JP2009202320A - Method and device for manufacturing minute tool - Google Patents

Method and device for manufacturing minute tool Download PDF

Info

Publication number
JP2009202320A
JP2009202320A JP2008049661A JP2008049661A JP2009202320A JP 2009202320 A JP2009202320 A JP 2009202320A JP 2008049661 A JP2008049661 A JP 2008049661A JP 2008049661 A JP2008049661 A JP 2008049661A JP 2009202320 A JP2009202320 A JP 2009202320A
Authority
JP
Japan
Prior art keywords
tool
rod
fine
shaped tool
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008049661A
Other languages
Japanese (ja)
Inventor
Naotake Mori
利 尚 武 毛
Takahisa Masuzawa
沢 隆 久 増
Takayuki Tani
貴 幸 谷
Hiromitsu Goto
藤 啓 光 後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008049661A priority Critical patent/JP2009202320A/en
Publication of JP2009202320A publication Critical patent/JP2009202320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide method and device for manufacturing a minute tool capable of easily manufacturing the minute tool. <P>SOLUTION: In this method for manufacturing the minute tool 100, a composite structure tool 3 is formed by making an outer peripheral part of a rod-shaped tool body 1 from a material different from that of the rod-shaped tool body 1 and being coated with a clad material 2 having a material which is easier to be removed and formed from the rod-shaped tool body 1, a part of the clad material 2 of the composite structure tool 3 is removed, the rod-shaped tool body 1 is exposed by a required length, and thereby the minute tool 100 is manufactured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、微細工具の製造方法及び微細工具の製造装置に係り、特に、容易に微細工具を製造することができる微細工具の製造方法及び微細工具の製造装置に関する。     The present invention relates to a fine tool manufacturing method and a fine tool manufacturing apparatus, and more particularly to a fine tool manufacturing method and a fine tool manufacturing apparatus capable of easily manufacturing a fine tool.

従来、例えば、微細加工に放電加工を適用する場合、微細軸を中空のパイプに埋め込んで把持する方法も用いられているが、パイプの選定および芯出しに多大の負担が掛かるという問題点があった。
あるいは他の方法として、把持可能な直径の丸棒をチャックに把持してから、必要とする微小直径の微細軸をあらかじめ機上で成形する。
従来の微細軸の成形法として提案されている手法としては、逆放電法,WEDG法などがある。
最近では、加工穴を利用した放電微細軸形成法(例えば、特許文献1参照)や走査マイクロ放電加工による微細軸成形(例えば、特許文献2参照)などが提案されている。
これらの微細軸成形法では、本来のマイクロ加工に適した工具消耗の小さな材料からなる丸棒を用いているために、微細軸成形工程で多大の時間が掛かる。単発放電による微細軸瞬時成形法もあるが、中心軸および必要とする軸直径の確保が難しいという問題点があった。
また、加工穴を利用した高速放電微細軸形成法として、亜鉛合金電極による微細加工(例えば、特許文献3参照)があるが、成形される工具部がもとの亜鉛合金であるため、微細加工の際の消耗が激しく通常の加工としては適さない。
特開2004−142087号公報 特願2005−331656 特開2003−136337号公報、特開2004−314260号公報
Conventionally, for example, when electric discharge machining is applied to micromachining, a method of embedding and gripping a fine shaft in a hollow pipe has been used, but there is a problem that a great burden is imposed on selection and centering of the pipe. It was.
Alternatively, as another method, a round bar having a grippable diameter is gripped by a chuck, and then a micro shaft having a required micro diameter is formed in advance on the machine.
Conventionally proposed methods for forming a fine shaft include a reverse discharge method and a WEDG method.
Recently, a discharge micro-axis forming method using a machining hole (for example, see Patent Document 1), micro-axis forming by scanning micro-discharge machining (for example, see Patent Document 2), and the like have been proposed.
In these micro-shaft forming methods, since a round bar made of a material with small tool consumption suitable for original micromachining is used, it takes a lot of time in the micro-shaft forming process. Although there is a method for instantly forming a fine axis by single discharge, there is a problem that it is difficult to secure a central axis and a required axis diameter.
Further, as a method of forming a high-speed discharge fine axis using a machined hole, there is a fine machining with a zinc alloy electrode (see, for example, Patent Document 3). However, since the tool part to be formed is the original zinc alloy, the fine machining is performed. It is not suitable for normal processing because of excessive wear.
JP 2004-142087 A Japanese Patent Application No. 2005-331656 JP 2003-136337 A, JP 2004-314260 A

本発明は、上記の問題点を除去するようにした微細工具の製造方法及び微細工具の製造装置を提供することを目的とする。     It is an object of the present invention to provide a method for manufacturing a fine tool and a device for manufacturing a fine tool that eliminate the above-mentioned problems.

本発明の微細工具の製造方法は、放電加工、電解加工、切削加工、研削加工などの棒状工具本体の外周部を前記棒状工具本体とは別の材料からなると共に、前記棒状工具本体より除去成形が容易な材料のクラッド材によって被覆して複合構造工具を形成し、この複合構造工具の前記クラッド材の一部を除去して前記棒状工具本体を必要長さに露出させて微細工具を製造するものである。     The method for manufacturing a fine tool according to the present invention includes an outer peripheral portion of a rod-shaped tool body such as electric discharge machining, electrolytic machining, cutting, grinding, etc. made of a material different from the rod-shaped tool body, and removed from the rod-shaped tool body. A composite tool is formed by coating with a clad material that is easy to fabricate, and a part of the clad material of the composite structure tool is removed to expose the rod-shaped tool body to a required length to produce a fine tool. Is.

また、請求項2記載の微細工具の製造方法は、平行に整列した複数の棒状工具本体の外周部を前記複数の棒状工具本体とは別の材料からなると共に、前記棒状工具本体より除去成形が容易なクラッド材によって被覆して複合構造工具を形成し、この複合構造工具の前記クラッド材の一部を除去して前記複数の棒状工具本体を必要長さに露出させて微細工具を製造するものである。 In the method for manufacturing a fine tool according to claim 2, the outer peripheral portions of the plurality of bar-shaped tool bodies arranged in parallel are made of a material different from that of the plurality of bar-shaped tool bodies, and are removed from the bar-shaped tool bodies. A composite structure tool is formed by covering with an easy clad material, and a part of the clad material of the composite structure tool is removed to expose the plurality of rod-shaped tool bodies to a necessary length to produce a fine tool. It is.

また、請求項3記載の微細工具の製造方法は、請求項1又は2記載の微細工具の製造方法において、クラッド材は、棒状工具本体の材料よりも融点あるいは昇華点の低い低融点の金属、金属粉末、プラスチック樹脂、透明プラスチック、光硬化樹脂、あるいは低昇華温度材料である。 The method for producing a fine tool according to claim 3 is the method for producing a fine tool according to claim 1 or 2, wherein the clad material is a low melting point metal having a lower melting point or sublimation point than the material of the rod-shaped tool body, Metal powder, plastic resin, transparent plastic, light curable resin, or low sublimation temperature material.

