JP2011020885A - Method for regenerating spent carbon dioxide gas - Google Patents

Method for regenerating spent carbon dioxide gas Download PDF

Info

Publication number
JP2011020885A
JP2011020885A JP2009166673A JP2009166673A JP2011020885A JP 2011020885 A JP2011020885 A JP 2011020885A JP 2009166673 A JP2009166673 A JP 2009166673A JP 2009166673 A JP2009166673 A JP 2009166673A JP 2011020885 A JP2011020885 A JP 2011020885A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
heat
condenser
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009166673A
Other languages
Japanese (ja)
Other versions
JP5410182B2 (en
Inventor
Akira Yoshino
明 吉野
Junya Suenaga
純也 末長
Yoko Sano
陽子 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2009166673A priority Critical patent/JP5410182B2/en
Publication of JP2011020885A publication Critical patent/JP2011020885A/en
Application granted granted Critical
Publication of JP5410182B2 publication Critical patent/JP5410182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for effectively regenerating spent carbon dioxide gas exhausted from a carbon dioxide gas cleaning means as reusable high purity liquefied carbon dioxide gas. <P>SOLUTION: The method for regenerating spent carbon dioxide gas comprises: a distillation step introducing the spent carbon dioxide gas exhausted from the carbon dioxide gas cleaning means to a distillation tower 1 and rectifying the gas to remove impurities contained in the spent carbon dioxide gas; and a re-liquefying step of introducing the high purity gasified carbon dioxide gas bled from the distillation tower 1 into a condenser 3 to liquefy the gas. The regenerated carbon dioxide gas after re-liquefied is reused for the cleaning in the carbon dioxide gas cleaning means. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高圧の液化炭酸ガスを洗浄液とした炭酸ガス洗浄装置から排気される使用済み炭酸ガスから、汚染物や不要物等を除去して炭酸ガスを浄化し、上記炭酸ガス洗浄装置の洗浄液として再利用する方法に関するものである。   The present invention removes contaminants and unnecessary substances from a used carbon dioxide gas exhausted from a carbon dioxide gas cleaning device using high-pressure liquefied carbon dioxide gas as a cleaning solution to purify the carbon dioxide gas. As for the method of reusing as.

従来、衣類,寝具等の布製品をドライクリーニングする方法として、有機溶剤を用いず、被洗浄物の表面や内部等に残留しにくい炭酸ガス(二酸化炭素)を洗浄剤として用いたクリーニング方法が提案されている(例えば、特許文献1等を参照)。   Conventionally, as a method for dry cleaning clothes, bedding, and other fabric products, a cleaning method that uses carbon dioxide (carbon dioxide) that does not easily remain on the surface or inside of the object to be cleaned as a cleaning agent has been proposed without using organic solvents. (See, for example, Patent Document 1).

また、炭酸ガスを洗浄剤とした洗浄方法は、半導体製造プロセスにおける半導体基板の洗浄、電気・電子部品や光学部材からの不要物の除去等にも用いられており、液化炭酸ガス,ドライアイススノー,ドライアイスフレーク,亜臨界または超臨界状態の炭酸ガス、あるいは、洗浄力を向上させる添加剤を添加した液化炭酸ガス等を使用した炭酸ガス洗浄方法が種々提案されている(例えば、特許文献2〜3等を参照)。   The cleaning method using carbon dioxide gas as a cleaning agent is also used for cleaning semiconductor substrates in semiconductor manufacturing processes, removing unnecessary materials from electrical / electronic components and optical members, etc. Various carbon dioxide cleaning methods using dry ice flakes, subcritical or supercritical carbon dioxide, or liquefied carbon dioxide to which an additive for improving cleaning power is added have been proposed (for example, Patent Document 2). See ~ 3 etc.).

ところで、これらの炭酸ガス洗浄方法に用いる洗浄装置は、通常、不純物が少なく、高純度の炭酸ガスを洗浄に多量に使用する。しかしながら、汚染物等を含む洗浄後の炭酸ガスを、使用毎に洗浄装置外(大気中)に放出していては、地球温暖化等の環境面で好ましくなく、そのコストも嵩んでしまう。   By the way, the cleaning apparatus used for these carbon dioxide gas cleaning methods usually has few impurities, and uses a large amount of high-purity carbon dioxide gas for cleaning. However, if carbon dioxide after cleaning containing contaminants and the like is discharged to the outside of the cleaning device (in the atmosphere) every time it is used, it is not preferable in terms of the environment such as global warming, and the cost increases.

そこで、これら炭酸ガス洗浄装置には、洗浄槽から排気される液化炭酸ガスを、汚染物等を除去するフィルタを通して浄化・再生する回収工程が設けられている。また、洗浄終了後に、洗浄槽内に残る高圧のガス(気化炭酸ガス)を圧縮して回収するガス回収装置が備え付けられているものもある。   Therefore, these carbon dioxide gas cleaning devices are provided with a recovery process for purifying and regenerating liquefied carbon dioxide gas exhausted from the cleaning tank through a filter that removes contaminants and the like. In addition, there are some equipped with a gas recovery device that compresses and recovers high-pressure gas (vaporized carbon dioxide) remaining in the cleaning tank after the cleaning is completed.

特表2003−516838号公報Special table 2003-516838 gazette 特開2002−237481号公報Japanese Patent Laid-Open No. 2002-237481 特開2006−297371号公報JP 2006-297371 A

しかしながら、上記のようなフィルタを通して汚染物等を除去する方法では、被洗浄物の洗浄によって炭酸ガスに混入した汚染物や不要物等の不純物を、完全に取り除くことができず、高純度の炭酸ガスが必要とされる電気・電子部品や光学部材の洗浄には、上記再生した炭酸ガスを使用できないという問題があった。   However, in the method of removing contaminants through the filter as described above, impurities such as contaminants and unnecessary substances mixed into the carbon dioxide gas due to the cleaning of the object to be cleaned cannot be completely removed. There has been a problem that the regenerated carbon dioxide gas cannot be used for cleaning electric / electronic parts and optical members that require gas.

また、特に、精密な加工処理を必要とする半導体部品工業分野等において、例えば半導体ウエハのように、微細な異物の管理を行なわねばならない被洗浄物の場合は、上記炭酸ガス中に含まれている油分やパーティクル等が、被洗浄物に付着残留したり、被洗浄物を傷つけたりして、大きな問題となってしまう。   In particular, in the semiconductor component industry field that requires precise processing, for example, an object to be cleaned such as a semiconductor wafer that must be managed for fine foreign substances is included in the carbon dioxide gas. The oil and particles that are present adhere to the object to be cleaned and damage the object to be cleaned.

本発明は、このような事情に鑑みてなされたもので、炭酸ガス洗浄手段から排気される使用済み炭酸ガスを、再使用可能な高純度の液化炭酸ガスとして効率的に再生することのできる使用済み炭酸ガスの再生方法の提供をその目的とする。   The present invention has been made in view of such circumstances, and can be used to efficiently regenerate used carbon dioxide exhausted from the carbon dioxide cleaning means as reusable high-purity liquefied carbon dioxide. The purpose is to provide a method for regenerating spent carbon dioxide.

