JPH09136260A - Cooling hole machining method for gas turbine blade - Google Patents

Cooling hole machining method for gas turbine blade

Info

Publication number
JPH09136260A
JPH09136260A JP29666595A JP29666595A JPH09136260A JP H09136260 A JPH09136260 A JP H09136260A JP 29666595 A JP29666595 A JP 29666595A JP 29666595 A JP29666595 A JP 29666595A JP H09136260 A JPH09136260 A JP H09136260A
Authority
JP
Japan
Prior art keywords
cooling hole
ceramic coating
coating layer
gas turbine
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29666595A
Other languages
Japanese (ja)
Inventor
Takashi Shige
重  隆司
Seiji Beppu
征二 別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29666595A priority Critical patent/JPH09136260A/en
Publication of JPH09136260A publication Critical patent/JPH09136260A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/06Cooling passages of turbine components, e.g. unblocking or preventing blocking of cooling passages of turbine components

Abstract

PROBLEM TO BE SOLVED: To save labor as against a conventional way in which ceramic coating is applied after perforation is carried out and to prevent generation of a crack, which may be caused when perforation is carried out in a ceramic coating layer, a bond coating layer, and a blade base member at a stroke by means of laser beam machining, in the blade base member in the vicinity of a cooling hole. SOLUTION: After a ceramic coating layer 3 in the place in which a cooling hole is arranged is removed by means of shot blasting, electric discharge machining is applied to an exposed bond coating layer 2 in this place and a blade base member 1, and then, a through hole serving as a cooling hole is formed. In this way, a crack, which was conventionally caused in the blade member 1 around the cooling hole when laser beam machining was carried out, is prevented, so that a sound and precise cooling hole can be provided with ease.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷却用貫通孔を有
しセラミックコーティングされたガスタービン翼の冷却
孔加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing cooling holes in a gas turbine blade having a through hole for cooling and having a ceramic coating.

【0002】[0002]

【従来の技術】ガスタービン翼は、主にNi基耐熱合金
により形成され、翼部には冷却空気を流すための多数の
冷却孔があり、表面には耐熱性向上のためにZrO2
のセラミックコーティングが行なわれている。
2. Description of the Related Art A gas turbine blade is mainly formed of a Ni-base heat-resistant alloy, has a large number of cooling holes for flowing cooling air in the blade portion, and has a surface made of ZrO 2 or the like for improving heat resistance. Ceramic coating is applied.

【0003】従来の冷却孔の加工方法においては、コー
ティング前にあらかじめ孔を設けた状態でセラミックコ
ーティングする方法か、あるいはセラミックコーティン
グの上から貫通孔を加工する方法が用いられていた。
In the conventional method of processing cooling holes, there has been used a method of ceramic coating in the state where holes are provided in advance before coating, or a method of processing through holes on the ceramic coating.

【0004】[0004]

【発明が解決しようとする課題】従来のガスタービン翼
の冷却孔加工方法においては、前述のとおり2種類の方
法があった。
As described above, there are two types of conventional methods for processing cooling holes in gas turbine blades.

【0005】セラミックコーティング前に冷却孔をあけ
ておく方法においては、放電加工で冷却孔をあけた後
に、溶射もしくは物理蒸着(PVD)によりボンドコー
ト材(MCrAlY:Mは金属であり、CoやNiがよ
く使われる)とセラミックスをコーティングしていた。
In the method of forming cooling holes before ceramic coating, after the cooling holes are formed by electric discharge machining, the bond coat material (MCrAlY: M is a metal, Co or Ni is formed by thermal spraying or physical vapor deposition (PVD). Is often used) and ceramics were coated.

【0006】この方法では、溶射あるいはPVD中に冷
却孔が閉塞するという課題があった。この閉塞を防止す
るためには各冷却孔ごとのマスキングをすればよいが、
多数の冷却孔をそれぞれ正確にマスキングするのは手間
がかヽり、技術的にも課題があった。
This method has a problem that the cooling holes are closed during the thermal spraying or PVD. In order to prevent this blockage, masking of each cooling hole may be performed, but
Accurate masking of each of the numerous cooling holes is time-consuming and technically problematic.

【0007】一方、セラミックコーティング後にレーザ
ー光でセラミックス層、ボンド層及び母材を一気に局部
溶融させて貫通孔を設ける方法においては、母材に用い
られるNi基耐熱合金は、強度確保のかめにTiやAl
を添加しており、TiやAlはNiの融点を下げるた
め、レーザー光で冷却孔をあけた場合、多量の熱で母材
を溶融して冷却孔の周囲に0.1mm程度の深さの割れを
生じさせるという課題があった。
On the other hand, in the method of locally melting the ceramic layer, the bond layer and the base material at once by laser light after the ceramic coating to form the through holes, the Ni-base heat-resistant alloy used for the base material is Ti for securing strength. And Al
Since Ti and Al lower the melting point of Ni, when a cooling hole is opened with laser light, the base material is melted by a large amount of heat and a depth of about 0.1 mm is formed around the cooling hole. There was a problem of causing cracks.

【0008】本発明は、上記課題を解決し、加工が容易
で、セラミックコーティング後に孔明加工を行い、母材
に割れを生じることのない加工方法を実現しようとする
ものである。
The present invention is intended to solve the above problems and to realize a processing method which is easy to process and which does not cause cracks in a base material by performing a perforating process after ceramic coating.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明に
係るガスタービン翼の冷却孔加工方法は、ガスタービン
翼の冷却孔が設けられる部分のセラミックコーティング
層をショットブラストにより除去した後、セラミックコ
ーティング層が除去された部分のボンドコート層及び翼
母材に放電加工により貫通孔を形成して冷却孔とするこ
とを特徴としている。
According to a first aspect of the present invention, there is provided a gas turbine blade cooling hole machining method, wherein a ceramic coating layer of a portion of a gas turbine blade where cooling holes are provided is removed by shot blasting, It is characterized in that a through hole is formed in the bond coat layer and the blade base material in the portion where the ceramic coating layer is removed by electric discharge machining to form a cooling hole.

【0010】上記において、ガスタービン翼の冷却孔が
設けられる部分にショットブラストを行ってセラミック
コーティング層を除去すると、その内部に設けられたボ
ンドコート層あるいは翼母材が露出する。
In the above, when the ceramic coating layer is removed by shot blasting the portion where the cooling holes of the gas turbine blade are provided, the bond coat layer or blade base material provided inside is exposed.

【0011】このボンドコート層及び翼母材は通電性を
有するため、セラミックコーティング層が除去された部
分に電極を挿入して放電させることができ、放電加工に
より冷却孔となる貫通孔を形成することができる。
Since the bond coat layer and the blade base material have electrical conductivity, an electrode can be inserted into the portion where the ceramic coating layer has been removed to cause an electric discharge, and a through hole serving as a cooling hole is formed by electric discharge machining. be able to.

【0012】上記放電加工は、レーザー加工のように母
材を多量の熱で溶融するものではないため、冷却孔の周
辺に割れを生じることなく、良好な冷却孔を加工するこ
とが可能となる。
Unlike the laser machining, the above-mentioned electric discharge machining does not melt the base material with a large amount of heat, so that a good cooling hole can be machined without causing cracks around the cooling hole. .

【0013】[0013]

【発明の実施の形態】本発明の実施の一形態に係るガス
タービン翼の冷却孔加工方法について、図1乃至図3に
より説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A method for processing a cooling hole of a gas turbine blade according to an embodiment of the present invention will be described with reference to FIGS.

【0014】図1乃至図3に示す本実施形態の冷却孔加
工方法においては、図3に示すようにNi基耐熱合金製
の翼母材1にボンドコートとしてMCrAlY合金がコ
ーティングされてボンドコート層2が形成され、その上
にセラミックがコーティングされてセラミックコーティ
ング層3が形成されたガスタービン翼について、以下の
手順で冷却孔の加工が行なわれる。
In the cooling hole machining method of the present embodiment shown in FIGS. 1 to 3, as shown in FIG. 3, a blade base material 1 made of a Ni-base heat-resistant alloy is coated with MCrAlY alloy as a bond coat to form a bond coat layer. With respect to the gas turbine blade on which No. 2 is formed and the ceramic coating layer 3 is formed by coating the ceramic on the No. 2, cooling holes are processed in the following procedure.

【0015】即ち、まず、図1(a)に示すように冷却
孔に対応した穴を有する穴あき当て板4を翼表面にはり
つける。次に、図1(b)に示すように当て板4はりつ
けた状態でアルミナ(Al2 3 )粉末5を用いてショ
ットブラストを行い、ガスタービン翼の冷却孔が設けら
れる部分のセラミックスを除去する。
That is, first, as shown in FIG. 1A, a perforated plate 4 having holes corresponding to cooling holes is attached to the blade surface. Next, as shown in FIG. 1B, shot blasting is performed using alumina (Al 2 O 3 ) powder 5 in a state where the contact plate 4 is attached to remove the ceramics in the portion where the cooling holes of the gas turbine blade are provided. To do.

【0016】冷却孔が設けられる部分のセラミックスの
除去が完了すると、当て板5をはずして図1(c)に示
す状態とした後、これを水中に浸漬し、図1(d)に示
すように放電加工用電極6をセラミックコーティング層
3の除去部に挿入し、放電加工を行い、図1(e)に示
すようにボンドコート層2及び翼母材1を貫通して冷却
孔の加工を完了する。
When the removal of the ceramic in the portion where the cooling holes are provided is completed, the backing plate 5 is removed to obtain the state shown in FIG. 1 (c), which is then immersed in water, as shown in FIG. 1 (d). Then, the electric discharge machining electrode 6 is inserted into the removed portion of the ceramic coating layer 3, electric discharge machining is performed, and as shown in FIG. 1 (e), the bond coat layer 2 and the blade base material 1 are penetrated to form a cooling hole. Complete.

【0017】Al2 3 粉末のショットブラストにより
セラミックコーティング層3が除去された冷却孔が加工
される部分については、上記の放電加工を順次行い、図
2に示すように冷却孔の加工が行われたガスタービン翼
を得ている 上記において、冷却孔に対応する多数の穴が設けられた
当て板4をガスタービン翼にはり付け、Al2 3 粉末
5を用いてショットブラストを行うと、ガスタービン翼
の冷却孔が設けられる部分のセラミックコーティング層
3が除去され、通電性を有するMCrAlYボンドコー
ト層2あるいは翼母材1が露出する。
For the portion where the cooling hole from which the ceramic coating layer 3 has been removed by the shot blasting of Al 2 O 3 powder is to be processed, the above-mentioned electric discharge machining is sequentially performed, and the cooling hole is processed as shown in FIG. In the above, when the backing plate 4 provided with a large number of holes corresponding to the cooling holes is attached to the gas turbine blade and shot blasting is performed using the Al 2 O 3 powder 5, The ceramic coating layer 3 in the portion where the cooling holes of the gas turbine blade are provided is removed, and the MCrAlY bond coat layer 2 or blade base material 1 having electrical conductivity is exposed.

【0018】そのため、これを水中に浸漬し、セラミッ
クコーティング層3が除去された部分に電極6を挿入し
て放電加工を行うことが可能となり、この放電加工によ
り冷却孔を形成することが可能となる。
Therefore, it becomes possible to immerse this in water and insert the electrode 6 into the portion where the ceramic coating layer 3 has been removed to perform electrical discharge machining, and it is possible to form cooling holes by this electrical discharge machining. Become.

【0019】上記放電加工は、レーザー加工のように翼
母材1を多量の熱で溶融するものではないため、冷却孔
の周辺に割れを生じることなく、冷却孔を加工すること
ができるようになった。
Unlike the laser machining, the above-mentioned electric discharge machining does not melt the blade base material 1 with a large amount of heat, so that the cooling holes can be machined without causing cracks around the cooling holes. became.

【0020】上記セラミックコーティング層3の除去に
ついては、粒径100〜300μmのAl2 3 粉末5
を用い、ショットブラストの空気圧を5〜10Kgf/cm2
の圧力とし、ブラストノズル先端と製品表面間のショッ
トブラスト距離を50〜150mmとしてショットブラス
トを行ったところ、約1mmφの範囲でセラミックコーテ
ィング層3を除去することができた。
For removing the ceramic coating layer 3, Al 2 O 3 powder 5 having a particle size of 100 to 300 μm is used.
With a shot blasting air pressure of 5-10 Kgf / cm 2
When the shot blasting was carried out under the pressure of, and the shot blasting distance between the tip of the blasting nozzle and the product surface was 50 to 150 mm, the ceramic coating layer 3 could be removed within a range of about 1 mmφ.

【0021】また、放電加工については、直径0.5〜
0.7mmの銅製の管状電極6を用い、加工電流は約8
A、放電維持電圧は約20Vとし、管内より加工液を噴
射しながら複数本(20本)同時加工を行ったところ、
直径0.5〜1.0mm、長さ30mm以下の穴に対し、穴
の精度は直径で±0.1mm程度、電極消耗は10%以内
であり、良好な冷却孔を加工することができた。
For electric discharge machining, the diameter is 0.5 to
0.7mm copper tubular electrode 6 is used and processing current is about 8
A, the discharge sustaining voltage was about 20 V, and when a plurality of (20) were simultaneously machined while injecting the machining fluid from the inside of the pipe,
For holes with a diameter of 0.5 to 1.0 mm and a length of 30 mm or less, the accuracy of the holes was about ± 0.1 mm in diameter and the electrode consumption was within 10%, and good cooling holes could be processed. .

【0022】[0022]

【発明の効果】本発明のガスタービン翼の冷却孔加工方
法においては、冷却孔が設けられる部分のセラミックコ
ーティング層をショットブラストにより除去した後、こ
の部分の露出したボンドコート層及び翼母材に放電加工
を施し冷却孔となる貫通孔を形成するものとしたことに
よって、従来のレーザー加工による場合に冷却孔の周辺
の翼母材に生じていた割れが発生せず、健全で精度のよ
い冷却孔を容易に得ることが可能となる。
In the gas turbine blade cooling hole processing method of the present invention, after removing the ceramic coating layer in the portion where the cooling hole is provided by shot blasting, the exposed bond coat layer and blade base material in this portion are removed. By performing electrical discharge machining to form through holes that serve as cooling holes, the blade base metal around the cooling holes does not crack when using conventional laser processing, and sound cooling is performed with good accuracy. The holes can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係るガスタービン翼の
冷却孔加工方法の説明図で、(a)は翼に当て板をはり
つけた状態の斜視図、(b)はセラミックコーティング
層除去中の断面図、(c)はセラミックコーティング層
除去後の断面図、(d)は冷却孔放電加工中の断面図、
(e)は冷却孔の貫通を完了した状態の断面図である。
FIG. 1 is an explanatory view of a method for processing a cooling hole of a gas turbine blade according to an embodiment of the present invention, (a) is a perspective view of a blade with a backing plate attached, and (b) is a ceramic coating layer removed layer. A sectional view inside, (c) a sectional view after removing the ceramic coating layer, (d) a sectional view during cooling hole electric discharge machining,
(E) is a cross-sectional view of a state in which the penetration of the cooling hole is completed.

