JP2009203137A - Method for producing calcium carbonate - Google Patents
Method for producing calcium carbonate Download PDFInfo
- Publication number
- JP2009203137A JP2009203137A JP2008049378A JP2008049378A JP2009203137A JP 2009203137 A JP2009203137 A JP 2009203137A JP 2008049378 A JP2008049378 A JP 2008049378A JP 2008049378 A JP2008049378 A JP 2008049378A JP 2009203137 A JP2009203137 A JP 2009203137A
- Authority
- JP
- Japan
- Prior art keywords
- quicklime
- calcium carbonate
- quick lime
- outside
- supplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/40—Production or processing of lime, e.g. limestone regeneration of lime in pulp and sugar mills
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Paper (AREA)
Abstract
Description
本発明は炭酸カルシウムの製造方法に関する。さらに詳しくは、本発明は、パルプ製造工程の苛性化工程を利用して、白液分離性及び洗浄性が良好で、かつ粉砕性に優れた、製紙用顔料としての利用に適した安価な炭酸カルシウムを得るための方法に関するものである。 The present invention relates to a method for producing calcium carbonate. More specifically, the present invention uses a causticizing step of a pulp manufacturing process, has an excellent white liquor separating property and cleaning property, and is excellent in grindability and is an inexpensive carbon dioxide suitable for use as a papermaking pigment. It relates to a method for obtaining calcium.
近年、高白色度、高不透明度、高光沢度を有する高品位な軽量塗工紙の需要が高い。これらの要求に応えるために高品質軽量塗工紙の塗工顔料には、カオリン、重質炭酸カルシウム、軽質炭酸カルシウムなどの無機顔料以外に、高価な二酸化チタンやプラスチックピグメントなどが配合される。 In recent years, there is a high demand for high-quality lightweight coated paper having high whiteness, high opacity, and high gloss. In order to meet these requirements, expensive titanium dioxide, plastic pigments, and the like are blended in the coating pigments of high-quality lightweight coated paper, in addition to inorganic pigments such as kaolin, heavy calcium carbonate, and light calcium carbonate.
従来から塗工用顔料に用いられる炭酸カルシウムは非常に安価であり、塗料中の配合率を高くすることで塗工紙の白色度や不透明度を向上できるものの、白紙光沢度が著しく低下する。このため、炭酸カルシウムを高配合化するためには、白紙光沢度発現性を向上させるために、湿式粉砕により炭酸カルシウムを小粒径化するのが一般的である。しかし、小粒径化するには分散剤の添加量を増やし、長時間粉砕しなくてはならないため、顔料製造コストが高くなる。 Calcium carbonate conventionally used for coating pigments is very inexpensive, and although whiteness and opacity of coated paper can be improved by increasing the blending ratio in the paint, the glossiness of blank paper is significantly reduced. For this reason, in order to make calcium carbonate highly blended, it is common to reduce the particle size of calcium carbonate by wet grinding in order to improve the white paper glossiness. However, in order to reduce the particle size, it is necessary to increase the amount of dispersant added and pulverize for a long time, which increases the pigment production cost.
炭酸カルシウムは製紙用のほか、ゴム、プラスチック、ペイント、シーリング剤、粘着剤、肥料等、工業用原料として重要で、天然の石灰石を乾式或いは湿式で機械粉砕して得られる重質炭酸カルシウムと、化学的方法によって得られる沈降性炭酸カルシウム(合成炭酸カルシウム)がある。 Calcium carbonate is important for industrial materials such as rubber, plastics, paints, sealants, adhesives, fertilizers, etc., as well as heavy calcium carbonate obtained by mechanically pulverizing natural limestone dry or wet, There is precipitated calcium carbonate (synthetic calcium carbonate) obtained by chemical methods.
特許文献1(特開平10−226517号公報)には、硫酸塩法またはソーダ法によるパルプ製造工程の苛性化工程において炭酸カルシウムを製造する方法が記載されている。
[苛性化工程]
化学的方法によって得られる沈降性炭酸カルシウムのひとつとして、硫酸塩法またはソーダ法によるパルプ製造工程の苛性化工程で、生石灰を水または弱液で消和した後、緑液で苛性化反応することによって製造(苛性化法)される苛性化軽質炭酸カルシウムが挙げられる。
Patent Document 1 (Japanese Patent Laid-Open No. 10-226517) describes a method for producing calcium carbonate in a causticizing step of a pulp production step by a sulfate method or a soda method.
[Causticization process]
As one of the precipitated calcium carbonates obtained by chemical methods, causticizing reaction with green liquor after quick lime is neutralized with water or weak liquor in the causticizing step of pulp manufacturing process by sulfate method or soda method Causticized light calcium carbonate produced by the above (causticizing method).
硫酸塩法又はソーダ法によるパルプ製造工程は、一般に以下の工程を含んでなる。すなわち、水酸化ナトリウムや硫化ナトリウムを溶解した「白液」を用いて木材を高温、高圧下で蒸解し、木材から繊維素を単離する。繊維素は固相として分離精製してパルプとし、蒸解廃液(「黒液」)は回収ボイラーで濃縮燃焼する。その際、木材からの溶出成分は熱源として回収し、薬液中の無機物は炭酸ナトリウム又は硫化ソーダとの混合物を主成分とするスメルトとして回収する。スメルトは、弱液と呼ぶ白液成分が一部溶解した炭酸カルシウム洗浄液に溶解して、「緑液」となる。 The pulp manufacturing process by the sulfate method or the soda method generally includes the following steps. That is, using a “white liquor” in which sodium hydroxide or sodium sulfide is dissolved, wood is digested at high temperature and pressure to isolate fibrin from the wood. Fibrin is separated and purified as a solid phase into pulp, and cooking waste liquid (“black liquor”) is concentrated and burned in a recovery boiler. At that time, the eluted component from the wood is recovered as a heat source, and the inorganic substance in the chemical solution is recovered as a smelt mainly composed of a mixture with sodium carbonate or sodium sulfide. The smelt dissolves in a calcium carbonate washing solution in which a white liquor component called a weak solution is partially dissolved to form a “green liquor”.