上記の目的を達成するため、本発明の使用済み炭酸ガスの再生方法は、炭酸ガス洗浄手段から排気された使用済み炭酸ガスを蒸留塔に導入して精留し、この使用済み炭酸ガスに含まれる不純物を除去する蒸留工程と、上記蒸留塔から抽気される高純度の気化炭酸ガスを、凝縮器に導入して液化する再液化工程とを備え、この再液化後の再生炭酸ガスを、上記炭酸ガス洗浄手段での洗浄に再利用するという構成をとる。   In order to achieve the above object, the method for regenerating used carbon dioxide gas of the present invention introduces spent carbon dioxide gas exhausted from the carbon dioxide gas cleaning means into a distillation column and rectifies it, and is contained in this used carbon dioxide gas. And a re-liquefaction step of introducing a high-purity vaporized carbon dioxide extracted from the distillation column into a condenser to liquefy the regenerated carbon dioxide after re-liquefaction, It is configured to be reused for cleaning with carbon dioxide gas cleaning means.

すなわち、本願の発明者らは、前記課題を解決するため鋭意研究を重ね、その結果、被洗浄物由来の汚染物等を含む炭酸ガス(洗浄液)を浄化・再生する場合には、つぎの(1)〜(3)の手法が有効なことを見出した。
(1)油分や高沸点有機物等を除去するには蒸留精製が有効なこと。
(2)パーティクルや低沸点有機物を除去するにはフィルタおよび/または吸着剤が有効なこと。
(3)また、これらの組み合わせにより、より高純度な炭酸ガスを精製可能なこと。
That is, the inventors of the present application have made extensive studies to solve the above problems, and as a result, when purifying and regenerating carbon dioxide gas (cleaning liquid) containing contaminants derived from the object to be cleaned, the following ( It has been found that the methods 1) to (3) are effective.
(1) Distillation purification is effective for removing oil and high-boiling organic substances.
(2) A filter and / or adsorbent is effective for removing particles and low-boiling organic substances.
(3) In addition, by these combinations, it is possible to purify higher purity carbon dioxide.

本発明は、以上のような知見を基礎としてなされたものであり、本発明の使用済み炭酸ガスの再生方法は、炭酸ガスを用いて被洗浄物を洗浄する工程から排気された使用済み炭酸ガスを、蒸留塔に導入して精留し、この精留後に上記蒸留塔から抽気される気化炭酸ガスを、凝縮器を用いて再液化することにより、上記使用済み炭酸ガス中の不純物等を、効率的にかつ高精度に除去することができる。したがって、本発明の使用済み炭酸ガスの再生方法は、炭酸ガス洗浄手段から排気された炭酸ガスを、大気中に放出することなく、有効に再生し活用することが可能になる。しかも、本発明の使用済み炭酸ガスの再生方法は、地球環境にも優しく、経済的にも優れる。   The present invention has been made on the basis of the above knowledge, and the used carbon dioxide regenerating method of the present invention is used carbon dioxide exhausted from the process of cleaning an object to be cleaned using carbon dioxide. Is introduced into a distillation column and rectified, and the vaporized carbon dioxide gas extracted from the distillation column after the rectification is reliquefied using a condenser, thereby removing impurities and the like in the used carbon dioxide gas. It can be removed efficiently and with high accuracy. Therefore, the used carbon dioxide regeneration method of the present invention can effectively regenerate and utilize the carbon dioxide exhausted from the carbon dioxide cleaning means without releasing it into the atmosphere. Moreover, the method for regenerating used carbon dioxide gas of the present invention is friendly to the global environment and economically superior.

また、本発明において、そのなかでも、上記蒸留塔から抽気される気体状態の炭酸ガスを、吸着容器に導入して上記炭酸ガスに含まれる不純物を吸着除去した後、上記凝縮器に導入して液化する場合は、使用済み炭酸ガス中のパーティクルや低沸点有機物等が、効率的に除去される。したがって、この使用済み炭酸ガスの再生方法は、上記蒸留による高純度に加え、再生炭酸ガス中に半導体基板等を傷付けるおそれのあるパーティクル等が非常に少ない、という利点を有する。   Further, in the present invention, among them, carbon dioxide gas extracted from the distillation column is introduced into an adsorption vessel to remove impurities contained in the carbon dioxide gas, and then introduced into the condenser. In the case of liquefaction, particles, low boiling point organic substances, etc. in the used carbon dioxide gas are efficiently removed. Therefore, this used carbon dioxide regeneration method has the advantage that, in addition to the high purity obtained by distillation, there are very few particles or the like that may damage the semiconductor substrate or the like in the recycled carbon dioxide gas.

そして、本発明において、それらのなかでも、特に、加熱用熱交換器,冷却用熱交換器,圧縮機,膨張機構および作動流体からなるヒートポンプを備え、このヒートポンプを用いて、上記蒸留工程の蒸留塔に温熱を供給するとともに、上記再液化工程の凝縮器に冷熱を供給する場合には、このヒートポンプ内の作動流体を通じて、上記蒸留塔側で必要な熱エネルギー(温熱)と、上記凝縮器側で必要な熱エネルギー(冷熱)とが、高効率で輸送・交換される。したがって、本発明の使用済み炭酸ガスの再生方法は、蒸留工程の加熱源と再液化工程の冷却源を個別に設けた従来の方法に比べ、その運転にかかるエネルギーやコストを大幅に低減することができる。   In the present invention, among them, in particular, a heating heat exchanger, a cooling heat exchanger, a compressor, an expansion mechanism, and a heat pump composed of a working fluid are provided. Using this heat pump, distillation in the distillation step is performed. When supplying hot heat to the tower and supplying cold heat to the condenser in the reliquefaction step, the heat energy required on the distillation tower side (hot heat) and the condenser side are passed through the working fluid in the heat pump. The necessary heat energy (cold heat) is transported and exchanged with high efficiency. Therefore, the method for regenerating spent carbon dioxide gas of the present invention greatly reduces the energy and cost of the operation compared to the conventional method in which a heating source for the distillation process and a cooling source for the reliquefaction process are individually provided. Can do.

なお、この使用済み炭酸ガスの再生方法においては、液化炭酸ガスを気化させるために必要な熱量(温熱)と、気化した炭酸ガスを液化するのに必要な熱量(冷熱)とが、ほぼ等しいことから、上記ヒートポンプサイクルに後から追加するエネルギー(すなわちランニングコスト)が非常に少なく済むという利点がある。また、蒸留工程の加熱源と再液化工程の冷却源とを個別に設置する必要がないため、設備を簡素化できるという利点も有する。   In addition, in this used carbon dioxide regeneration method, the amount of heat required to vaporize the liquefied carbon dioxide gas (warm heat) and the amount of heat required to liquefy the vaporized carbon dioxide gas (cold heat) are approximately equal. Therefore, there is an advantage that energy (that is, running cost) added later to the heat pump cycle is very small. Moreover, since it is not necessary to install the heating source of a distillation process and the cooling source of a reliquefaction process separately, it also has the advantage that an installation can be simplified.