また、請求項4記載の微細工具の製造方法は、請求項1又は2記載の微細工具の製造方法において、棒状工具本体の材料は、クラッド材の融点より高いタングステン、モリブデン、銅、黄銅、銅タングステン、銀タングステン、タングステンカーバイドなどの高融点高熱伝導率材料を用い、放電加工用電極として機能せしめるものである。 The method for manufacturing a fine tool according to claim 4 is the method for manufacturing a fine tool according to claim 1 or 2, wherein the material of the rod-shaped tool body is tungsten, molybdenum, copper, brass, copper higher than the melting point of the clad material. A high melting point high thermal conductivity material such as tungsten, silver tungsten or tungsten carbide is used to function as an electrode for electric discharge machining.

また、請求項5記載の微細工具の製造方法は、請求項1又は2記載の微細工具の製造方法において、棒状工具本体の材料は、イリジウム、白金イリジウムなどの抗酸化材料、シリコン、ニッケル合金などの表面改質用材料、高硬度材料からなる微細切削工具、高硬度材料からなる微細電着砥石の内の何れかである。 The method for producing a fine tool according to claim 5 is the method for producing a fine tool according to claim 1 or 2, wherein the rod-shaped tool body is made of an antioxidant material such as iridium or platinum iridium, silicon, nickel alloy, or the like. The surface modifying material, a fine cutting tool made of a high hardness material, or a fine electrodeposition grindstone made of a high hardness material.

また、請求項6記載の微細工具の製造方法は、請求項1又は2記載の微細工具の製造方法において、棒状工具本体の材料は、クラッド材より硬度が硬い高硬度材料である。 The method for manufacturing a fine tool according to claim 6 is the method for manufacturing a fine tool according to claim 1 or 2, wherein the material of the rod-shaped tool body is a high-hardness material whose hardness is higher than that of the clad material.

また、請求項7記載の微細工具の製造方法は、請求項1〜6記載のいずれかの微細工具の製造方法において、複合構造工具のクラッド材の一部を除去する加工手段は、放電加工、単発放電、電解加工、クラッド材の溶融温度より高い温度で、且つ、棒状工具本体の材料より低い温度の液体に浸漬する方法、レーザ加工の内の何れかである。 The method for manufacturing a fine tool according to claim 7 is the method for manufacturing a fine tool according to any one of claims 1 to 6, wherein the processing means for removing a part of the clad material of the composite structure tool is electrical discharge machining, Any one of single discharge, electrolytic machining, a method of immersing in a liquid having a temperature higher than the melting temperature of the clad material and lower than the material of the rod-shaped tool body, or laser processing.

また、請求項8記載の微細工具の製造装置は、放電加工、電解加工、切削加工、研削加工などの棒状工具本体の外周部を前記棒状工具本体とは別の材料からなると共に、前記棒状工具本体より除去成形が容易な材料のクラッド材によって被覆して複合構造工具を把持する把持部と、この把持部によって把持された前記複合構造工具の前記クラッド材の一部を除去して前記棒状工具本体を必要長さに露出させる加工手段とを備えているものである。     The manufacturing apparatus for a fine tool according to claim 8 is configured such that an outer peripheral portion of a rod-shaped tool main body such as electric discharge machining, electrolytic machining, cutting processing, and grinding processing is made of a material different from the rod-shaped tool main body, and the rod-shaped tool main body. A gripping part that covers a composite structure tool that is covered with a clad material that is easy to remove from the main body, and a part of the clad material of the composite structure tool that is gripped by the gripping part to remove the rod-shaped tool And processing means for exposing the main body to a necessary length.

また、請求項9記載の微細工具の製造装置は、平行に整列した複数の棒状工具本体の外周部を前記複数の棒状工具本体とは別の材料からなると共に、前記棒状工具本体より除去成形が容易なクラッド材によって被覆して複合構造工具を把持する把持部と、
この把持部によって把持された前記複合構造工具の前記クラッド材の一部を除去して前記棒状工具本体を必要長さに露出させる加工手段とを備えているものである。
According to a ninth aspect of the present invention, there is provided the fine tool manufacturing apparatus, wherein the outer peripheral portions of the plurality of bar-shaped tool bodies arranged in parallel are made of a material different from the plurality of bar-shaped tool bodies, and are removed from the bar-shaped tool bodies. A gripping part that is covered with an easy clad material and grips the composite structure tool;
Processing means for removing a part of the clad material of the composite structure tool gripped by the gripping portion and exposing the bar-shaped tool body to a required length is provided.

本発明の微細工具の製造方法によれば、放電加工、電解加工、切削加工、研削加工などの棒状工具本体の外周部を前記棒状工具本体とは別の材料からなると共に、前記棒状工具本体より除去成形が容易な材料のクラッド材によって被覆して複合構造工具を形成し、この複合構造工具の前記クラッド材の一部を除去して前記棒状工具本体を必要長さに露出させて微細工具を製造するため、微細工具を露出(ピーリング)させて容易に微細工具を製造することができる。
通常は微細工具本体材料と同一材料で一体製作された把持部を持つが、外段取りとしての工具部の微細化には限界がある。したがって、把持部と同一直径の工具電極先端部を機上で成形するが、この場合は成形される微細工具による加工よりも工具の微細化に時間とコストが掛かる。市販の微細細線をクラッド材で被覆する本発明によれば大幅な効率の向上とコストダウンを図ることができる。
According to the method for producing a fine tool of the present invention, the outer peripheral portion of the rod-shaped tool body such as electric discharge machining, electrolytic machining, cutting, grinding, etc. is made of a material different from the rod-shaped tool body, and from the rod-shaped tool body. A composite structure tool is formed by coating with a clad material that is easy to remove and mold, and a part of the clad material of the composite structure tool is removed to expose the rod-shaped tool body to a required length to form a fine tool. In order to manufacture, a fine tool can be easily manufactured by exposing (peeling) the fine tool.
Usually, it has a grip part that is integrally manufactured from the same material as the fine tool body material, but there is a limit to the miniaturization of the tool part as an external setup. Therefore, the tip of the tool electrode having the same diameter as that of the gripping part is formed on the machine, but in this case, it takes time and cost to make the tool finer than processing by the formed fine tool. According to the present invention in which a commercially available fine wire is covered with a clad material, a significant improvement in efficiency and a reduction in cost can be achieved.