【図2】上記一実施形態に係る冷却孔加工後のガスター
ビン翼の説明図で、(a)は斜視図、(b)は(a)の
A−A矢視図である。
2A and 2B are explanatory views of a gas turbine blade after cooling holes are processed according to the above embodiment, FIG. 2A is a perspective view, and FIG. 2B is a view taken along the line AA of FIG.

【図3】上記一実施形態に係る冷却孔加工前のガスター
ビン翼の説明図で、(a)は斜視図、(b)は(a)の
B−B矢視図である。
3A and 3B are explanatory views of a gas turbine blade before cooling hole processing according to the above embodiment, FIG. 3A is a perspective view, and FIG. 3B is a view taken along the line BB of FIG.

【符号の説明】[Explanation of symbols]

1 翼母材 2 MCrAlYボンドコート層 3 セラミックコーティング層 4 穴あき当て板 5 Al2 3 粉末 6 放電加工用電極1 blade base material 2 MCrAlY bond coat layer 3 ceramic coating layer 4 perforated plate 5 Al 2 O 3 powder 6 electrode for electric discharge machining

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービン翼の冷却孔が設けられる部
分のセラミックコーティング層をショットブラストによ
り除去した後、セラミックコーティング層が除去された
部分のボンドコート層及び翼母材に放電加工により貫通
孔を形成して冷却孔とすることを特徴とするガスタービ
ン翼の冷却孔加工方法。
1. After removing a ceramic coating layer of a portion where a cooling hole of a gas turbine blade is provided by shot blasting, a through hole is formed in the bond coat layer and the blade base material of the portion where the ceramic coating layer is removed by electric discharge machining. A method of forming a cooling hole for a gas turbine blade, comprising forming the cooling hole to form a cooling hole.
JP29666595A 1995-11-15 1995-11-15 Cooling hole machining method for gas turbine blade Withdrawn JPH09136260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29666595A JPH09136260A (en) 1995-11-15 1995-11-15 Cooling hole machining method for gas turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29666595A JPH09136260A (en) 1995-11-15 1995-11-15 Cooling hole machining method for gas turbine blade

Publications (1)

Publication Number Publication Date
JPH09136260A true JPH09136260A (en) 1997-05-27

Family

ID=17836498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29666595A Withdrawn JPH09136260A (en) 1995-11-15 1995-11-15 Cooling hole machining method for gas turbine blade

Country Status (1)

Country Link
JP (1) JPH09136260A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495197B1 (en) * 1999-04-28 2002-12-17 Aerospatiale Matra Airbus Method for providing metallized areas on surface by electrically detecting removal of insulating layer
JP2007519530A (en) * 2003-12-15 2007-07-19 ターボコンバスター・テクノロジー・インコーポレーテッド Method for removing a thermal barrier coating
WO2007134916A1 (en) * 2006-05-19 2007-11-29 Siemens Aktiengesellschaft Method for preparing a component consisting of an electroconductive base material in order to carry out an erosive process
JP2011106448A (en) * 2009-11-16 2011-06-02 Siemens Ag Coating method for component with partially closed holes and method for opening the coated hole
EP2439377A2 (en) 2010-10-07 2012-04-11 Hitachi, Ltd. Method of working a cooling hole of a turbine blade
JP2012072705A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Method for manufacturing gas turbine blade
JP2012132451A (en) * 2010-12-23 2012-07-12 General Electric Co <Ge> Method for modifying substrate for forming passage hole in the substrate, and article relating thereto
WO2015073845A1 (en) * 2013-11-15 2015-05-21 United Technologies Corporation Fluidic machining method and system
KR101533784B1 (en) * 2014-02-27 2015-07-03 데크컴퍼지트 주식회사 Method for anti-oxidation coating aircraft brake disc
US20160281511A1 (en) * 2012-11-16 2016-09-29 Siemens Aktiengesellschaft Modified surface around a hole

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495197B1 (en) * 1999-04-28 2002-12-17 Aerospatiale Matra Airbus Method for providing metallized areas on surface by electrically detecting removal of insulating layer
JP2007519530A (en) * 2003-12-15 2007-07-19 ターボコンバスター・テクノロジー・インコーポレーテッド Method for removing a thermal barrier coating
WO2007134916A1 (en) * 2006-05-19 2007-11-29 Siemens Aktiengesellschaft Method for preparing a component consisting of an electroconductive base material in order to carry out an erosive process
WO2007134620A1 (en) * 2006-05-19 2007-11-29 Siemens Aktiengesellschaft Method for preparing a component consisting of an electroconductive base material in order to carry out an erosive process
JP2011106448A (en) * 2009-11-16 2011-06-02 Siemens Ag Coating method for component with partially closed holes and method for opening the coated hole
US8980372B2 (en) 2009-11-16 2015-03-17 Siemens Aktiengesellschaft Process for coating a component having partially closed holes and process for opening the holes
JP2012072705A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Method for manufacturing gas turbine blade
EP2439377A2 (en) 2010-10-07 2012-04-11 Hitachi, Ltd. Method of working a cooling hole of a turbine blade
JP2012132451A (en) * 2010-12-23 2012-07-12 General Electric Co <Ge> Method for modifying substrate for forming passage hole in the substrate, and article relating thereto
US20160281511A1 (en) * 2012-11-16 2016-09-29 Siemens Aktiengesellschaft Modified surface around a hole
WO2015073845A1 (en) * 2013-11-15 2015-05-21 United Technologies Corporation Fluidic machining method and system
US10107110B2 (en) 2013-11-15 2018-10-23 United Technologies Corporation Fluidic machining method and system
US10954800B2 (en) 2013-11-15 2021-03-23 Raytheon Technologies Corporation Fluidic machining method and system
KR101533784B1 (en) * 2014-02-27 2015-07-03 데크컴퍼지트 주식회사 Method for anti-oxidation coating aircraft brake disc

Similar Documents

Publication Publication Date Title
CN100374242C (en) Process for drilling holes in a metallic workpiece having a thermal barrier coating
US20180015536A1 (en) Forming cooling passages in combustion turbine superalloy castings
JP5642417B2 (en) System and method for enhancing film cooling
JPH1054202A (en) Fluid cooled product having protective film and method for manufacturing the same
US6742698B2 (en) Refractory metal backing material for weld repair
JP6110590B2 (en) Substrate refurbishing method for forming passage holes in a substrate and related articles
US20060248718A1 (en) Superalloy repair methods and inserts
US10408079B2 (en) Forming cooling passages in thermal barrier coated, combustion turbine superalloy components
JPS59155504A (en) Method of manufacturing article containing fluid path
JP6538862B2 (en) How to cold gas spray using a mask
JPH09136260A (en) Cooling hole machining method for gas turbine blade
JP2012132451A5 (en)
CN104689958A (en) Coating methods and a coated substrate
EP0826457A1 (en) A method of drilling a hole in a workpiece
CZ304975B6 (en) Method of producing turbulation on inner surface of workpiece holes and corresponding articles
Gurav et al. Quality evaluation of precision micro holes drilled using pulsed Nd: YAG laser on aerospace nickel-based superalloy
CA2159139A1 (en) Using electrical discharge surface preparation for thermal coatings
EP2695692A2 (en) Electric discharge machining process and article for electric discharge machining
JP3389034B2 (en) Processing method of workpiece with insulating ceramic film
JP2002361468A (en) Method of removing material deposit produced in laser beam processing
JP5788410B2 (en) Method and assembly for electrolytic deposition of coatings
JP2001207252A (en) Spray-formed part by arc thermal spraying, and its manufacturing method
Wang et al. Investigation on conductive layer, delamination, and recast layer characteristics of electro-discharge machined holes in TBCs
CA2487913C (en) Method of producing a composite component
Wang et al. Interfacial characteristics investigation for one-step EDM drilling of cooling holes in TBCs

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204