さらに、本発明において、ヒートポンプを用いる再生方法のなかでも、特に、上記ヒートポンプの作動流体を上記蒸留塔の蒸発器および上記凝縮器に循環させる流路を設け、上記ヒートポンプの加熱用熱交換器に上記蒸発器の機能を兼用させ、上記冷却用熱交換器に上記凝縮器の機能を兼用させて、上記蒸留工程における炭酸ガスの加熱と上記再液化工程における炭酸ガスの冷却とに必要なエネルギーを、上記ヒートポンプの作動流体を通じて直接供給する場合は、つぎのような利点が生じる。すなわち、このようにすると、上記蒸留工程における液化炭酸ガスの加熱と、上記再液化工程における気化炭酸ガスの冷却とが、二次的な熱媒体や蓄熱手段等を介さず、ヒートポンプの作動流体でダイレクトに行なわれる。したがって、この使用済み炭酸ガスの再生方法は、さらに熱エネルギーのロスが少なく、高い熱効率で炭酸ガスを浄化再生することができる。   Furthermore, in the present invention, among the regeneration methods using a heat pump, in particular, a flow path for circulating the working fluid of the heat pump to the evaporator and the condenser of the distillation tower is provided, and the heat exchanger for heating of the heat pump is provided. The energy required for heating the carbon dioxide gas in the distillation step and cooling the carbon dioxide gas in the reliquefaction step is obtained by combining the function of the evaporator and the heat exchanger for cooling also having the function of the condenser. When supplying directly through the working fluid of the heat pump, the following advantages arise. In other words, in this way, the heating of the liquefied carbon dioxide gas in the distillation step and the cooling of the vaporized carbon dioxide gas in the reliquefaction step are performed by the working fluid of the heat pump without using a secondary heat medium or heat storage means. It is done directly. Therefore, this used carbon dioxide regeneration method can further reduce the loss of thermal energy and purify and regenerate carbon dioxide with high thermal efficiency.

なお、本願における「ヒートポンプ」とは、加熱用熱交換器,冷却用熱交換器,圧縮機,膨張機構およびこれらを循環する流路と、この流路の中に充填された作動流体等から構成され、上記圧縮機による圧縮によって生じる高温の作動流体により、上記加熱用熱交換器を通過する他の液体や気体等を加熱するとともに、上記膨張機構を通過した時に起こる作動流体の膨張によって生じる低温の作動流体により、上記冷却用熱交換器を通過する他の液体や気体等を冷却するシステム,回路あるいはそのサイクルそのものの総称である。したがって、作動流体により系内で熱エネルギーを輸送する蒸気圧縮式ヒートポンプや気体液化式ヒートポンプ等は包含するが、発熱・吸熱反応を利用した吸収式ヒートポンプや吸着式ヒートポンプ等のいわゆるケミカルヒートポンプは包含しない。また、ここで言う「膨張機構」は、「膨張弁」あるいは「オリフィス」を示す。   The “heat pump” in the present application is composed of a heat exchanger for heating, a heat exchanger for cooling, a compressor, an expansion mechanism, a flow path for circulating these, and a working fluid filled in the flow path. The low temperature generated by the expansion of the working fluid that occurs when the other liquid or gas that passes through the heating heat exchanger is heated by the high temperature working fluid that is generated by compression by the compressor and passes through the expansion mechanism. This is a general term for a system, a circuit, or a cycle itself for cooling other liquid or gas passing through the cooling heat exchanger by the working fluid. Therefore, it includes vapor compression heat pumps and gas liquefaction heat pumps that transport thermal energy within the system by working fluid, but does not include so-called chemical heat pumps such as absorption heat pumps and adsorption heat pumps that use exothermic and endothermic reactions. . The “expansion mechanism” referred to here indicates an “expansion valve” or an “orifice”.

本発明の使用済み炭酸ガスの再生方法に用いる炭酸ガス再生装置の第1実施形態を示すフロー図である。It is a flowchart which shows 1st Embodiment of the carbon dioxide regeneration apparatus used for the reproduction | regeneration method of the used carbon dioxide of this invention. 本発明の使用済み炭酸ガスの再生方法に用いる炭酸ガス再生装置の第2実施形態を示すフロー図である。It is a flowchart which shows 2nd Embodiment of the carbon dioxide regeneration apparatus used for the regeneration method of the used carbon dioxide of this invention. 本発明の使用済み炭酸ガスの再生方法に用いる炭酸ガス再生装置の第3実施形態を示すフロー図である。It is a flowchart which shows 3rd Embodiment of the carbon dioxide regeneration apparatus used for the reproduction | regeneration method of the used carbon dioxide of this invention.

つぎに、本発明の実施の形態を、図面にもとづいて詳しく説明する。ただし、本発明は、この実施の形態に限定されるものではない。   Next, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to this embodiment.

図1は、本発明の第1実施形態における使用済み炭酸ガスの再生方法に用いる炭酸ガス再生装置の概略構成を説明するフロー図である。   FIG. 1 is a flowchart for explaining a schematic configuration of a carbon dioxide regenerator used in the method for regenerating used carbon dioxide in the first embodiment of the present invention.

ここで、図1中の一点鎖線より右側のブロックは、本実施形態の炭酸ガス再生装置に、汚染物等を含む使用済み(被洗浄物を洗浄した後の)炭酸ガスを供給する洗浄工程(炭酸ガス洗浄手段)の一構成例であり、図中の符号21は高純度の液化炭酸ガスを貯留する洗浄液タンク、22は被洗浄物を洗浄するための洗浄槽、23は洗浄後の使用済み炭酸ガスから異物等を取り除くトラップ、24は洗浄後の使用済み炭酸ガスを貯留する回収タンク、25は回収タンク24から使用済み炭酸ガスを圧送するためのポンプ、26は上記洗浄槽22から排気されたガスを圧縮して回収するための圧縮機、27は高純度の未使用液化炭酸ガスを補給するためのリザーバタンクを示す。   Here, the block on the right side of the alternate long and short dash line in FIG. 1 is a cleaning process for supplying the used carbon dioxide gas containing contaminants (after cleaning the object to be cleaned) to the carbon dioxide regeneration device of the present embodiment ( The reference numeral 21 in the figure is a cleaning liquid tank for storing high-purity liquefied carbon dioxide gas, 22 is a cleaning tank for cleaning an object to be cleaned, and 23 is a used after cleaning. A trap for removing foreign matter from carbon dioxide, 24 is a recovery tank for storing used carbon dioxide after cleaning, 25 is a pump for pumping used carbon dioxide from the recovery tank 24, and 26 is exhausted from the cleaning tank 22 A compressor 27 for compressing and recovering the recovered gas, and 27, a reservoir tank for replenishing high-purity unused liquefied carbon dioxide gas.