この緑液と生石灰を混合して、以下の[1]、[2]式で示す消和反応と苛性化反応により、炭酸ナトリウムを蒸解薬液に有用な水酸化ナトリウムに転換し、「白液」を得ると同時に「炭酸カルシウム」が副生する。従来のパルプ工場では緑液と生石灰をスレーカーと呼ばれる反応槽で混合する為、実際にはこの二段の反応はかなり重複して進行し、消和反応と苛性化反応はほとんど同時に起こる。 This green liquor and quicklime are mixed, and sodium carbonate is converted into sodium hydroxide useful for cooking chemicals by the soothing and causticizing reactions shown by the following formulas [1] and [2]. At the same time, calcium carbonate is by-produced. In conventional pulp mills, green liquor and quicklime are mixed in a reaction tank called a slaker. In practice, this two-stage reaction proceeds considerably overlappingly, and soaking and causticization occur almost simultaneously.
[苛性化工程で製造される炭酸カルシウム]
上記製紙工程で生成する炭酸カルシウムは、主生産物である白液を製造する際の副産物であるため、塗工用顔料として使用した場合、非常に低コストで利用できる。また、ここで生成する炭酸カルシウムは、通常その一部あるいは全部がロータリーキルンと呼ばれる焼成炉で脱炭酸されて再び生石灰となり、上記苛性化反応に再利用される。
[Calcium carbonate produced in the causticizing process]
Calcium carbonate produced in the papermaking process is a by-product in producing white liquor, which is the main product, and therefore can be used at a very low cost when used as a coating pigment. In addition, the calcium carbonate produced here is usually partly or wholly decarboxylated in a calcining furnace called a rotary kiln to become quick lime again and reused in the causticizing reaction.
[脱塩素]
回収ボイラーで黒液を燃焼する際に、チップ由来の塩素が黒液に混入し、ボイラーの腐食が発生する傾向にある。そのため黒液の燃焼物の一部であるフライアッシュを系外に放流し、塩素量を低減することにより、ボイラーの腐食を防止する対策がとられている。しかしながら、スメルトの一部を系外に放流すると塩素と同時にNa2S由来の硫黄分等も系外に放流されてしまう。そのため緑液の硫化度(NaOH+1/2Na2S)が低下し、苛性化工程後の白液の有効アルカリ(NaOH+1/2Na2S)が低下する。パルプの生産量を一定にするために白液の有効アルカリを上げるには、緑液に添加する生石灰量を増加させる必要がある。そのためには、キルンで焼成する石灰(以下、「キルン焼成石灰」と称する。)の系内への補充量を増加させる必要がある。
When the black liquor is burned in the recovery boiler, the chlorine derived from the chips tends to enter the black liquor and the boiler tends to corrode. Therefore, measures are taken to prevent boiler corrosion by discharging fly ash, which is part of the black liquor combustion product, out of the system and reducing the amount of chlorine. However, when a part of the smelt is discharged out of the system, the sulfur content derived from Na 2 S and the like are discharged out of the system simultaneously with chlorine. Therefore, the sulfidity of the green liquor (NaOH + 1 / 2Na 2 S) decreases, and the effective alkali (NaOH + 1 / 2Na 2 S) of the white liquor after the causticizing step decreases. In order to increase the effective alkali of the white liquor in order to make the pulp production constant, it is necessary to increase the amount of quicklime added to the green liquor. For this purpose, it is necessary to increase the replenishment amount of lime to be fired in the kiln (hereinafter referred to as “kiln fired lime”) into the system.
しかし、このようにボイラーの腐食を防ぐために、脱塩のために黒液の燃焼物の一部のフライアシュを系外に放流し、その結果として、キルン焼成石灰量が多くなると、苛性化工程で得られる苛性化軽質炭酸カルシウムの品質に新たな問題が生じた。 However, in order to prevent boiler corrosion in this way, part of the fly ash of the black liquor combustion product is discharged out of the system for desalination, and as a result, when the amount of calcinated calcined lime increases, the causticizing process A new problem arose in the quality of the causticized light calcium carbonate obtained in
すなわち、苛性化工程で発生した生石灰(キルン焼成石灰)量が多くなると、苛性化工程で得られる苛性化軽質炭酸カルシウムの粉砕性が低下し、通常の粉砕時間では目標の粒子径の粉砕物が得られないという問題が発生した。苛性化軽質炭酸カルシウムの粉砕性が低下すると、苛性化軽質炭酸カルシウム顔料の粒子径が大きくなり、塗工紙の光沢発現性が低下することや、所望の光沢度を得るためにカレンダー線圧を高くすることにより、紙厚が低下し、不透明度が低下する等の紙品質上の問題が発生した。 That is, when the amount of quicklime (kiln calcined lime) generated in the causticizing process increases, the grindability of the causticized light calcium carbonate obtained in the causticizing process decreases, and the pulverized product with the target particle size is obtained in a normal grinding time. There was a problem that it could not be obtained. If the grindability of the causticized light calcium carbonate decreases, the particle size of the causticized light calcium carbonate pigment increases, the glossiness of the coated paper decreases, and the calender linear pressure is reduced to obtain the desired glossiness. Increasing the height causes problems in paper quality such as a decrease in paper thickness and a decrease in opacity.