本発明の一実施例の微細工具の製造方法及び微細工具の製造装置について、図面を参照して説明する。
図1(a)において、1は、放電加工、電解加工、切削加工、研削加工などの棒状工具本体で、2は、棒状工具本体1の外周部を棒状工具本体1とは別の材料からなると共に、棒状工具本体1より除去成形が容易な材料のクラッド材2によって被覆して複合構造工具3を形成する。
また、図1(b)(c)において、10は微細工具の製造装置の要部を示すもので、11は、複合構造工具3を把持する把持部(例えば、コレットチャックである。)である。
A fine tool manufacturing method and a fine tool manufacturing apparatus according to an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1A, 1 is a rod-shaped tool body such as electric discharge machining, electrolytic machining, cutting, and grinding, and 2 is an outer peripheral portion of the rod-shaped tool body 1 made of a material different from that of the rod-shaped tool body 1. At the same time, the composite tool 3 is formed by covering with a clad material 2 which is easier to remove and form than the rod-shaped tool body 1.
In FIGS. 1B and 1C, reference numeral 10 denotes a main part of the fine tool manufacturing apparatus, and reference numeral 11 denotes a holding part (for example, a collet chuck) for holding the composite structure tool 3. .

上述した複合構造工具3の形成後、説明を後述する「放電加工」、「単発放電」、「電解加工」、「クラッド材の溶融温度より高い温度で、且つ、棒状工具本体の材料より低い温度の液体に浸漬する方法」、「レーザ加工」等の加工手段により複合構造工具3のクラッド材2の一部を除去して棒状工具本体1を必要長さ(例えば、1mm)に露出させて微細工具100を製造する[図1(d)]。
つまり、加工機械の把持部(例えば、コレットチャックである。)11に把持した後、切刃となる加工工具部位を必要長さだけ機上または外段取りで露出(ピーリング)させて加工を行うものである。
即ち、本来の微細加工用の工具材料からなる、希望とする軸直径の工具細線を、除去成形が容易な材料で被覆して把持し、必要に応じて微細工具100の切り刃部分の棒状工具本体1の部位を必要長さだけ機上または外段取りで露出(ピーリング)させて加工を行う一連の加工プロセスおよびその装置である。
After the formation of the composite structure tool 3 described above, “electric discharge machining”, “single discharge”, “electrolytic machining”, “temperature higher than the melting temperature of the clad material and lower than the material of the rod-shaped tool body, which will be described later. A part of the clad material 2 of the composite structure tool 3 is removed by processing means such as “immersing in a liquid” or “laser processing” to expose the rod-shaped tool body 1 to a required length (for example, 1 mm) and fine. The tool 100 is manufactured [FIG. 1 (d)].
In other words, after being gripped by a gripping part (for example, a collet chuck) 11 of a processing machine, processing is performed by exposing (peeling) a processing tool part serving as a cutting blade by a necessary length on the machine or by external setup. It is.
That is, a tool-shaped wire having a desired shaft diameter made of an original tool material for fine machining is covered with a material that can be easily removed and molded, and if necessary, a rod-like tool at the cutting edge portion of the fine tool 100 It is a series of processing processes and apparatus for performing processing by exposing (peeling) a part of the main body 1 by a required length on the machine or by external setup.

また、棒状工具本体1の直径は、例えば、1〜100μm程度であり、棒状工具本体1の材料は、クラッド材2の融点より高い「タングステン、モリブデン、銅、黄銅、銅タングステン、銀タングステン、タングステンカーバイドなどの高融点高熱伝導率材料」を用い、放電加工用電極として機能せしめるものでも良い。
また、棒状工具本体1の材料は、イリジウム、白金イリジウムなどの抗酸化材料(例えば、気中放電用抗酸化材料)、シリコン、ニッケル合金などの表面改質用材料、クラッド材2の材料より硬度が高い高硬度材料からなる微細切削工具、クラッド材2の材料より硬度が高い高硬度材料からなる微細電着砥石の内の何れかでも良い。
また、クラッド材2は、棒状工具本体1の材料(コア材料)よりも融点あるいは昇華点の低い低融点の金属、金属粉末、プラスチック樹脂、透明プラスチック、光硬化樹脂、あるいは低昇華温度材料(樟脳、ナフタリンなど)でも良い。
また、微細工具100の把持を容易にするために切り刃部分、つまり、棒状工具本体1をクラッド材2である把持材料で被覆し、必要部分を露出して加工を行うものであり、微細工具100の露出した棒状工具本体1の部位は、放電加工、電解加工、切削加工、研削加工などを用いた微細加工分野において、使用されるものである。
The diameter of the bar-shaped tool body 1 is, for example, about 1 to 100 μm, and the material of the bar-shaped tool body 1 is higher than the melting point of the clad material 2 “tungsten, molybdenum, copper, brass, copper tungsten, silver tungsten, tungsten. A material having a high melting point and a high thermal conductivity such as carbide may be used so as to function as an electrode for electric discharge machining.
Further, the material of the rod-shaped tool body 1 is harder than an antioxidant material such as iridium or platinum iridium (for example, an antioxidant material for air discharge), a surface modifying material such as silicon or nickel alloy, or a material of the clad material 2. Any one of a fine cutting tool made of a high hardness material having a high hardness and a fine electrodeposition grindstone made of a high hardness material having a higher hardness than the material of the clad material 2 may be used.
Further, the clad material 2 is a low melting point metal, metal powder, plastic resin, transparent plastic, photo-curing resin, or low sublimation temperature material (camphor) having a melting point or sublimation point lower than the material (core material) of the rod-shaped tool body 1. Or naphthalene).
Further, in order to facilitate gripping of the fine tool 100, the cutting blade portion, that is, the rod-shaped tool main body 1 is covered with the gripping material that is the clad material 2, and the necessary portion is exposed and processed. 100 parts of the exposed rod-shaped tool body 1 are used in the micromachining field using electric discharge machining, electrolytic machining, cutting machining, grinding machining, and the like.

上述した複合構造工具3は、例えば、図2(a)(b)に示すように、接離自在な金型21、22の上部に設けられた開口部23より溶融されたクラッド材、例えば、棒状工具本体1の材料(例えば、タングステン)よりも融点の低い低融点の金属、金属粉末、プラスチック樹脂、透明プラスチック、光硬化樹脂、あるいは低昇華温度材料を入れて、クラッド材2を固化させて形成する。
なお、下記に示す表1は、タングステンの棒状工具本体1をタングステンより融点が低い低融点合金のクラッド材2で被覆された複合構造工具3を示している。
The composite structure tool 3 described above is, for example, as shown in FIGS. 2 (a) and 2 (b), a clad material melted from an opening 23 provided in the upper part of detachable molds 21 and 22, for example, Put a low melting point metal, metal powder, plastic resin, transparent plastic, photo-curing resin, or low sublimation temperature material having a lower melting point than the material of the rod-shaped tool body 1 (for example, tungsten) to solidify the clad material 2. Form.
Table 1 below shows a composite structure tool 3 in which a tungsten rod-shaped tool body 1 is covered with a clad material 2 of a low melting point alloy having a melting point lower than that of tungsten.