また、図1中の二点鎖線で描かれた上記洗浄工程は、上記洗浄槽22内に被洗浄物(例えば半導体ウエハ等)を収容して密閉した後、この洗浄槽22に洗浄液タンク21から液化炭酸ガス(洗浄液)を供給し、その液化炭酸ガスを洗浄槽22内の被洗浄物上に吹き付ける等の操作により、被洗浄物に付着した油分やパーティクル等の汚染物を除去する。そして、洗浄に用いられた炭酸ガスは、液相と気相に分けて回収される。すなわち、洗浄槽22内の液相(液化炭酸ガス)は、洗浄槽22下側の流路から排気され、トラップ23によって異物等を取り除いた後、回収タンク24に貯留される。また、洗浄槽22の上部に残る気相(気化炭酸ガス)は、排気口から圧縮機26に導入され、この圧縮機26で圧縮されて、同様に回収タンク24に貯留される。   Further, in the cleaning step depicted by a two-dot chain line in FIG. 1, an object to be cleaned (for example, a semiconductor wafer) is accommodated in the cleaning tank 22 and sealed, and then the cleaning tank 22 is filled with the cleaning liquid tank 21. By supplying liquefied carbon dioxide gas (cleaning liquid) and spraying the liquefied carbon dioxide gas onto the object to be cleaned in the cleaning tank 22, contaminants such as oil and particles adhering to the object to be cleaned are removed. The carbon dioxide gas used for cleaning is collected separately in a liquid phase and a gas phase. That is, the liquid phase (liquefied carbon dioxide gas) in the cleaning tank 22 is exhausted from the flow path below the cleaning tank 22, and foreign substances and the like are removed by the trap 23 and then stored in the recovery tank 24. Further, the gas phase (vaporized carbon dioxide gas) remaining in the upper portion of the cleaning tank 22 is introduced into the compressor 26 from the exhaust port, compressed by the compressor 26, and similarly stored in the recovery tank 24.

本実施形態における炭酸ガス再生装置は、図1の実線部分で示すように、上記炭酸ガス洗浄手段から排気された使用済み炭酸ガスを精留する蒸留塔1と、この蒸留塔1から抽気される気化炭酸ガスを液化する凝縮器3と、これら蒸留塔1と凝縮器3との間に配設された吸着筒2(吸着容器)と、上記蒸留塔1の蒸発器4に温熱を供給する加熱源6と、上記凝縮器3に冷熱を供給する冷却源7と、これらを相互に接続する流路(配管等)とから構成されている。   As shown by the solid line portion in FIG. 1, the carbon dioxide regenerator in this embodiment is a distillation column 1 that rectifies used carbon dioxide exhausted from the carbon dioxide gas cleaning means, and is extracted from the distillation column 1. A condenser 3 for liquefying the vaporized carbon dioxide gas, an adsorption cylinder 2 (adsorption vessel) disposed between the distillation column 1 and the condenser 3, and heating for supplying warm heat to the evaporator 4 of the distillation column 1 A source 6, a cooling source 7 for supplying cold heat to the condenser 3, and a flow path (pipe, etc.) connecting these to each other are configured.

蒸留塔1は、蒸発缶とその内部に配置された精留棚等を備え、後述する加熱源6から供給された温熱(温水等)を用いて、上記蒸発缶内に導入された使用済み炭酸ガスを精留するためのものである。上記蒸留塔1の下方には、加熱コイルを有する蒸発器4が配置され、その上方には、複数段の棚板(精留棚)または規則充填物(パッキング)等が配設されている。また、蒸留塔1の上部には、気化した炭酸ガスを吸着筒2へ供給する流路が上方に延びているとともに、その最下部には、上記蒸発缶内で蒸発せず、液相として濃縮された不純物等を、廃液として系外へ排気するための配管等が配設されている。なお、蒸留塔1の上部には、凝縮器3で再液化された高純度の液化炭酸ガスの一部を、上記蒸留塔1内の棚板の上方に還流液として還流させるための流路が接続されている。   The distillation column 1 is provided with an evaporator and a rectifying shelf disposed therein, and used carbonic acid introduced into the evaporator using warm heat (hot water or the like) supplied from a heating source 6 described later. It is for rectifying gas. Below the distillation column 1, an evaporator 4 having a heating coil is disposed, and a plurality of shelves (rectifying shelves) or regular packings (packing) are disposed above the evaporator 4. A flow path for supplying vaporized carbon dioxide gas to the adsorption cylinder 2 extends upward at the upper part of the distillation column 1, and the lowermost part does not evaporate in the evaporator and is concentrated as a liquid phase. A pipe or the like is provided for exhausting the impurities and the like out of the system as waste liquid. In the upper part of the distillation column 1, there is a flow path for refluxing a part of the high-purity liquefied carbon dioxide gas reliquefied by the condenser 3 as a reflux liquid above the shelf in the distillation column 1. It is connected.

凝縮器3は、上記蒸留塔1で蒸発して発生した高純度の気化炭酸ガスを、後述する冷却源7から供給された冷熱(冷水等)を用いて液化するためのものであり、その下側には、再液化後の再生炭酸ガスを上記洗浄工程の洗浄液タンク21に供給する(戻す)流路と、この液化炭酸ガスの一部を、先に述べた蒸留塔1の精留棚の上方に還流させるための流路とが設けられている。   The condenser 3 is for liquefying the high-purity vaporized carbon dioxide gas generated by evaporation in the distillation tower 1 using cold heat (cold water or the like) supplied from a cooling source 7 described later. On the side, the regenerated liquefied carbon dioxide is supplied (returned) to the cleaning liquid tank 21 in the cleaning step, and a part of the liquefied carbon dioxide is supplied to the rectifying shelf of the distillation column 1 described above. A flow path for refluxing upward is provided.

また、蒸留塔1と凝縮器3との間に配設された吸着筒2は、その内部にフィルタあるいは吸着剤等が収納されており、上記蒸留塔1で発生した気体状態の炭酸ガスを導入・通過させるようになっている。なお、この吸着筒2は、洗浄対象物によっては使用しない場合もあるため、これを迂回して蒸留塔1で気化した炭酸ガスを凝縮器3に供給する流路(バイパスライン)が設けられている。   The adsorption cylinder 2 disposed between the distillation column 1 and the condenser 3 contains a filter, an adsorbent, or the like inside, and introduces carbon dioxide gas in a gaseous state generated in the distillation column 1.・ It is designed to pass through. In addition, since this adsorption cylinder 2 may not be used depending on the object to be cleaned, a flow path (bypass line) that bypasses this and supplies carbon dioxide vaporized in the distillation column 1 to the condenser 3 is provided. Yes.

また、この吸着筒2に収容される吸着剤としては、活性炭,アルミナ,シリカゲル,モレキュラシーブ等があげられ、これらの中の1種もしくはこれらを組み合わせて使用される。そして、上記吸着筒2に収容されるフィルタは、洗浄対象物の要求に応じてメッシュサイズが選択されるが、一般的には1μm程度のインラインフィルタが使用される。なお、フィルタには他のメッシュサイズのフィルタを用いてもよく、さらには、これら吸着剤とフィルタとを併用してもよい。   Examples of the adsorbent accommodated in the adsorption cylinder 2 include activated carbon, alumina, silica gel, molecular sieve, and the like, and one or a combination of these is used. And as for the filter accommodated in the said adsorption | suction cylinder 2, although a mesh size is selected according to the request | requirement of the washing | cleaning target object, generally an in-line filter of about 1 micrometer is used. In addition, the filter of another mesh size may be used for a filter, Furthermore, you may use these adsorbents and a filter together.

