 1988-07-02 Mitsubishi Heavy Ind Ltd Recovery by cooling of gas generated in devolatilizing tank of polystyrene plant
JPS63253038A (en) * 1987-04-10 1988-10-20 Mitsubishi Heavy Ind Ltd Cooling and recovery of vapor
JPH0938403A (en) * 1995-08-02 1997-02-10 Taikisha Ltd Recovering apparatus for solvent
JP2007319730A (en) * 2006-05-30 2007-12-13 Morikawa Co Ltd Recovery apparatus for solvent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159409A (en) * 1986-12-23 1988-07-02 Mitsubishi Heavy Ind Ltd Recovery by cooling of gas generated in devolatilizing tank of polystyrene plant
JPS63253038A (en) * 1987-04-10 1988-10-20 Mitsubishi Heavy Ind Ltd Cooling and recovery of vapor
JPH0938403A (en) * 1995-08-02 1997-02-10 Taikisha Ltd Recovering apparatus for solvent
JP2007319730A (en) * 2006-05-30 2007-12-13 Morikawa Co Ltd Recovery apparatus for solvent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101187A (en) * 2010-11-11 2012-05-31 Takasago Thermal Eng Co Ltd Solvent recovery device
KR200469356Y1 (en) 2011-04-21 2013-10-08 옌-춘 라이 A waste gas recovery machine
JP2014087746A (en) * 2012-10-30 2014-05-15 Taikisha Ltd Solvent recovery facility

Similar Documents

Publication Publication Date Title
CN108043064B (en) VOCs recovery process and system
JP2008500940A (en) Apparatus and method for cooling in a hydrogen plant
US20120325089A1 (en) Carbon dioxide capturing device and carbon dioxide capturing method
US10569215B2 (en) Systems and methods for reducing the energy requirements of a carbon dioxide capture plant
JP2009208037A (en) Solvent recovering apparatus
JPH1157371A (en) Production of ultraclean air
JP5351109B2 (en) Solvent recovery device
CN102481510B (en) Method for purifying a gas stream including mercury
JP2011020885A (en) Method for regenerating spent carbon dioxide gas
WO2017126149A1 (en) Carbon dioxide separation/recovery device, combustion system using same, thermal power generation system using same, and method for separating and recovering carbon dioxide
JP2012130875A (en) Solvent recovery apparatus
JP2008207105A (en) Solvent recovery apparatus
AU2013372962B2 (en) Systems and methods for reducing the energy requirements of a carbon dioxide capture plant
JP5600048B2 (en) Solvent recovery device
JP4430351B2 (en) Fluorine compound gas separation and purification equipment
US20110173981A1 (en) Utilization of low grade heat in a refrigeration cycle
JP2004167356A (en) Processing method and processing system of exhaust gas
JPH11151415A (en) Production of ultra clean air and device therefor
JP5290605B2 (en) Water removal method
TW201334853A (en) Apparatus and method for recovering gaseous hydrocarbon
JP2009208038A (en) Solvent recovering apparatus
JP5829168B2 (en) Carbon dioxide recovery system and carbon dioxide recovery method using the same
EP4204126A1 (en) Ammonia-based carbon dioxide abatement system and method, and direct contact cooler therefore
JP2004141858A (en) Dehumidification method of exhaust gas, and system therefor
US9702269B2 (en) Device for capture of acid gas contained in combustion fumes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121220