また、上述した複合構造工具3は、例えば、鍍金被膜法、より具体的には、図3(a)に示すように、溶融亜鉛中に棒状工具本体1(棒状工具本体1の材料は、例えば、タングステン)を入れて、棒状工具本体1の表面を亜鉛のクラッド材2で被覆して形成することができる。
なお、30は、溶融亜鉛液の容器である。
Moreover, the composite structure tool 3 mentioned above is, for example, a plating film method, more specifically, as shown in FIG. 3A, the rod-shaped tool body 1 (the material of the rod-shaped tool body 1 is, for example, , Tungsten), and the surface of the rod-shaped tool body 1 can be formed by covering with a zinc clad material 2.
Reference numeral 30 denotes a molten zinc solution container.

また、上述した複合構造工具3は、図3(a)に記載のものに限らず、図3(b)に示すように、被覆しようとするクラッド材の金属イオン(例えば、亜鉛イオン)を含む液の中に被覆しようとするクラッド材の棒状材料2’を入れて陰極(−)とし、陽極(+)には棒状工具本体1を用いて、両極間に直流電源を接続し電圧を与えて、陰極での還元反応によりメッキしようとする金属を析出させ、棒状工具本体1の表面を亜鉛のクラッド材2で被覆して形成することができる。
なお、31は、溶融亜鉛液の容器である。
Further, the composite structure tool 3 described above is not limited to the one shown in FIG. 3A, but includes metal ions (for example, zinc ions) of the cladding material to be coated, as shown in FIG. 3B. Put the rod-shaped material 2 'of the clad material to be coated in the liquid to make the cathode (-), and use the rod-shaped tool body 1 for the anode (+), connect a DC power supply between both electrodes and give a voltage The metal to be plated can be deposited by a reduction reaction at the cathode, and the surface of the rod-shaped tool body 1 can be coated with the zinc clad material 2.
In addition, 31 is a container of molten zinc liquid.

また、上述した複合構造工具3は、上述記載のものに限らず、図4(a)(b)に示すように、例えば、真空中でプラズマ状態にし、皮膜をしたいクラッド材の材料(例えば、タングステン )のイオン気体を棒状工具本体1表面にとばして行う蒸着法によって形成することができる。 Further, the composite structure tool 3 described above is not limited to the above-described one, but as shown in FIGS. 4A and 4B, for example, a material of a clad material to be coated in a plasma state in a vacuum (for example, Tungsten) can be formed by an evaporation method in which an ion gas of tungsten is blown to the surface of the rod-shaped tool body 1.

また、上述した複合構造工具3は、図4(a)(b)に記載のものに限らず、図5に示すように、例えば、シート状部材を積層してクラッド材2を作る「積層ラピッドプロタイピング」によって形成することもできる。 Further, the composite structure tool 3 described above is not limited to the one shown in FIGS. 4A and 4B, but as shown in FIG. It can also be formed by “prototyping”.

また、上述した微細工具100は、例えば、図6に示すように、電極(+の電極)33面に回転する複合構造工具(−の電極)3の移動方向に先細りとなる凹溝34を形成すると共に、両極に電圧をかけ、複合構造工具3と電極33との相対的移動中に電極33の放電により、複合構造工具3のクラッド材2の一部を除去して棒状工具本体1を必要長さ(例えば、1mm)に露出させて製造することができる(無垢材料への走査放電加工)。 Moreover, the fine tool 100 mentioned above forms the ditch | groove 34 tapering in the moving direction of the composite structure tool (-electrode) 3 rotating on the electrode (+ electrode) 33 surface, for example, as shown in FIG. In addition, a voltage is applied to both poles, and the rod-shaped tool body 1 is required by removing a part of the clad material 2 of the composite structure tool 3 by discharging the electrode 33 during the relative movement between the composite structure tool 3 and the electrode 33. It can be manufactured by being exposed to a length (for example, 1 mm) (scanning discharge machining to a solid material).

また、微細工具100は、図6に記載のものに限らず、例えば、図7に示すように、電極(+の電極)35の端面に回転する複合構造工具(−の電極)3の移動方向に先細りとなる切り欠き溝36を形成すると共に、両極に電圧をかけ、複合構造工具3と電極35との相対的移動中に電極35の放電により、複合構造工具3のクラッド材2の一部を除去して棒状工具本体1を必要長さ(例えば、1mm)に露出させて製造することができる(電極端面を用いたピーリング走査放電加工)。 Further, the fine tool 100 is not limited to the one shown in FIG. 6, for example, as shown in FIG. 7, the moving direction of the composite structure tool (− electrode) 3 that rotates on the end face of the electrode (+ electrode) 35. A notch groove 36 that is tapered is formed, a voltage is applied to both poles, and a part of the clad material 2 of the composite structure tool 3 is discharged by the discharge of the electrode 35 during the relative movement between the composite structure tool 3 and the electrode 35. Can be manufactured by exposing the rod-shaped tool body 1 to a required length (for example, 1 mm) (peeling scanning electric discharge machining using an electrode end face).

また、微細工具100は、上述記載のものに限らず、図8(a)(b)に示すように、放電加工用ワイヤ37が走行移動し、且つ、放電加工用ワイヤ37に直交する方向に複合構造工具3のクラッド材2が相対的に移動し、同時に、放電加工用ワイヤ37を放電することにより熱を発生させ、その熱で複合構造工具3のクラッド材2の一部を除去して棒状工具本体1を必要長さに露出させて製造することもできる(ワイヤ放電研削ピーリング法)。
なお、38、39、40は、放電加工用ワイヤ37を所定の部位に案内する案内部材である。
Further, the fine tool 100 is not limited to the above-described one, and as shown in FIGS. 8A and 8B, the electric discharge machining wire 37 travels and is orthogonal to the electric discharge machining wire 37. The clad material 2 of the composite structure tool 3 moves relatively, and at the same time, heat is generated by discharging the electric discharge machining wire 37, and a part of the clad material 2 of the composite structure tool 3 is removed by the heat. The rod-shaped tool body 1 can also be manufactured by exposing it to the required length (wire electric discharge grinding peeling method).
Reference numerals 38, 39, and 40 are guide members that guide the electric discharge machining wire 37 to a predetermined portion.

また、微細工具100は、上述記載に限らず、図9に示すように、薄板41と複合構造工具3との放電加工によりその熱で複合構造工具3のクラッド材2の一部を除去して棒状工具本体1を必要長さに露出させて製造することもできる(薄板面へ垂直走査放電加工)。
この例による微細工具100の顕微鏡写真を下記表2に示す。
Further, the fine tool 100 is not limited to the above description, and as shown in FIG. 9, a part of the clad material 2 of the composite structure tool 3 is removed by the electric discharge machining of the thin plate 41 and the composite structure tool 3. The rod-shaped tool body 1 can also be manufactured by exposing it to a required length (vertical scanning electric discharge machining to a thin plate surface).
Table 2 below shows micrographs of the fine tool 100 according to this example.

また、微細工具100は、上述記載のものに限らず、図10に示すように、複合構造工具3と微細穴42を有した薄板43とが相対的に移動し、同時に、複合構造工具3と薄板43とを通電させて放電することにより熱を発生させ、その熱で複合構造工具3のクラッド材2の一部を除去して棒状工具本体1を必要長さに露出させて製造することもできる(微細穴付薄板面へ垂直走査放電加工)。
この例による微細工具100の顕微鏡写真を下記表3に示す。
Further, the fine tool 100 is not limited to the one described above, and as shown in FIG. 10, the composite structure tool 3 and the thin plate 43 having the fine holes 42 move relatively, and at the same time, the composite structure tool 3 and The thin plate 43 is energized and discharged to generate heat, and the heat is used to remove a portion of the clad material 2 of the composite structure tool 3 so that the rod-shaped tool body 1 is exposed to the required length. Yes (vertical scanning electrical discharge machining to thin plate surface with fine holes).
Table 3 below shows micrographs of the fine tool 100 according to this example.

また、微細工具100は、上述記載のものに限らず、図11に示すように、放電電流数十A、放電パルス幅数百μsの単発放電による単発放電エネルギーにより複合構造工具3のクラッド材2の一部を除去して棒状工具本体1を必要長さに露出させて製造することもできる(単発放電ピーリング法)。
ここで、単発放電 とは、複合構造工具3と電極44とを通電させて、所定の放電エネルギーの所定時間での一回のみの放電を意味し、この一回の放電によりクラッド材2の一部を除去して棒状工具本体1を必要長さに露出させる。
Further, the fine tool 100 is not limited to the above-described one, and as shown in FIG. 11, the clad material 2 of the composite structure tool 3 by a single discharge energy by a single discharge having a discharge current of several tens A and a discharge pulse width of several hundred μs. It is also possible to manufacture the rod-shaped tool body 1 by removing a part thereof to expose the required length (single discharge peeling method).
Here, “single discharge” means that the composite structure tool 3 and the electrode 44 are energized and discharged only once at a predetermined time with a predetermined discharge energy. The bar-shaped tool body 1 is exposed to the required length by removing the portion.

また、微細工具100は、上述記載のものに限らず、図12に示すように、電解加工により複合構造工具3のクラッド材2の一部を除去して棒状工具本体1を必要長さに露出させて製造することもできる(電解ピーリング法)。
この電解加工は、容器45を−の極、複合構造工具3を+の極とし、容器45内を電解液で満たし、直流電圧をかけることによる電解作用を用いるものである。
Further, the fine tool 100 is not limited to the one described above, and as shown in FIG. 12, a part of the clad material 2 of the composite structure tool 3 is removed by electrolytic processing to expose the rod-shaped tool body 1 to a necessary length. It can also be manufactured (electrolytic peeling method).
In this electrolytic processing, the container 45 is set as a negative pole, the composite structure tool 3 is set as a positive pole, the container 45 is filled with an electrolytic solution, and an electrolytic action is applied by applying a DC voltage.

また、微細工具100は、上述記載のものに限らず、図13に示すように、容器46内にクラッド材(クラッド材は、例えば、低融点亜鉛合金である。)2の融点より高い温度の液体(例えば、100℃以下の温熱水)を入れ、該液体中に複合構造工具3の一部を所定時間(例えば、数秒間)浸漬し、クラッド材2の一部を除去して棒状工具本体(棒状工具本体は、例えば、タングステンである。)1を必要長さに露出させて製造することもできる(浸漬溶融ピーリング法)。
なお、液体47に数十kHzの超音波振動を付与して上記プロセスを実行すれば、クラッド材2の溶融液体の表面張力が低下して、極めて容易に露出が完了する。
Further, the fine tool 100 is not limited to the one described above, and as shown in FIG. 13, the container 46 has a temperature higher than the melting point of the clad material 2 (the clad material is, for example, a low melting point zinc alloy). Put a liquid (for example, hot water of 100 ° C. or less), immerse a part of the composite structure tool 3 in the liquid for a predetermined time (for example, several seconds), remove a part of the clad material 2 and remove the rod-shaped tool body (The rod-shaped tool main body is, for example, tungsten.) It can also be manufactured by exposing 1 to the required length (immersion melt peeling method).
If the above process is executed by applying ultrasonic vibration of several tens of kHz to the liquid 47, the surface tension of the molten liquid of the clad material 2 is lowered, and the exposure is completed very easily.

また、微細工具100は、上述記載のものに限らず、図14に示すように、レーザー発生器50から発射するレーザービームによるレーザ加工により、複合構造工具3のクラッド材2の一部を除去して棒状工具本体1を必要長さに露出させて製造することもできる(レーザ加熱ピーリング法)。
なお、上述した微細工具100による微細放電加工の例を下記表4に示す。また、上述しました複合構造工具3が長い場合には、図15に示すように、放電加工用ワイヤ51が走行移動し、且つ、放電加工用ワイヤ51に直交する方向に複合構造工具3が相対的に移動し、同時に、放電加工用ワイヤ51を放電することにより熱を発生させ、その熱で複合構造工具3を必要長さに切断することができる。また、52、53は、放電加工用ワイヤ51を所定の部位に案内する案内部材である。
Further, the fine tool 100 is not limited to the one described above, and a part of the clad material 2 of the composite structure tool 3 is removed by laser processing using a laser beam emitted from the laser generator 50 as shown in FIG. The rod-shaped tool body 1 can also be manufactured by exposing it to the required length (laser heating peeling method).
An example of the fine electric discharge machining by the fine tool 100 described above is shown in Table 4 below. When the composite structure tool 3 described above is long, as shown in FIG. 15, the electric discharge machining wire 51 travels and the composite structure tool 3 moves relative to the direction orthogonal to the electric discharge machining wire 51. At the same time, heat is generated by discharging the electric discharge machining wire 51, and the composite structure tool 3 can be cut to a required length by the heat. Reference numerals 52 and 53 denote guide members for guiding the electric discharge machining wire 51 to a predetermined part.

また、微細工具100は、上述記載のものに限らず、図16に示すように、平行に整列した複数の棒状工具本体1、1・・の外周部を複数の棒状工具本体1、1・・とは別の材料からなると共に、棒状工具本体1、1・・より除去成形が容易なクラッド材2によって被覆して複合構造工具3を形成し、この複合構造工具3のクラッド材2の一部を除去して複数の棒状工具本体1、1・・を必要長さに露出させて製造するものである。
即ち、図16は、例えば、タングステン細線(棒状工具本体1)を多数整列し、これらを、例えば、低融点亜鉛合金(クラッド材2)で鋳造被覆して作成した多電極ピーリング工具(微細工具100)を示している。
また、図17(a)(b)は、低融点亜鉛合金(クラッド材2)で鋳造被覆して作成した多電極ピーリング工具(微細工具100)を、ピーリング工程を経ないで、直接加工対象物200に放電加工して多数の微細穴を同時に開けた例を示している。この場合、クラッドとしての低融点合金部は消耗が著しく、従って、クラッド部2は後退し、微細工具100が自動的に露出して多数穴が穿たれる結果となる。図中の微細軸成形板300は、加工対象表面における放電の影響を除くために設けられたダミー電極である。
Further, the fine tool 100 is not limited to the above-described one, and as shown in FIG. 16, the outer peripheral portions of the plurality of rod-shaped tool bodies 1, 1,. The composite tool 3 is formed by covering with a clad material 2 which is made of a material different from that of the rod-shaped tool body 1, 1. And a plurality of rod-shaped tool bodies 1, 1,... Are exposed to a necessary length.
That is, FIG. 16 shows, for example, a multi-electrode peeling tool (fine tool 100) prepared by aligning a number of tungsten fine wires (bar-shaped tool body 1) and casting them with, for example, a low melting point zinc alloy (cladding material 2). ).
17 (a) and 17 (b) show a multi-electrode peeling tool (fine tool 100) prepared by casting and coating with a low melting point zinc alloy (cladding material 2) without subjecting to a peeling process. 200 shows an example in which a number of fine holes are formed simultaneously by electric discharge machining. In this case, the low-melting point alloy portion as the cladding is remarkably consumed, so that the cladding portion 2 is retracted, and the fine tool 100 is automatically exposed and a large number of holes are formed. A microshaft forming plate 300 in the figure is a dummy electrode provided to eliminate the influence of electric discharge on the surface to be processed.

図1は、本発明の一実施例の微細工具の製造方法の製造過程を概略的に示すもので、図1(a)は、棒状工具本体をクラッド材によって被覆した複合構造工具の概略的断面図であり、図1(b)は、図1(a)の複合構造工具を加工機械の把持部で把持した状態の概略的断面図であり、図1(c)は、図1(b)の複合構造工具のクラッド材の一部を除去した状態の概略的断面図であり、図1(d)は、図1(c)のピーリング過程が終了して製造された微細工具の概略的斜視図である。FIG. 1 schematically shows a manufacturing process of a fine tool manufacturing method according to an embodiment of the present invention. FIG. 1A is a schematic cross-section of a composite structure tool in which a rod-shaped tool body is covered with a clad material. FIG. 1B is a schematic cross-sectional view of a state in which the composite structure tool of FIG. 1A is gripped by a gripping portion of a processing machine, and FIG. 1C is a view of FIG. FIG. 1D is a schematic cross-sectional view of a composite structure tool of FIG. 1 with a part of the cladding material removed, and FIG. 1D is a schematic perspective view of a fine tool manufactured after the peeling process of FIG. FIG. 図2は、図1の複合構造工具の製造過程を概略的に示すもので、図2(a)は、接離自在な金型の上部に設けられた開口部より溶融されたクラッド材が投入される状態の概略的斜視図であり、図2(b)は、図2(a)の金型から分離された複合構造工具の概略的斜視図である。FIG. 2 schematically shows a manufacturing process of the composite structure tool of FIG. 1, and FIG. 2 (a) shows that a clad material melted from an opening provided in an upper part of a mold that can be freely attached and separated is input. FIG. 2 (b) is a schematic perspective view of the composite structure tool separated from the mold of FIG. 2 (a). 図3は、図2の複合構造工具の製造過程と異なる他の実施例を概略的に示すもので、図3(a)は、鍍金被膜法による第1の実施例の概略的斜視図であり、図3(b)は、図3(a)と異なる鍍金被膜法による第2の実施例の概略的斜視図である。FIG. 3 schematically shows another embodiment different from the manufacturing process of the composite structure tool of FIG. 2, and FIG. 3 (a) is a schematic perspective view of the first embodiment by the plating coating method. FIG. 3 (b) is a schematic perspective view of a second embodiment by a plating film method different from FIG. 3 (a). 図4は、図3の複合構造工具の製造過程と異なる他の実施例を概略的に示すもので、図4(a)は、蒸着法による途中過程の概略的斜視図であり、図4(b)は、図4(a)の棒状工具本体がクラッド材によって被覆された状態を示した概略的斜視図である。FIG. 4 schematically shows another embodiment different from the manufacturing process of the composite structure tool of FIG. 3, and FIG. 4 (a) is a schematic perspective view of the intermediate process by the vapor deposition method. FIG. 4B is a schematic perspective view showing a state in which the rod-shaped tool body of FIG. 4A is covered with a clad material. 図5は、図4の他の実施例の製造方法による複合構造工具の概略的斜視図である。FIG. 5 is a schematic perspective view of a composite structure tool according to the manufacturing method of another embodiment of FIG. 図6は、微細工具の製造方法を示す概略的斜視図である。FIG. 6 is a schematic perspective view showing a method for manufacturing a fine tool. 図7は、図6の他の実施例の製造方法による微細工具の製造方法を示す概略的斜視図である。FIG. 7 is a schematic perspective view showing a method of manufacturing a fine tool according to the manufacturing method of another embodiment of FIG. 図8(a)は、図7の他の実施例の製造方法による微細工具の製造方法を示す概略的斜視図であり、図8(b)は、図8(a)の他の実施例の製造方法による微細工具の製造方法を示す概略的斜視図である。FIG. 8A is a schematic perspective view showing a manufacturing method of a fine tool by the manufacturing method of another embodiment of FIG. 7, and FIG. 8B is a view of another embodiment of FIG. 8A. It is a schematic perspective view which shows the manufacturing method of the fine tool by a manufacturing method. 図9(a)(b)は、図8(b)の他の実施例の製造方法による微細工具の製造方法を示す概略的斜視図で、図9(a)は放電加工前を、図9(b)は放電加工後を、それぞれ示している。9 (a) and 9 (b) are schematic perspective views showing a method for manufacturing a fine tool according to the manufacturing method of another embodiment of FIG. 8 (b). FIG. 9 (a) shows a state before electric discharge machining, and FIG. (B) shows each after electric discharge machining. 図10(a)(b)は、図9の他の実施例の製造方法による微細工具の製造方法を示す概略的斜視図で、図10(a)は放電加工前を、図10(b)は放電加工後を、それぞれ示している。10 (a) and 10 (b) are schematic perspective views showing a method of manufacturing a fine tool according to the manufacturing method of another embodiment of FIG. 9, and FIG. 10 (a) shows a state before electric discharge machining and FIG. 10 (b). Indicates after electric discharge machining. 図11(a)(b)は、図10の他の実施例の製造方法による微細工具の製造方法を示す概略的斜視図で、図11(a)は単発放電前を、図11(b)は単発放電後を、それぞれ示している。11 (a) and 11 (b) are schematic perspective views showing a method of manufacturing a fine tool according to the manufacturing method of another embodiment of FIG. 10, and FIG. 11 (a) shows a state before a single discharge, and FIG. Indicates after single discharge, respectively. 図12(a)(b)は、図11の他の実施例の製造方法による微細工具の製造方法を示す概略的斜視図で、図12(a)は電解加工前を、図12(b)は電解加工後を、それぞれ示している。12 (a) and 12 (b) are schematic perspective views showing a method of manufacturing a fine tool according to the manufacturing method of the other embodiment of FIG. 11, and FIG. 12 (a) shows a state before electrolytic processing, and FIG. Indicates the state after electrolytic processing. 図13は、図12の他の実施例の製造方法による微細工具の製造方法を示す概略的斜視図である。FIG. 13 is a schematic perspective view showing a method of manufacturing a fine tool according to the manufacturing method of another embodiment of FIG. 図14は、図13の他の実施例の製造方法による微細工具の製造方法を示す概略的斜視図である。FIG. 14 is a schematic perspective view showing a method for manufacturing a fine tool according to the manufacturing method of another embodiment of FIG. 図15は、図3記載の複合構造工具の切断方法の概略的斜視図である。FIG. 15 is a schematic perspective view of the cutting method of the composite structure tool shown in FIG. 図16は、図1の他の微細工具の概略的斜視図である。FIG. 16 is a schematic perspective view of another fine tool of FIG. 図17(a)(b)は、低融点亜鉛合金で鋳造被覆して作成した多電極ピーリング工具を、ピーリング工程を経ないで、直接加工対象物に放電加工して多数の微細穴を同時に開けた例を示している。FIGS. 17 (a) and 17 (b) show a multi-electrode peeling tool prepared by casting and coating with a low melting point zinc alloy, directly through an electric discharge machining object without drilling, and simultaneously opening a number of fine holes. An example is shown.

符号の説明Explanation of symbols

1 棒状工具本体
2 クラッド材
3 複合構造工具
100 微細工具
DESCRIPTION OF SYMBOLS 1 Bar-shaped tool main body 2 Clad material 3 Composite structure tool 100 Fine tool

Claims (9)

放電加工、電解加工、切削加工、研削加工などの棒状工具本体の外周部を前記棒状工具本体とは別の材料からなると共に、前記棒状工具本体より除去成形が容易な材料のクラッド材によって被覆して複合構造工具を形成し、この複合構造工具の前記クラッド材の一部を除去して前記棒状工具本体を必要長さに露出させて微細工具を製造する
ことを特徴とする微細工具の製造方法。
The outer periphery of the rod-shaped tool body, such as electric discharge machining, electrolytic machining, cutting, and grinding, is made of a material different from the rod-shaped tool body, and is covered with a clad material that is easier to remove and form than the rod-shaped tool body. Forming a composite structure tool, and removing a portion of the clad material of the composite structure tool to expose the rod-shaped tool body to a required length, thereby manufacturing a fine tool. .
平行に整列した複数の棒状工具本体の外周部を前記複数の棒状工具本体とは別の材料からなると共に、前記棒状工具本体より除去成形が容易なクラッド材によって被覆して複合構造工具を形成し、この複合構造工具の前記クラッド材の一部を除去して前記複数の棒状工具本体を必要長さに露出させて微細工具を製造する
ことを特徴とする微細工具の製造方法。
The outer peripheral portion of the plurality of rod-shaped tool bodies aligned in parallel is made of a material different from that of the plurality of rod-shaped tool bodies, and is covered with a clad material that is easier to remove and form than the rod-shaped tool bodies to form a composite structure tool. A method for manufacturing a fine tool, wherein a part of the clad material of the composite structure tool is removed to expose the plurality of rod-shaped tool bodies to a required length to manufacture a fine tool.
クラッド材は、棒状工具本体の材料よりも融点あるいは昇華点の低い低融点の金属、金属粉末、プラスチック樹脂、透明プラスチック、光硬化樹脂、あるいは低昇華温度材料である
ことを特徴とした請求項1又は2記載の微細工具の製造方法。
The clad material is a low melting point metal, metal powder, plastic resin, transparent plastic, photo-curing resin, or low sublimation temperature material having a melting point or sublimation point lower than that of the rod-shaped tool body. Or the manufacturing method of the fine tool of 2.
棒状工具本体の材料は、クラッド材の融点より高いタングステン、モリブデン、銅、黄銅、銅タングステン、銀タングステン、タングステンカーバイドなどの高融点高熱伝導率材料を用い、放電加工用電極として機能せしめるものである
ことを特徴とした請求項1又は2記載の微細工具の製造方法。
The material of the rod-shaped tool body is a high melting point high thermal conductivity material such as tungsten, molybdenum, copper, brass, copper tungsten, silver tungsten, tungsten carbide, etc., which is higher than the melting point of the cladding material, and functions as an electrode for electric discharge machining. The method for producing a fine tool according to claim 1 or 2, wherein
棒状工具本体の材料は、イリジウム、白金イリジウムなどの抗酸化材料、シリコン、ニッケル合金などの表面改質用材料、高硬度材料からなる微細切削工具、高硬度材料からなる微細電着砥石の内の何れかである
ことを特徴とした請求項1又は2記載の微細工具の製造方法。
The material of the rod-shaped tool body is an anti-oxidation material such as iridium or platinum iridium, a surface modifying material such as silicon or nickel alloy, a fine cutting tool made of a high hardness material, or a fine electrodeposition grindstone made of a high hardness material. The method for producing a fine tool according to claim 1 or 2, wherein the method is any one of the above.
棒状工具本体の材料は、クラッド材より硬度が硬い高硬度材料である
ことを特徴とした請求項1又は2記載の微細工具の製造方法。
The method for manufacturing a fine tool according to claim 1 or 2, wherein the material of the rod-shaped tool body is a high-hardness material whose hardness is higher than that of the clad material.
複合構造工具のクラッド材の一部を除去する加工手段は、放電加工、単発放電、電解加工、クラッド材の溶融温度より高い温度で、且つ、棒状工具本体の材料より低い温度の液体に浸漬する方法、レーザ加工の内の何れかである
ことを特徴とした請求項1〜6記載のいずれかの微細工具の製造方法。
The machining means for removing a part of the clad material of the composite structure tool is immersed in a liquid having a temperature higher than the melting temperature of the electric discharge machining, single discharge, electrolytic machining, clad material and lower than the material of the rod-shaped tool body. The method for manufacturing a fine tool according to any one of claims 1 to 6, wherein the method is any one of a method and laser processing.
放電加工、電解加工、切削加工、研削加工などの棒状工具本体の外周部を前記棒状工具本体とは別の材料からなると共に、前記棒状工具本体より除去成形が容易な材料のクラッド材によって被覆して複合構造工具を把持する把持部と、
この把持部によって把持された前記複合構造工具の前記クラッド材の一部を除去して前記棒状工具本体を必要長さに露出させる加工手段とを備えている
ことを特徴とする微細工具の製造装置。
The outer periphery of the rod-shaped tool body, such as electric discharge machining, electrolytic machining, cutting, and grinding, is made of a material different from the rod-shaped tool body, and is covered with a clad material that is easier to remove and form than the rod-shaped tool body. A gripping part for gripping the composite structure tool,
And a processing unit that removes a part of the clad material of the composite structure tool gripped by the gripping part and exposes the rod-shaped tool body to a required length. .
平行に整列した複数の棒状工具本体の外周部を前記複数の棒状工具本体とは別の材料からなると共に、前記棒状工具本体より除去成形が容易なクラッド材によって被覆して複合構造工具を把持する把持部と、
この把持部によって把持された前記複合構造工具の前記クラッド材の一部を除去して前記棒状工具本体を必要長さに露出させる加工手段とを備えている
ことを特徴とする微細工具の製造装置。
The outer peripheral portion of the plurality of rod-shaped tool bodies aligned in parallel is made of a material different from that of the plurality of rod-shaped tool bodies, and is covered with a clad material that is easier to remove and form than the rod-shaped tool bodies to grip the composite structure tool. A gripping part;
And a processing unit that removes a part of the clad material of the composite structure tool gripped by the gripping part and exposes the rod-shaped tool body to a required length. .
JP2008049661A 2008-02-29 2008-02-29 Method and device for manufacturing minute tool Pending JP2009202320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049661A JP2009202320A (en) 2008-02-29 2008-02-29 Method and device for manufacturing minute tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049661A JP2009202320A (en) 2008-02-29 2008-02-29 Method and device for manufacturing minute tool

Publications (1)

Publication Number Publication Date
JP2009202320A true JP2009202320A (en) 2009-09-10

Family

ID=41145095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049661A Pending JP2009202320A (en) 2008-02-29 2008-02-29 Method and device for manufacturing minute tool

Country Status (1)

Country Link
JP (1) JP2009202320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475887A (en) * 2014-11-18 2015-04-01 上海交通大学 Electric spark grinding machining method for low-rigidity circular conical surface rod part

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669038A (en) * 1979-11-07 1981-06-10 Tanaka Kikinzoku Kogyo Kk Electric discharge machining electrode
JPS6171920A (en) * 1985-08-26 1986-04-12 Mitsubishi Electric Corp Electric discharge machining electrode
JPS6224916A (en) * 1985-07-22 1987-02-02 Masahiko Suzuki Formation of outer surface layer by electric discharge machining with use of melalloid electrode
JP2000218468A (en) * 1999-02-03 2000-08-08 Seiko Instruments Inc Machining method and machining device
JP2002144042A (en) * 2000-11-06 2002-05-21 Takeshi Tachibana Discharge electrode and electric discharge method
JP2002307249A (en) * 2001-04-10 2002-10-23 Mitsubishi Heavy Ind Ltd Hole machining method and hole machining electrode
JP2003019624A (en) * 2001-07-09 2003-01-21 Seiko Instruments Inc Capacitor manufacturing method by use of electrolytic discharge machining
JP2003321800A (en) * 2002-04-30 2003-11-14 Fujitsu Ltd Electrolytic polishing method
JP2004255517A (en) * 2003-02-26 2004-09-16 Suzuki Motor Corp Consumable electrode member for electrical discharge machining
JP2006239803A (en) * 2005-03-02 2006-09-14 Minebea Co Ltd Electrochemical machining electrode tool tool and manufacturing method for it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669038A (en) * 1979-11-07 1981-06-10 Tanaka Kikinzoku Kogyo Kk Electric discharge machining electrode
JPS6224916A (en) * 1985-07-22 1987-02-02 Masahiko Suzuki Formation of outer surface layer by electric discharge machining with use of melalloid electrode
JPS6171920A (en) * 1985-08-26 1986-04-12 Mitsubishi Electric Corp Electric discharge machining electrode
JP2000218468A (en) * 1999-02-03 2000-08-08 Seiko Instruments Inc Machining method and machining device
JP2002144042A (en) * 2000-11-06 2002-05-21 Takeshi Tachibana Discharge electrode and electric discharge method
JP2002307249A (en) * 2001-04-10 2002-10-23 Mitsubishi Heavy Ind Ltd Hole machining method and hole machining electrode
JP2003019624A (en) * 2001-07-09 2003-01-21 Seiko Instruments Inc Capacitor manufacturing method by use of electrolytic discharge machining
JP2003321800A (en) * 2002-04-30 2003-11-14 Fujitsu Ltd Electrolytic polishing method
JP2004255517A (en) * 2003-02-26 2004-09-16 Suzuki Motor Corp Consumable electrode member for electrical discharge machining
JP2006239803A (en) * 2005-03-02 2006-09-14 Minebea Co Ltd Electrochemical machining electrode tool tool and manufacturing method for it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475887A (en) * 2014-11-18 2015-04-01 上海交通大学 Electric spark grinding machining method for low-rigidity circular conical surface rod part

Similar Documents

Publication Publication Date Title
Arab et al. Effect of tool electrode roughness on the geometric characteristics of through-holes formed by ECDM
CN107208256B (en) Printing of three-dimensional metal structures using sacrificial supports
Tanabe et al. Development of peeling tool for micro-EDM
Singh et al. Experimental investigation for generation of micro-holes on silicon wafer using electrochemical discharge machining process
US20190177872A1 (en) Electrolytic polishing method and device and method for producing a cathode
CN106141339A (en) A kind of multi-electrode fine electric spark forming and machining method and device
Debnath et al. Wire electrochemical machining process: overview and recent advances
CN112475495A (en) Preparation method of cross-size micro-nano structure array
JP6440814B2 (en) Film removal method for ceramic hard material layer of steel and cemented carbide substrate
CN104227159B (en) A kind of electrochemical machining method of minute concave-convex structure
TWI492804B (en) Method for forming pin point gate on workpiece
TW201617156A (en) The methodology of cutting semi/non-conductive material using WEDM
JP2009202320A (en) Method and device for manufacturing minute tool
CN105154926A (en) Combined electromachining method for bamboo-like micro-structure of rotating body inner surface
EP2828025B1 (en) Electrodes for machining a workpiece, method of manufacturing and use of such electrodes
JP2006518005A (en) Method for producing zinc coated electrode wire for electric discharge machine using hot dip galvanizing method
TWI298647B (en)
JPH09136260A (en) Cooling hole machining method for gas turbine blade
Tanabe et al. Development of peeling tools with sub-50 μm cores by zinc electroplating and their application to micro-EDM
Mithu et al. Etching behaviour of tungsten microtool and its applications in electrochemical micromachining
US8113917B2 (en) Grinding structure having micro ball
Jain et al. Fabrication of tapered micro-pillars on titanium alloy using electric discharge micromachining
TW200841069A (en) Method of manufacturing miniature ball-shaped grinding structure
CN106424984B (en) Electrochemical micromachining tool-electrode preparation method and device
JP2019167617A (en) Three-dimensional metal shaping method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

A131 Notification of reasons for refusal

Effective date: 20110830

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20111007

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605