そして、蒸留塔1の蒸発器4(加熱コイル)に温熱を供給する加熱源6としては、ヒータやボイラ等の他、液化炭酸ガスを加熱可能な種々の熱源を使用することができる。また、凝縮器3の冷却コイル5に冷熱を供給する冷却源7としては、冷水製造装置や装置外の空気(大気)の他、気化炭酸ガスを冷却可能な種々の熱源を使用することができる。   And as the heating source 6 which supplies warm heat to the evaporator 4 (heating coil) of the distillation column 1, various heat sources which can heat liquefied carbon dioxide gas other than a heater, a boiler, etc. can be used. As the cooling source 7 for supplying cold heat to the cooling coil 5 of the condenser 3, various heat sources capable of cooling the vaporized carbon dioxide gas can be used in addition to the cold water production apparatus and the air outside the apparatus (atmosphere). .

上記構成の炭酸ガス再生装置を用いた使用済み炭酸ガスの再生は、まず、ポンプ25を用いて、上記洗浄工程の回収タンク24に貯留された使用済み炭酸ガスを蒸留塔1の蒸発缶内に導入する。   In the regeneration of the used carbon dioxide gas using the carbon dioxide gas regenerating apparatus having the above-described configuration, first, the used carbon dioxide gas stored in the recovery tank 24 of the cleaning step is put into the evaporator of the distillation column 1 using the pump 25. Introduce.

そして、加熱源6から供給された温熱により蒸発器4の加熱コイルを加温して、上記蒸発缶内の液化炭酸ガスを蒸発させる。この時、蒸留塔1の下部では、使用済みの液化炭酸ガスが、被洗浄物に由来する油分や高沸点有機物等を液相に残して蒸発することから、上記使用済み炭酸ガスから、これら不純物が取り除かれる。   And the heating coil of the evaporator 4 is heated with the warm heat supplied from the heating source 6, and the liquefied carbon dioxide gas in the said evaporator is evaporated. At this time, in the lower part of the distillation column 1, the used liquefied carbon dioxide gas evaporates while leaving the oil and high-boiling organic substances derived from the object to be cleaned in the liquid phase. Is removed.

また、蒸留塔1の上部には、上記高純度の液化炭酸ガスの一部を凝縮器3から還流させる流路が接続されていることから、この蒸留塔1内で、凝縮器3から還流した液化炭酸ガス(還流液)と、蒸発器4により蒸発した気体状態の炭酸ガスとが向流接触し、上記気化した炭酸ガスがさらに高純度となる。   In addition, a flow path for refluxing a part of the high-purity liquefied carbon dioxide gas from the condenser 3 is connected to the upper part of the distillation tower 1. The liquefied carbon dioxide gas (reflux) and the carbon dioxide gas vaporized by the evaporator 4 are brought into countercurrent contact, and the vaporized carbon dioxide gas is further purified.

つぎに、高沸点有機物等が除去され高純度となった気体状態の炭酸ガスは、吸着筒2に導入され、その内部に収容されたフィルタや吸着剤等によって、上記蒸留塔1で取り除ききれなかったパーティクルや低沸点有機物等がろ過・吸着される。   Next, the carbon dioxide gas in a gaseous state having a high purity by removing high-boiling organic substances is introduced into the adsorption cylinder 2 and cannot be completely removed by the distillation column 1 by a filter, an adsorbent or the like housed therein. Particles and low boiling point organic substances are filtered and adsorbed.

その後、この高純度でかつパーティクル等を含有しない気化炭酸ガスは、凝縮器3に導入され、この凝縮器3の冷却コイル5によって冷却されて液化する。また、この液化した炭酸ガスは、その大部分が上記洗浄工程の洗浄液タンク21に貯留されて、被洗浄物の洗浄に再利用される。   Thereafter, the vaporized carbon dioxide gas having high purity and containing no particles or the like is introduced into the condenser 3 and is cooled and liquefied by the cooling coil 5 of the condenser 3. Most of the liquefied carbon dioxide gas is stored in the cleaning liquid tank 21 in the cleaning step and reused for cleaning the object to be cleaned.

上記のように、本実施形態における使用済み炭酸ガスの再生方法は、蒸留塔1と凝縮器3を組み合わせることにより、使用済み炭酸ガス中の不純物等を効率的に除去することができる。したがって、本実施形態の使用済み炭酸ガスの再生方法は、炭酸ガス洗浄手段から排気された炭酸ガスを、大気中に放出することなく、有効に活用することが可能になる。   As described above, the method for regenerating used carbon dioxide gas in the present embodiment can efficiently remove impurities and the like in the used carbon dioxide gas by combining the distillation column 1 and the condenser 3. Therefore, the used carbon dioxide regeneration method of the present embodiment can effectively utilize the carbon dioxide exhausted from the carbon dioxide cleaning means without releasing it into the atmosphere.

また、この炭酸ガス再生方法によれば、使用済み炭酸ガス中のパーティクルや低沸点有機物等が高精度に除去される。したがって、本実施形態の再生方法により得られた再生炭酸ガスは、上記蒸留による高純度に加え、再生炭酸ガス中に、油分や半導体基板等を傷付けるおそれのあるパーティクル等が非常に少なく、上記半導体基板等の洗浄工程に、好適に再利用することができる。   Moreover, according to this carbon dioxide regeneration method, particles, low-boiling organic substances, etc. in the used carbon dioxide are removed with high accuracy. Therefore, the regenerated carbon dioxide gas obtained by the regenerating method of the present embodiment has a very small amount of particles or the like that may damage oil or a semiconductor substrate in the regenerated carbon dioxide gas in addition to the high purity obtained by distillation. It can be suitably reused in the cleaning process for substrates and the like.

つぎに、本発明の第2実施形態について説明する。
図2は、本発明の第2実施形態における使用済み炭酸ガスの再生方法に用いる炭酸ガス再生装置の概略構成を説明するフロー図である。なお、第1実施形態と同様の機能を有する構成部材には同じ符号を付して、その詳細な説明を省略する。
Next, a second embodiment of the present invention will be described.
FIG. 2 is a flowchart illustrating a schematic configuration of a carbon dioxide regenerator used in the method for regenerating used carbon dioxide in the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the structural member which has the same function as 1st Embodiment, and the detailed description is abbreviate | omitted.

本実施形態における炭酸ガス再生装置の特徴は、第1実施形態における加熱源6と冷却源7に代えて、上蒸留工程の蒸留塔1に必要な温熱と、上記再液化工程の凝縮器3に必要な冷熱とを供給するヒートポンプが配設されている点である。また、このヒートポンプと蒸留塔1との間には、上記ヒートポンプで使用している作動流体とは異なる熱媒(本実施形態においては温水)を循環させる熱媒循環流路Hが設けられているとともに、上記ヒートポンプと凝縮器3との間には、上記作動流体とは異なる冷媒(本実施形態においては冷水)を循環させる冷媒循環流路Cが設けられている。   The feature of the carbon dioxide regenerator in the present embodiment is that, instead of the heating source 6 and the cooling source 7 in the first embodiment, the heat necessary for the distillation tower 1 in the upper distillation step and the condenser 3 in the reliquefaction step. The heat pump which supplies required cold heat is arrange | positioned. Further, a heat medium circulation passage H for circulating a heat medium (hot water in the present embodiment) different from the working fluid used in the heat pump is provided between the heat pump and the distillation tower 1. At the same time, a refrigerant circulation channel C is provided between the heat pump and the condenser 3 for circulating a refrigerant (cold water in the present embodiment) different from the working fluid.

