JPS63159409A - Recovery by cooling of gas generated in devolatilizing tank of polystyrene plant - Google Patents

Recovery by cooling of gas generated in devolatilizing tank of polystyrene plant

Info

Publication number
JPS63159409A
JPS63159409A JP30542386A JP30542386A JPS63159409A JP S63159409 A JPS63159409 A JP S63159409A JP 30542386 A JP30542386 A JP 30542386A JP 30542386 A JP30542386 A JP 30542386A JP S63159409 A JPS63159409 A JP S63159409A
Authority
JP
Japan
Prior art keywords
vapor
solvent
cooling
cooler
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30542386A
Other languages
Japanese (ja)
Other versions
JPH0764895B2 (en
Inventor
Mamoru Tamai
玉井 守
Tomokatsu Kousaka
高坂 知勝
▲槇▼野 勝昭
Katsuaki Makino
Sadaji Nishida
西田 定二
Mutsunori Karasaki
唐崎 睦範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30542386A priority Critical patent/JPH0764895B2/en
Publication of JPS63159409A publication Critical patent/JPS63159409A/en
Publication of JPH0764895B2 publication Critical patent/JPH0764895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To recover unchanged styrene in a high yield, by directly contacting unreacted styrene vapor generated in a devolatilizing tank of a PS plant with a low-temperature circulating solvent and then with the inside wall of a wetted wall cooler. CONSTITUTION:Vapor containing unreacted styrene of 200-300 deg.C generated in a devolatilizing tank of a PS plant, a solvent and an oligomer are introduced via a line 1 to a direct contact part 21 on the upper part of a condenser and brought into direct contact with a low-temperature circulating solvent of 5-10 deg.C so as to cool the vapor to nearly their dew point. The vapor and the solvent are the introduced into a wetted wall cooler 22 of a shell tube type provided in the lower part of the contact part 21, so that a liquid solvent membrane be formed on the inside wall of the tube of the cooler 22, and the vapor including the unreacted styrene are condensed by directly cooling from the shell side by a low-temperature coolant which is introduced from an inlet 27 to flow to an outlet 28, and the condensed product is recovered in a liquid tank 23.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリスチレン製造プラントの、脱揮発槽から生
成する未反応スチレンと溶剤を冷却回収する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for cooling and recovering unreacted styrene and solvent produced from a devolatilization tank in a polystyrene production plant.

〔従来の技術〕[Conventional technology]

包装容器、電気部品などに広範な用途をもつポリスチレ
ンは、スチレンな原料として重合反応をされることによ
り製造される。このポリスチレン製造プラントの重合工
程の最後部に、真空下で重合ポリスチレン溶液から未反
応スチレンと溶媒を蒸発脱揮させ、さらにこのガス状の
未反応スチレンと溶媒を冷却凝縮して回収する工程があ
る。
Polystyrene, which has a wide range of uses in packaging containers, electrical parts, etc., is manufactured by subjecting styrene raw materials to polymerization reactions. At the end of the polymerization process in this polystyrene manufacturing plant, there is a step in which unreacted styrene and solvent are evaporated and devolatilized from the polymerized polystyrene solution under vacuum, and this gaseous unreacted styrene and solvent are collected by cooling and condensation. .

この未反応スチレンの中には部分的に重合したオリゴマ
ーと呼ばれる高沸点物質が含まれ、シェル−チューブ型
熱交換器等で間蓬的に冷却凝縮するとこの高沸点物質が
伝熱面に付着し、伝熱性能を低下させ、さらに熱交換器
の閉塞などの原因となる。
This unreacted styrene contains partially polymerized high-boiling substances called oligomers, and when they are periodically cooled and condensed in a shell-tube heat exchanger, these high-boiling substances adhere to the heat transfer surface. , reducing heat transfer performance and causing clogging of the heat exchanger.

この未反応スチレンを冷却凝縮する方法として従来用い
られている技術の例を第2図に示す。
An example of a technique conventionally used as a method for cooling and condensing this unreacted styrene is shown in FIG.

脱揮発槽(図示せず)で加熱、減圧されることによシポ
リマーからガス化、分離してくる高温の未反応スチレン
、溶剤、オリゴマーなどの蒸気は蒸気供給ライン1がら
供給され、第1コンデンサー2において、冷却器9で冷
媒、例えば水、により冷却された循環溶剤が循環溶剤ラ
イン5を経てスプレーされて直接接触し、降温して大部
分の未反応スチレン等が凝縮回収される。この凝縮物は
凝縮物ライン4を経て循環ポンプ6を用いて、一部は循
環ライン7から冷却器9を通して再使用され、一部はパ
ージライン8から系外へ取り出されて処理される。
The vapor of high-temperature unreacted styrene, solvent, oligomer, etc. that is gasified and separated from the cypolymer by being heated and depressurized in a devolatilization tank (not shown) is supplied from the vapor supply line 1 to the first condenser. In step 2, the circulating solvent cooled by a refrigerant, such as water, in the cooler 9 is sprayed through the circulating solvent line 5 and comes into direct contact with the solvent, the temperature is lowered, and most of the unreacted styrene etc. are condensed and recovered. This condensate passes through a condensate line 4 using a circulation pump 6, a part of which is reused through a circulation line 7 and a cooler 9, and a part of which is taken out of the system through a purge line 8 and treated.

第1.コンデンサー2での非凝縮物は非凝縮物ライン3
からより低温で操作される第2コンデンサー10に送°
られ、冷却器16で冷媒、例えば水、により冷却された
循環溶剤が循環溶剤ライン15からスプレーされて直接
接触し、さらに降温して残りのスチレン等が凝縮回収さ
れる。
1st. Non-condensables in condenser 2 are connected to non-condensables line 3
to a second condenser 10 which operates at a lower temperature.
The circulating solvent cooled by a refrigerant such as water in the cooler 16 is sprayed from the circulating solvent line 15 and comes into direct contact with the circulating solvent, and the temperature is further lowered and the remaining styrene and the like are condensed and recovered.

この凝縮物は、凝縮物ライン12から循環ポンプ14を
用いて取出され、一部は循環ライン15で循環使用され
、一部はバージライン19から第1コンデンサー2から
のパージライン8と合流して、排出ライン20から系外
へ搬出される。
This condensate is taken out from the condensate line 12 using the circulation pump 14, part of it is circulated in the circulation line 15, and part of it is passed from the barge line 19 to join the purge line 8 from the first condenser 2. , and are carried out from the system through the discharge line 20.

第2コンデンサーでの非凝縮物はもれ込んだ空気とごく
わずかのスチレン蒸気等であり、これは真空引きライン
11、および真空ポンプあるいはスチームエジェクター
等の真空発生装置17を経てバージライン18から系外
へ出される。
The non-condensable matter in the second condenser is leaked air and a very small amount of styrene vapor, which is sent to the system from the barge line 18 via the vacuum line 11 and the vacuum generator 17 such as a vacuum pump or steam ejector. be taken outside.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した従来の方法では、 (1)  プロセスが複雑である。 In the conventional method mentioned above, (1) The process is complicated.

(2)機器が多いため、それに伴なう制御、配管も複雑
である。
(2) Since there are many devices, the accompanying control and piping are also complex.

(3)  未反応スチレン、溶剤、オリゴマーなどの蒸
気1は一般に200〜240℃の温度であり、この蒸気
から凝縮物を回収するために5〜10℃まで冷却する必
要があり、顕熱および潜熱として除去すべき熱はぼう大
である。
(3) Vapors 1 of unreacted styrene, solvents, oligomers, etc. are generally at a temperature of 200-240°C and need to be cooled to 5-10°C to recover condensate from this vapor, resulting in sensible and latent heat. The amount of heat that must be removed is enormous.

従来の方法ではこの冷却をすべて循環溶剤の直接接触で
まかなうため、大量の循環溶剤量が必要である。(蒸気
に対し、重量比で約100倍) (4)  このため、コンデンサー容積、循環ポンプ、
熱交換器などの容量が大きくなる。
In conventional methods, this cooling is accomplished entirely through direct contact with the circulating solvent, which requires a large amount of circulating solvent. (approximately 100 times the weight of steam) (4) Therefore, the condenser volume, circulation pump,
The capacity of heat exchangers, etc. increases.

又、間接冷却によりスチレン等の凝縮回収をはかる場合
には、オリゴマーが伝熱面に付着し、伝熱性能の低下、
伝熱管の閉塞などトラブルの原因となる。
In addition, when attempting to condense and recover styrene etc. by indirect cooling, oligomers adhere to the heat transfer surface, resulting in a decrease in heat transfer performance and
This may cause problems such as clogging of heat exchanger tubes.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来法におけるような問題点のないポリス
チレンプラント脱揮元種生成ガスの冷却法を提供しよう
とするものである。
The present invention aims to provide a method for cooling the devolatilizing species produced gas in a polystyrene plant, which does not have the problems encountered in the conventional methods described above.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はポリスチレンプラントの脱揮発槽から生成する
未反応スチレン等の蒸気を冷却回収する方法において (1)  まず、この蒸気と低温循環溶剤を直接接触さ
せて蒸気温度を下げ、 (2)次にこの蒸気と溶剤を、直接接触部の下部に設置
された漏れ壁式クーラーに導き該クーラーのチューブ内
面壁上に溶剤液膜を形成させ、シェル側から間接的に低
温冷媒により冷却し、未反応スチレン等の蒸気を冷却凝
縮する ことを特徴とする脱揮元種生成ガスの冷却回収方法であ
る。
The present invention provides a method for cooling and recovering unreacted styrene vapor generated from a devolatilization tank of a polystyrene plant.(1) First, the vapor is brought into direct contact with a low-temperature circulating solvent to lower the vapor temperature; This vapor and solvent are guided to a leaking wall cooler installed at the bottom of the direct contact part, forming a solvent liquid film on the inner wall of the tube of the cooler, and are indirectly cooled by low-temperature refrigerant from the shell side. This is a method for cooling and recovering a devolatilizing source gas, which is characterized by cooling and condensing the vapor of styrene or the like.

すなわち、本発明は直接接触冷却と間接冷却を組みあわ
せることにより、前記の従来法での問題点をすべて巧み
に解決するものである。
That is, the present invention skillfully solves all the problems of the conventional methods by combining direct contact cooling and indirect cooling.

本発明を更に詳しく説明すると、後述のように、1基の
コンデンサーの上部では高温蒸気と低温循環溶剤の直接
接触により成る程度冷却し、このコンデンサーの下部に
漏れ壁式クーラーを設置して冷媒により間接的に冷却し
、しかも伝熱面を液で洗浄するようにしてより高い冷却
性能を発揮させる点が本発明の特徴である。
To explain the invention in more detail, as will be described below, the upper part of one condenser is cooled by direct contact between the hot steam and the cold circulating solvent, and the lower part of the condenser is provided with a leaking wall cooler to cool the refrigerant. A feature of the present invention is that it achieves higher cooling performance by indirectly cooling and cleaning the heat transfer surface with liquid.

以下、第1図によって本発明の一実施態様を説明する。Hereinafter, one embodiment of the present invention will be explained with reference to FIG.

本発明方法を実施するに適したコンデンサーは、上部の
直接接触部21、下部の漏れ模式クーラ一部22および
液タンク23で構成される。
A condenser suitable for carrying out the method of the invention consists of an upper direct contact part 21, a lower leakage type cooler part 22 and a liquid tank 23.

脱揮発槽にてガス化し、送られてくる200〜250℃
の未反応スチレン、溶剤、オリゴマーなどの蒸気は蒸気
供給ライン1から供給され、コンデンサー上部の直接接
触部21でスプレーされた5〜10℃の低温循環溶剤と
直接接触し、溶剤の顕熱により蒸気は、直接接触部内の
圧力における露点近くまで降温する。一般的に循環溶剤
流量は蒸気流量に対して重量比で5〜20倍で操作され
、この直接冷却部での冷却温度は15〜40℃である。
Gasified in a devolatilization tank and sent to 200-250℃
Vapors of unreacted styrene, solvents, oligomers, etc. are supplied from the vapor supply line 1, and are brought into direct contact with the low-temperature circulating solvent at 5 to 10°C sprayed in the direct contact section 21 above the condenser, and are converted into vapors by the sensible heat of the solvent. temperature decreases to near the dew point at the pressure within the direct contact area. Generally, the circulating solvent flow rate is operated at a weight ratio of 5 to 20 times the steam flow rate, and the cooling temperature in this direct cooling section is 15 to 40°C.

溶剤のスプレーによる攪拌効果により蒸気と溶剤はほぼ
同じ温度になる。
The agitation effect of the solvent spray brings the steam and solvent to approximately the same temperature.

15〜40℃になった未反応スチレン等の蒸気および循
環溶剤は、直接接触部の下部に設けられた漏れ模式クー
ラ一部22に導びかれる。
The unreacted styrene vapor and circulating solvent at 15-40°C are led to a leak type cooler part 22 provided below the direct contact section.

この漏れ模式クーラ一部22はシェル・チューブタイプ
で構成されており、チューブ内を未反応スチレン等の蒸
気および循環溶剤が流下する。
This leakage type cooler part 22 is constructed of a shell-tube type, and vapors such as unreacted styrene and circulating solvent flow down inside the tube.

チューブ入口では流体が各チューブに均一に分散するよ
う、またチューブ内で、循環溶剤が壁内面に液膜を形成
して流下するような工夫がなされるが、この方法は本発
明とは関係ないので説明は省略する。漏れ模式クーラ一
部22のシェル側には低温冷媒、例えば低温ブライン、
がブライン供給口27から導入されブライン出口28へ
流れ、その時にチューブ内を流下する溶剤液膜および蒸
気を間接冷却し、その結果として蒸気の降温、凝縮を促
進する。
At the tube inlet, the fluid is uniformly dispersed in each tube, and within the tube, a circulating solvent forms a liquid film on the inner surface of the wall and flows down, but this method is not related to the present invention. Therefore, the explanation will be omitted. The shell side of the leakage model cooler part 22 contains a low temperature refrigerant, such as low temperature brine,
is introduced from the brine supply port 27 and flows to the brine outlet 28, which indirectly cools the solvent liquid film and vapor flowing down inside the tube, thereby promoting temperature reduction and condensation of the vapor.

このような壁内に液膜を有する熱交換器、すなわち漏れ
養成クーラーは、液膜の乱れなどにより伝熱速度を高め
る効果をもち、総括伝熱係数は500〜s o o K
cal/m’・Hr・℃という大きい値をもつ。さらK
もう1つの漏れ養成クーラーの大きな特徴は、溶剤液が
チューブ内面を洗浄するという点である。凝縮蒸気中に
は高沸点成分であるオリゴマーが含まれており、これが
凝縮すると粘着性を有する液となり、洗浄液がない場合
にはチューブ内に付着してスケールおよびチューブ閉塞
の原因となる。
Such a heat exchanger with a liquid film inside the wall, that is, a leakage cooling cooler, has the effect of increasing the heat transfer rate by turbulence of the liquid film, and the overall heat transfer coefficient is 500 to s o o K.
It has a large value of cal/m'・Hr・℃. Sara K
Another major feature of the leakage cooler is that the solvent solution cleans the inner surface of the tube. The condensed steam contains oligomers, which are high-boiling components, and when condensed, it becomes a sticky liquid that adheres to the inside of the tube and causes scale and tube blockage if there is no cleaning liquid.

このため、本発明では、漏れ養成クーラーのチューブ内
で常に溶剤液が液膜を形成して流下しているため、この
オリゴマーの凝縮物も洗い流し、チューブ内をたえずク
リーンな状態に保持することができる。
For this reason, in the present invention, since the solvent liquid always forms a liquid film and flows down inside the tube of the leakage training cooler, it is possible to wash away this oligomer condensate and keep the inside of the tube in a constant clean state. can.

漏れ模式クーラ一部22の出口で、チューブ内流体は5
〜10℃まで冷却され、未反応スチレン、溶剤、オリゴ
マーはほとんど凝縮し、液タンク25にためられる。こ
の温度における蒸気正分のごく僅かなスチレン蒸気およ
びプラント内にもれ込んだ空気は真空引きライン11、
真空発生装置17を経てパージライン18から系外へ出
される。
At the outlet of the leakage type cooler part 22, the fluid in the tube is 5
It is cooled to ~10°C, and most of the unreacted styrene, solvent, and oligomers are condensed and stored in the liquid tank 25. At this temperature, a very small amount of styrene vapor and air that has leaked into the plant are removed by the vacuum line 11,
It passes through the vacuum generator 17 and is discharged from the purge line 18 to the outside of the system.

液タンク25の液は液ライン24、ポンプ25を経て、
一部は循環溶剤ライン26からコンデンサーの上部に供
給され、残りは液排出ライン20から系外へ出される。
The liquid in the liquid tank 25 passes through the liquid line 24 and the pump 25,
A portion is supplied to the upper part of the condenser through the circulating solvent line 26, and the remainder is discharged from the system through the liquid discharge line 20.

〔実施例〕〔Example〕

第1図に示したフローによりポリスチレンプラントの脱
揮元種生成ガスの冷却回収操作を行つた具体的な実施例
をあげる。
A specific example will be given in which the cooling and recovery operation of the devolatilization source generated gas of a polystyrene plant was carried out according to the flow shown in FIG.

240℃、10 Torrで運転される脱揮発槽からの
ガス流量は560 kg/ Hrであり、その組成は次
のとおりであった。
The gas flow rate from the devolatilization tank operated at 240° C. and 10 Torr was 560 kg/Hr, and its composition was as follows.

スチレン     82.2チ エチルベンゼン    2.4チ オリゴマ−14,5チ その他      1.1% 6℃の低温循環溶剤55 A Ok17/Hrをコンデ
ンサーの直接接触部上部からスプレーした。この循環溶
剤は上記のガス組成とほぼ同じ組成あ液である。また、
漏れ模式クーラ一部シェル側へは2℃のブラインをブラ
イン供給口から導入した。この結果、ガスは直接接触部
では53℃まで冷却され、漏れ模式クーラ一部のチュー
ブに流入した。漏れ模式クーラ一部では6℃まで冷却さ
れ、はとんどすべてのスチレン、エチルベンゼン等が凝
縮し、液タンクにためられた。
Styrene 82.2 Thiethylbenzene 2.4 Thioligomer 14.5 Thi Others 1.1% 6°C low temperature circulating solvent 55 A Ok17/Hr was sprayed from above the direct contact part of the condenser. This circulating solvent is a liquid having approximately the same composition as the gas composition described above. Also,
Brine at 2°C was introduced into a part of the shell side of the leakage type cooler from the brine supply port. As a result, the gas was cooled to 53° C. at the direct contact point and flowed into some tubes of the leakage type cooler. Some parts of the leakage model cooler were cooled to 6°C, and almost all of the styrene, ethylbenzene, etc. condensed and were stored in the liquid tank.

真空ポンプから排気されるガスはごく微量で、空気70
チ、スチレン301%のものであった。
The amount of gas exhausted from the vacuum pump is very small, and air 70
It was made of 301% styrene.

〔発明の効果〕〔Effect of the invention〕

(1)  プロセスが簡単となり、機器の数が減少する
(1) The process becomes simpler and the number of equipment is reduced.

(2)漏れ模式クーラーの伝熱係数が大きい特徴を生か
すため、コンデンサーがコンパクトになる。
(2) The condenser can be made more compact by taking advantage of the leakage type cooler's large heat transfer coefficient.

(3)冷却凝縮後のガス温度を、より冷媒温度に近ずけ
ることかでき、多くのスチレンを凝縮回収し、未凝縮で
ロスするスチレンの量が減少する。
(3) The temperature of the gas after cooling and condensation can be brought closer to the refrigerant temperature, and a large amount of styrene can be condensed and recovered, reducing the amount of styrene that is lost due to uncondensation.

(4)伝熱面にオリゴマー等の付着が皆無となり、常に
最良の伝熱性能を発揮させることができる。
(4) There is no adhesion of oligomers, etc. to the heat transfer surface, and the best heat transfer performance can always be exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を説明するための図、第2
図は従来のポリスチレンプラント脱揮元種生成ガスの冷
却回収法の一態様を説明するための図である。 第1図
Fig. 1 is a diagram for explaining one embodiment of the present invention, Fig. 2 is a diagram for explaining one embodiment of the present invention;
The figure is a diagram for explaining one aspect of a conventional polystyrene plant cooling and recovery method for devolatilizing source species generated gas. Figure 1

Claims (1)

【特許請求の範囲】 ポリスチレンプラントの脱揮発槽から生成する未反応ス
チレン等の蒸気を冷却回収する方法において (1)まず、この蒸気と低温循環溶剤を直接接触させて
蒸気温度を下げ、 (2)次にこの蒸気と溶剤を、直接接触部の下部に設置
された漏れ壁式クーラーに導き該クーラーのチューブ内
面壁上に溶剤液膜を形成させ、シエル側から間接的に低
温冷媒により冷却し、未反応スチレン等の蒸気を冷却凝
縮する ことを特徴とする脱揮発槽生成ガスの冷却回収方法。
[Claims] In a method for cooling and recovering vapor of unreacted styrene, etc. generated from a devolatilization tank of a polystyrene plant, (1) first, the vapor is brought into direct contact with a low-temperature circulating solvent to lower the vapor temperature; ) Next, this vapor and solvent are guided to a leaking wall cooler installed at the bottom of the direct contact part to form a solvent liquid film on the inner wall of the tube of the cooler, and are indirectly cooled by low-temperature refrigerant from the shell side. A method for cooling and recovering gas produced by a devolatilization tank, characterized by cooling and condensing the vapor of unreacted styrene, etc.
JP30542386A 1986-12-23 1986-12-23 Polystyrene plant devolatilization tank Cooling and recovering gas produced Expired - Lifetime JPH0764895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30542386A JPH0764895B2 (en) 1986-12-23 1986-12-23 Polystyrene plant devolatilization tank Cooling and recovering gas produced

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30542386A JPH0764895B2 (en) 1986-12-23 1986-12-23 Polystyrene plant devolatilization tank Cooling and recovering gas produced

Publications (2)

Publication Number Publication Date
JPS63159409A true JPS63159409A (en) 1988-07-02
JPH0764895B2 JPH0764895B2 (en) 1995-07-12

Family

ID=17944950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30542386A Expired - Lifetime JPH0764895B2 (en) 1986-12-23 1986-12-23 Polystyrene plant devolatilization tank Cooling and recovering gas produced

Country Status (1)

Country Link
JP (1) JPH0764895B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209890A (en) * 1991-10-25 1993-05-11 Superliners Usa, Inc. Styrene scrubbing process for pipe and sewer liner method
US5256367A (en) * 1991-10-25 1993-10-26 Superliners Usa, Inc. Pipe and sewer lining method
US5897690A (en) * 1997-10-01 1999-04-27 Mcgrew; Robert L. Vapor recovery system for hydrocarbon storage tanks
JP2009208037A (en) * 2008-03-06 2009-09-17 Morikawa Co Ltd Solvent recovering apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102601077B1 (en) * 2019-09-30 2023-11-10 주식회사 엘지화학 Devolatilization system, method of devolatilization and preparing method of styrene-nitrile based copolymer using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209890A (en) * 1991-10-25 1993-05-11 Superliners Usa, Inc. Styrene scrubbing process for pipe and sewer liner method
US5256367A (en) * 1991-10-25 1993-10-26 Superliners Usa, Inc. Pipe and sewer lining method
US5897690A (en) * 1997-10-01 1999-04-27 Mcgrew; Robert L. Vapor recovery system for hydrocarbon storage tanks
JP2009208037A (en) * 2008-03-06 2009-09-17 Morikawa Co Ltd Solvent recovering apparatus

Also Published As

Publication number Publication date
JPH0764895B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
US3288685A (en) Multiple-phase ejector distillation apparatus and desalination process
EP0037665B1 (en) Improved acetylene recovery process and apparatus
EP0485375B1 (en) Method and apparatus for evaporation of liquids
US2777514A (en) Method and apparatus for concentrating liquids
JP2004136273A (en) Method for solution separation by multiple heat exchange vacuum distillation, cooling and freezing, and method of desalting seawater
US4533537A (en) Process of producing sulfuric acid
JPS59125365A (en) Absorption refrigerator with vertical tube type absorber
CN105327518A (en) Pentanediamine concentration system and method thereof
JPS63159409A (en) Recovery by cooling of gas generated in devolatilizing tank of polystyrene plant
US4877080A (en) Process and apparatus for cooling a fluid
US5231836A (en) Two-stage condenser
CN2480355Y (en) Horizontal pipe down film evaporation inner heat reversing type sea water desalination machine
CN105737457A (en) Solvent recovery technology
WO1991000772A1 (en) Air conditioning process and apparatus
JPS63253038A (en) Cooling and recovery of vapor
US4333800A (en) Method for the recovery of easily evaporable components from hot gases
JPS59112195A (en) Method and device for absorbing gas into liquid
CN207635890U (en) A kind of removable condensate recycling device
CN213253850U (en) Heat recovery type air sweeping type membrane distillation device
CN1124841A (en) Separated phase transition heat apparatus and technique for recovering low-temp. waste heat using azeotrope as medium
CN209662659U (en) Organic silicon surfactant produces device for recovering tail gas
KR910003430B1 (en) Preparation of a polymeric substance
CN107976105A (en) Multi-functional filler and evaporator, condenser and reactor containing multi-functional filler
CN219615204U (en) Condensing reflux device
JPS5895501A (en) Method and device for deaeration of treating liquid in multiple effect evaporating device