JP2006239803A - Electrochemical machining electrode tool tool and manufacturing method for it - Google Patents

Electrochemical machining electrode tool tool and manufacturing method for it Download PDF

Info

Publication number
JP2006239803A
JP2006239803A JP2005057982A JP2005057982A JP2006239803A JP 2006239803 A JP2006239803 A JP 2006239803A JP 2005057982 A JP2005057982 A JP 2005057982A JP 2005057982 A JP2005057982 A JP 2005057982A JP 2006239803 A JP2006239803 A JP 2006239803A
Authority
JP
Japan
Prior art keywords
electrode
electrode tool
thin film
resin
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005057982A
Other languages
Japanese (ja)
Inventor
Akio Okamiya
秋雄 岡宮
Motoki Usui
本基 臼井
Masayoshi Nedachi
昌宜 根建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2005057982A priority Critical patent/JP2006239803A/en
Priority to PCT/US2006/003379 priority patent/WO2006093605A1/en
Publication of JP2006239803A publication Critical patent/JP2006239803A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2200/00Specific machining processes or workpieces
    • B23H2200/10Specific machining processes or workpieces for making bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical machining electrode tool and a manufacturing method for it, attaining very high adhesion of an insulating material and an electrode tool base material, whereby even in a long-time use, electrolyte will not permeate into an interface between the insulating material and the electrode tool base material to maintain high accuracy over a long period of time, and also dispensing with an insulating material filling tool for insulating resin mold to facilitate manufacture. <P>SOLUTION: This electrochemical machining electrode tool includes: a conductive pattern formed by a projecting part 5 to 50 μm high, in which the electrode tool base material is exposed; and an insulating thin film formed of deposited polymer resin or deposited resin 5 to 50 μm provided on the surface of the electrode tool base material outside of the conductive pattern. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電解加工に使用される電解加工用電極工具及びその製造方法に関し、更に詳しくは、流体軸受における動圧溝の電解加工を、高精度且つ長期間に亘って行うことができる、精度の高い電解加工用電極工具及び製造工程の少ない該電極工具の製造方法に関する。 The present invention relates to an electrode tool for electrolytic machining used for electrolytic machining and a manufacturing method thereof, and more specifically, the accuracy of electrolytic machining of a dynamic pressure groove in a fluid bearing can be performed with high accuracy over a long period of time. The present invention relates to an electrode tool for electrolytic processing with a high level and a method for manufacturing the electrode tool with a small number of manufacturing steps.

ハードディスク駆動装置等に用いられる流体動圧軸受の典型的な構造として、例えば、フランジ付き回転軸と、その回転軸が嵌合される内周面にラジアル動圧溝を形成し、フランジの一端面と対向する端面にスラスト動圧溝を形成した中空円筒状のスリーブと、フランジの他端面と対向する内側端面にスラスト動圧溝を形成し、スリーブの一方の開口部を閉塞する円板状のスラストプレートと、回転軸の外周面とスリーブの内周面とスラストプレートの内側端面との間の微小隙間に充填された潤滑油とで構成されたものが挙げられる。このような流体動圧軸受のスリーブにラジアル動圧溝とスラスト動圧溝を同時加工する従来の電解加工は、例えば、図1に示すような方法により行う。すなわち、一端側が拡径された内径を有するスリーブ1の他端側外周を、図示しないエアーチャック等で保持し、拡径された内径側からスリーブ1の内径に電解加工用電極工具2を挿入する。電極工具2は小径部2cと大径部2dを有し、ウレタン樹脂製のストッパー3と一体に上下する。小径部2cの外周面および、小径部2cと大径部2dの間の段部には、それぞれラジアル動圧溝に対応する導電パターン2aおよびスラスト動圧溝に対応する導電パターン2bが形成されている。ストッパー3の端面をスリーブ1の端面に緊密に押し当てることにより、スリーブ1に対する電極工具2の軸方向位置決めが行われ、電極工具2の外面、ストッパー3の内面およびスリーブ1の内面の間の隙間によって電解液4の流路5が形成される。電解液4はストッパー3の上部から供給され、流路5を通ってスリーブ1の下端面から排出される。電解液4を供給しながら、電解液4を介してスリーブ1の内面と電極工具2の導電パターン2a、2bの表面との間に直流パルス電流を所定時間流すと、スリーブ1の内面の、導電パターンの表面に対向する限られた表面だけが電気化学的に溶解され、スリーブ1の内面にはそれぞれ、ラジアル動圧溝1aと、スラスト動圧溝1bとが形成される。これら動圧溝の一般的な最小溝幅は40〜50μmである。 As a typical structure of a fluid dynamic pressure bearing used in a hard disk drive or the like, for example, a rotary shaft with a flange, and a radial dynamic pressure groove is formed on an inner peripheral surface to which the rotary shaft is fitted, and one end surface of the flange A hollow cylindrical sleeve in which a thrust dynamic pressure groove is formed on the end surface facing the inner surface, and a disk-shaped sleeve that forms a thrust dynamic pressure groove on the inner end surface facing the other end surface of the flange and closes one opening of the sleeve. Examples include a thrust plate and a lubricating oil filled in a minute gap between the outer peripheral surface of the rotating shaft, the inner peripheral surface of the sleeve, and the inner end surface of the thrust plate. Conventional electrolytic machining for simultaneously machining a radial dynamic pressure groove and a thrust dynamic pressure groove on a sleeve of such a fluid dynamic pressure bearing is performed by a method as shown in FIG. 1, for example. That is, the outer periphery of the other end of the sleeve 1 having an inner diameter whose one end is expanded is held by an air chuck (not shown), and the electrode tool 2 for electrolytic processing is inserted into the inner diameter of the sleeve 1 from the expanded inner diameter. . The electrode tool 2 has a small diameter portion 2c and a large diameter portion 2d and moves up and down integrally with a stopper 3 made of urethane resin. A conductive pattern 2a corresponding to the radial dynamic pressure groove and a conductive pattern 2b corresponding to the thrust dynamic pressure groove are formed on the outer peripheral surface of the small diameter portion 2c and the step between the small diameter portion 2c and the large diameter portion 2d, respectively. Yes. By pressing the end face of the stopper 3 tightly against the end face of the sleeve 1, the electrode tool 2 is axially positioned with respect to the sleeve 1, and the gap between the outer face of the electrode tool 2, the inner face of the stopper 3, and the inner face of the sleeve 1. As a result, the flow path 5 of the electrolytic solution 4 is formed. The electrolytic solution 4 is supplied from the upper part of the stopper 3 and is discharged from the lower end surface of the sleeve 1 through the flow path 5. When a DC pulse current is allowed to flow between the inner surface of the sleeve 1 and the surfaces of the conductive patterns 2a and 2b of the electrode tool 2 through the electrolytic solution 4 while supplying the electrolytic solution 4, the conductivity of the inner surface of the sleeve 1 is increased. Only a limited surface facing the surface of the pattern is dissolved electrochemically, and a radial dynamic pressure groove 1a and a thrust dynamic pressure groove 1b are formed on the inner surface of the sleeve 1, respectively. The general minimum groove width of these dynamic pressure grooves is 40 to 50 μm.

なお、図2に示すように、流体動圧軸受のスラストプレート10にスラスト動圧溝10aを形成する電解加工も、ストッパー12をスラストプレート10に押し当てて、スラスト動圧溝10aに対応する導電パターン11aを有する電極工具11の位置決めを行った上で、同様にして行うことができる。いずれの場合においても、導電パターン以外の表面を非導電性樹脂などによって完全に絶縁する必要がある。局所的に絶縁が失われている場合はそこから迷走電流が発生し、絶縁膜が薄かったりして全体的に絶縁が充分でない場合は、広い範囲で透過電流が発生し、所望の領域以外の表面まで溶解され、電解加工される動圧溝の精度が悪化してしまう。 In addition, as shown in FIG. 2, the electrolytic machining for forming the thrust dynamic pressure groove 10a in the thrust plate 10 of the fluid dynamic pressure bearing also presses the stopper 12 against the thrust plate 10 to conduct electricity corresponding to the thrust dynamic pressure groove 10a. After positioning the electrode tool 11 having the pattern 11a, it can be performed in the same manner. In any case, it is necessary to completely insulate the surface other than the conductive pattern with a non-conductive resin or the like. If the insulation is lost locally, stray current is generated from it, and if the insulation film is thin and the insulation is not sufficient as a whole, a transmission current is generated in a wide range, and other than the desired region The accuracy of the dynamic pressure groove that is melted to the surface and is electrolytically processed deteriorates.

上記の電解加工に用いられる従来の動圧溝加工用の電極工具は、図3の模式図で示すように、以下の方法で製作される。
1)まず最初に、電極基材30に対して刃径0.1〜1.0mmのマイクロエンドミルによる深彫り加工を行い、導電パターン面31を残して、幅40〜200μm程度、高さ0.1〜0.5mm程度の凸部32を形成する(パターン彫り加工)。
2)絶縁材充填冶具33内に電極基材30を入れて、絶縁材34(熱硬化性エポキシ系樹脂)を充填し、その後真空引きし、充填した絶縁材34内の気泡を除去し、熱硬化させる。
3)使い捨ての充填冶具33を除去し、余分の絶縁材34も粗加工して除去する。
4)仕上げ研削加工により、導電パターン面31とそれ以外の電極基材表面35が面一となるように仕上げ加工する。
As shown in the schematic diagram of FIG. 3, the conventional electrode tool for dynamic pressure groove machining used for the above-described electrolytic machining is manufactured by the following method.
1) First, deep engraving processing is performed on the electrode base material 30 by a micro end mill having a blade diameter of 0.1 to 1.0 mm, leaving a conductive pattern surface 31 and a width of about 40 to 200 μm and a height of 0.1 mm. The convex part 32 of about 1 to 0.5 mm is formed (pattern engraving process).
2) The electrode base material 30 is placed in the insulating material filling jig 33, filled with the insulating material 34 (thermosetting epoxy resin), and then evacuated to remove bubbles in the filled insulating material 34 and heat. Harden.
3) The disposable filling jig 33 is removed, and the excess insulating material 34 is also roughly removed.
4) Finishing is performed by finish grinding so that the conductive pattern surface 31 and the other electrode substrate surface 35 are flush with each other.

上記の製造方法は、工程数が多く、充填冶具も使い捨てであるため、電極工具の製造コストを引き上げる一因となっていた。また、上記の製造方法による電極工具は、電極基材と絶縁材との密着力が充分でないため、電極基材と絶縁材との界面が電解液により侵食されて弱くなり、絶縁材が電極基材から剥離して、長期に亘って高い精度を維持することができなかった。また、電極基材と絶縁材との間に充分な密着面積を確保するために、絶縁材を埋め込む凸部間の溝の深さはあまり浅くすることはできず、0.1〜0.5mm程度の深さにする必要があった。さらに、凸部を形成するパターン彫り加工においては、刃径0.1〜1.0mm程度のマイクロエンドミルを使用するのが一般的であるが、凸部間の溝幅や導電パターンの輪郭形状の内側円弧部の直径はマイクロエンドミルの刃径よりも大きく設定する必要があった。ところが、流体軸受の小型化に伴い、動圧溝を加工する電極工具の導電パターンは微細化する傾向にあり、凸部幅、凸部間の溝幅や輪郭の内側円弧部の直径を従来よりも小さくすることが求められている。しかしながら、従来の製造方法では、凸部間の溝幅や輪郭の内側円弧部の直径はマイクロエンドミルの刃径寸法によって制限されているため、導電パターンの微細化を実現することは困難である。さらに、極小刃径のマイクロエンドミルを用いたパターン彫り加工においては、切削抵抗によるエンドミルの折損が起き易くなるため、加工条件を上げることができず、加工時間が長くなる。また、微細化された凸部は非常に薄い立壁形状となるので、パターン彫り加工中の負荷によって凸部の変形や倒れが起き易くなり、電極基材に正確な導電パターンを作れない場合が生じる。また、一般的なマイクロエンドミルは、加工に必要な工具の剛性を確保するために、切刃部分の直径と軸方向長さが刃径値と等しく、切刃が無い部分(シャンク部)は刃径よりも太い形状となっているので、刃径値よりも深く切り込むことができない。従って、従来の製造方法では、マイクロエンドミルの刃径が小さくなると切削可能な切込み深さも小さくなり、必然的に凸部の高さが低くなり、電極基材と絶縁材との間の密着面積が減って、絶縁材の密着力がさらに弱くなってしまう、という問題もある。 The above manufacturing method has many steps and the filling jig is also disposable, which has been a factor in raising the manufacturing cost of the electrode tool. In addition, since the electrode tool according to the above manufacturing method does not have sufficient adhesion between the electrode base material and the insulating material, the interface between the electrode base material and the insulating material is eroded and weakened by the electrolytic solution, and the insulating material becomes the electrode base. It peeled from the material and could not maintain high accuracy over a long period of time. In addition, in order to ensure a sufficient adhesion area between the electrode base material and the insulating material, the depth of the groove between the convex portions embedded with the insulating material cannot be made too small, 0.1 to 0.5 mm. It was necessary to make it about a depth. Furthermore, in pattern engraving to form convex portions, it is common to use a micro end mill with a blade diameter of about 0.1 to 1.0 mm, but the groove width between the convex portions and the contour shape of the conductive pattern The diameter of the inner circular arc portion had to be set larger than the blade diameter of the micro end mill. However, with the miniaturization of hydrodynamic bearings, the conductive pattern of electrode tools for machining dynamic pressure grooves tends to become finer, and the width of the convex part, the groove width between the convex parts, and the diameter of the inner arc part of the contour have been increased. There is a need to make it smaller. However, in the conventional manufacturing method, since the groove width between the convex portions and the diameter of the inner arc portion of the contour are limited by the blade diameter dimension of the micro end mill, it is difficult to realize a fine conductive pattern. Furthermore, in pattern engraving using a micro end mill with a very small blade diameter, breakage of the end mill is likely to occur due to cutting resistance, so that the processing conditions cannot be raised and the processing time is increased. In addition, since the miniaturized convex portion has a very thin standing wall shape, the convex portion is likely to be deformed or collapsed due to a load during pattern engraving, and an accurate conductive pattern may not be formed on the electrode substrate. . Moreover, in order to ensure the rigidity of the tool necessary for processing, a general micro end mill has a cutting blade portion with a diameter and an axial length equal to the blade diameter value, and a portion without a cutting blade (shank portion) is a blade. Since it is thicker than the diameter, it cannot be cut deeper than the blade diameter value. Therefore, in the conventional manufacturing method, when the blade diameter of the micro end mill is reduced, the cutting depth that can be cut is also reduced, the height of the convex portion is inevitably reduced, and the adhesion area between the electrode substrate and the insulating material is reduced. There is also a problem that the adhesion of the insulating material is further weakened.

そこで、従来技術として、被加工物表面に電極工具の導電部の露出パターンに対応した形状の動圧溝を形成する動圧溝加工装置において、電極基材の表面に樹脂微粒子を付着させて、焼き付けてなる絶縁樹脂の層によって、上記所定パターン以外の領域を被覆した電解加工用電極工具を用いたものが知られている。さらに、電極基材の表面に、加工すべき動圧溝パターンの孔があらかじめ形成され、樹脂シートを固定してなる構造の電解加工用電極工具を用いたものが記載され、樹脂微粒子を基体表面に付着させて焼き付けてなる樹脂層を非導電性材料として用いること、あるいは、あらかじめ所要形状にパターニングした樹脂シートを用いることにより、従来のレジスト膜の形成や樹脂の埋め込みに比して、基体に対する密着力を大幅に向上させることができ、樹脂微粒子の材質としては、高い絶縁性を有するポリイミド樹脂等を好適に採用することができる旨記載されている(特許文献1)。 Therefore, as a conventional technique, in the dynamic pressure groove processing apparatus for forming a dynamic pressure groove having a shape corresponding to the exposed pattern of the conductive portion of the electrode tool on the workpiece surface, the resin fine particles are attached to the surface of the electrode base material, There is known one using an electrode tool for electrolytic processing in which a region other than the predetermined pattern is covered with an insulating resin layer formed by baking. Furthermore, the electrode substrate surface is described in which a hole of a dynamic pressure groove pattern to be processed is formed in advance and an electrode tool for electrolytic processing having a structure in which a resin sheet is fixed is used. By using a resin layer adhered and baked as a non-conductive material, or by using a resin sheet patterned in advance to the required shape, compared to conventional resist film formation and resin embedding, It is described that the adhesion can be greatly improved, and a polyimide resin having a high insulating property can be suitably used as the material of the resin fine particles (Patent Document 1).

しかしながら、微細な表面形状の電解加工に用いられる電解加工用電極工具においては、加工パターン以外の領域の絶縁被膜も微細になるため、これに用いられる非導電材料である絶縁樹脂の基体に対する密着力が弱くなり易く、電解加工中に流れる電解液の影響により、この絶縁被膜が剥離してしまうという問題がある。従来、このような絶縁被膜に用いられる非導電性材料樹脂は、紫外線あるいは熱等により硬化を行うものが多く、電極工具に用いられる導電性基体との密着性は一般的に低い。更にまた、このような微細な表面形状の電解加工は、電極工具と被加工物との加工間隙を狭く設定して行われることから、間隙の壁面に形成されている絶縁被膜が電解液の流動から受けるせん断方向の力も大きい。このような絶縁被膜の剥離が発生すると、正確な加工パターンを被加工物に転写することができなくなる上、絶縁被膜の剥離片が電極工具と被加工物との加工間隙を詰まらせてしまうという問題も発生する。この剥離片の詰まりは、電解液の流れを部分的に阻害し、その部分の加工形状の不良を引き起こして、この被加工物を部材として使用している最終製品、つまり動圧軸受等の歩留まりを左右することとなる。また、この剥離片の詰まりは、最悪の場合、何らかの形で電気的短絡を引き起こし、電極工具と被加工物の両者に損傷を生じさせ、これらの交換作業を余儀なくされることもある。 However, in the electrode tool for electrolytic processing used for electrolytic processing of a fine surface shape, the insulating coating in the region other than the processing pattern becomes fine, so the adhesion force of the insulating resin, which is a non-conductive material used for this, to the substrate However, there is a problem that this insulating film is peeled off due to the influence of the electrolyte flowing during the electrolytic processing. Conventionally, many non-conductive material resins used for such insulating coatings are cured by ultraviolet rays or heat, and their adhesion to a conductive substrate used for electrode tools is generally low. Furthermore, since the electrolytic processing of such a fine surface shape is performed by setting the processing gap between the electrode tool and the workpiece to be narrow, the insulating film formed on the wall surface of the gap is not allowed to flow in the electrolyte solution. The force in the shearing direction received from is also large. When such peeling of the insulating film occurs, it becomes impossible to transfer an accurate machining pattern to the workpiece, and the peeling piece of the insulating film clogs the machining gap between the electrode tool and the workpiece. Problems also arise. This clogging of the peeled piece partially obstructs the flow of the electrolyte, and causes a defect in the processed shape of the part, resulting in a yield of a final product using the workpiece as a member, that is, a hydrodynamic bearing or the like. Will be affected. In addition, in the worst case, the clogging of the peeled piece may cause an electrical short circuit in some way, causing damage to both the electrode tool and the workpiece, which may necessitate replacement of these.

これらの問題を解決するために、表面に凹部を形成すべき被加工物と、導電性基体の表面に所定パターンの導電部が形成されてなる電極とを、電解液中に対向させて浸漬するとともに、これら被加工物と電極とを加工用電源の正極および負極にそれぞれ接続して電流を流すことによって、被加工物表面に電極の導電部パターンに対応した形状の凹部を形成する電解加工用電極において、前記電極の表面における前記導電部パターン以外の領域には、絶縁被膜として電着塗装膜が形成されていることを特徴とする電解加工用電極工具が記載され、電着塗装に用いられる樹脂(電着塗料)としては、電解加工における耐電圧および電解液に対する耐食性を考慮して、エポキシ系樹脂、ウレタン系樹脂あるいはポリイミド系樹脂が好適に採用されること、この発明の電解加工用電極によれば、電極(電極工具)表面の導電部以外の領域を覆う絶縁被膜として、電着塗装による被膜を用いることにより、基体と絶縁被膜との密着力を向上させることができ、また、これらの密着面は、電解液が浸透し難く、剥離等の損傷の発生が抑えられることから、電極工具表面の加工パターンを長期にわたり維持できることが記載されている(特許文献2)。
また、好ましくは、その後、電着塗装膜上面に、別の非導電性材料樹脂からなる被膜が形成される。この場合に使用される非導電性材料樹脂は特に限定されないが、その樹脂は、先に形成されている電着塗装膜との密着性(なじみ)を考慮して選択されることが望ましいこと、そして、表面に非導電性材料膜が形成された基体は、研磨加工等により、表面の導電部上の非導電性材料膜と電着塗装膜を取り去り、基体表面の加工パターンを露出させることで、導電部と絶縁被膜とからなる表面が面一となった電極工具を得ることができる旨記載されている(特許文献2)。
しかしながら、電着塗装では塗装膜厚さが電着塗装槽内の電着塗料の濃度分布と電流密度に左右されるため、塗装膜厚の管理が難しく、コーナー部や微細な導電パターンなどにおいて均一な厚さの塗装膜を形成するのが困難である。従って、電極工具の絶縁被膜が局所的に薄くなって、充分な絶縁性能が得られない虞がある。さらに、環境への負荷を軽減するために、電着塗装後の大掛かりな排水処理設備が必要とされ、工場への新規導入が難しい。
In order to solve these problems, a workpiece on which a recess is to be formed on the surface and an electrode in which a conductive portion having a predetermined pattern is formed on the surface of the conductive substrate are immersed in an electrolytic solution facing each other. At the same time, the workpiece and the electrode are connected to the positive electrode and the negative electrode of the machining power source, respectively, and an electric current is passed to form a recess having a shape corresponding to the conductive portion pattern of the electrode on the workpiece surface. An electrode tool for electrolytic processing is described in which an electrodeposition coating film is formed as an insulating film in a region other than the conductive part pattern on the surface of the electrode, and is used for electrodeposition coating. As the resin (electrodeposition paint), an epoxy resin, a urethane resin, or a polyimide resin is preferably employed in consideration of the withstand voltage in electrolytic processing and the corrosion resistance against the electrolytic solution. In addition, according to the electrode for electrolytic processing of the present invention, the adhesion between the substrate and the insulating coating can be obtained by using a coating by electrodeposition coating as the insulating coating covering the region other than the conductive portion on the surface of the electrode (electrode tool). It is described that these adhesion surfaces can maintain the machining pattern on the surface of the electrode tool for a long period of time because the electrolytic solution hardly penetrates and the occurrence of damage such as peeling is suppressed. Patent Document 2).
Preferably, after that, a film made of another non-conductive material resin is formed on the upper surface of the electrodeposition coating film. The non-conductive material resin used in this case is not particularly limited, but it is desirable that the resin is selected in consideration of adhesion (familiarity) with the previously formed electrodeposition coating film, Then, the substrate having a non-conductive material film formed on the surface is removed by removing the non-conductive material film and the electrodeposition coating film on the conductive portion of the surface by polishing or the like to expose the processing pattern on the substrate surface. In addition, it is described that an electrode tool in which the surface of the conductive portion and the insulating coating is flush can be obtained (Patent Document 2).
However, in electrodeposition coating, the coating thickness depends on the concentration distribution and current density of the electrodeposition coating in the electrodeposition tank, so it is difficult to manage the coating thickness, and it is uniform in corners and fine conductive patterns. It is difficult to form a coating film with a sufficient thickness. Therefore, the insulating coating of the electrode tool is locally thinned, and sufficient insulation performance may not be obtained. Furthermore, in order to reduce the burden on the environment, a large-scale wastewater treatment facility after electrodeposition coating is required, and it is difficult to introduce it into a factory.

電極工具の被加工物に対向する部分のうち、動圧溝に対応しない部分に凹部を形成し、被加工物と対向する全体部分に非導電性材料を被膜した後に、電極露出部の表面が露出して非導電性材料の表面と面一となるように加工を施すことによって形成された電解加工用電極工具に関して、代表的な従来技術がさらにある(特許文献3参照)。この電解加工用電極工具を用いた動圧溝の電解加工方法においては、電極露出部の表面が非導電性材料の表面に対して面一にされて電解加工が行われることから、転写精度を向上すべく加工間隙が狭くされても、加工により生じた電解生成物や温度上昇をした電解液の滞留がなされなくなって電解条件が所望に保たれると共に、非導電性材料に対する電解生成物の衝突に起因して発生する非導電性材料の剥離片による詰まりがなくされて電解液の流速低下が防止され、このように流速低下が防止されることによって電流密度の低下が防止されて被加工物の加工表面の面粗さが向上されるばかりではなく、電解加工速度も高められるようになるとしている。さらに、凹部をエッチング工法や切削工法によって形成し、エポキシ樹脂等の非導電性材料を印刷等によって被加工物に対向する面全体に被膜した後、研磨加工に従って電極部を露出させることによって、この露出した電極露出部と凹部に被膜されている非導電性材料の表面とが面一なる旨記載されている。しかしながら、エポキシ樹脂等を印刷等によって被膜する製造方法では、前述したように、電極基材とエポキシ樹脂等との密着力が充分でないため、電極基材と非導電性材料との界面が電解液により侵食されて弱くなり、非導電性材料が電極基材から剥離して、長期に亘って高い精度を維持することができない虞がある。 After forming a recess in a portion of the electrode tool facing the workpiece that does not correspond to the dynamic pressure groove and coating a non-conductive material on the entire portion facing the workpiece, the surface of the electrode exposed portion is There is further a typical prior art regarding an electrode tool for electrolytic processing formed by processing so as to be exposed and flush with the surface of a non-conductive material (see Patent Document 3). In the electrolytic processing method of the dynamic pressure groove using the electrode tool for electrolytic processing, the surface of the electrode exposed portion is made flush with the surface of the non-conductive material, so that the electrolytic processing is performed. Even if the processing gap is narrowed to improve, the electrolytic product generated by processing and the electrolytic solution that has risen in temperature are not retained, so that the electrolysis conditions can be maintained as desired, and the electrolytic product with respect to the non-conductive material can be maintained. The clogging of the non-conductive material caused by the collision is eliminated and the flow rate of the electrolyte is prevented from being lowered. By preventing the flow rate from being lowered in this way, the current density is prevented from being lowered and the workpiece is processed. Not only is the surface roughness of the processed surface of the object improved, but the electrolytic processing speed is also increased. Further, the concave portion is formed by an etching method or a cutting method, and a non-conductive material such as an epoxy resin is coated on the entire surface facing the workpiece by printing or the like. It is described that the exposed electrode exposed portion and the surface of the nonconductive material coated on the recess are flush with each other. However, in the manufacturing method of coating an epoxy resin or the like by printing or the like, as described above, the adhesion between the electrode substrate and the epoxy resin is not sufficient, so the interface between the electrode substrate and the non-conductive material is an electrolyte solution. As a result, the non-conductive material is peeled off from the electrode base material and cannot maintain high accuracy over a long period of time.

特開2002−79425号公報JP 2002-79425 A 特開2003−340648号公報JP 2003-340648 A 日本国特許3339792号Japanese Patent 3339792

本発明者は、絶縁材と電極基材との密着性が非常に高く、長時間使用しても絶縁材と電極基材との界面に電解液が浸透せず、長期に亘って高い精度を維持することができる上、絶縁樹脂モールドのための絶縁材充填冶具などを必要としない、製作が容易な電解加工用電極工具及びその製造方法を提供する。 The inventor has very high adhesion between the insulating material and the electrode base material, and the electrolyte does not penetrate into the interface between the insulating material and the electrode base material even when used for a long time. An electrode tool for electrolytic processing that can be maintained and that does not require an insulating material filling jig for an insulating resin mold and the like, and a manufacturing method thereof are provided.

上記目的を達成する為に、本発明者は鋭意研究したところ、蒸着重合された樹脂若しくは、蒸着された樹脂を用いれば、電極基材との密着性が非常に高く、長期間に亘って電極基材との界面に電解液が浸透しない絶縁薄膜が形成できることを見出し、その結果、長期に亘って高い精度を維持することができる電解加工用電極工具及び効率的な電解加工用電極工具の製造方法を発明するに至った。
すなわち、本発明は、電極基材が露出している凸部の上面によって形成された導電パターンと、導電パターン以外の電極基材の表面に均一に設けられた蒸着重合樹脂若しくは蒸着樹脂による絶縁薄膜から成ることを特徴とする電解加工用電極工具である。
また、本発明は、導電パターンの表面と、導電パターン以外の電極基材の表面に均一に設けられた蒸着重合樹脂若しくは蒸着樹脂による絶縁薄膜の表面とを面一とすることができる。
また、本発明は、凸部の高さを、5〜50μmとすることができる。
また、本発明は、均一に設けられた絶縁薄膜の厚さを、5〜50μmとすることができる。
さらに、本発明は、絶縁薄膜が、蒸着重合されたポリイミド系樹脂、蒸着された四フッ化エチレン・パーフルオロビニルエーテル系共重合体、蒸着された四フッ化エチレン・六フッ化プロピレン共重合体から選ばれる1種とすることができる。
また、本発明は、電解加工用電極工具の電極基材を、銅、真鍮、燐青銅、鉄−銅系合金若しくはオーステナイト系ステンレス鋼から選ばれる1種とすることができる。
In order to achieve the above object, the present inventor has intensively researched and found that when a vapor-deposited resin or a vapor-deposited resin is used, the adhesion to the electrode substrate is very high, and the electrode is used over a long period of time. We found that an insulating thin film that does not allow electrolyte to penetrate into the interface with the base material can be formed. As a result, it is possible to produce an electrode tool for electrolytic processing that can maintain high accuracy over a long period of time and an efficient electrode tool for electrolytic processing. Invented the method.
That is, the present invention relates to a conductive pattern formed by the upper surface of the convex part from which the electrode base material is exposed, and an insulating thin film made of vapor deposition polymerization resin or vapor deposition resin provided uniformly on the surface of the electrode base material other than the conductive pattern. It is an electrode tool for electrolytic processing characterized by comprising.
Moreover, this invention can make the surface of an electrically conductive pattern, and the surface of the insulating thin film by vapor deposition polymerization resin or vapor deposition resin provided uniformly on the surface of electrode base materials other than an electroconductive pattern.
Moreover, this invention can make the height of a convex part 5-50 micrometers.
Moreover, this invention can make the thickness of the insulating thin film provided uniformly 5-50 micrometers.
Furthermore, the present invention provides an insulating thin film comprising a vapor-deposited polyimide resin, a vapor-deposited tetrafluoroethylene / perfluorovinyl ether copolymer, and a vapor-deposited tetrafluoroethylene / hexafluoropropylene copolymer. It can be set as one kind selected.
In the present invention, the electrode base material of the electrode tool for electrolytic processing can be one selected from copper, brass, phosphor bronze, iron-copper alloy, or austenitic stainless steel.

本発明は、電極基材を化学的除去法若しくは機械的除去法により、電極基材の表面の一部を除去して凸部を設け、凸部が設けられた電極基材の表面全体を覆うようにして、蒸着若しくは蒸着重合させることにより厚さ5〜50μmの絶縁薄膜を均一に形成し、絶縁薄膜で覆われた表面を研削またはエッチングすることにより、凸部の上面に電極基材を露出させて導電パターンを形成させることを特徴とする電解加工用電極工具の製造方法でもある。
また、絶縁薄膜で覆われた表面を研削またはエッチングした後の凸部の仕上げ高さを、5〜50μmとすることができる。
また、電極基材の表面の一部を除去して凸部を設ける際の化学的除去法がエッチングであり、機械的除去法がレーザ加工、精密ブラスト加工、または切削加工から選ばれる一つであるとすることができる。
さらに、本発明は、絶縁薄膜で覆われている表面を研削またはエッチングするに際して、導電パターンの表面と、それ以外の電極基材の表面に設けられた蒸着重合樹脂若しくは蒸着樹脂による絶縁薄膜の表面が面一となるように仕上げることができる。
The present invention removes a part of the surface of the electrode base material by a chemical removal method or a mechanical removal method to provide a convex portion, and covers the entire surface of the electrode base material provided with the convex portion. Thus, an insulating thin film having a thickness of 5 to 50 μm is uniformly formed by vapor deposition or vapor deposition polymerization, and the surface covered with the insulating thin film is ground or etched to expose the electrode substrate on the upper surface of the convex portion. It is also the manufacturing method of the electrode tool for electrolytic processing characterized by making it form a conductive pattern.
Moreover, the finishing height of the convex part after grinding or etching the surface covered with the insulating thin film can be 5-50 micrometers.
In addition, the chemical removal method for removing a part of the surface of the electrode substrate to provide a convex portion is etching, and the mechanical removal method is one selected from laser processing, precision blast processing, or cutting processing. There can be.
Furthermore, when grinding or etching the surface covered with the insulating thin film according to the present invention, the surface of the conductive pattern and the surface of the insulating thin film made of vapor deposition polymerization resin or vapor deposition resin provided on the surface of the other electrode substrate Can be finished to be flush with each other.

本発明の電解加工用電極工具によれば、たとえ微細な導電パターンであっても、1本の工具で、導電パターンに対応する動圧溝パターンが再現性良く正確に加工された被加工物(ワーク)を30万個以上作れることがわかった。
また、本発明の電解加工用電極工具の製造方法によれば、使い捨ての樹脂充填冶具を必要とせず、製造工程も少なくなるため、大幅に製作時間を短縮することができ、電極工具のコストダウンのみならず、新製品や改良品のための導電パターンの設計変更に対して迅速に対応することができる。また、蒸着又は蒸着重合による絶縁薄膜は電極基材との密着力が強いので、凸部の高さは5〜50μm程度で充分となり、エッチング、レーザ加工、精密ブラストなどの除去法を用いれば、マイクロエンドミルの刃径寸法に制限されることなく導電パターンを微細化することができる。また、マイクロエンドミルでパターン彫り加工を行う場合でも、50μm以下程度の浅い切込み深さで充分なので、切削抵抗が少なくなり、凸部の塑性変形やマイクロエンドミルの折損が抑えられ、切削加工が容易になる。
According to the electrode tool for electrolytic processing of the present invention, even if it is a fine conductive pattern, a work piece in which a dynamic pressure groove pattern corresponding to the conductive pattern is accurately processed with high reproducibility with a single tool ( It was found that more than 300,000 workpieces) can be made.
In addition, according to the method of manufacturing an electrode tool for electrolytic processing of the present invention, a disposable resin-filling jig is not required and the number of manufacturing processes is reduced, so that the manufacturing time can be greatly shortened and the cost of the electrode tool is reduced. Not only that, it is possible to respond quickly to changes in the design of conductive patterns for new products and improved products. Moreover, since the insulating thin film by vapor deposition or vapor deposition polymerization has strong adhesive force with an electrode base material, the height of a convex part will be enough about 5-50 micrometers, and if removal methods, such as etching, laser processing, and precision blasting, are used, The conductive pattern can be miniaturized without being limited by the blade end size of the micro end mill. In addition, even when pattern engraving is performed with a micro end mill, a shallow cutting depth of about 50 μm or less is sufficient, so cutting resistance is reduced, plastic deformation of the convex portion and breakage of the micro end mill are suppressed, and cutting is easy. Become.

本発明において用いる絶縁樹脂は、NaNO3 (硝酸ナトリウム)に代表される電解液に対して耐薬品性が高い材料であり、体積抵抗率が高く、電極基材に対して密着力が良く、蒸着できるものであれば、どのようなものでも良いが、代表的には蒸着重合されたポリイミド系樹脂、蒸着された四フッ化エチレン・パーフルオロビニルエーテル系共重合体、蒸着された四フッ化エチレン・六フッ化プロピレン共重合体から選ばれる1種であり、とくに蒸着重合されたポリイミド系樹脂が好ましく用いられる。
本発明で用いることができるポリイミド系樹脂は、原料であるカルボン酸系化合物としては、図4に示したようなテトラカルボン酸無水物、ポリイソシアネート化合物、カルボン酸ハロゲン化物を挙げることができ、とくに、テトラカルボン酸無水物を好適に用いることができる。また、もうひとつの原料であるアミン系化合物としては、図5に示したようなアミン化合物を挙げることができる。
The insulating resin used in the present invention is a material having high chemical resistance to an electrolytic solution typified by NaNO 3 (sodium nitrate), high volume resistivity, good adhesion to the electrode substrate, and vapor deposition. Any material can be used as long as it can be used. Typically, a vapor-deposited polyimide resin, a vapor-deposited tetrafluoroethylene / perfluorovinyl ether copolymer, a vapor-deposited tetrafluoroethylene- One type selected from a hexafluoropropylene copolymer, and particularly a polyimide resin that is vapor-deposited and polymerized is preferably used.
The polyimide resin that can be used in the present invention can include tetracarboxylic acid anhydrides, polyisocyanate compounds, and carboxylic acid halides as shown in FIG. Tetracarboxylic acid anhydride can be preferably used. Moreover, as an amine compound which is another raw material, an amine compound as shown in FIG. 5 can be exemplified.

ポリイミド系樹脂の蒸着重合の典型的な例としては、図6の模式図に示すように、気相状態のカルボン酸無水物モノマー61とジアミンのモノマー62を、反応装置65のそれぞれ導入口66および導入口67から、電極基材60が静置された温度約200℃の真空反応装置65内に別々に導き、気相状態で重合反応を行わせ、電極基材60の表面にポリアミド酸の薄膜63を均一かつ所望の厚さで生成させるのである。未反応モノマー64は排気口68から反応装置外へ排気される。薄膜63の厚さは重合反応時間で決定されるので、膜厚管理が容易である。次いで、電極基材60を反応装置65から取り出し、この薄膜63をさらに約300℃程度に加熱し、脱水反応を促進してポリアミド酸をポリイミドに変換する。このようにして得られるポリイミド薄膜は、絶縁性に優れ、非常に強力に電極基材60に密着し、また、ナノ構造で薄膜状にポリマーが形成されるため、ポリイミド薄膜自体が強い強度を有し、ピンホールも発生しないことを確かめている。 As a typical example of the vapor deposition polymerization of a polyimide resin, as shown in the schematic diagram of FIG. 6, a carboxylic acid anhydride monomer 61 and a diamine monomer 62 in a gas phase state are respectively connected to an inlet 66 and a reactor 65, respectively. A polyamic acid thin film is formed on the surface of the electrode base material 60 through the introduction port 67 and separately guided into a vacuum reactor 65 having a temperature of about 200 ° C. where the electrode base material 60 is allowed to stand. 63 is produced in a uniform and desired thickness. Unreacted monomer 64 is exhausted from the exhaust port 68 to the outside of the reaction apparatus. Since the thickness of the thin film 63 is determined by the polymerization reaction time, the film thickness can be easily managed. Next, the electrode base material 60 is taken out from the reaction device 65, and the thin film 63 is further heated to about 300 ° C. to accelerate the dehydration reaction and convert the polyamic acid into polyimide. The polyimide thin film thus obtained has excellent insulating properties, adheres very strongly to the electrode substrate 60, and forms a polymer in a thin film with a nanostructure. Therefore, the polyimide thin film itself has strong strength. And it is confirmed that there is no pinhole.

従来のように、ポリアミド酸溶液を電極基材に塗布し、加熱してポリイミドに変換する非蒸着重合の被膜生成法では、均一な厚さの絶縁膜が形成されず、図7aに示すように、凸部70の角部74で薄く、凸部70間の隅部75において厚い絶縁膜76が形成される。さらに、従来の電着塗装による被膜生成方法においても、電着成分が被膜として電極基材表面に析出する量は、溶液(水性電着塗料)の濃度分布や電流密度に依存するため、図7aと同様な不具合が起きる。そればかりではなく、図7bに示すように、凸部間の距離が数十μm程度に狭くされた微細な導電パターンの場合では、凸部側面77や凸部70以外の表面78に電着塗装膜79が正常に形成されない不具合も起き得る。このように、膜厚が局所的に薄かったり、正常に形成されていない場合、その後の仕上げ工程において絶縁不良が発生したり、局所的に不充分な絶縁によって電解加工中に迷走電流が発生し、所望の領域以外の表面が溶解され、動圧溝の加工精度が悪くなったりする。それに対して、本発明の蒸着重合により生成される絶縁薄膜71は、図7cで示すように、角部74や隅部75においても、また、微細化された導電パターンにおいても、所望の厚さで均一に形成されるので、電極基材60は充分に絶縁され、高精度な動圧溝が加工可能な電極工具を確実に実現できる。 In the conventional non-deposition polymerization film formation method in which a polyamic acid solution is applied to an electrode substrate and converted to polyimide by heating, an insulating film having a uniform thickness is not formed, as shown in FIG. The insulating film 76 is formed thin at the corners 74 of the protrusions 70 and thick at the corners 75 between the protrusions 70. Further, even in the conventional film formation method by electrodeposition coating, the amount of the electrodeposition component deposited as a film on the electrode substrate surface depends on the concentration distribution of the solution (aqueous electrodeposition coating material) and the current density. The same problem occurs. In addition, as shown in FIG. 7b, in the case of a fine conductive pattern in which the distance between the convex portions is narrowed to about several tens of μm, electrodeposition coating is applied to the surface 78 other than the convex side surface 77 and the convex portion 70. There may be a problem that the film 79 is not normally formed. In this way, when the film thickness is locally thin or not formed normally, defective insulation occurs in the subsequent finishing process, or stray current is generated during electrolytic processing due to insufficient insulation locally. The surface other than the desired region is dissolved, and the processing accuracy of the dynamic pressure groove is deteriorated. On the other hand, as shown in FIG. 7c, the insulating thin film 71 produced by the vapor deposition polymerization of the present invention has a desired thickness both in the corner 74 and the corner 75, and in the miniaturized conductive pattern. Therefore, the electrode base material 60 is sufficiently insulated, and an electrode tool capable of machining a dynamic pressure groove with high accuracy can be reliably realized.

本発明の蒸着重合樹脂若しくは蒸着樹脂による絶縁薄膜に用いる代表的な樹脂を図8に示す。蒸着重合樹脂としてはポリイミドであり、蒸着樹脂としてはPFA系樹脂(4フッ化エチレン・パーフロロプロピルビニルエーテル)又はFEP系樹脂(4フッ化エチレン・6フッ化プロピレン共重合体)を挙げることができる。 FIG. 8 shows a typical resin used for the vapor-deposited polymerization resin or the insulating thin film made of the vapor-deposited resin of the present invention. The vapor deposition polymerization resin is polyimide, and examples of the vapor deposition resin include a PFA resin (tetrafluoroethylene / perfluoropropyl vinyl ether) or an FEP resin (tetrafluoroethylene / hexafluoropropylene copolymer). .

本発明の代表的な電極工具としては、図9aに示す形状のスリーブ用電極工具と図9bに示す形状のスラストプレート用電極工具が挙げられる。これら電極工具の製造方法を図10の模式図にて示す。ブランク加工した銅、真鍮、燐青銅、オーステナイト系ステンレス鋼などの電極基材60の所定の表面に、化学的除去法若しくは機械的除去法を用いて電極基材60の表面の一部を除去することで所定高さの凸部70を設け、導電パターンを形成した電極基材60の表面全体に、所定厚さの絶縁薄膜71を、蒸着重合樹脂若しくは蒸着樹脂により、均一に形成する。絶縁薄膜71の厚さは、5〜50μmであることが望ましい。絶縁薄膜71の厚さが5μmを下回ると、全体的に充分な絶縁がなされず、透過電流が発生して電解加工の加工精度が悪くなり、また、絶縁薄膜71の厚さが50μmを超えると、蒸着重合または蒸着による薄膜生成が難しくなり、絶縁薄膜71の生成時間も長くなって、コスト的に見合わなくなるためである。凸部70の高さは、絶縁薄膜71の厚さに比して徒に大きくする必要はなく、研削またはエッチングによる仕上げ後に電極面が平坦または略平坦であることが望ましいことから、仕上げ高さが5〜50μmになるように仕上げ代を考慮して設けるのが好適である。電極基材60の表面の一部を除去する方法としては、以下のようなものがある。
イ) マイクロエンドミルを使用した切削による除去加工
ロ) レーザ加工機による除去加工
ハ) エッチング加工による除去加工
ニ) 精密ブラスト加工による除去加工
絶縁薄膜71は、連続使用温度200℃に耐え、電解液に侵されず、加工中に透過電流が発生しない高い体積抵抗率を示す材料であることが好ましい。これを実現する樹脂材料なら何でも良いが、身近にあるものとしては、ポリイミド樹脂、PFA系樹脂、FEP系樹脂が適している。表1に、その特性値を示す。
Representative electrode tools of the present invention include a sleeve electrode tool having the shape shown in FIG. 9a and a thrust plate electrode tool having the shape shown in FIG. 9b. The manufacturing method of these electrode tools is shown in the schematic diagram of FIG. A part of the surface of the electrode substrate 60 is removed on a predetermined surface of the electrode substrate 60 such as blanked copper, brass, phosphor bronze, austenitic stainless steel or the like by using a chemical removal method or a mechanical removal method. Thus, the protrusion 70 having a predetermined height is provided, and the insulating thin film 71 having a predetermined thickness is uniformly formed on the entire surface of the electrode substrate 60 on which the conductive pattern is formed, using a vapor deposition polymerization resin or a vapor deposition resin. The thickness of the insulating thin film 71 is desirably 5 to 50 μm. If the thickness of the insulating thin film 71 is less than 5 μm, sufficient insulation is not achieved as a whole, a transmission current is generated, and the processing accuracy of electrolytic processing is deteriorated, and when the thickness of the insulating thin film 71 exceeds 50 μm. This is because it is difficult to produce a thin film by vapor deposition polymerization or vapor deposition, and the production time of the insulating thin film 71 becomes long, which is not cost-effective. The height of the convex portion 70 does not need to be increased as compared with the thickness of the insulating thin film 71, and it is desirable that the electrode surface be flat or substantially flat after finishing by grinding or etching. Is preferably provided in consideration of the finishing allowance so that the thickness becomes 5 to 50 μm. As a method for removing a part of the surface of the electrode substrate 60, there are the following methods.
B) Removal processing by cutting using a micro end mill b) Removal processing by laser processing machine c) Removal processing by etching processing d) Removal processing by precision blast processing The insulating thin film 71 can withstand a continuous use temperature of 200 ° C. It is preferable that the material exhibits a high volume resistivity that is not attacked and does not generate a transmission current during processing. Any resin material can be used to achieve this, but polyimide resin, PFA resin, and FEP resin are suitable as familiar materials. Table 1 shows the characteristic values.

次いで、凸部70が設けられた表面を覆っている絶縁薄膜71の一部を仕上げ研削加工により除去して、凸部70の上面に電極基材を露出させ、導電パターンを形成する。電極基材が露出している導電パターンの表面72は、図10で示すように、導電パターン以外の部分を覆う絶縁薄膜71の表面73より高くしても、または図11で示すように、面一としても良い。面一とする場合は、凸部70の上面とともに絶縁薄膜71の表面73をわずかに研削して仕上げるようにすると平滑な仕上げ面が得られる。または、凸部70の高さと絶縁被膜71の厚さを等しくして、凸部70の上面を覆う絶縁薄膜71のみを研削またはエッチングして面一に仕上げるようにしてもよい。 Next, a part of the insulating thin film 71 covering the surface on which the convex portion 70 is provided is removed by finish grinding, and the electrode base material is exposed on the upper surface of the convex portion 70 to form a conductive pattern. The surface 72 of the conductive pattern from which the electrode base material is exposed may be higher than the surface 73 of the insulating thin film 71 covering the portion other than the conductive pattern, as shown in FIG. 10, or as shown in FIG. It is good as well. In the case of flushing, a smooth finished surface can be obtained by slightly grinding and finishing the surface 73 of the insulating thin film 71 together with the upper surface of the convex portion 70. Alternatively, the height of the convex portion 70 and the thickness of the insulating coating 71 may be made equal, and only the insulating thin film 71 covering the upper surface of the convex portion 70 may be ground or etched to finish it flush.

電解加工用電極工具製造プロセスの各工程を、本発明と従来例とについて示すと、図12のようになる。従来技術では、9工程必要であったが、本発明ではわずか5工程で製造できる。さらに、本発明において用いる電解加工用電極工具の電極基材は、銅系合金あるいは鉄系合金が挙げられるが、銅系合金としては銅、真鍮、燐青銅、鉄系合金としては鉄−銅系合金若しくはオーステナイト系ステンレス鋼(SUS303,304等)が挙げられる。 FIG. 12 shows each step of the electrolytic machining electrode tool manufacturing process for the present invention and the conventional example. In the prior art, 9 steps are required, but in the present invention, it can be manufactured in only 5 steps. Furthermore, the electrode base material of the electrode tool for electrolytic processing used in the present invention includes a copper-based alloy or an iron-based alloy, and the copper-based alloy is copper, brass, phosphor bronze, and the iron-based alloy is iron-copper-based. An alloy or austenitic stainless steel (SUS303, 304, etc.) can be used.

また、本発明のもうひとつの特徴は、図9aに示すような、立体的な電極基材に対しても均一な絶縁薄膜を形成させることができ、次いで、研削またはエッチングにより所定部分の絶縁薄膜を除去するだけで容易に導電パターンが形成できることである。 Another feature of the present invention is that a uniform insulating thin film can be formed on a three-dimensional electrode substrate as shown in FIG. 9a, and then a predetermined portion of the insulating thin film is obtained by grinding or etching. The conductive pattern can be easily formed simply by removing the film.

さらに、本発明においては図11に示すように、導電パターンの表面72と、導電パターン以外の電極基材の表面に設けられた5〜50μmの蒸着重合樹脂若しくは蒸着樹脂による絶縁薄膜の表面73が面一となるまで、仕上げ研磨加工することができる。 Furthermore, in the present invention, as shown in FIG. 11, the surface 72 of the conductive pattern and the surface 73 of the insulating thin film made of 5-50 μm vapor-deposition polymerization resin or vapor deposition resin provided on the surface of the electrode substrate other than the conductive pattern are provided. Finish polishing can be performed until it is flush.

また、本発明は次のような利点を有する。
イ)全体を薄い絶縁薄膜で覆うため、絶縁樹脂の充填工程が必要無くなり、従って絶縁樹脂を除去する粗加工が省略でき、充填治具も必要なくなる。
ロ)電極工具の製作が容易になるので、納期とコストが大幅に向上する。
ハ)蒸着または蒸着重合によって電極基材表面に絶縁薄膜を均一に形成する事により、絶縁樹脂の熱硬化時の気泡やピンホールの発生がなくなり、ひいては電解加工時の迷走電流の発生を押さえることができ、その電極工具で加工される動圧溝の品質向上につながる。
ニ)絶縁薄膜の密着性が向上するので、凸部高さが低くても絶縁薄膜の剥離が発生しにくく、電極工具の長寿命化を実現できる。
ホ)電極工具の凸部高さが50μm以下で済むので、さまざまな加工方法を用いて、微細な導電パターンが加工できるようになる。
The present invention has the following advantages.
B) Since the whole is covered with a thin insulating thin film, an insulating resin filling step is not required, so that rough processing for removing the insulating resin can be omitted, and a filling jig is not required.
B) Since the electrode tool can be easily manufactured, the delivery time and cost are greatly improved.
C) By forming an insulating thin film uniformly on the surface of the electrode substrate by vapor deposition or vapor deposition polymerization, the generation of bubbles and pinholes during the thermal curing of the insulating resin is eliminated, and consequently the generation of stray current during electrolytic processing is suppressed. This leads to an improvement in the quality of the dynamic pressure groove processed by the electrode tool.
D) Since the adhesion of the insulating thin film is improved, the insulating thin film hardly peels off even if the height of the convex portion is low, and the life of the electrode tool can be extended.
E) Since the height of the convex portion of the electrode tool is 50 μm or less, a fine conductive pattern can be processed using various processing methods.

本発明の電解加工用電極工具は、図9aおよび図9bに示された形状に限定されるものではなく、凸部の上面に電極基材を露出させて形成した導電パターンと、それ以外の電極基材表面を覆う厚さ5〜50μmの蒸着重合樹脂若しくは蒸着樹脂による絶縁薄膜からなる構成のものであれば、どのような形状であっても良い。また、スリーブ用とスラストプレート用のみならず、回転軸の外周面や回転軸のフランジ部の端面など、いずれの流部材に動圧溝を加工する電解加工用電極工具に適用されても良いものである。 The electrode tool for electrolytic processing according to the present invention is not limited to the shape shown in FIGS. 9a and 9b, and a conductive pattern formed by exposing the electrode substrate on the upper surface of the convex portion, and other electrodes. Any shape may be used as long as it is composed of an insulating thin film made of a vapor deposition polymerization resin or a vapor deposition resin having a thickness of 5 to 50 μm covering the surface of the base material. Also, not only for sleeves and thrust plates, but also for electrode tools for electrolytic machining that process dynamic pressure grooves in any flow member such as the outer peripheral surface of the rotating shaft and the end surface of the flange portion of the rotating shaft It is.

(電解加工用電極工具の作成例1)
第1の実施例として、図10に示す手順により、図9bに示す形状のスラストプレート用電極工具55を作製した。電極基材60として、銅を用いた。素材をブランク加工し、中空円筒状にした電極基材60の一方の端面56に、刃径0.04〜0.5mmのマイクロエンドミルを用いて高さ30μm、最小幅30μmの凸部70を中心孔の外周に沿って複数設け、ヘリングボーン状の導電パターンを形成した。導電パターンを形成した電極基材60を図6に示す真空反応装置65内に静置させる。モノマーとしてテトラカルボン酸無水物及び芳香族ジアミンの組み合わせを選択し、真空反応装置65内の温度を200℃にし、揮発させた各モノマーをそれぞれ導入口67、66から真空反応装置65内に供給する。モノマーは、気相中で重合してポリアミド酸ポリマー63を形成し、電極基材60の表面に均一に付着する。未反応モノマー64は、排気口68より排気される。所望の厚さのポリアミド酸ポリマー63が付着するまで反応を続ける。電極基材の表面に所望の厚さのポリアミド酸ポリマー63を形成させたのち、真空反応装置65内から電極基材60を取り出し、約300℃に加熱し、ポリアミド酸ポリマー63を脱水し、ポリイミドに変換させる。図10に模式的に示すような、ポリイミドからなる絶縁薄膜71が膜厚7μmで均一に生成されていた。図13は電極基材60の表面に生成された絶縁薄膜71の生成状態を示す断面拡大写真である。凸部の角部や隅部にも均一な厚さでポリイミドからなる絶縁薄膜71が生成されていることが判明した。次いで、平面研削盤により、絶縁薄膜71で覆われた凸部の上面を研削して20μm除去し、電極基材60を露出させて導電パターンを形成し、最終的に高さ17μmの凸部と、厚さ7μm絶縁薄膜からなるスラストプレート用電極工具55を得た。図14は、スラストプレート用電極工具55の上面写真である。図15は、同じ上面の一部を走査型電子顕微鏡で観察した拡大写真である。走査型電子顕微鏡による観察写真では、絶縁薄膜表面は黒く示され、金属表面のみ白く示される。図15より、導電パターンが鮮明に形成され、絶縁膜はピンホールも無く均一に形成されていることが確認できる。
(Example 1 of making an electrode tool for electrolytic processing)
As a first example, a thrust plate electrode tool 55 having the shape shown in FIG. 9B was produced by the procedure shown in FIG. Copper was used as the electrode substrate 60. Using a micro end mill having a blade diameter of 0.04 to 0.5 mm, a convex portion 70 having a height of 30 μm and a minimum width of 30 μm is centered on one end face 56 of the electrode base material 60 which is blank-processed and formed into a hollow cylinder. A plurality of herringbone-like conductive patterns were formed along the outer periphery of the hole. The electrode base material 60 on which the conductive pattern is formed is allowed to stand in a vacuum reaction device 65 shown in FIG. A combination of tetracarboxylic acid anhydride and aromatic diamine is selected as the monomer, the temperature in the vacuum reactor 65 is set to 200 ° C., and each volatilized monomer is supplied into the vacuum reactor 65 from the inlets 67 and 66, respectively. . The monomer is polymerized in the gas phase to form the polyamic acid polymer 63 and uniformly adheres to the surface of the electrode substrate 60. Unreacted monomer 64 is exhausted from exhaust port 68. The reaction is continued until the desired thickness of the polyamic acid polymer 63 is deposited. After the polyamic acid polymer 63 having a desired thickness is formed on the surface of the electrode base material, the electrode base material 60 is taken out from the vacuum reactor 65 and heated to about 300 ° C. to dehydrate the polyamic acid polymer 63, and polyimide To convert to As shown schematically in FIG. 10, an insulating thin film 71 made of polyimide was uniformly formed with a film thickness of 7 μm. FIG. 13 is an enlarged cross-sectional photograph showing the state of generation of the insulating thin film 71 generated on the surface of the electrode substrate 60. It was found that the insulating thin film 71 made of polyimide was also formed with a uniform thickness at the corners and corners of the protrusions. Next, the upper surface of the convex portion covered with the insulating thin film 71 is ground by a surface grinder to remove 20 μm, the electrode base 60 is exposed to form a conductive pattern, and finally the convex portion having a height of 17 μm is formed. A thrust plate electrode tool 55 made of an insulating thin film having a thickness of 7 μm was obtained. FIG. 14 is a top view photograph of the electrode tool 55 for thrust plate. FIG. 15 is an enlarged photograph of a part of the same upper surface observed with a scanning electron microscope. In the photograph taken with a scanning electron microscope, the surface of the insulating thin film is shown in black, and only the metal surface is shown in white. From FIG. 15, it can be confirmed that the conductive pattern is clearly formed and the insulating film is formed uniformly without any pinholes.

(電解加工用電極工具の作成例2)
第2の実施例として、図9aに示す形状のスリーブ用電極工具50を作製した。電極基材60として、銅を用いた。製作を容易にするために、図9aの電極工具50の小径部51と大径部52を別々の部材としてブランク加工し、マイクロエンドミルを用いて、それぞれのブランクに所定の凸部を形成した後、お互いを組み合わせて一体化する方法を採用した。それ以外は、図10に示す手順と概略同じである。小径部用部材として円筒状のブランクを加工し、刃径0.2〜0.7mmのマイクロエンドミルを用いて、その外周面51aに高さ50μm、最小幅50μmの凸部53を複数設け、スリーブのラジアル動圧溝に対応したヘリングボーン状の導電パターンを形成した。同様にして、大径部用部材として片側端面に中心孔を有する円筒状のブランクを加工し、刃径0.04〜0.5mmのマイクロエンドミルを用いて、端面52bに高さ30μm、最小幅30μmの凸部54を中心孔の外周に沿って複数設け、スリーブのスラスト動圧溝に対応したヘリングボーン状の導電パターンを形成した。次に、小径部用部材を大径部用部材の中心孔に圧入固定して一体化させ、スリーブ用の電極基材60とした。導電パターンを形成した電極基材60を図6に示す真空反応装置63内に静置させる。モノマーとしてテトラカルボン酸無水物及び芳香族ジアミンの組み合わせを選択し、真空反応装置63内の温度を200℃にし、各モノマーを揮発させて、それぞれ導入口67、66から真空反応装置65内に供給する。モノマーは、気相中で重合してポリアミド酸ポリマー63を形成し、電極基材60の表面に均一に付着する。未反応モノマー64は、排気口68より排気される。所望の厚さのポリアミド酸ポリマー63が付着するまで反応を続ける。電極基材60の表面に所望の厚さのポリアミド酸ポリマー63を形成させたのち、真空反応装置65内から電極基材60を取り出し、約300℃に加熱し、ポリアミド酸ポリマー63を脱水し、ポリイミドに変換させる。図10に模式的に示すような、ポリイミドからなる絶縁薄膜71が膜厚10μmで均一に生成されていた。円筒研削盤による研削加工を行って、絶縁被膜71で覆われた小径部51の凸部53の上面を20μmおよび大径部52の凸部54の上面を10μm除去し、電極基材60を露出させて導電パターンを形成し、図9aに示すスリーブ用電極工具50を得た。小径部51は大径部52との同軸度要求を満足するように仕上げられていた。図16は、スリーブ用電極工具50の側面写真である。
(Example 2 of creating an electrode tool for electrolytic machining)
As a second example, a sleeve electrode tool 50 having the shape shown in FIG. 9A was produced. Copper was used as the electrode substrate 60. In order to facilitate manufacture, after the blank portion is formed as the small diameter portion 51 and the large diameter portion 52 of the electrode tool 50 in FIG. 9a as separate members, and a predetermined convex portion is formed on each blank using a micro end mill. Adopted a method of combining and integrating each other. Other than that, it is substantially the same as the procedure shown in FIG. A cylindrical blank is processed as a member for a small diameter portion, and a plurality of convex portions 53 having a height of 50 μm and a minimum width of 50 μm are provided on the outer peripheral surface 51a using a micro end mill having a blade diameter of 0.2 to 0.7 mm, and a sleeve Herringbone-like conductive patterns corresponding to the radial dynamic pressure grooves were formed. Similarly, a cylindrical blank having a center hole on one side end face is processed as a member for a large diameter portion, and using a micro end mill having a blade diameter of 0.04 to 0.5 mm, the end face 52b has a height of 30 μm and a minimum width. A plurality of 30 μm convex portions 54 were provided along the outer periphery of the center hole to form a herringbone-like conductive pattern corresponding to the thrust dynamic pressure groove of the sleeve. Next, the small diameter member was press-fitted and integrated into the center hole of the large diameter member to form an electrode substrate 60 for a sleeve. The electrode base material 60 on which the conductive pattern is formed is allowed to stand in a vacuum reaction device 63 shown in FIG. A combination of tetracarboxylic acid anhydride and aromatic diamine is selected as the monomer, the temperature in the vacuum reactor 63 is set to 200 ° C., each monomer is volatilized, and supplied to the vacuum reactor 65 from the inlets 67 and 66, respectively. To do. The monomer is polymerized in the gas phase to form the polyamic acid polymer 63 and uniformly adheres to the surface of the electrode substrate 60. Unreacted monomer 64 is exhausted from exhaust port 68. The reaction is continued until the desired thickness of the polyamic acid polymer 63 is deposited. After the polyamic acid polymer 63 having a desired thickness is formed on the surface of the electrode base material 60, the electrode base material 60 is taken out from the vacuum reactor 65 and heated to about 300 ° C. to dehydrate the polyamic acid polymer 63, Convert to polyimide. As shown schematically in FIG. 10, an insulating thin film 71 made of polyimide was uniformly formed with a thickness of 10 μm. Grinding with a cylindrical grinder is performed to remove the upper surface of the convex portion 53 of the small diameter portion 51 covered with the insulating coating 71 by 10 μm and the upper surface of the convex portion 54 of the large diameter portion 52 to expose the electrode substrate 60. Thus, a conductive pattern was formed, and a sleeve electrode tool 50 shown in FIG. 9A was obtained. The small diameter portion 51 was finished to satisfy the coaxiality requirement with the large diameter portion 52. FIG. 16 is a side view photograph of the sleeve electrode tool 50.

(電解加工用電極工具の作成例3)
第3の実施例として、図11に示す手順と概略同様にして、図9aに示す形状のスリーブ用電極工具50を作製した。
電極基材60として、銅系合金である真鍮を用いた。実施例2と同様に、高さ20μmの複数の凸部53と凸部52をそれぞれ成形した小径部用部材と大径部用部材を一体に組み合わせた電極基材60を、図6に示す真空反応装置63内に静置させる。モノマーとしてテトラカルボン酸無水物及び芳香族ジアミンの組み合わせを選択し、真空反応装置63内の温度を200℃にし、各モノマーを揮発させて、それぞれ導入口67、66から真空反応装置65内に供給する。モノマーは、気相中で重合してポリアミド酸ポリマー63を形成し、電極基材60の表面に均一に付着する。未反応モノマー64は、排気口68より排気される。所望の厚さのポリアミド酸ポリマー63が付着するまで反応を続ける。電極基材60の表面に所望の厚さのポリアミド酸ポリマー63を形成させたのち、真空反応装置65内から電極基材60を取り出し、約300℃に加熱し、ポリアミド酸ポリマー63を脱水し、ポリイミドに変換させる。図11に模式的に示すような、ポリイミドからなる絶縁薄膜71が膜厚20μmで均一に生成されていた。凸部の上面を覆っている絶縁薄膜71のみエッチングにより除去して電極基材60を露出させ、凸部以外の表面を覆っている絶縁薄膜71の表面73と導電パターンの表面72が面一となるように導電パターンを形成した。
(Creation example 3 of electrode tool for electrolytic machining)
As a third example, a sleeve electrode tool 50 having the shape shown in FIG. 9A was produced in substantially the same manner as the procedure shown in FIG.
As the electrode substrate 60, brass which is a copper-based alloy was used. Similarly to Example 2, an electrode substrate 60 obtained by integrally combining a small diameter member and a large diameter member each formed with a plurality of convex portions 53 and convex portions 52 each having a height of 20 μm is shown in FIG. Let stand in the reactor 63. A combination of tetracarboxylic acid anhydride and aromatic diamine is selected as the monomer, the temperature in the vacuum reactor 63 is set to 200 ° C., each monomer is volatilized, and supplied to the vacuum reactor 65 from the inlets 67 and 66, respectively. To do. The monomer is polymerized in the gas phase to form the polyamic acid polymer 63 and uniformly adheres to the surface of the electrode substrate 60. Unreacted monomer 64 is exhausted from exhaust port 68. The reaction is continued until the desired thickness of the polyamic acid polymer 63 is deposited. After the polyamic acid polymer 63 having a desired thickness is formed on the surface of the electrode base material 60, the electrode base material 60 is taken out from the vacuum reactor 65 and heated to about 300 ° C. to dehydrate the polyamic acid polymer 63, Convert to polyimide. As schematically shown in FIG. 11, an insulating thin film 71 made of polyimide was uniformly formed with a film thickness of 20 μm. Only the insulating thin film 71 covering the upper surface of the convex part is removed by etching to expose the electrode substrate 60, and the surface 73 of the insulating thin film 71 covering the surface other than the convex part and the surface 72 of the conductive pattern are flush with each other. A conductive pattern was formed as follows.

本発明の電解加工用電極工具は、長時間使用しても、絶縁材と電極基材との界面に電解液が浸透しない、長期に亘って高い精度を維持することができる上、絶縁樹脂の充填工程が必要無くなり、充填治具も必要無くなるので、製作が容易な電解加工用電極工具であり、より精度の高い小型の流体軸受の迅速な開発に寄与することができる点において画期的なものであり、産業上の利用可能性は高いものがある。 The electrode tool for electrolytic processing of the present invention can maintain high accuracy over a long period of time, in which the electrolytic solution does not penetrate into the interface between the insulating material and the electrode base material even when used for a long time. It eliminates the need for a filling process and eliminates the need for a filling jig, making it an easy-to-manufacture electrode tool for electrolytic processing, which is revolutionary in that it can contribute to the rapid development of more accurate and compact fluid bearings. And there is a high industrial applicability.

電解加工方法の説明図(スリーブ加工)Illustration of electrolytic processing method (sleeve processing) 電解加工方法の説明図(スラストプレート加工)Illustration of electrolytic machining method (thrust plate machining) 電解加工用電極の従来の製造方法Conventional manufacturing method of electrode for electrolytic processing ポリイミド原料(ポリカルボン酸)の例Example of polyimide raw material (polycarboxylic acid) ポリイミド原料(ポリアミン)の例Example of polyimide raw material (polyamine) 真空反応装置の一例Example of vacuum reactor 絶縁被膜の生成状態説明図Insulation film formation state explanatory diagram 本発明の典型例としての樹脂の説明図Illustration of resin as a typical example of the present invention 動圧溝を加工するための電解加工用電極工具の説明図Electrode machining electrode tool for machining dynamic pressure grooves 本発明による一般的な電解加工用電極工具の製造方法Method for manufacturing a general electrode tool for electrolytic machining according to the present invention 本発明による面一の電解加工用電極工具の製造方法Method of manufacturing a flush electrode tool according to the present invention 電極工具の従来の製造工程と本発明による製造工程の比較図Comparison of conventional manufacturing process of electrode tool and manufacturing process according to the present invention 実施例1により得られた電解加工用電極工具の断面拡大写真Cross-sectional enlarged photograph of the electrode tool for electrolytic processing obtained in Example 1 実施例1により得られた電解加工用電極工具の上面写真Upper surface photograph of electrode tool for electrolytic processing obtained in Example 1 実施例1により得られた電解加工用電極工具の上面を走査型電子顕微鏡により観察した写真The photograph which observed the upper surface of the electrode tool for electrolytic processing obtained by Example 1 with the scanning electron microscope 実施例により得られたスリーブ用の電解加工用電極工具の側面写真Side view photograph of electrode tool for electrolytic processing for sleeve obtained by Example

符号の説明Explanation of symbols

1スリーブ
2加工電極
2a導電パターン(ラジアル)
2b導電パターン(スラスト)
2c小径部
2d大径部
3ストッパー
30従来の製造技術説明図における電極材料
31従来の製造技術説明図における導電パターン面
32従来の製造技術説明図における凸部
33従来の製造技術説明図における絶縁材充填冶具
34従来の製造技術説明図における絶縁材
35従来の製造技術説明図における電極基材表面
4電解液
5流路
50スリーブ用電極工具
51スリーブ用電極工具の小径部
51aスリーブ用電極工具の小径部の外周面
52スリーブ用電極工具の大径部
52aスリーブ用電極工具の大径部の外周面
53スリーブ用電極工具の小径部の凸部
54スリーブ用電極工具の大径部端面の凸部
55スラストプレート
56スラストプレーの端面

6反応装置細部
60電極基材
61カルボン酸無水物モノマー
62ジアミンモノマー
63ポリアミド酸被膜
64未反応モノマー
65反応装置
66カルボン酸無水物モノマー導入口
67ジアミンモノマー導入口
68排気口
7電極工具細部
70凸部
71絶縁被膜
72導電パターン表面
73絶縁被膜表面
74凸部の隅部
75凸部間の隅部
76厚い絶縁膜
77凸部側面
78凸部以外の表面
79電着塗装膜
10従来の製造技術説明図における流体軸受スラストプレート
10a従来の製造技術説明図における流体軸受スラスト動圧溝
11従来の製造技術説明図における電極工具
11a従来の製造技術説明図における電極工具の導電パターン
12従来の製造技術説明図における流体軸受ストッパー
1 sleeve 2 machining electrode 2a conductive pattern (radial)
2b conductive pattern (thrust)
2c Small-diameter portion 2d Large-diameter portion 3 Stopper 30 Electrode material 31 in conventional manufacturing technology explanatory diagram Conductive pattern surface 32 in conventional manufacturing technology explanatory diagram Protruding portion 33 in conventional manufacturing technology explanatory diagram Insulating material in conventional manufacturing technology explanatory diagram Filling jig 34 Insulating material 35 in conventional manufacturing technology explanatory diagram Electrode base material surface 4 Electrolyte 5 Flow path 50 Sleeve electrode tool 51 Sleeve electrode tool small diameter portion 51a Sleeve electrode tool small diameter The outer peripheral surface of the sleeve 52 The large-diameter portion of the electrode tool for sleeve 52a The outer peripheral surface of the large-diameter portion of the electrode tool for sleeve 53 The convex portion of the small-diameter portion of the electrode tool for sleeve 54 The convex portion of the large-diameter end face of the electrode tool for sleeve End face of thrust plate 56 thrust play

6 reactor details 60 electrode substrate 61 carboxylic anhydride monomer 62 diamine monomer 63 polyamic acid coating 64 unreacted monomer 65 reactor 66 carboxylic anhydride monomer inlet 67 diamine monomer inlet 68 exhaust port 7 electrode tool details 70 convex 71 Insulating coating 72 Conductive pattern surface 73 Insulating coating surface 74 Corners 75 of convex portions Corners 76 between convex portions Thick insulating films 77 Protruding side surfaces 78 Surfaces other than convex portions 79 Electrodeposition coating film 10 Description of conventional manufacturing technology Hydrodynamic bearing thrust plate 10a in the drawing, conventional hydrodynamic groove 11 in the conventional manufacturing technology explanatory diagram, electrode tool 11a in the conventional manufacturing technology explanatory diagram, electrode tool conductive pattern 12 in the conventional manufacturing technology explanatory diagram, conventional manufacturing technology explanatory diagram, Hydrodynamic bearing stopper

Claims (10)

電極基材が露出している凸部の上面によって形成された導電パターンと、導電パターン以外の電極基材の表面に均一に設けられた蒸着重合樹脂若しくは蒸着樹脂による絶縁薄膜から成ることを特徴とする電解加工用電極工具。
A conductive pattern formed by the upper surface of the convex portion where the electrode base material is exposed, and a vapor-deposited polymerized resin or an insulating thin film made of a vapor-deposited resin provided uniformly on the surface of the electrode base material other than the conductive pattern, Electrode tool for electrolytic machining.
導電パターンの表面と、導電パターン以外の電極基材の表面に均一に設けられた蒸着重合樹脂若しくは蒸着樹脂による絶縁薄膜の表面とが面一であることを特徴とする請求項1に記載の電解加工用電極工具。   2. The electrolysis according to claim 1, wherein the surface of the conductive pattern and the surface of the insulating thin film made of vapor deposition polymerization resin or vapor deposition resin provided uniformly on the surface of the electrode substrate other than the conductive pattern are flush with each other. Electrode tool for machining. 凸部の高さが、5〜50μmであることを特徴とする請求項1又は請求項2に記載の電解加工用電極工具。 The height of a convex part is 5-50 micrometers, The electrode tool for electrolytic processing of Claim 1 or Claim 2 characterized by the above-mentioned. 均一に設けられた絶縁薄膜の厚さが、5〜50μmであることを特徴とする請求項1ないし請求項3に記載の電解加工用電極工具。 The electrode tool for electrolytic processing according to claim 1, wherein the thickness of the uniformly provided insulating thin film is 5 to 50 μm. 絶縁薄膜が、蒸着重合されたポリイミド系樹脂、蒸着された四フッ化エチレン・パーフルオロビニルエーテル系共重合体、蒸着された四フッ化エチレン・六フッ化プロピレン共重合体から選ばれる1種であることを特徴とする請求項1ないし請求項4に記載の電解加工用電極工具。   The insulating thin film is one type selected from a vapor-deposited polyimide resin, a vapor-deposited tetrafluoroethylene / perfluorovinyl ether copolymer, and a vapor-deposited tetrafluoroethylene / hexafluoropropylene copolymer. The electrode tool for electrolytic processing according to claim 1, wherein the electrode tool is used for electrolytic processing. 電解加工用電極工具の電極基材が、銅、真鍮、燐青銅、鉄−銅系合金若しくはオーステナイト系ステンレス鋼から選ばれる1種であることを特徴とする請求項1ないし請求項5のいずれかに記載した電解加工用電極工具。 6. The electrode base material of the electrode tool for electrolytic machining is one selected from copper, brass, phosphor bronze, iron-copper alloy, or austenitic stainless steel. Electrode machining electrode tool described in 1. 化学的除去法若しくは機械的除去法により、電極基材の表面の一部を除去して凸部を設け、凸部が設けられた電極基材の表面全体を覆うようにして、絶縁樹脂を蒸着若しくは蒸着重合させることにより、厚さ5〜50μmの絶縁薄膜を均一に形成し、絶縁薄膜で覆われた表面を研削またはエッチングすることにより、凸部の上面に電極基材を露出させて導電パターンを形成することを特徴とする電解加工用電極工具の製造方法。 A part of the surface of the electrode substrate is removed by a chemical removal method or a mechanical removal method to provide a convex portion, and an insulating resin is deposited so as to cover the entire surface of the electrode substrate on which the convex portion is provided. Alternatively, by vapor deposition polymerization, an insulating thin film having a thickness of 5 to 50 μm is uniformly formed, and the surface covered with the insulating thin film is ground or etched to expose the electrode base material on the upper surface of the convex portion. The manufacturing method of the electrode tool for electrolytic processing characterized by forming. 凸部の仕上げ高さが、5〜50μmであることを特徴とする請求項7に記載の電解加工用電極工具の製造方法。 The method for manufacturing an electrode tool for electrolytic processing according to claim 7, wherein a finish height of the convex portion is 5 to 50 μm. 化学的除去法がエッチングであり、機械的除去法が切削加工、レーザ加工、精密ブラスト加工から選ばれる一つであることを特徴とする請求項7または請求項8に記載した電解加工用電極工具の製造方法。   9. The electrode tool for electrolytic processing according to claim 7 or 8, wherein the chemical removal method is etching, and the mechanical removal method is one selected from cutting, laser processing, and precision blasting. Manufacturing method. 絶縁薄膜で覆われている表面を研削またはエッチングするに際して、導電パターンの表面と、それ以外の電極基材の表面に設けられた蒸着重合樹脂若しくは蒸着樹脂による絶縁薄膜の表面が面一となるように仕上げることを特徴とする請求項7ないし請求項9に記載した電解加工用電極工具の製造方法。
When grinding or etching the surface covered with the insulating thin film, the surface of the conductive pattern and the surface of the insulating thin film made of vapor-deposited polymer resin or vapor-deposited resin provided on the surface of the other electrode substrate are flush with each other. The method for manufacturing an electrode tool for electrolytic processing according to claim 7, wherein the electrode tool is electrolytically processed.
JP2005057982A 2005-03-02 2005-03-02 Electrochemical machining electrode tool tool and manufacturing method for it Pending JP2006239803A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005057982A JP2006239803A (en) 2005-03-02 2005-03-02 Electrochemical machining electrode tool tool and manufacturing method for it
PCT/US2006/003379 WO2006093605A1 (en) 2005-03-02 2006-02-02 Electrode tool and method for electrochemical machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057982A JP2006239803A (en) 2005-03-02 2005-03-02 Electrochemical machining electrode tool tool and manufacturing method for it

Publications (1)

Publication Number Publication Date
JP2006239803A true JP2006239803A (en) 2006-09-14

Family

ID=36941474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057982A Pending JP2006239803A (en) 2005-03-02 2005-03-02 Electrochemical machining electrode tool tool and manufacturing method for it

Country Status (2)

Country Link
JP (1) JP2006239803A (en)
WO (1) WO2006093605A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202320A (en) * 2008-02-29 2009-09-10 Naotake Mori Method and device for manufacturing minute tool
KR101101607B1 (en) * 2009-09-07 2012-01-02 삼성전기주식회사 Electrode for electrolytic machining, electrolytic machining device and spindle motor
CN103252544A (en) * 2013-05-20 2013-08-21 南京航空航天大学 Method and device for manufacturing of carbon nanometer tube electrode with length controllable and detection of conductivity of carbon nanometer tube electrode
CN113458513A (en) * 2021-07-06 2021-10-01 河南理工大学 Electrochemical machining microstructure method based on porous polymer mask coating

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329021B2 (en) * 2010-10-28 2012-12-11 Palmaz Scientific, Inc. Method for mass transfer of micro-patterns onto medical devices
CN103737130B (en) * 2013-12-03 2016-04-20 同济大学 A kind of gel state brush electrochemical deburring and surface-treated method
EP3886877A4 (en) * 2018-11-26 2022-08-24 Nkarta, Inc. Methods for the simultaneous expansion of multiple immune cell types, related compositions and uses of same in cancer immunotherapy
CN111136352B (en) * 2019-12-31 2020-12-11 安徽工业大学 Flexible plate strip type electrochemical machining tool cathode and machining method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267869B1 (en) * 1998-06-04 2001-07-31 Seagate Technology Llc Electrode design for electrochemical machining of grooves

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202320A (en) * 2008-02-29 2009-09-10 Naotake Mori Method and device for manufacturing minute tool
KR101101607B1 (en) * 2009-09-07 2012-01-02 삼성전기주식회사 Electrode for electrolytic machining, electrolytic machining device and spindle motor
CN103252544A (en) * 2013-05-20 2013-08-21 南京航空航天大学 Method and device for manufacturing of carbon nanometer tube electrode with length controllable and detection of conductivity of carbon nanometer tube electrode
CN113458513A (en) * 2021-07-06 2021-10-01 河南理工大学 Electrochemical machining microstructure method based on porous polymer mask coating

Also Published As

Publication number Publication date
WO2006093605A1 (en) 2006-09-08

Similar Documents

Publication Publication Date Title
JP2006281333A (en) Electro-chemical machining electrode tool and manufacturing method thereof
JP2006239803A (en) Electrochemical machining electrode tool tool and manufacturing method for it
US6638414B2 (en) Electrode design for electrochemical machining of grooves
JP5971312B2 (en) Method for manufacturing a multilayer three-dimensional structure
JP5425111B2 (en) Method for producing a three-dimensional structure having a hydrophobic surface using an immersion method
US20070246372A1 (en) Electrochemical Machining Tool and Method for Machining a Product Using the Same
SE523309C2 (en) Method, electrode and apparatus for creating micro- and nanostructures in conductive materials by patterning with master electrode and electrolyte
CN104191053A (en) Method for manufacturing micro-electrolysis cathode movable template
JP2005516787A (en) Processed electrode manufacturing method for electrolytic processing of workpiece and processed electrode manufactured by this method
JP5337823B2 (en) Method for producing a three-dimensional structure having a hydrophobic surface using metal foil
WO2005072098A2 (en) Electrode tool for electrochemical machining and method for manufacturing same
US7625468B2 (en) Electrode for electrochemical machining
JP5467709B2 (en) Nanoscale processed electrode and processed product, and manufacturing method thereof
CN112059335A (en) Preparation method of multi-window revolving body tool electrode for rotary printing electrolytic machining
Kunar et al. Effect of various masked patterned tools during micro-electrochemical texturing
WO2010114358A1 (en) Method for producing an ecm tool and use thereof as a cathode in electrochemical machining of a workpiece
US20050223555A1 (en) Method for forming holes, component having holes, and liquid-discharge head
JP3829300B2 (en) Dynamic pressure groove machining method
CN1290390C (en) Fabricating method for printed circuit board
CN101372058A (en) Electrode for electrochemical processing
CN103671928A (en) Silicon carbide friction pair used for non-contact mechanical seal and manufacturing method thereof
JP2003191134A (en) Electrode for electrochemical machining and manufacturing method therefor
KR101219002B1 (en) Electrode assembly for electrolytic machining and method for manufacturing the same
JP2009138238A (en) Method for forming groove for generating dynamic pressure, and apparatus therefor
JP2017206754A (en) Processing method of metal sheet material