上記ヒートポンプは、圧縮機10−加熱用熱交換器12−膨張温度調節用熱交換器14−膨張弁11−冷却用熱交換器13−圧縮温度調節用熱交換器15の順に循環する作動流体流路(配管)と、この流路の中に充填された作動流体とから構成されており、上記加熱用熱交換器12と冷却用熱交換器13との間で熱を相互に移動・交換することのできるヒートポンプサイクル(回路)を形成している。   The heat pump circulates in the order of the compressor 10-the heat exchanger 12 for heating-the heat exchanger 14 for expansion temperature adjustment-the expansion valve 11-the heat exchanger 13 for cooling-the heat exchanger 15 for compression temperature adjustment. It consists of a path (pipe) and a working fluid filled in the flow path, and moves and exchanges heat between the heating heat exchanger 12 and the cooling heat exchanger 13. The heat pump cycle (circuit) which can be formed is formed.

また、本実施形態においては、上記熱媒循環流路Hの熱媒および冷媒循環流路Cの冷媒として水が用いられ、上記ヒートポンプの加熱用熱交換器12から蒸留塔1の蒸発器4に対しては、熱媒としての温水が供給されている。そして、上記ヒートポンプの冷却用熱交換器13から凝縮器3に対しては、冷媒としての冷水が供給され、これら温水と冷水を介して、上記蒸発器4での加熱と凝縮器3での冷却に必要な熱が供給されるようになっている。   Further, in the present embodiment, water is used as the heat medium in the heat medium circulation channel H and the refrigerant in the refrigerant circulation channel C, and the heating heat exchanger 12 of the heat pump is transferred to the evaporator 4 of the distillation tower 1. On the other hand, hot water as a heat medium is supplied. And the cold water as a refrigerant | coolant is supplied with respect to the condenser 3 from the heat exchanger 13 for cooling of the said heat pump, the heating in the said evaporator 4 and the cooling in the condenser 3 are via these warm water and cold water. The necessary heat is supplied.

なお、図2において、図中の符号16は温水を貯留する温水タンク、符号17は冷水を貯留する冷水タンクを示す。また、図中の符号Pはこれら温水と冷水を循環させるためのポンプである。   In FIG. 2, reference numeral 16 in the drawing denotes a hot water tank that stores hot water, and reference numeral 17 denotes a cold water tank that stores cold water. Moreover, the code | symbol P in a figure is a pump for circulating these hot water and cold water.

上記構成によっても、本実施形態の使用済み炭酸ガスの再生方法は、炭酸ガス洗浄手段から排気された炭酸ガスを、大気中に放出することなく、有効に活用することができる。また、本実施形態の再生方法により得られた再生炭酸ガスは、上記蒸留による高純度に加え、再生炭酸ガス中に、油分や半導体基板等を傷付けるおそれのあるパーティクル等が非常に少なく、上記半導体基板等の洗浄工程に、好適に再利用することができる。   Also with the above configuration, the method for regenerating used carbon dioxide gas of the present embodiment can be effectively used without releasing the carbon dioxide gas exhausted from the carbon dioxide gas cleaning means into the atmosphere. Further, the regenerated carbon dioxide obtained by the regenerating method of the present embodiment has not only high purity by distillation, but also the regenerated carbon dioxide gas has very few particles that may damage oils, semiconductor substrates, etc. It can be suitably reused in the cleaning process for substrates and the like.

しかも、本実施形態における炭酸ガス再生装置は、上記ヒートポンプ内の作動流体を通じて、上記蒸留塔1で必要な熱エネルギー(温熱)と、上記凝縮器3で必要な熱エネルギー(冷熱)とが、高効率で輸送・交換される。したがって、上記ヒートポンプを用いた使用済み炭酸ガスの再生方法は、蒸留工程の加熱源と再液化工程の冷却源を個別に設けた従来の再生方法に比べ、その運転にかかるエネルギーやコストを低減することが可能になる。   Moreover, the carbon dioxide regenerator in the present embodiment has high heat energy (hot heat) required in the distillation tower 1 and high heat energy (cold heat) required in the condenser 3 through the working fluid in the heat pump. Transported and exchanged with efficiency. Therefore, the used carbon dioxide regeneration method using the heat pump reduces the energy and cost of the operation compared to the conventional regeneration method in which the heating source in the distillation process and the cooling source in the reliquefaction process are individually provided. It becomes possible.

つぎに、本発明の第3実施形態について説明する。
図3は、本発明の第3実施形態における使用済み炭酸ガスの再生方法に用いる炭酸ガス再生装置の概略構成を説明するフロー図である。なお、第1,第2実施形態と同様の機能を有する構成部材には同じ符号を付して、その詳細な説明を省略する。
Next, a third embodiment of the present invention will be described.
FIG. 3 is a flowchart for explaining a schematic configuration of a carbon dioxide regenerator used in the method for regenerating used carbon dioxide in the third embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the structural member which has the function similar to 1st, 2nd embodiment, and the detailed description is abbreviate | omitted.

本実施形態における炭酸ガス再生装置が、上記第2実施形態と異なる点は、上記ヒートポンプの作動流体を、上記蒸留塔1の蒸発器4および上記凝縮器3に循環させる流路が形成され、上記ヒートポンプの加熱用熱交換器12が、上記蒸発器4の加熱コイルを兼用し、上記ヒートポンプの冷却用熱交換器13が、上記凝縮器3の冷却コイル(図1,図2における符号5)を兼用するように配置されている点である。   The carbon dioxide gas regenerating apparatus in the present embodiment is different from the second embodiment in that a flow path for circulating the working fluid of the heat pump to the evaporator 4 and the condenser 3 of the distillation tower 1 is formed. The heat exchanger 12 for heating the heat pump also serves as the heating coil for the evaporator 4, and the heat exchanger 13 for cooling the heat pump serves as the cooling coil for the condenser 3 (reference numeral 5 in FIGS. 1 and 2). It is the point arrange | positioned so that it may be combined.

上記構成によっても、本実施形態における使用済み炭酸ガスの再生方法は、先に述べた第1,第2実施形態と同様、炭酸ガス洗浄手段から排気された炭酸ガスを、大気中に放出することなく、有効に活用することができる。また、本実施形態の再生方法により得られた再生炭酸ガスは、上記蒸留による高純度に加え、再生炭酸ガス中に、油分や半導体基板等を傷付けるおそれのあるパーティクル等が非常に少なく、上記半導体基板等の洗浄工程に、好適に再利用することができる。   Even with the above configuration, the method for regenerating used carbon dioxide gas in this embodiment releases carbon dioxide gas exhausted from the carbon dioxide gas cleaning means into the atmosphere, as in the first and second embodiments described above. And can be used effectively. Further, the regenerated carbon dioxide obtained by the regenerating method of the present embodiment has not only high purity by distillation, but also the regenerated carbon dioxide gas has very few particles that may damage oils, semiconductor substrates, etc. It can be suitably reused in the cleaning process for substrates and the like.

さらに、本実施形態における炭酸ガス再生装置は、蒸留工程の蒸発器4に直接温熱を供給する加熱用熱交換器12と、再液化工程の凝縮器3に直接冷熱を供給する冷却用熱交換器13とが、一つのヒートポンプサイクル内に配置されていることから、このヒートポンプ内の作動流体を通じて、上記蒸発器4側で必要な熱エネルギー(温熱)と、上記凝縮器3側で必要な熱エネルギー(冷熱)とが、ダイレクトに輸送・交換される。   Further, the carbon dioxide regenerator in the present embodiment includes a heating heat exchanger 12 that directly supplies warm heat to the evaporator 4 in the distillation process, and a cooling heat exchanger that directly supplies cold heat to the condenser 3 in the reliquefaction process. 13 are arranged in one heat pump cycle, and therefore, through the working fluid in the heat pump, the heat energy required on the evaporator 4 side (heat) and the heat energy required on the condenser 3 side are provided. (Cold heat) is directly transported and exchanged.

しかも、上記炭酸ガス再生装置においては、蒸留塔1内の液化炭酸ガスを気化させるために必要な熱量(温熱)と、気化した炭酸ガスを凝縮器3で液化するのに必要な熱量(冷熱)とが、ほぼ等しくなるという利点がある。   Moreover, in the carbon dioxide regenerator, the amount of heat necessary for vaporizing the liquefied carbon dioxide gas in the distillation column 1 (hot heat) and the amount of heat necessary for liquefying the vaporized carbon dioxide gas with the condenser 3 (cold heat). Has the advantage that they are almost equal.

したがって、本実施形態における使用済み炭酸ガスの再生方法は、蒸留工程の加熱源と再液化工程の冷却源とを個別に設けた従来の再生方法に比べ、その運転にかかる消費エネルギーやコストを大幅に低減することができる。また、環境面でも、エネルギー面でも、地球に優しい炭酸ガス再生方法とすることができる。   Therefore, the regeneration method of the used carbon dioxide gas in this embodiment greatly reduces the energy consumption and cost for the operation compared with the conventional regeneration method in which the heating source in the distillation process and the cooling source in the reliquefaction process are individually provided. Can be reduced. Moreover, it can be a carbon dioxide regeneration method that is friendly to the earth in terms of both environment and energy.

また、本実施形態における炭酸ガス再生装置は、蒸留工程の加熱源と再液化工程の冷却源とを個別に設置する必要がないため、設備を簡素化できるという利点も有する。   Further, the carbon dioxide regenerator in the present embodiment has an advantage that the equipment can be simplified because it is not necessary to separately provide a heating source for the distillation process and a cooling source for the reliquefaction process.

なお、上記3つの実施形態では、半導体ウエハ等を精密洗浄するドライクリーニング装置から排気された使用済み炭酸ガスを再生する方法を例に説明したが、本発明は、その他の構成の炭酸ガス洗浄装置から排気される使用済み炭酸ガスに適用でき得ることはいうまでもない。   In the above three embodiments, the method of regenerating used carbon dioxide exhausted from a dry cleaning device for precision cleaning of a semiconductor wafer or the like has been described as an example. However, the present invention is a carbon dioxide cleaning device having other configurations. Needless to say, the present invention can be applied to used carbon dioxide exhausted from the factory.

また、洗浄工程を複数組備える炭酸ガス洗浄装置は勿論、リンス工程や仕上げ工程等、1バッチ中に液化炭酸ガスを洗浄槽に何度も使用する装置や、バッチ式の洗浄装置以外にも、被洗浄物を連続で洗浄する連続洗浄装置等に適用してもよい。   In addition to a carbon dioxide gas cleaning device with multiple cleaning processes, as well as a rinse process and a finishing process, in addition to a device that repeatedly uses liquefied carbon dioxide gas in a cleaning tank during one batch, and a batch type cleaning device, You may apply to the continuous washing | cleaning apparatus etc. which wash | clean to-be-cleaned object continuously.

本発明は、衣類,寝具等の布製品のドライクリーニングや、半導体製造プロセスにおける半導体基板の洗浄、電気・電子部品や光学部材からの不要物の除去等、高圧の液化炭酸ガスを洗浄液とした炭酸ガス洗浄装置から排気される使用済み炭酸ガスから、汚染物や不要物等を除去して炭酸ガスを浄化し、上記炭酸ガス洗浄装置の洗浄液として再利用する方法に広く適用できる。   The present invention relates to carbon dioxide using a high-pressure liquefied carbon dioxide as a cleaning liquid for dry cleaning of cloth products such as clothing and bedding, cleaning of semiconductor substrates in semiconductor manufacturing processes, removal of unnecessary materials from electrical / electronic components and optical members, etc. The present invention can be widely applied to a method of purifying carbon dioxide gas by removing contaminants and unnecessary substances from used carbon dioxide gas exhausted from the gas scrubber and reusing it as a cleaning liquid for the carbon dioxide scrubber.

1 蒸留塔
2 吸着筒
3 凝縮器
4 蒸発器
1 Distillation tower 2 Adsorption cylinder 3 Condenser 4 Evaporator

Claims (4)

炭酸ガス洗浄手段から排気された使用済み炭酸ガスを蒸留塔に導入して精留し、この使用済み炭酸ガスに含まれる不純物を除去する蒸留工程と、上記蒸留塔から抽気される高純度の気化炭酸ガスを、凝縮器に導入して液化する再液化工程とを備え、この再液化後の再生炭酸ガスを、上記炭酸ガス洗浄手段での洗浄に再利用することを特徴とする使用済み炭酸ガスの再生方法。   A distillation process for removing the impurities contained in the used carbon dioxide gas by rectifying by introducing the used carbon dioxide gas exhausted from the carbon dioxide cleaning means into the distillation tower, and high purity vaporization extracted from the distillation tower. A re-liquefaction step of introducing carbon dioxide into a condenser and liquefying, and the regenerated carbon dioxide after re-liquefaction is reused for washing in the carbon dioxide washing means. How to play. 上記蒸留塔から抽気される気化炭酸ガスを、吸着容器に導入して上記炭酸ガスに含まれる不純物を吸着除去した後、上記凝縮器に導入して液化する請求項1記載の使用済み炭酸ガスの再生方法。   The spent carbon dioxide gas according to claim 1, wherein the vaporized carbon dioxide gas extracted from the distillation tower is introduced into an adsorption vessel to adsorb and remove impurities contained in the carbon dioxide gas, and then introduced into the condenser to be liquefied. Playback method. 加熱用熱交換器,冷却用熱交換器,圧縮機,膨張機構および作動流体からなるヒートポンプを備え、このヒートポンプを用いて、上記蒸留工程の蒸留塔に温熱を供給するとともに、上記再液化工程の凝縮器に冷熱を供給する請求項1または2記載の使用済み炭酸ガスの再生方法。   A heat pump comprising a heat exchanger for heating, a heat exchanger for cooling, a compressor, an expansion mechanism, and a working fluid, and using this heat pump, heat is supplied to the distillation tower in the distillation step, and in the reliquefaction step The method for regenerating used carbon dioxide gas according to claim 1 or 2, wherein cold heat is supplied to the condenser. 上記ヒートポンプの作動流体を上記蒸留塔の蒸発器および上記凝縮器に循環させる流路を設け、上記ヒートポンプの加熱用熱交換器に上記蒸発器の機能を兼用させ、上記冷却用熱交換器に上記凝縮器の機能を兼用させて、上記蒸留工程における炭酸ガスの加熱と上記再液化工程における炭酸ガスの冷却とに必要なエネルギーを、上記ヒートポンプの作動流体を通じて直接供給する請求項3記載の使用済み炭酸ガスの再生方法。   A flow path for circulating the working fluid of the heat pump to the evaporator and the condenser of the distillation tower is provided, the heating heat exchanger of the heat pump also serves as the evaporator, and the cooling heat exchanger The spent of Claim 3 which supplies the energy required for the heating of the carbon dioxide gas in the said distillation process, and the cooling of the carbon dioxide gas in the said reliquefaction process directly through the working fluid of the said heat pump, combining the function of a condenser. Carbon dioxide regeneration method.
JP2009166673A 2009-07-15 2009-07-15 How to recycle spent carbon dioxide Expired - Fee Related JP5410182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166673A JP5410182B2 (en) 2009-07-15 2009-07-15 How to recycle spent carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166673A JP5410182B2 (en) 2009-07-15 2009-07-15 How to recycle spent carbon dioxide

Publications (2)

Publication Number Publication Date
JP2011020885A true JP2011020885A (en) 2011-02-03
JP5410182B2 JP5410182B2 (en) 2014-02-05

Family

ID=43631288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166673A Expired - Fee Related JP5410182B2 (en) 2009-07-15 2009-07-15 How to recycle spent carbon dioxide

Country Status (1)

Country Link
JP (1) JP5410182B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240870A (en) * 2011-05-18 2012-12-10 Showa Denko Gas Products Co Ltd Refining/supplying device for ultrahigh purity liquefied carbon dioxide
JP2013087017A (en) * 2011-10-18 2013-05-13 Japan Organo Co Ltd Method and system for recovering and purifying carbon dioxide
CN105042551A (en) * 2015-08-19 2015-11-11 宁夏宝塔石化科技实业发展有限公司 Energy-saving emission-reducing process for atmospheric and vacuum distillation unit
KR20220014599A (en) * 2020-07-29 2022-02-07 디아이지에어가스 주식회사 Apparatus for producing ultra high purity electronics grade carbondioxide
JP7435349B2 (en) 2020-08-04 2024-02-21 栗田工業株式会社 distillation equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115857A (en) * 1991-10-28 1993-05-14 Toshiba Corp Waste washing water treatment and cleaning equipment
JPH07284739A (en) * 1994-04-15 1995-10-31 Sharp Corp Washing method and apparatus
JP2003117508A (en) * 2001-10-16 2003-04-22 Mitsubishi Materials Corp Cleaning device
JP2006281014A (en) * 2005-03-31 2006-10-19 Mitsubishi Materials Corp Cleaning apparatus and cleaning method
JP2009285602A (en) * 2008-05-30 2009-12-10 Sharp Corp Distilling apparatus of carbon dioxide, and washing apparatus equipped therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115857A (en) * 1991-10-28 1993-05-14 Toshiba Corp Waste washing water treatment and cleaning equipment
JPH07284739A (en) * 1994-04-15 1995-10-31 Sharp Corp Washing method and apparatus
JP2003117508A (en) * 2001-10-16 2003-04-22 Mitsubishi Materials Corp Cleaning device
JP2006281014A (en) * 2005-03-31 2006-10-19 Mitsubishi Materials Corp Cleaning apparatus and cleaning method
JP2009285602A (en) * 2008-05-30 2009-12-10 Sharp Corp Distilling apparatus of carbon dioxide, and washing apparatus equipped therewith

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240870A (en) * 2011-05-18 2012-12-10 Showa Denko Gas Products Co Ltd Refining/supplying device for ultrahigh purity liquefied carbon dioxide
JP2013087017A (en) * 2011-10-18 2013-05-13 Japan Organo Co Ltd Method and system for recovering and purifying carbon dioxide
CN105042551A (en) * 2015-08-19 2015-11-11 宁夏宝塔石化科技实业发展有限公司 Energy-saving emission-reducing process for atmospheric and vacuum distillation unit
CN105042551B (en) * 2015-08-19 2017-07-07 宁夏宝塔石化科技实业发展有限公司 A kind of atmospheric and vacuum distillation unit energy-saving and emission-reducing technique
KR20220014599A (en) * 2020-07-29 2022-02-07 디아이지에어가스 주식회사 Apparatus for producing ultra high purity electronics grade carbondioxide
KR102444842B1 (en) 2020-07-29 2022-09-21 디아이지에어가스 주식회사 Apparatus for producing ultra high purity electronics grade carbondioxide
JP7435349B2 (en) 2020-08-04 2024-02-21 栗田工業株式会社 distillation equipment

Also Published As

Publication number Publication date
JP5410182B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5707491B2 (en) High purity liquefied carbon dioxide production method and apparatus
US20030161780A1 (en) Recycle for supercritical carbon dioxide
JP5410182B2 (en) How to recycle spent carbon dioxide
EP2505948B1 (en) Cryogenic CO2 separation using a refrigeration system
JP2008007378A (en) Method for recovering gaseous ammonia and recovering device therefor
CN102458610A (en) Method for reclaiming of co2 absorbent and a reclaimer
JP6232435B2 (en) Adsorbent regenerator
KR100359646B1 (en) Recycling System and Method of Supercritical Carbon Dioxide
TW504563B (en) PFC recovery using condensation
JP5572198B2 (en) Substrate processing apparatus and chemical solution recycling method
JPH1157371A (en) Production of ultraclean air
CN104673417B (en) The system and method for precooling and dry decontamination for natural gas from coal
KR101777119B1 (en) Apparatus for removing moisture from natural gas and the method for removing moisture from natural gas by using the same
CA2897553C (en) Solid-liquid separator
JP5483536B2 (en) Carbon dioxide cleaning apparatus and carbon dioxide cleaning method
JP2013086024A (en) Organic solvent desorption method and organic solvent desorbing device
JPH11142053A (en) Cryogenic rectification system for recovering fluorine compound
JP2009208037A (en) Solvent recovering apparatus
JP4430351B2 (en) Fluorine compound gas separation and purification equipment
JP4142357B2 (en) Waste high pressure fluid treatment method and apparatus
JP6103344B2 (en) Ammonia recovery and reuse
JP3010463B2 (en) How to remove water from alcohol
JP3278781B2 (en) Hermetic solvent cleaning and recovery method and apparatus
JP2017121631A (en) Absorbent regenerator
TW201332635A (en) Apparatus and method for recovering gaseous hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131106

R150 Certificate of patent or registration of utility model

Ref document number: 5410182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees