JPS63253038A - Cooling and recovery of vapor - Google Patents

Cooling and recovery of vapor

Info

Publication number
JPS63253038A
JPS63253038A JP62087054A JP8705487A JPS63253038A JP S63253038 A JPS63253038 A JP S63253038A JP 62087054 A JP62087054 A JP 62087054A JP 8705487 A JP8705487 A JP 8705487A JP S63253038 A JPS63253038 A JP S63253038A
Authority
JP
Japan
Prior art keywords
vapor
temperature
solvent
wall cooler
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62087054A
Other languages
Japanese (ja)
Inventor
Katsuaki Makino
槙野 勝昭
Sadaji Nishida
西田 定二
Mamoru Tamai
玉井 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62087054A priority Critical patent/JPS63253038A/en
Publication of JPS63253038A publication Critical patent/JPS63253038A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To cool and recover vapor advantageously, by directly bringing vapor such as unreacted styrene evolving from a vapor removal tank of a polystyrene plant into contact with a low-temperature circulating solvent, condensing the vapor by a wetted-wall cooler of water cooling type and further supercooling by a wetted-wall cooler of low-temperature cooling type. CONSTITUTION:In cooling and recovering vapor such as unreacted styrene evolving from a vapor removal tank of a polystyrene plant, a low-temperature circulating solvent is directly brought into contact with the vapor 36 at a direct contact part 32, the temperature of the vapor is lowered to the condensation temperature, the vapor and the solvent are introduced to a wetted-wall cooler 33 of water cooling type set under the direct contact part 32 to condense the vapor. Further the solvent and the condensed liquid are fed to a wetted-wall cooler 34 of low-temperature cooling type set under the wetted-wall cooler 33 of water cooling type and supercooled. The process is more simplified than a conventional procedure, the number of devices is reduced, capacity of refrigerators is saved, heat transfer performance is improved and the vapor is advantageously cooled and recovered.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は蒸気の冷却回収方法に関し、特にポリスチレン
製造プラントの脱揮発槽から発生する未反応スチレン及
び溶剤を冷が回収する方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for cooling and recovering steam, and particularly to a method for cooling and recovering unreacted styrene and solvent generated from a devolatilization tank of a polystyrene manufacturing plant.

[従来の技術] 包装容器、電気部品などに広範な用途を持つポリスチレ
ンは、スチレンを原料として重合反応されることにより
製造される。ところで、ポリスチレン製造プラントの重
合工程の最後部に、真空下で重合ポリスチレン溶液から
未反応スチレンと溶媒を蒸発脱揮させ、更にこのガス状
の未反応スチレンと溶媒を冷却凝縮して回収する工程が
ある。
[Prior Art] Polystyrene, which has a wide range of applications such as packaging containers and electrical parts, is produced by polymerizing styrene as a raw material. By the way, at the end of the polymerization process in a polystyrene manufacturing plant, there is a step in which unreacted styrene and solvent are evaporated and devolatilized from the polymerized polystyrene solution under vacuum, and then this gaseous unreacted styrene and solvent are collected by cooling and condensation. be.

前記未反応スチレンの中には部分的に重合したオゴリマ
ーと呼ばれる高沸点物質が含まれ、従来より多用されて
いるシェルチューブ型の熱交換器等で冷却凝縮すると、
この高沸点物質が冷却面に付着し、伝熱性能の低下つい
には熱交換器の閉塞の原因となる。
The unreacted styrene contains a partially polymerized high-boiling substance called oligolimer, and when it is cooled and condensed using a shell tube type heat exchanger, which has been widely used in the past,
This high boiling point substance adheres to the cooling surface, reducing heat transfer performance and eventually causing clogging of the heat exchanger.

従来、未反応スチレンを冷却凝縮する方法として、第2
図に示すものが知られている。
Conventionally, as a method for cooling and condensing unreacted styrene, the second
The one shown in the figure is known.

即ち、脱揮発槽(図示せず)で冷却・減圧することによ
りポリマーからガス化・分離化してくる高温の未反応ス
チレン、溶剤、オリゴマーなとの蒸気は蒸気供給ライン
1から供給され、第1コンデンサー2において第1冷却
B3で水より冷却された循環溶剤が第1循環ライン4を
経てスプレーされ直接接触し、降温して大部分の未反応
スチレンなどが凝縮回収される。ここで、凝縮物は第1
扱出しライン5を経て第1循環ポンプ6を用いて大部分
は第2循環ライン7で再使用され、一部は第1バージラ
イン8から系外へ取出されて処理される。
That is, high-temperature unreacted styrene, solvent, oligomer, etc., which are gasified and separated from the polymer by cooling and reducing the pressure in a devolatilization tank (not shown), are supplied from the steam supply line 1, In the condenser 2, the circulating solvent cooled by water in the first cooling B3 is sprayed through the first circulation line 4 and comes into direct contact with the solvent, the temperature is lowered, and most of the unreacted styrene and the like are condensed and recovered. Here, the condensate is the first
Most of the waste passes through the handling line 5 and is reused in the second circulation line 7 using the first circulation pump 6, while a portion is taken out of the system through the first barge line 8 and treated.

前記第1コンデンサー2での未凝縮ガスはライン9から
より低温で操作される第2コンデンサー10に送られ、
第2冷却器11で水より低温の冷媒により冷却された循
環溶剤が第3循環ライン12からスプレーされて直接接
触し、更に降温して残りのスチレン等が凝縮回収される
。この凝縮物は抜出しライン13を経て第2循環ポンプ
14を用いて大部分は第3循環ライン15で再使用され
、一部は第2バージライン16から第1コンデンサー2
からの第1パージライン8と合流して排出ライン17よ
り系外へ排出される。ここで、第2コンデンサー10で
の非凝縮物はもれ込んだ空気とごくわずかのスチレン蒸
気等であり、これは真空ライン18及び真空発生装置1
9を経て、第3バージライン20より糸外へ出される。
The uncondensed gas in the first condenser 2 is sent via line 9 to a second condenser 10 operated at a lower temperature;
The circulating solvent cooled by a refrigerant lower than water in the second cooler 11 is sprayed from the third circulation line 12 and comes into direct contact with the solvent, and the temperature is further lowered to condense and recover the remaining styrene and the like. This condensate passes through the withdrawal line 13 and is reused in the third circulation line 15 using the second circulation pump 14, and a portion is transferred from the second barge line 16 to the first condenser 2.
It merges with the first purge line 8 from the air and is discharged from the system through the discharge line 17. Here, the non-condensable matter in the second condenser 10 is the leaked air and a very small amount of styrene vapor, which is contained in the vacuum line 18 and the vacuum generator 1.
9 and is taken out of the yarn from the third barge line 20.

[発明が解決しようとする問題点] しかしぢながら、従来技術によれば、以下に述べる問題
点を有する。
[Problems to be Solved by the Invention] However, the prior art has the following problems.

(1)プロセスが複雑である。(1) The process is complex.

(2)機器が多いため、それに伴う制御、配管も複雑で
ある。
(2) Since there are many devices, the control and piping associated with them are also complex.

(3)未反応スチレン、溶剤オリゴマーなどの蒸気は一
般に200〜240℃の温度であり、この蒸気から凝縮
物を回収するために5〜10℃まで冷却する必要があり
、顕然及び潜熱として除去すべき熱は膨大である。従来
の方法では、この冷却をすべて循環溶剤の直接接触でま
かなうため、大量の循環溶剤量が必要である(蒸気に対
し重量比で約100倍)。このため、コンデンサー容積
、循環ポンプ、熱交換器などの容量が大きくなる。
(3) Vapors of unreacted styrene, solvent oligomers, etc. are generally at a temperature of 200-240°C, and in order to recover condensate from this vapor, it is necessary to cool it to 5-10°C, which is removed as overt and latent heat. The amount of heat required is enormous. In conventional methods, this cooling is accomplished entirely through direct contact with the circulating solvent, which requires a large amount of circulating solvent (approximately 100 times the weight of steam). This increases the capacity of the condenser, circulation pump, heat exchanger, etc.

(4)間接冷却によりスチレンなどの凝縮回収をはかる
場合には、オリゴマーが伝熱面に何者し、トラブルの原
因となる。
(4) When attempting to condense and recover styrene etc. by indirect cooling, oligomers may get onto the heat transfer surface and cause trouble.

本発明は上記事情に鑑みてなされたもので、従来と比べ
、プロセスが簡単になるとともに、機器数の減少、冷凍
機容量の節減及び伝熱性能の向上をなしえる蒸気の冷却
回収方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a steam cooling and recovery method that simplifies the process compared to conventional methods, reduces the number of equipment, saves refrigerator capacity, and improves heat transfer performance. The purpose is to

[問題点を解決するための手段] 本発明は、ポリスチレンプラントの脱揮発槽から発生す
る未反応スチレンなどの蒸気を冷却回収する方法におい
て、前記蒸気に低温循環溶剤を直接接触させて凝縮温度
まで下げた後、前記蒸気と溶剤を直接接触部の下部に設
けた水冷式l壁り−ラに導き蒸気を凝縮させ、更に前記
溶剤と凝縮液を水冷式濡壁クーラの下部に設けた低温冷
媒式濡壁クーラに導き過冷却させることを要旨とする。
[Means for Solving the Problems] The present invention provides a method for cooling and recovering vapors such as unreacted styrene generated from a devolatilization tank of a polystyrene plant, in which the vapors are brought into direct contact with a low-temperature circulating solvent to a condensing temperature. After lowering the temperature, the vapor and the solvent are introduced into a water-cooled wet wall cooler installed at the bottom of the direct contact area, and the vapor is condensed, and the solvent and condensate are then transferred to a low-temperature refrigerant installed at the bottom of the water-cooled wet wall cooler. The gist is to introduce it to a type wet wall cooler and supercool it.

[作用] 本発明によれば、 ■プロセスが簡単となり、構成機器の数がコンデンサー
1基、ポンプ1台となる。
[Function] According to the present invention, (1) The process is simplified, and the number of components is reduced to one condenser and one pump.

■1壁クーラ部の伝熱係数が大きいため、コンデンサー
がコンパクトとなる。
■Since the heat transfer coefficient of the 1-wall cooler section is large, the condenser becomes compact.

■水冷にてほんとんどの除熱を行うため、冷媒の冷凍機
容量が非常に小さくなる。
■Since most of the heat is removed by water cooling, the refrigerant chiller capacity becomes extremely small.

■冷却凝縮機のガス温度を冷媒温度に近づけることがで
き、未凝縮でロスするスチレン量が減少する。
■The gas temperature in the cooling condenser can be brought closer to the refrigerant temperature, reducing the amount of styrene lost due to uncondensation.

[実施例] 以下、本発明に係る蒸気の冷却回収方法のシステムを第
1図を参照して説明する。
[Example] Hereinafter, a system for a steam cooling and recovery method according to the present invention will be described with reference to FIG.

図中の31は、コンデンサーである。このコンデンサー
31は、上部に設けられた直接接触部32と、中間に設
けられたシェル・チューブタイプで構成された水冷式!
!壁ツク−5部3と、下部に設けられた低温冷媒式濡壁
クーラ部34と、このクーラ部34の下部に設けられた
液タンク35とから構成されている。前記チューブ入口
では流体が各チューブに均一に分散するよう、またチュ
ーブ内で循環溶剤がチューブ壁内面に液膜を形成して流
下する様な工夫がなされている。
31 in the figure is a capacitor. This condenser 31 is a water-cooled type consisting of a direct contact part 32 provided at the top and a shell/tube type provided in the middle!
! It is composed of a wall hook 5 section 3, a low-temperature refrigerant type wet wall cooler section 34 provided at the bottom, and a liquid tank 35 provided at the bottom of this cooler section 34. The tube inlet is designed so that the fluid is uniformly dispersed in each tube, and the circulating solvent within the tube forms a liquid film on the inner surface of the tube wall and flows down.

前記直接接触部32には蒸気供給ライン36が連結され
、この蒸気供給ライン36から脱揮発槽(図示せず)に
てガス化し送られてくる200〜250℃の未反応スチ
レン、溶剤、オリゴマーなとの蒸気が送られていくる。
A steam supply line 36 is connected to the direct contact section 32, and unreacted styrene, solvent, oligomer, etc. at 200 to 250°C are gasified in a devolatilization tank (not shown) and sent from the steam supply line 36. The steam is being sent.

前記水冷式2壁クーラ部33には、冷却水を導入するた
めの供給ライン37及び冷却水を排出するための第1出
ロライン38が連結されている。前記低温冷媒式I壁り
−ラ部34には、冷媒を供給するための供給ライン39
及び冷媒を排出するための第2出ロライン40が連結さ
れている。前記液タンク35には真空引きライン41を
介して真空発生装置42がされ、該装置42にはパージ
ライン43が連結されている。また、前記液タンク35
には循環ポンプ44が液ライン45を介して連結され、
前記循環ポンプ44と直接接触部32とは循環ライン4
6により連結されている。なお、47は抜出しラインで
ある。
The water-cooled two-wall cooler section 33 is connected to a supply line 37 for introducing cooling water and a first outlet line 38 for discharging the cooling water. The low temperature refrigerant type I wall section 34 has a supply line 39 for supplying refrigerant.
and a second outlet line 40 for discharging the refrigerant. A vacuum generating device 42 is connected to the liquid tank 35 via a vacuum line 41, and a purge line 43 is connected to the device 42. In addition, the liquid tank 35
A circulation pump 44 is connected via a liquid line 45 to
The circulation pump 44 and the direct contact section 32 are connected to the circulation line 4.
6. Note that 47 is an extraction line.

次に、上述したシステムの動作について説明する。Next, the operation of the above system will be explained.

まず、前述した未反応スチレンなどの蒸気は蒸気供給ラ
イン36から供給され、コンデンサー31の気液直接接
触部32で5℃の低温循環溶剤がスプレーされて直接接
触し、溶剤の顕熱により蒸気は直接接触部の圧力におけ
る露点にまで温度降下する。例えば、10’Torrで
は約30℃が露点になる。
First, the vapor of unreacted styrene, etc. mentioned above is supplied from the vapor supply line 36, and a 5°C low-temperature circulating solvent is sprayed at the gas-liquid direct contact part 32 of the condenser 31 to directly contact the vapor, and due to the sensible heat of the solvent, the vapor is The temperature drops to the dew point at the pressure of direct contact. For example, at 10' Torr, the dew point is about 30°C.

次に、蒸気を凝縮液化させるため、水冷式IIWクーラ
部33にて水を用いて冷却する。ここで、liI壁ター
ラ部33のチューブ内を蒸気及び液が流下する。前&!
I壁クーラ部33のシェル側には冷却水が供給ライン3
7から導入され、第1出ロライン38から流出する。こ
の時、チューブ内を流下する溶剤液膜及び蒸気を間接冷
却し、25℃まで高温させ蒸気は全て凝結させる。
Next, in order to condense and liquefy the steam, the water-cooled IIW cooler section 33 cools the steam using water. Here, steam and liquid flow down inside the tube of the liI wall roller section 33. Before&!
Cooling water is supplied to the shell side of the I-wall cooler section 33 through a supply line 3.
7 and flows out from the first outlet line 38. At this time, the solvent liquid film and vapor flowing down inside the tube are indirectly cooled and raised to a temperature of 25° C. to completely condense the vapor.

次いで、循環溶剤及び凝縮液を低温冷媒式の濡壁クーラ
部34にて冷媒を供給ライン39から第2出ロライン4
0へ流しながら冷却し、最終的に5℃まで降温させる。
Next, the circulating solvent and condensate are passed through a low-temperature refrigerant type wet wall cooler section 34, and the refrigerant is passed from the supply line 39 to the second outlet line 4.
Cool while flowing to 0°C, and finally lower the temperature to 5°C.

こうした!壁ターラ部は、液膜の乱れなどにより伝熱速
度を高める効果を持ち、総括熱伝達率は300〜500
Kcal /mz −H−”Cという太きな値を持つ。
Like this! The wall roller has the effect of increasing the heat transfer rate due to disturbance of the liquid film, and the overall heat transfer coefficient is 300 to 500.
It has a thick value of Kcal/mz -H-''C.

更にもう1つの濡壁クーラ部の大きな特徴は、循環溶剤
がチューブ内面を洗浄するという点である。凝縮蒸気中
には後沸点成分であるオリゴマーが含まれており、これ
が凝縮すると粘着性を有する液となり、洗浄液がない場
合にはチューブ内面に付着してスケール及びチューブ閉
塞の原因となる。しかるに、本発明では、チューブ内で
常に溶剤液が液膜を規制して流下するため、チューブ内
は常にクリーンな状態に維持される。
Yet another major feature of the wet wall cooler section is that the circulating solvent cleans the inner surface of the tube. The condensed steam contains oligomers, which are post-boiling point components, and when condensed, they become a sticky liquid, and if there is no cleaning liquid, they adhere to the inner surface of the tube, causing scale and tube clogging. However, in the present invention, since the solvent liquid always flows down within the tube while regulating the liquid film, the inside of the tube is always maintained in a clean state.

また、濡壁クーラを2段に分割した事で冷媒(例えばブ
ラインやフロンなど)の冷却が小さくなる分だけ冷凍機
容量が節減される。
Furthermore, by dividing the wet wall cooler into two stages, the capacity of the refrigerator can be reduced by the amount of cooling of the refrigerant (for example, brine or chlorofluorocarbon).

更に、チューブ内流体は最終的に5℃まで冷却され液タ
ンク35に貯められる。この温度における蒸気圧分に相
当する僅かのスチレン蒸気及びプラント内に漏れ込んだ
空気は真空引きライン41゜真空発生装置42を経てバ
ージライン43から系外へ放出される。液タンク35の
液は液ライン45、循環ポンプ44を経て一部は循環ラ
イン46からコンデンサーの上部に供給され、残りは抜
出しライン47から系外へ出される。
Further, the fluid in the tube is finally cooled to 5° C. and stored in the liquid tank 35. A small amount of styrene vapor corresponding to the vapor pressure at this temperature and air leaking into the plant are discharged from the barge line 43 through the vacuum line 41 and the vacuum generator 42 to the outside of the system. The liquid in the liquid tank 35 passes through a liquid line 45 and a circulation pump 44, and part of it is supplied to the upper part of the condenser from a circulation line 46, and the rest is taken out of the system from a withdrawal line 47.

次に、上述したシステムを用いた実施例について説明す
る。まず、240℃、10Torrで運転される脱揮発
槽からのガス流量は560に!;l/Hであり、その組
成は次の通りである。
Next, an example using the above-described system will be described. First, the gas flow rate from the devolatilization tank, which is operated at 240°C and 10 Torr, is 560! ;l/H, and its composition is as follows.

スチレン    82゜2v01% エチルベンゼン  2.4vo1% オリゴマー   14.3vo1% その他      1゜1v01% 5℃の循環溶剤9430Kg/Hをコンデンサーの直接
接触部上部からスプレーした。この溶剤は蒸気のガス組
成とほぼ同じ組成の液である。次に、水冷式濡壁クーラ
部33のシェル側へは20℃の水を供給ライン37から
、かつ低温冷媒式濡壁クーラ部34のシェル側へは2℃
のプラインを供給ライン39から導入した。この結果、
ガスは直接接触部では30℃まで冷却され、水冷式翼壁
クーラ部出口の液は25℃まで冷却され、低温冷媒式濡
壁クーラ部出口の液は5℃まで冷却され、はとんど全て
のスチレン、エチルベンゼン等が凝縮し液タンク35に
貯められた。また、真空発生装置42から排気されるガ
スは、ごく微量で空気70%、スチレン30%のもので
あった。
Styrene 82゜2v01% Ethylbenzene 2.4vo1% Oligomer 14.3vo1% Others 1゜1v01% 9430Kg/H of circulating solvent at 5°C was sprayed from the upper part of the direct contact part of the condenser. This solvent is a liquid having approximately the same composition as the gas composition of the vapor. Next, 20°C water is supplied from the supply line 37 to the shell side of the water-cooled wet wall cooler unit 33, and 2°C water is supplied to the shell side of the low-temperature refrigerant type wet wall cooler unit 34.
prine was introduced from feed line 39. As a result,
The gas is cooled to 30°C in the direct contact area, the liquid at the outlet of the water-cooled wing wall cooler is cooled to 25°C, and the liquid at the outlet of the low-temperature refrigerant wet wall cooler is cooled to 5°C. Styrene, ethylbenzene, etc. were condensed and stored in a liquid tank 35. Further, the gas exhausted from the vacuum generator 42 was very small and consisted of 70% air and 30% styrene.

しかるに、本発明によれば、以下に列挙する効果を有す
る。
However, the present invention has the following effects.

■プロセスが簡単となり、構成機器の数がコンデンサー
1基、ポンプ1台となる。
■The process is simplified, and the number of components is reduced to one condenser and one pump.

■濡壁クーラ部の伝熱係数が大きいため、コンデンサー
がコンパクトとなる。
■The heat transfer coefficient of the wet wall cooler section is large, making the condenser more compact.

■水冷にてほんとんどの体熱を行うため、冷媒の冷凍機
容量が非常に小さくなる。
■Since most of the body heat is absorbed through water cooling, the refrigerant capacity of the refrigerator becomes extremely small.

■冷却凝縮機のガス温度を冷媒温度に近づけることがで
き、未凝縮でロスするスチレン量が減少する。
■The gas temperature in the cooling condenser can be brought closer to the refrigerant temperature, reducing the amount of styrene lost due to uncondensation.

■伝熱面にオリゴマーなどの付着が皆無となり、常に最
良の伝熱性能を発揮させることができる。
■There is no adhesion of oligomers, etc. to the heat transfer surface, and the best heat transfer performance can always be demonstrated.

[発明の効果] 以上詳述した如く本発明によれば、従来と比べ、プロセ
スが簡単になるとともに、機器数の減少、冷凍機容量の
節減及び伝熱性能の向上をなしえる等種々の効果を有し
た蒸気の冷却回収方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, the process is simpler than the conventional method, and various effects such as a reduction in the number of equipment, a reduction in refrigerator capacity, and an improvement in heat transfer performance can be achieved. It is possible to provide a method for cooling and recovering steam having the following characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1因は本発明に係る蒸気の冷却回収方法のシステムの
説明図、第2図は従来の蒸気の冷却回収方法のシステム
の説明図である。 31・・・コンデンサー、32・・・直接接触部、33
・・・水冷式濡壁クーラ部、34・・・低温冷媒式濡壁
クーラ部、35・・・液タンク、36・・・蒸気供給ラ
イン、37.39・・・供給ライン、38.40・・・
出口ライン、41・・・真空引きライン、42・・・真
空発生8m、18・・・バージライン、44・・・循環
ポンプ、45・・・液ライン、46・・・循環ライン。
The first factor is an explanatory diagram of a system of a steam cooling and recovery method according to the present invention, and FIG. 2 is an explanatory diagram of a system of a conventional steam cooling and recovery method. 31... Capacitor, 32... Direct contact part, 33
...Water-cooled wet wall cooler part, 34...Low temperature refrigerant type wet wall cooler part, 35...Liquid tank, 36...Steam supply line, 37.39...Supply line, 38.40.・・・
Outlet line, 41... Vacuum drawing line, 42... Vacuum generation 8m, 18... Verge line, 44... Circulation pump, 45... Liquid line, 46... Circulation line.

Claims (1)

【特許請求の範囲】[Claims] ポリスチレンプラントの脱揮発槽から発生する未反応ス
チレンなどの蒸気を冷却回収する方法において、前記蒸
気に低温循環溶剤を直接接触させて凝縮温度まで下げた
後、前記蒸気と溶剤を直接接触部の下部に設けた水冷式
濡壁クーラに導き蒸気を凝縮させ、更に前記溶剤と凝縮
液を水冷式濡壁クーラの下部に設けた低温冷媒式濡壁ク
ーラに導き過冷却させることを特徴とする蒸気の冷却回
収方法。
In a method for cooling and recovering vapor such as unreacted styrene generated from a devolatilization tank of a polystyrene plant, the vapor is brought into direct contact with a low-temperature circulating solvent to lower the temperature to condensation, and then the vapor and solvent are transferred to the lower part of the direct contact area. The steam is guided to a water-cooled wet wall cooler provided at the bottom of the water-cooled wall cooler and is condensed, and the solvent and condensate are further led to a low-temperature refrigerant-type wet wall cooler provided at the bottom of the water-cooled wet wall cooler for supercooling. Cooling recovery method.
JP62087054A 1987-04-10 1987-04-10 Cooling and recovery of vapor Pending JPS63253038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62087054A JPS63253038A (en) 1987-04-10 1987-04-10 Cooling and recovery of vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62087054A JPS63253038A (en) 1987-04-10 1987-04-10 Cooling and recovery of vapor

Publications (1)

Publication Number Publication Date
JPS63253038A true JPS63253038A (en) 1988-10-20

Family

ID=13904227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62087054A Pending JPS63253038A (en) 1987-04-10 1987-04-10 Cooling and recovery of vapor

Country Status (1)

Country Link
JP (1) JPS63253038A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208037A (en) * 2008-03-06 2009-09-17 Morikawa Co Ltd Solvent recovering apparatus
US20110071330A1 (en) * 2009-09-22 2011-03-24 Fina Technology, Inc. Offgas Stream Direct Contact Condenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208037A (en) * 2008-03-06 2009-09-17 Morikawa Co Ltd Solvent recovering apparatus
US20110071330A1 (en) * 2009-09-22 2011-03-24 Fina Technology, Inc. Offgas Stream Direct Contact Condenser
US8999257B2 (en) * 2009-09-22 2015-04-07 Fina Technology, Inc. Offgas stream direct contact condenser

Similar Documents

Publication Publication Date Title
US4424633A (en) Apparatus for heating and drying articles
US3796640A (en) Vapor compression distillation
US3259181A (en) Heat exchange system having interme-diate fluent material receiving and discharging heat
US4511376A (en) Method of separating a noncondensable gas from a condensable vapor
US3108447A (en) Refrigeration by direct vapor condensation
DK161739B (en) PROCEDURE AND APPARATUS FOR CONTINUOUS CONDENSATION OF A STEAM COMPONENT IN A GAS MIXTURE
US6454907B1 (en) Method and apparatus for concentrating slurried solids
US5540057A (en) Volatile organic compounds recovery from vent gas streams
US4877080A (en) Process and apparatus for cooling a fluid
JPS63253038A (en) Cooling and recovery of vapor
US3364125A (en) Waste heat flash evaporator in ion pressure turbine condenser system
US5231836A (en) Two-stage condenser
US3240024A (en) Freeze crystallization separation systems
CN111514602A (en) Method and device for removing dichloromethane in high-boiling-point thermosensitive material
US3207677A (en) Flash vaporization distillation apparatus
JPS63159409A (en) Recovery by cooling of gas generated in devolatilizing tank of polystyrene plant
KR20180121800A (en) Vacuum Degreaser
US1477127A (en) Refrigerator
US5209763A (en) Method of boosting the efficiency of removing noncondensable gases from vapors
US3783095A (en) Process for recovering turpentine and heat in connection with the evaporation of black lye
Milligan et al. Distillation and solvent recovery
US2570210A (en) Evaporation method and apparatus
US3507754A (en) Recirculating multistage flash evaporation system and method
US2954840A (en) Controlling gases in solution
GB686375A (en) Improvements in or relating to a process and apparatus for evaporating liquids