本発明の目的は、かかる従来技術の欠点を克服し、生成後の白液分離性・洗浄性、および粉砕性が良好な、安価な塗工用顔料としての苛性化工程で製造される炭酸カルシウムを得る方法を提供することにある。 The object of the present invention is to overcome the drawbacks of the prior art, and to produce calcium carbonate produced by a causticizing process as an inexpensive coating pigment that has good white liquor separation / cleaning properties and good grindability after production. It is to provide a method of obtaining.
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、硫酸塩法またはソーダ法によるパルプ製造工程の苛性化工程で炭酸カルシウムを製造する方法において、原料の生石灰として、前記苛性化工程で発生した生石灰と外部から供給した生石灰との混合物、または、外部から供給した生石灰のみを用い、(i)前記外部から供給した生石灰の配合比率を、生石灰の全配合重量の50〜100重量%とし、さらに、(ii)前記外部から供給した生石灰の平均1次粒子径を3μm以下にすることによって、粉砕性が改善された苛性化軽質炭酸カルシウムが得られるという驚くべき効果を発見し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention, in the method for producing calcium carbonate in the causticizing step of the pulp production process by the sulfate method or the soda method, Using the mixture of quicklime generated in the chemical conversion step and quicklime supplied from the outside, or only quicklime supplied from the outside, (i) the blending ratio of quicklime supplied from the outside is 50 to 100 of the total weight of quicklime And (ii) by making the average primary particle diameter of the quick lime supplied from the outside 3 μm or less, a surprising effect that causticized light calcium carbonate with improved grindability can be obtained was discovered. The present invention has been completed.
本発明によれば、硫酸塩法またはソーダ法によるパルプ製造工程の苛性化工程において、白液分離性・洗浄性が高く、粉砕性に優れる塗工用顔料に適した炭酸カルシウムを安価に多量に得ることができるようになる。 According to the present invention, in a causticizing step of a pulp manufacturing process by a sulfate method or a soda method, a large amount of calcium carbonate suitable for a coating pigment having high white liquor separation and washing properties and excellent grindability is produced at low cost. Be able to get.
本発明は、硫酸塩法またはソーダ法によるパルプ製造工程の苛性化工程で炭酸カルシウムを製造する方法において、原料の生石灰として、苛性化工程で発生した生石灰と外部から供給した生石灰との混合物、または、外部から供給した生石灰のみを用いることができる。本発明において、苛性化工程で発生した生石灰とは、苛性化工程で発生した炭酸カルシウムをキルン等の焼成炉で脱炭酸して得られる生石灰である。 The present invention relates to a method for producing calcium carbonate in a causticizing step of a pulp manufacturing step by a sulfate method or a soda method, and as a raw quicklime, a mixture of quicklime generated in the causticizing step and quicklime supplied from the outside, or Only quick lime supplied from the outside can be used. In the present invention, quick lime generated in the causticizing step is quick lime obtained by decarboxylating calcium carbonate generated in the causticizing step in a kiln or the like.
本発明においては、苛性化工程の生石灰の少なくとも一部として、外部供給の生石灰を使用する。苛性化工程のカルシウム(生石灰、消石灰、炭酸カルシウム)は循環系を構成しているため、系外から生石灰を供給することによって、系内の清浄および循環石灰の高純度化が達成され、苛性化工程の反応性向上や白液の清澄性の向上、さらには廃棄物の低減が期待できる。 In the present invention, externally supplied quicklime is used as at least a part of the quicklime in the causticizing step. Calcium in the causticizing process (quick lime, slaked lime, calcium carbonate) constitutes a circulation system. By supplying quick lime from outside the system, cleanliness in the system and high purity of the circulation lime are achieved, and causticization is achieved. It can be expected to improve the process reactivity, improve the clarity of white liquor, and reduce waste.
[炭酸カルシウムの焼成]
本発明で使用する苛性化工程で発生した炭酸カルシウム由来の生石灰(キルン焼成石灰ともいう)は、硫酸塩法またはソーダ法によるパルプ製造工程の苛性化工程において、炭酸ナトリウムを水酸化ナトリウムに転化する際に生成する炭酸カルシウムを焼成したものであればよい。なお、その際の焼成装置に関しては、ベッケンバッハ炉、メルツ炉、ロータリーキルン、国井式炉、KHD(カーハーディー)炉、コマ式炉、カルマチック炉、流動焼成炉、混合焼き立炉等、炭酸カルシウムを生石灰(酸化カルシウム)に転化する装置であれば特に制限されない。
[Calcination of calcium carbonate]
The calcium carbonate-derived quicklime (also referred to as kiln calcined lime) generated in the causticizing process used in the present invention converts sodium carbonate into sodium hydroxide in the causticizing process of the pulp manufacturing process by the sulfate method or the soda method. What is necessary is just to calcinate the calcium carbonate produced | generated in the case. Regarding the baking equipment at that time, Beckenbach furnace, Melz furnace, rotary kiln, Kunii type furnace, KHD (Kerhardy) furnace, Koma type furnace, Kalmatic furnace, fluidized baking furnace, mixed baking furnace, etc., calcium carbonate If it is an apparatus which converts lime into quicklime (calcium oxide), it will not be restricted in particular.
[外部供給の生石灰と配合比率]
本発明で使用する外部から供給する生石灰(購入生石灰ともいう)は、種々検討した結果、平均1次粒子径が3μm以下のものが好ましく、全生石灰(苛性化工程内で発生した生石灰+外部供給生石灰)中の外部供給生石灰の比率が50〜100重量%であることが好ましい。本発明においては、外部供給生石灰の平均1次粒子径は、より好ましくは2.0μm以下であり、さらに好ましくは1.5μm以下である。また、外部供給生石灰の配合量は、より好ましくは50〜85重量%、さらに好ましくは55〜80重量%である。生石灰の平均1次粒子径は、電子顕微鏡で観察した20個の生石灰の1次粒子径の平均をとることにより測定することができる。
[Externally supplied quicklime and mixing ratio]
As a result of various investigations, quick lime supplied from the outside used in the present invention (also referred to as purchased quick lime) preferably has an average primary particle size of 3 μm or less. Whole quick lime (quick lime generated in the causticizing process + external supply) The ratio of the externally supplied quicklime in (quicklime) is preferably 50 to 100% by weight. In the present invention, the average primary particle size of the externally supplied quicklime is more preferably 2.0 μm or less, and even more preferably 1.5 μm or less. The blending amount of externally supplied quicklime is more preferably 50 to 85% by weight, and further preferably 55 to 80% by weight. The average primary particle diameter of quicklime can be measured by taking the average of the primary particle diameters of 20 quicklimes observed with an electron microscope.
また、生石灰は、高温で焼成すると焼結が起こり、結晶が溶融して1次粒子径が大きくなる傾向があるので(C. Hanson and H. Theliander, ”Properties and quality of lime, Part1. The influence of conditions during reburning”, Nordic Pulp and Paper Research Journal no.3 p.161-166 (1994))、外部供給生石灰としては、焼成温度が900〜1000℃の生石灰が好ましい。 In addition, quick lime sinters when fired at high temperatures, and the crystals tend to melt and the primary particle size increases (C. Hanson and H. Theliander, “Properties and quality of lime, Part 1. The influence. of conditions during reburning ”, Nordic Pulp and Paper Research Journal no. 3 p.161-166 (1994)), as the externally supplied quicklime, quicklime having a firing temperature of 900 to 1000 ° C. is preferable.
ここで言う1次粒子とは、例えば、前記C.Hansonの文献における図2のgrainのことを表現し、これら1次粒子の集合体がparticleであり、ここでは2次粒子と表現する。2次粒子の大きさは通常は10〜30μmである。 The term “primary particles” as used herein refers to, for example, the grains shown in FIG. 2 in the above-mentioned C. Hanson document, and an aggregate of these primary particles is a particle, which is expressed here as a secondary particle. The size of the secondary particles is usually 10 to 30 μm.
[生石灰の粒度]
生石灰の粒度に関しては特に制限はないが、平均粒度0.01mm〜10cm、好ましくは0.01mm〜10mmのものが消和時の攪拌において均一混合という面で好適である。粒度が0.01mm以下の場合は粉砕のためのコストがかかると同時に、粉塵の発生や移送装置でのトラブルの原因となり好ましくない。
[Quicklime particle size]
Although there is no restriction | limiting in particular regarding the particle size of quicklime, The thing with an average particle diameter of 0.01 mm-10 cm, Preferably 0.01 mm-10 mm is suitable in terms of uniform mixing in the stirring at the time of decontamination. When the particle size is 0.01 mm or less, the cost for pulverization is high, and at the same time, generation of dust and troubles in the transfer device are undesirable.
[緑液]
本発明において用いる緑液としては、トータルアルカリ濃度で80〜160g/L(Na2O換算:以下同様)、好ましくは100〜150g/Lで行うことができる。80g/Lより低い場合は最終白液の濃度が下がる為、蒸解に使用する際に濃度調節を行う必要が出てくる。一方、160g/Lより高い場合は、苛性化する前の緑液中で炭酸ナトリウム等の結晶が生成し易くなって工程でトラブル発生の原因となる等の理由により、好ましくない。
[Green liquid]
The green liquor used in the present invention can be carried out at a total alkali concentration of 80 to 160 g / L (converted to Na 2 O: the same applies hereinafter), preferably 100 to 150 g / L. When it is lower than 80 g / L, the concentration of the final white liquor is lowered, so that it is necessary to adjust the concentration when used for cooking. On the other hand, when it is higher than 160 g / L, it is not preferable because crystals such as sodium carbonate are easily generated in the green liquor before causticizing, causing trouble in the process.
[生石灰への緑液添加速度]
本発明において、生石灰と緑液の混合方法は特に制限はない。好ましい態様において、生石灰1gに対する緑液の添加速度を、0.02〜50cc(緑液)/min/g(生石灰)、好ましくは0.02〜30cc(緑液)/min/g(生石灰)で行うことができる。0.02cc(緑液)/min/g(生石灰)より小さい添加速度では、生産性が劣り現実的でなく、また一方50cc(緑液)/min/g(生石灰)より大きい添加速度は、非常に容量の大きいポンプが必要となり現実的でない。
[Speed of adding green liquor to quicklime]
In the present invention, the mixing method of quicklime and green liquor is not particularly limited. In a preferred embodiment, the addition rate of green liquor to 1 g of quicklime is 0.02 to 50 cc (green liquor) / min / g (quick lime), preferably 0.02 to 30 cc (green liquor) / min / g (quick lime). It can be carried out. At an addition rate of less than 0.02 cc (green liquor) / min / g (quick lime), the productivity is inferior and impractical, while an addition rate greater than 50 cc (green liquor) / min / g (quick lime) is very In addition, a large capacity pump is required, which is not practical.
[混合機]
消和時における生石灰と緑液との混合には、一般的な攪拌羽根式、ポンプ式、押し出し機類、捏和機類、混練機類の中から、混合時の液あるいはスラリーの粘度にあわせて適宜選定して使用すれば良い。必要に応じて、「化学工学便覧」(丸善株式会社発行、昭和63年3月18日)などの文献を参照することができる。
[Mixer]
For mixing quicklime and green liquor at the time of soaking, select from the general stirring blade type, pump type, extruders, kneaders, and kneaders according to the viscosity of the liquid or slurry at the time of mixing. Can be selected and used as appropriate. References such as “Chemical Engineering Handbook” (published by Maruzen Co., Ltd., March 18, 1988) can be referred to as necessary.
[反応温度]
消和および苛性化時の反応温度については、反応温度が30〜105℃で行うことが好ましい。105℃より高くする場合には、消和装置や苛性化槽で沸騰点を超えるため、加圧型の消和装置や苛性化装置等を必要とするため不経済である。一方30℃より低い場合には反応速度が極端に遅くなる為、容積の大きな苛性化槽を必要とする。さらに、反応前の緑液の冷却工程に大型の冷却装置が必要になり、又白液を高温の蒸解に使用するには白液の加熱が必要で、経費がかさみ不経済である。
[Reaction temperature]
Regarding the reaction temperature during soaking and causticization, the reaction temperature is preferably 30 to 105 ° C. When the temperature is higher than 105 ° C., the boiling point is exceeded in the simmering device or the causticizing tank, so that a pressure-type sunk device or a causticizing device is required, which is uneconomical. On the other hand, when the temperature is lower than 30 ° C., the reaction rate becomes extremely slow, so that a causticizing tank having a large volume is required. Furthermore, a large cooling device is required for the green liquor cooling step before the reaction, and heating of the white liquor is necessary to use the white liquor for high-temperature cooking, which is expensive and uneconomical.
[白液分離装置]
白液と炭酸カルシウムの分離、及び炭酸カルシウムに同伴する白液成分の洗浄除去方法は、通常の固液分離装置、例えばクラリファイヤーによる重力沈降分離方式、オリバーフィルターに代表される減圧濾過分離方式、及びリーフ濾過機に代表される加圧濾過分離方式、遠心力を利用した遠心濾過方式等、要件が達成できれば何れの分離装置も利用できる。
[White liquor separator]
Separation of white liquor and calcium carbonate, and washing and removal method of white liquor components accompanying calcium carbonate, ordinary solid-liquid separation device, for example, gravity sedimentation separation method by clarifier, vacuum filtration separation method represented by Oliver filter, Any separation device can be used as long as the requirements can be achieved, such as a pressure filtration separation system represented by a leaf filter and a centrifugal filtration system using centrifugal force.
[粉砕機]
一方、分離回収した炭酸カルシウムの粒径は、一般に粒子径の大きな不定形カルサイト結晶であるため、そのままでは塗工用顔料として使用するには充分な品質が得られない場合が多い。したがって、目的とする品質要求に応じて平均粒子径を0.2〜10μmに調整する事が望ましい。粒径の調整はサンドミルに代表される媒体攪拌型粉砕機、ボールミル粉砕機等の粉砕機が利用できる。
[Crusher]
On the other hand, since the separated and recovered calcium carbonate is generally an amorphous calcite crystal having a large particle diameter, it is often impossible to obtain sufficient quality for use as a coating pigment as it is. Therefore, it is desirable to adjust the average particle size to 0.2 to 10 μm according to the desired quality requirement. The particle size can be adjusted by using a pulverizer such as a medium stirring pulverizer represented by a sand mill or a ball mill pulverizer.
[BET比表面積]
本発明によって得られる炭酸カルシウムは、塗工用顔料としての優れた品質ばかりでなく、主生産物である白液が工業的規模で生産が可能になる為、軽質炭酸カルシウムを安価に提供できる。また、本発明の好ましい態様において、BET比表面積が1.4〜3.0m2/g、さらには1.4〜2.0m2/gである炭酸カルシウムを得ることができる。
[BET specific surface area]
The calcium carbonate obtained by the present invention can provide light calcium carbonate at low cost because the white liquor as the main product can be produced on an industrial scale as well as excellent quality as a coating pigment. In a preferred embodiment of the present invention, calcium carbonate having a BET specific surface area of 1.4 to 3.0 m 2 / g, more preferably 1.4 to 2.0 m 2 / g can be obtained.
[メカニズム]
本発明によって、高品質な炭酸カルシウムが得られるメカニズムの詳細は明らかでなく、本発明は以下に拘束されるものではないが、本発明のメカニズムは以下のように推測される。
[mechanism]
The details of the mechanism by which high-quality calcium carbonate is obtained by the present invention are not clear, and the present invention is not limited to the following, but the mechanism of the present invention is presumed as follows.
一般に、苛性化工程内で発生した生石灰は、NaやClやS分等の不純物が比較的多く含まれる。そして、生石灰にNaClやCaSO4等の不純物が多い場合には、生石灰の平均1次粒子が大きくなることが報告されている(D. R. Glasson, “Reactivity of lime and related oxides, XVI. Sintering of lime”, J. appl. Chem. Vol.17 April (1967))。苛性化反応は前述の様に、消和反応と苛性化反応がほぼ同時に起こるので、生石灰の形状が苛性化軽質炭酸カルシウムの形状に反映され、平均1次粒子径の小さな外部供給生石灰からは、平均1次粒子径の小さな苛性化軽質炭酸カルシウムが製造され、苛性化工程内で発生した生石灰からは、平均1次粒子径の大きな苛性化軽質炭酸カルシウムが製造されるものと推測される。 Generally, quicklime generated in the causticizing process contains a relatively large amount of impurities such as Na, Cl, and S. When impurities 4 such as NaCl and CaSO much to be quick lime, it has been reported that an average primary particle of quicklime increases (DR Glasson, "Reactivity of lime and related oxides, XVI. Sintering of lime" , J. appl. Chem. Vol. 17 April (1967)). As described above, since the causticization reaction and the causticization reaction occur almost simultaneously, the shape of the quick lime is reflected in the shape of the causticized light calcium carbonate, and from the externally supplied quick lime having a small average primary particle size, It is presumed that causticized light calcium carbonate having a small average primary particle diameter is produced, and causticized light calcium carbonate having a large average primary particle diameter is produced from quick lime generated in the causticizing process.
したがって、平均1次粒子径が3μm以下の外部生石灰の比率が50〜100%になると、緑液との反応で得られる苛性化軽質炭酸カルシウムの平均1次粒子径が小さくなり、その後の粉砕工程で粉砕され易くなると思われる。 Therefore, when the ratio of the external quicklime having an average primary particle size of 3 μm or less is 50 to 100%, the average primary particle size of the causticized light calcium carbonate obtained by the reaction with the green liquor is reduced, and the subsequent grinding step It seems to be easy to be crushed.
以下に本発明を実施例および比較例をあげてより詳細に説明するが、当然ながら、本発明は実施例のみに限定されるものではない。
<原料生石灰>
表1に、本発明の実施例・比較例で使用した生石灰の性状を示す。生石灰Aは、日本製紙株式会社の工場における苛性化工程で製造されたキルン焼成石灰である。外部供給生石灰として用いる生石灰は、宇部マテリアルズから市販の生石灰をそれぞれ100メッシュの篩でスクリーン処理したものである。
The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the examples.
<Raw raw lime>
Table 1 shows the properties of quicklime used in the examples and comparative examples of the present invention. Quicklime A is kiln calcined lime produced in a causticizing process in a factory of Nippon Paper Industries Co., Ltd. The quick lime used as the externally supplied quick lime is obtained by subjecting quick lime commercially available from Ube Materials to screen processing with a 100 mesh sieve.
原料生石灰の平均1次粒子径は、電子顕微鏡(JSM−840A、日本電子)で生石灰の1次粒子20個の粒子径を観察し、その平均値とした。平均1次粒子径は、生石灰A(キルン焼成石灰)が7.0μm、生石灰B(外部供給生石灰)が1.1μm、生石灰C(外部供給生石灰)が3.2μmであった(二次粒子径はいずれも約20μm)。 The average primary particle size of the raw quicklime was determined by observing the particle size of 20 primary particles of quicklime with an electron microscope (JSM-840A, JEOL). The average primary particle size was 7.0 μm for quicklime A (kiln calcined lime), 1.1 μm for quicklime B (externally supplied quicklime), and 3.2 μm for quicklime C (externally supplied quicklime) (secondary particle size). Are about 20 μm).
<苛性化炭酸カルシウムの平均粒子径と比表面積の測定>
平均粒子径の測定:マイクロトラックMT3300(日機装株式会社)を用いて、重量累積分布の50%点における粒子径を平均粒子径として算出した。
<Measurement of average particle size and specific surface area of causticized calcium carbonate>
Measurement of average particle diameter: Using Microtrac MT3300 (Nikkiso Co., Ltd.), the particle diameter at the 50% point of the weight cumulative distribution was calculated as the average particle diameter.
比表面積:BET窒素吸着法(マイクロメリティックス・ジェミニ2360;島津)で測定した。苛性化軽カルスラッジの1次粒子径が小さい場合には、比表面積が大きくなるので、一般に、比表面積は1次粒子径の一つの指標になる。 Specific surface area: Measured by the BET nitrogen adsorption method (Micromeritics Gemini 2360; Shimadzu). When the primary particle diameter of the causticized light cal sludge is small, the specific surface area becomes large, and thus the specific surface area is generally an index of the primary particle diameter.
<ろ過性の評価>
下記の装置・方法にてケーキ比抵抗を求めた。この値は『1m2の濾過面積に1kgのケーキが生成した時、粘度1kg/m/secの液体を1m/secで濾過するのに必要な圧力差』で、値が大きい程ろ過性が悪く、分離性・洗浄性が悪い。
<Evaluation of filterability>
The cake specific resistance was calculated | required with the following apparatus and method. This value is “the pressure difference required to filter a 1 kg / m / sec viscosity liquid at 1 m / sec when a 1 kg cake is formed on a 1 m 2 filtration area”. , Separability and cleanability are poor.
・装置 :定圧式スラリー評価装置(IKABUST JT-F;中央化工機)
・試料 :約20mLスラリー(濃度10%)
・減圧度 :0.4MPa
・ろ過面積:9.62cm2
[実施例1]
日本製紙株式会社の工場の実機スレーカーで、緑液(組成:Na2CO3=108g/L、Na2S=21g/L、NaOH=6g/L。いずれもNa2O換算値であり、以下の実施例・比較例について同じ)とキルン焼成石灰である生石灰Aは137t/日、外部供給生石灰である生石灰Bは230t/日を混合し、この生石灰を緑液1Lに対して生石灰が70gになる比率にて、温度90℃で約3時間の滞留時間で反応させて苛性化軽質炭酸カルシウムを得た。外部供給生石灰の比率は63%であった。
・ Equipment: Constant pressure slurry evaluation equipment (IKABUST JT-F; Chuo Kako)
Sample: About 20 mL slurry (concentration 10%)
・ Decompression degree: 0.4 MPa
-Filtration area: 9.62 cm 2
[Example 1]
In an actual machine slaker of Nippon Paper Industries Co., Ltd., green liquor (composition: Na 2 CO 3 = 108 g / L, Na 2 S = 21 g / L, NaOH = 6 g / L. All are Na 2 O equivalent values, The same applies to the examples and comparative examples) and quick calcined lime A that is calcined lime is 137 t / day, quick calcined B that is externally supplied quick lime is 230 t / day, and this quick lime is mixed with 70 g of quick lime with respect to 1 L of green liquor. The reaction was carried out at a temperature of 90 ° C. for a residence time of about 3 hours to obtain causticized light calcium carbonate. The ratio of externally supplied quicklime was 63%.
この苛性化軽質炭酸カルシウムをマッドフィルターにて約75%に濃縮し、ポリアクリル酸系分散剤(日本製紙ケミカル社製)1.0重量部と水を一括添加し、濃度73重量%に調製した。この苛性化軽カルスラッジを粗粉砕機にて約20μmから約6μmに粉砕しスラリー化した後に、サンドグラインダー(RL250V−SP)にて330L/時の処理速度で粉砕した。 This causticized light calcium carbonate was concentrated to about 75% with a mud filter, and 1.0 part by weight of a polyacrylic acid dispersant (manufactured by Nippon Paper Chemicals Co., Ltd.) and water were added together to prepare a concentration of 73% by weight. . The causticized light cal sludge was pulverized from about 20 μm to about 6 μm with a coarse pulverizer to form a slurry, and then pulverized with a sand grinder (RL250V-SP) at a processing rate of 330 L / hour.
[実施例2]
使用する生石灰を136t/日の生石灰Aと249t/日の生石灰Bの混合物としたこと以外は、実施例1と同様に行った。購入生石灰の比率は65%であった。
[Example 2]
The same procedure as in Example 1 was performed except that the quicklime used was a mixture of quicklime A of 136 t / day and quicklime B of 249 t / day. The proportion of purchased quicklime was 65%.
[実施例3]
使用する生石灰を155t/日の生石灰Aと226t/日の生石灰Bの混合物としたこと以外は、実施例1と同様に行った。購入生石灰の比率は59%であった。
[Example 3]
The same procedure as in Example 1 was conducted except that the quicklime used was a mixture of quicklime A of 155 t / day and quicklime B of 226 t / day. The ratio of purchased quicklime was 59%.
[実施例4]
使用する生石灰を66t/日の生石灰Aと228t/日の生石灰Bの混合物としたこと以外は、実施例1と同様に行った。購入生石灰の比率は78%であった。
[Example 4]
The same procedure as in Example 1 was performed except that the quicklime used was a mixture of quicklime A of 66 t / day and quicklime B of 228 t / day. The ratio of purchased quicklime was 78%.
[比較例1]
使用する生石灰を188t/日の生石灰Aと175t/日の生石灰Bの混合物としたこと以外は、実施例1と同様に行った。購入生石灰の比率は48%であった。
[Comparative Example 1]
The same procedure as in Example 1 was repeated except that the quicklime used was a mixture of quicklime A at 188 t / day and quicklime B at 175 t / day. The proportion of purchased quicklime was 48%.
[比較例2]
使用する生石灰を179t/日の生石灰Aと163t/日の生石灰Bの混合物としたこと以外は、実施例1と同様に行った。購入生石灰の比率は48%であった。
[Comparative Example 2]
The same procedure as in Example 1 was performed except that the quicklime used was a mixture of quicklime A of 179 t / day and quicklime B of 163 t / day. The proportion of purchased quicklime was 48%.
[比較例3]
使用する生石灰を181t/日の生石灰Aと177t/日の生石灰Bの混合物としたこと以外は、実施例1と同様に行った。購入生石灰の比率は49%であった。
[Comparative Example 3]
The same procedure as in Example 1 was conducted except that the quicklime used was a mixture of quicklime A of 181 t / day and quicklime B of 177 t / day. The proportion of purchased quicklime was 49%.
[比較例4]
使用する生石灰を136t/日の生石灰Aと225t/日の生石灰Cの混合物としたこと以外は、実施例1と同様に行った。購入生石灰の比率は62%であった。
[Comparative Example 4]
The same procedure as in Example 1 was conducted except that the quicklime used was a mixture of quicklime A of 136 t / day and quicklime C of 225 t / day. The ratio of purchased quicklime was 62%.
表1に示されるように、平均1次粒子系が1.1μmの生石灰B(外部供給生石灰)を使用し、外部供給生石灰の比率が50〜100%の場合は、粉砕前の苛性化軽質炭酸カルシウムの比表面積が1.5m2/g以上になり、高品質な炭酸カルシウムが得られた。また、同一処理量で比較した場合に、生石灰Bを50%以上配合した生石灰から得られた炭酸カルシウムからは、粉砕処理により、1.1μm以下の比較的微粒な苛性化軽質炭酸カルシウム顔料が得られた。 As shown in Table 1, when the average primary particle system is 1.1 μm quicklime B (externally supplied quicklime) and the ratio of externally supplied quicklime is 50 to 100%, causticized light carbonic acid before pulverization The specific surface area of calcium became 1.5 m 2 / g or more, and high-quality calcium carbonate was obtained. In addition, when compared with the same treatment amount, calcium carbonate obtained from quick lime containing 50% or more of quick lime B gives a relatively fine causticized light calcium carbonate pigment of 1.1 μm or less by pulverization. It was.
一方、生石灰B(外部供給生石灰)の比率が50%以下の場合は、粉砕前の苛性化軽質炭酸カルシウム比表面積が1.4m2/gよりも小さくなった。また、同一処理量で比較した場合には、得られた炭酸カルシウムを粉砕しても、1.2μm以上の苛性化軽質炭酸カルシウム顔料となってしまい、粉砕性が劣っていた。 On the other hand, when the ratio of quicklime B (externally supplied quicklime) was 50% or less, the specific surface area of causticized light calcium carbonate before pulverization was smaller than 1.4 m 2 / g. Moreover, when compared with the same processing amount, even if the obtained calcium carbonate was pulverized, it became a causticized light calcium carbonate pigment of 1.2 μm or more, and the pulverizability was poor.
また、平均1次粒子径が3.2μmの生石灰C(外部供給生石灰)を使用すると生石灰Cの比率が50%以上であっても、得られた炭酸カルシウムを粉砕処理しても、同一処理量で比較した場合に、1.2μm以上の苛性化軽質炭酸カルシウム顔料となってしまい、粉砕性が劣っていた。 In addition, when quick lime C (externally supplied quick lime) having an average primary particle size of 3.2 μm is used, even if the obtained calcium carbonate is pulverized even if the ratio of quick lime C is 50% or more, the same processing amount is obtained. , The causticized light calcium carbonate pigment of 1.2 μm or more was obtained, and the grindability was poor.
また、ケーキ比抵抗について、実施例1〜4は比較例1〜4より抵抗値が小さく、白液分離性および洗浄性が良い結果となった。 Moreover, about cake specific resistance, Example 1-4 was smaller than Comparative Examples 1-4, and became a result with white liquor separability and good washability.
Claims (3)
原料の生石灰が、前記苛性化工程で発生した生石灰と外部から供給した生石灰との混合物、または、外部から供給した生石灰のみであり、
(i)前記外部から供給した生石灰の配合比率が、生石灰の全配合重量の50〜100重量%であり、
(ii)前記外部から供給した生石灰の平均1次粒子径が3μm以下である、
上記炭酸カルシウムの製造方法。 A method of producing calcium carbonate in a causticizing step of a pulp manufacturing process by a sulfate method or a soda method,
The raw lime is a mixture of quick lime generated in the causticizing step and quick lime supplied from the outside, or only quick lime supplied from the outside,
(I) The blending ratio of quicklime supplied from the outside is 50 to 100% by weight of the total blended weight of quicklime,
(Ii) The average primary particle diameter of quick lime supplied from the outside is 3 μm or less.
The manufacturing method of the said calcium carbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008049378A JP5314295B2 (en) | 2008-02-29 | 2008-02-29 | Method for producing calcium carbonate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008049378A JP5314295B2 (en) | 2008-02-29 | 2008-02-29 | Method for producing calcium carbonate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009203137A true JP2009203137A (en) | 2009-09-10 |
JP5314295B2 JP5314295B2 (en) | 2013-10-16 |
Family
ID=41145764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008049378A Active JP5314295B2 (en) | 2008-02-29 | 2008-02-29 | Method for producing calcium carbonate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5314295B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012091970A (en) * | 2010-10-28 | 2012-05-17 | Mitsubishi Paper Mills Ltd | Method for manufacturing calcium carbonate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10226517A (en) * | 1996-12-09 | 1998-08-25 | Nippon Paper Ind Co Ltd | Production of calcium carbonate |
JPH10226974A (en) * | 1996-12-09 | 1998-08-25 | Nippon Paper Ind Co Ltd | Production of calcium carbonate |
JP2002293536A (en) * | 2001-03-29 | 2002-10-09 | Nippon Paper Industries Co Ltd | Method for manufacturing calcium carbonate |
JP2003292320A (en) * | 2002-03-29 | 2003-10-15 | Nippon Paper Industries Co Ltd | Method for manufacturing calcium carbonate |
JP2008247637A (en) * | 2007-03-29 | 2008-10-16 | Nippon Paper Industries Co Ltd | Method for manufacturing calcium carbonate |
-
2008
- 2008-02-29 JP JP2008049378A patent/JP5314295B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10226517A (en) * | 1996-12-09 | 1998-08-25 | Nippon Paper Ind Co Ltd | Production of calcium carbonate |
JPH10226974A (en) * | 1996-12-09 | 1998-08-25 | Nippon Paper Ind Co Ltd | Production of calcium carbonate |
JP2002293536A (en) * | 2001-03-29 | 2002-10-09 | Nippon Paper Industries Co Ltd | Method for manufacturing calcium carbonate |
JP2003292320A (en) * | 2002-03-29 | 2003-10-15 | Nippon Paper Industries Co Ltd | Method for manufacturing calcium carbonate |
JP2008247637A (en) * | 2007-03-29 | 2008-10-16 | Nippon Paper Industries Co Ltd | Method for manufacturing calcium carbonate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012091970A (en) * | 2010-10-28 | 2012-05-17 | Mitsubishi Paper Mills Ltd | Method for manufacturing calcium carbonate |
Also Published As
Publication number | Publication date |
---|---|
JP5314295B2 (en) | 2013-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101759765B1 (en) | Production of high purity precipitated calcium carbonate | |
US8658119B2 (en) | Production and/or recovery of products from waste sludge | |
EP2609036A1 (en) | Lime causticization product brightness improvement via pre-slaking | |
US20230271845A1 (en) | Method for producing calcium carbonate and calcium carbonate | |
KR20170004915A (en) | The manufacturing method of magnesium carbonate and calcium chloride using dolomite for raw material | |
KR101933659B1 (en) | The manufacturing method of magnesium carbonate and calcium chloride using dolomite as raw material | |
JPH1111941A (en) | Production of light calcium carbonate | |
JP5314295B2 (en) | Method for producing calcium carbonate | |
JP2011225390A (en) | Method for producing spindle-like light calcium carbonate | |
JP5274049B2 (en) | Light calcium carbonate grinding method | |
JP2004026639A (en) | Method for manufacturing calcium carbonate | |
JP3874449B2 (en) | Method for producing light calcium carbonate | |
JP5117749B2 (en) | Method for producing calcium carbonate | |
JP2012031041A (en) | Method for producing light calcium carbonate | |
JP2011073892A (en) | Method for producing calcium carbonate | |
JP4084751B2 (en) | Method for producing precipitated calcium carbonate from industrial by-products containing high concentrations of calcium carbonate | |
JP4194288B2 (en) | Method for producing calcium carbonate | |
JP2023069225A (en) | Manufacturing method of calcium carbonate | |
JP4661308B2 (en) | Operation method of causticizing process | |
JP5009024B2 (en) | Light calcium carbonate grinding method | |
JP2008115052A (en) | Method of producing calcium carbonate | |
JP2010132522A (en) | Method of manufacturing calcium carbonate | |
JP2011046554A (en) | Method for manufacturing acicular light calcium carbonate | |
JP4813075B2 (en) | Method for producing aragonite acicular calcium carbonate | |
JP2009001438A (en) | Method for producing calcium carbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100728 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130705 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5314295 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |