JP3389034B2 - Processing method of workpiece with insulating ceramic film - Google Patents

Processing method of workpiece with insulating ceramic film

Info

Publication number
JP3389034B2
JP3389034B2 JP00383097A JP383097A JP3389034B2 JP 3389034 B2 JP3389034 B2 JP 3389034B2 JP 00383097 A JP00383097 A JP 00383097A JP 383097 A JP383097 A JP 383097A JP 3389034 B2 JP3389034 B2 JP 3389034B2
Authority
JP
Japan
Prior art keywords
ceramic film
electric discharge
discharge machining
conductor
insulating ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00383097A
Other languages
Japanese (ja)
Other versions
JPH10202431A (en
Inventor
征二 別府
文章 春名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP00383097A priority Critical patent/JP3389034B2/en
Publication of JPH10202431A publication Critical patent/JPH10202431A/en
Application granted granted Critical
Publication of JP3389034B2 publication Critical patent/JP3389034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ガスタービンブレ
ードの微細穴の穴明け加工等に適用される絶縁性セラミ
ックス皮膜付き被加工物の加工方法に関する。 【0002】 【従来の技術】ガスタービンブレードの冷却孔の加工
は、従来より放電加工やレーザ加工により実施されてき
た。 【0003】しかしながら、遮熱コーティング(TB
C)処理されたブレードの場合は、電気絶縁性セラミッ
クス皮膜があるため、放電加工による施工はできなかっ
た。また、レーザ加工による場合は、それが熱加工であ
るため、絶縁性セラミックス加工層に加工欠陥(割れ、
剥離等)の発生が懸念された。 【0004】そのため、遮熱コーティングが必要なガス
タービンブレードの場合においては、冷却孔を加工した
後、マスキング処理を施して遮熱コーティングを施工し
ていた。 【0005】 【発明が解決しようとする課題】従来のガスタービンブ
レードの冷却孔の加工において、ブレードに遮熱コーテ
ィング処理が施される場合は、前記のように冷却孔の加
工後、マスキング処理して遮熱コーティングを施工して
おり、手間がかかっていた。 【0006】絶縁体の放電加工法としては、ダイヤモン
ド、ガラス等の加工方法の適用が提案され、実施されて
いる。この方法には、気中で高電圧を印加してコロナ放
電により穴明け加工する方法や、電解液中で針状電極に
ばねで荷重を負荷して穴明け加工する方法があるが、加
工精度が劣る上に加工時間が長い等の難点があった。 【0007】また、図2に示すように、電気絶縁体(被
加工物)01に導電体層02を積層した後、加工電極0
3で放電加工する方法(特開昭63−150109号)
の適用があるが、この方法による場合、以下の課題があ
った。 【0008】即ち、被加工物01がタービンブレードの
ように3次元形状であり、積層する導電体02を加工し
ようとする電気絶縁体(タービンブレードの遮熱コーテ
ィング膜等)01にうまくフィットさせることが難し
く、積層のすき間から加工液とともに生成された加工屑
が排出されてしまい、加工不能となることが多く経験さ
れていた。 【0009】また、加工する孔の形状が直径0.5〜
1.0mmと小さい場合、積層した導電体層02の加工時
に生じる加工屑(電極と導電体(鉄合金)から生成され
る導電体酸化物)4の量が少なく、加工不能となること
も多く経験されていた。 【0010】本発明は、上記の課題を解決し、絶縁性セ
ラミックス皮膜が形成されたガスタービンブレードへの
高精度の微細穴の穴明け加工等を実現することができる
加工方法を提供しようとするものである。 【0011】 【課題を解決するための手段】請求項1に記載の発明
は、絶縁性セラミックス皮膜が設けられた被加工物の表
面に導電体を配設し、この導電体の表面に対向させてパ
イプ状の放電加工電極を配設した後、この放電加工電極
の中空部を介して加工液を供給しながら導電体に放電加
工を施して貫通孔を形成し、引き続いて、この放電加工
により生じた加工屑の付着堆積ないし含浸により絶縁性
セラミックス皮膜の表面に形成された導電体層を利用し
て絶縁性セラミックス皮膜に放電加工を施して微細穴を
形成する絶縁性セラミックス皮膜付き被加工物の加工方
法において、絶縁性セラミックス皮膜の表面には導電性
と弾力性を有するカーボンシートを介して上記導電体を
配設し、また、絶縁性セラミックス皮膜の放電加工開始
時にはその直前に上記加工液の供給量を減少させること
を特徴としている。 【0012】上記において、その表面に絶縁性セラミッ
クス皮膜が設けられた被加工物と導電体の間は、導電性
と弾力性を有するカーボンシートが挿入固定されるた
め、その表面が3次元形状の被加工物の場合であって
も、絶縁性セラミックス皮膜と導電体がよく密着し、こ
の部分からの加工液の漏洩が抑制される。また、放電加
工による導電体の貫通孔形成完了直前に加工液の供給量
を減少させるため、導電体表面からの加工液の流出が少
なくなる。 【0013】そのため、加工屑が絶縁性セラミックス皮
膜の表面に付着堆積含浸されやすくなり、導電性の良好
な導電体層が容易に形成され、放電加工による絶縁性セ
ラミックス皮膜への微細穴の容易な形成が可能となる。 【0014】 【発明の実施の形態】本発明の実施の一形態に係る絶縁
性セラミックス皮膜付き被加工物の加工方法について、
図1により説明する。 【0015】なお、本実施形態は、被加工物が遮熱コー
ティングの施工されたガスタービンブレードについて、
放電加工により直径0.5〜1.0mmの微細な冷却孔を
加工する場合である。また、このタービンブレードは、
Ni基やCo基等の超耐熱合金からなり、導電性を有す
る導電体部11が形成され、この表層には溶射などの方
法により遮熱コーティングが施工され、絶縁性のセラミ
ックス皮膜1が形成されたものである。 【0016】図1に示す本実施形態に係るガスタービン
ブレードの冷却孔の放電加工方法においては、まず、3
次元形状をした絶縁性のセラミックス皮膜1の表面に厚
さが0.3〜0.5mm程度で導電性及び弾力性のあるカ
ーボンシート5を介して鉄、鉄合金などからなる導電体
2を積層し、クランプ治具(図示省略)で固定する。 【0017】次に、銅、銅合金等からなるパイプ状の放
電加工電極3を上記導電体2の表面に対向させて配設
し、図示しない放電加工電源の−側をこの放電加工電極
3に接続し、+側を上記導電体2及びタービンブレード
の導電体部11に接続する。 【0018】上記電源の接続が完了すると、放電加工電
極3の中空部より加工液(水又はケロシン等)12を噴
射させ、放電加工電極3を回転させながらこれに電圧を
印加し、導電体2の放電加工を開始する。 【0019】上記放電加工が進行し、放電加工電極3が
導電体2を貫通する頃から加工液12の供給量を減少
(流量の低減又は間欠的な供給のいずれでもよい)させ
て放電加工を継続し、冷却孔の形成を完了する。 【0020】上記において、放電加工電極3が放電によ
り導電体2を貫通すると、放電加工電極3は絶縁体であ
るセラミックス皮膜1に近接するが、このあたりから加
工液12の供給量を減少させるため、銅や銅合金製の放
電加工電極3と導電体2とカーボンシート5とにより生
成され導電性を有する酸化物の加工屑がセラミックス皮
膜1の表面に付着堆積ないし含浸させられて、セラミッ
クス皮膜1の放電加工面に良好な導電体層4が形成され
る。 【0021】そのため、上記放電加工電極3は、この導
電体層4との間で放電を形成してセラミックス皮膜1を
侵蝕し、侵蝕されたセラミックス皮膜1の面には新たな
導電体層4が順次生成されて放電加工が継続される。 【0022】上記導電体層4との間の放電により放電加
工電極3がセラミックス皮膜1を貫通した後は、タービ
ンブレードの導電体部11との間で放電が継続され、所
定の冷却孔が形成される。 【0023】上記ガスタービンブレードの冷却孔の放電
加工の開始にあたっては、セラミックス皮膜1の表面に
カーボンシート5を介して導電体2を配設しているが、
このカーボンシート5は弾力性があるため、3次元形状
のセラミックス皮膜1の面に導電体2をよく密着させる
ことができる。 【0024】そのため、上記セラミックス皮膜1の放電
加工時において、セラミックス皮膜1と導電体2の間か
らの加工液12の漏洩を防止することができ、加工屑の
セラミックス皮膜1面への付着・堆積や含浸を一層促進
させることができる。 【0025】 【発明の効果】本発明は、絶縁性セラミックス皮膜が設
けられた被加工物の表面に導電体を配設し、加工液を供
給しながら導電体に放電加工を施して貫通孔を形成し、
引き続いて、この放電加工により生じた加工層の付着堆
積含浸により形成された導電体層を利用して絶縁性セラ
ミックス皮膜に放電加工を施して微細穴を形成する絶縁
性セラミックス皮膜付き被加工物の加工方法において、
この皮膜と導電体の間にカーボンシートを設け、また、
上記皮膜の放電加工開始直前に加工液の供給量を減少さ
せるものとしたことによって、加工層が絶縁性セラミッ
クス皮膜の表面に付着維持含浸されやすくなり、導電性
の良好な導電体層が容易に形成され、放電加工による絶
縁性セラミックス皮膜への微細穴の容易な形成が可能と
なる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a workpiece with an insulating ceramic film applied to, for example, drilling of fine holes in a gas turbine blade. [0002] Processing of cooling holes of gas turbine blades has conventionally been performed by electric discharge machining or laser machining. However, thermal barrier coatings (TB
C) In the case of the treated blade, there was an electric insulating ceramic film, so that it could not be applied by electric discharge machining. Also, in the case of laser processing, since it is thermal processing, processing defects (cracks,
Peeling) was concerned. [0004] Therefore, in the case of a gas turbine blade that requires a thermal barrier coating, after the cooling holes are processed, a masking process is performed to apply the thermal barrier coating. [0005] In the processing of the cooling holes of the conventional gas turbine blade, if the blade is subjected to a thermal barrier coating process, after the cooling holes are processed as described above, the masking process is performed. And heat barrier coating was applied, which was troublesome. As an electrical discharge machining method for an insulator, application of a machining method for diamond, glass or the like has been proposed and implemented. This method includes a method in which a high voltage is applied in the air to form a hole by corona discharge, and a method in which a load is applied to a needle-shaped electrode with a spring in an electrolytic solution to form the hole. And the processing time is long. Further, as shown in FIG. 2, after a conductor layer 02 is laminated on an electric insulator (workpiece) 01, a work electrode 0 is formed.
Method of electrical discharge machining in No. 3 (JP-A-63-150109)
However, this method has the following problems. That is, the workpiece 01 has a three-dimensional shape like a turbine blade, and the conductor 02 to be laminated is fitted to an electrical insulator (such as a thermal barrier coating film of a turbine blade) 01 to be processed. It has been often experienced that the processing waste is discharged together with the processing liquid from the gaps in the lamination to make processing impossible. Further, the shape of the hole to be processed has a diameter of 0.5 to
When it is as small as 1.0 mm, the amount of processing dust (conductor oxide generated from the electrode and the conductor (iron alloy)) 4 generated during the processing of the laminated conductor layer 02 is small, and the machining is often impossible. Had been experienced. The present invention is intended to solve the above-mentioned problems and to provide a processing method capable of realizing high-precision drilling of fine holes in a gas turbine blade having an insulating ceramic film formed thereon. Things. According to a first aspect of the present invention, an electric conductor is disposed on a surface of a workpiece on which an insulating ceramic film is provided, and the electric conductor is arranged to face the surface of the electric conductor. After arranging the pipe-shaped electric discharge machining electrode, the electric conductor is subjected to electric discharge machining while supplying a machining liquid through the hollow portion of the electric discharge machining electrode to form a through-hole, and subsequently, this electric discharge machining is performed. A workpiece with an insulating ceramic film that forms a fine hole by subjecting the insulating ceramic film to electrical discharge machining using the conductor layer formed on the surface of the insulating ceramic film by the adhesion and deposition or impregnation of the generated processing waste In the working method, the above-described conductor is disposed on the surface of the insulating ceramic film via a carbon sheet having conductivity and elasticity. Immediately before that, the supply amount of the working fluid is reduced. In the above, a carbon sheet having conductivity and elasticity is inserted and fixed between a workpiece and a conductor having an insulating ceramic film provided on the surface thereof, so that the surface has a three-dimensional shape. Even in the case of a workpiece, the insulating ceramic film and the conductor are in close contact with each other, and leakage of the working fluid from this portion is suppressed. Further, since the supply amount of the machining fluid is reduced immediately before the formation of the through hole of the conductor by the electric discharge machining, the outflow of the machining fluid from the conductor surface is reduced. [0013] Therefore, the processing waste easily adheres to the surface of the insulating ceramic film and is impregnated, and a conductive layer having good conductivity is easily formed, and fine holes are easily formed in the insulating ceramic film by electric discharge machining. Formation is possible. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for processing a workpiece with an insulating ceramic film according to one embodiment of the present invention will be described.
This will be described with reference to FIG. In this embodiment, a gas turbine blade whose workpiece is coated with a thermal barrier coating,
This is a case where minute cooling holes having a diameter of 0.5 to 1.0 mm are machined by electric discharge machining. Also, this turbine blade
A conductive portion 11 made of a super heat-resistant alloy such as Ni-base or Co-base and having conductivity is formed, and a thermal barrier coating is applied to the surface layer by a method such as thermal spraying to form an insulating ceramic film 1. It is a thing. In the electric discharge machining method for the cooling holes of the gas turbine blade according to this embodiment shown in FIG.
A conductor 2 made of iron, iron alloy, or the like is laminated on a surface of an insulating ceramic film 1 having a three-dimensional shape via a conductive and elastic carbon sheet 5 having a thickness of about 0.3 to 0.5 mm. Then, it is fixed with a clamp jig (not shown). Next, a pipe-shaped electric discharge machining electrode 3 made of copper, a copper alloy or the like is disposed so as to face the surface of the conductor 2, and the negative side of an electric discharge machining power source (not shown) is connected to the electric discharge machining electrode 3. The positive side is connected to the conductor 2 and the conductor 11 of the turbine blade. When the connection of the power supply is completed, a machining fluid (water or kerosene, etc.) 12 is jetted from the hollow portion of the electric discharge machining electrode 3, and a voltage is applied to the electric discharge machining electrode 3 while rotating the electric discharge machining electrode 3, and the conductor 2 Starts electric discharge machining. When the above-mentioned electric discharge machining progresses and the electric discharge machining electrode 3 penetrates the conductor 2, the supply amount of the machining fluid 12 is reduced (either by reducing the flow rate or intermittently) and the electric discharge machining is performed. Continue to complete the formation of the cooling holes. In the above description, when the electric discharge machining electrode 3 penetrates the conductor 2 by electric discharge, the electric discharge machining electrode 3 comes close to the ceramic film 1 which is an insulator. In addition, processing dust of conductive oxide generated by the electric discharge machining electrode 3, the electric conductor 2, and the carbon sheet 5 made of copper or copper alloy is deposited on or impregnated on the surface of the ceramic film 1, and the ceramic film 1 A good conductor layer 4 is formed on the electric discharge machined surface. For this reason, the electric discharge machining electrode 3 forms a discharge with the conductor layer 4 to erode the ceramic film 1, and a new conductor layer 4 is formed on the eroded surface of the ceramic film 1. The electric discharge machining is sequentially generated and the electric discharge machining is continued. After the electric discharge machining electrode 3 penetrates through the ceramic film 1 by the electric discharge between the electric conductor layer 4 and the electric discharge machining electrode 3, the electric discharge is continued between the electric discharge machining electrode 3 and the electric conductor portion 11 of the turbine blade to form a predetermined cooling hole. Is done. At the start of the electric discharge machining of the cooling hole of the gas turbine blade, the conductor 2 is disposed on the surface of the ceramic film 1 via the carbon sheet 5.
Since the carbon sheet 5 has elasticity, the conductor 2 can be brought into close contact with the surface of the three-dimensional ceramic film 1. Therefore, at the time of electric discharge machining of the ceramic film 1, it is possible to prevent the machining fluid 12 from leaking from between the ceramic film 1 and the conductor 2, and to attach and accumulate machining chips to the surface of the ceramic film 1. And impregnation can be further promoted. According to the present invention, a conductor is provided on the surface of a workpiece provided with an insulating ceramic film, and the conductor is subjected to electric discharge machining while supplying a machining liquid to form a through hole. Forming
Subsequently, using a conductor layer formed by the adhesion, deposition and impregnation of the machining layer generated by the electric discharge machining, the insulating ceramic film is subjected to electric discharge machining to form micro holes to form a workpiece with an insulating ceramic film. In the processing method,
A carbon sheet is provided between this film and the conductor,
By reducing the supply amount of the machining fluid immediately before the start of the electric discharge machining of the film, the working layer is easily adhered to and impregnated on the surface of the insulating ceramic film, and a conductive layer having good conductivity is easily formed. Once formed, minute holes can be easily formed in the insulating ceramic film by electric discharge machining.

【図面の簡単な説明】 【図1】本発明の実施の一形態に係る絶縁性セラミック
ス皮膜付き被加工物の加工方法の説明図である。 【図2】従来の電気絶縁体の放電加工方法の説明図であ
る。 【符号の説明】 1 絶縁性セラミックス皮膜 2 導電体 3 放電加工電極 4 導電体層 5 カーボンシート 11 タービンブレードの導電体部 12 加工液
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a method for processing a workpiece with an insulating ceramic film according to an embodiment of the present invention. FIG. 2 is an explanatory view of a conventional electric discharge machining method for an electric insulator. [Description of Signs] 1 Insulating ceramic film 2 Conductor 3 Electric discharge machining electrode 4 Conductive layer 5 Carbon sheet 11 Conductor portion 12 of turbine blade Working fluid

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23H 1/00 B23H 9/00 B23H 9/10 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B23H 1/00 B23H 9/00 B23H 9/10

Claims (1)

(57)【特許請求の範囲】 【請求項1】 絶縁性セラミックス皮膜が設けられた被
加工物の表面に導電体を配設し、この導電体の表面に対
向させてパイプ状の放電加工電極を配設した後、この放
電加工電極の中空部を介して加工液を供給しながら導電
体に放電加工を施して貫通孔を形成し、引き続いて、こ
の放電加工により生じた加工屑の付着堆積ないし含浸に
より絶縁性セラミックス皮膜の表面に形成された導電体
層を利用して絶縁性セラミックス皮膜に放電加工を施し
て微細穴を形成する絶縁性セラミックス皮膜付き被加工
物の加工方法において、絶縁性セラミックス皮膜の表面
には導電性と弾力性を有するカーボンシートを介して上
記導電体を配設し、また、絶縁性セラミックス皮膜の放
電加工開始時にはその直前に上記加工液の供給量を減少
させることを特徴とする絶縁性セラミックス皮膜付き被
加工物の加工方法。
(57) [Claim 1] An electric conductor is disposed on a surface of a workpiece on which an insulating ceramic film is provided, and a pipe-shaped electric discharge machining electrode is opposed to the surface of the electric conductor. Is provided, a machining fluid is supplied through the hollow portion of the electric discharge machining electrode to perform electric discharge machining on the conductor to form a through hole, and subsequently, adhesion and deposition of machining waste generated by the electric discharge machining Or a method of processing a workpiece with an insulating ceramic film, wherein the insulating ceramic film is subjected to electric discharge machining using an electric conductor layer formed on the surface of the insulating ceramic film by impregnation to form fine holes. The above conductor is disposed on the surface of the ceramic film via a carbon sheet having conductivity and elasticity. Processing method of the insulating ceramic film with the workpiece, characterized in that to lack.
JP00383097A 1997-01-13 1997-01-13 Processing method of workpiece with insulating ceramic film Expired - Fee Related JP3389034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00383097A JP3389034B2 (en) 1997-01-13 1997-01-13 Processing method of workpiece with insulating ceramic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00383097A JP3389034B2 (en) 1997-01-13 1997-01-13 Processing method of workpiece with insulating ceramic film

Publications (2)

Publication Number Publication Date
JPH10202431A JPH10202431A (en) 1998-08-04
JP3389034B2 true JP3389034B2 (en) 2003-03-24

Family

ID=11568127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00383097A Expired - Fee Related JP3389034B2 (en) 1997-01-13 1997-01-13 Processing method of workpiece with insulating ceramic film

Country Status (1)

Country Link
JP (1) JP3389034B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008802A (en) * 2012-12-11 2013-04-03 中国石油大学(华东) High-instantaneous-energy-density electric spark high-speed milling method
WO2019050110A1 (en) * 2017-09-05 2019-03-14 한화에어로스페이스(주) Component hole machining method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837113A1 (en) * 2006-03-24 2007-09-26 Siemens Aktiengesellschaft Electrode arrangement and electric discharge machining method for insulating material
EP1837114A1 (en) * 2006-03-24 2007-09-26 Siemens Aktiengesellschaft Dielectric fluid for electric discharge machining a non electrically conductive material
EP1837112A1 (en) * 2006-03-24 2007-09-26 Siemens Aktiengesellschaft Electrode arrangement for electric discharge machining an electrically non conductive material
EP1839794A1 (en) * 2006-03-29 2007-10-03 Siemens Aktiengesellschaft Method of electric discharge machining for electrically insulating material
EP1870189A1 (en) * 2006-05-31 2007-12-26 Siemens Aktiengesellschaft Method of electric discharge machining for electrically insulating material
EP1864742A1 (en) * 2006-06-08 2007-12-12 Siemens Aktiengesellschaft Method of electric discharge machining for electrically insulating material
WO2009052841A1 (en) * 2007-10-22 2009-04-30 Siemens Aktiengesellschaft Method of electric discharge machining by means of separately supplying the dielectric and apparatus therefor
EP2345499A1 (en) * 2010-01-14 2011-07-20 Siemens Aktiengesellschaft Electrical discharge machining after coating with auxiliary electrode in the component during coating
CN103433576B (en) * 2013-09-13 2015-10-07 哈尔滨工业大学 A kind of self-induction-Nei of insulative ceramic coatings metal rushes liquid electric discharge machining method
KR102391949B1 (en) * 2016-10-05 2022-04-28 한화에어로스페이스 주식회사 Hole fabrication method
GB202211810D0 (en) * 2022-08-12 2022-09-28 Rolls Royce Plc Electrical-discharge machining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008802A (en) * 2012-12-11 2013-04-03 中国石油大学(华东) High-instantaneous-energy-density electric spark high-speed milling method
WO2019050110A1 (en) * 2017-09-05 2019-03-14 한화에어로스페이스(주) Component hole machining method

Also Published As

Publication number Publication date
JPH10202431A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
JP3389034B2 (en) Processing method of workpiece with insulating ceramic film
US4449714A (en) Turbine engine seal and method for repair thereof
US20080253922A1 (en) Method for roughening metal surfaces and article manufactured thereby
FR2827311B1 (en) PROCESS FOR LOCAL REPAIR OF PARTS COATED WITH A THERMAL BARRIER
US8974656B2 (en) Method for roughening metal surfaces and article manufactured thereby
KR20010024583A (en) Method for producing abrasive tips for gas turbine blades
JPWO2008035395A1 (en) Electrostatic chuck feeding structure, method for manufacturing the same, and method for regenerating electrostatic chuck feeding structure
US20130075263A1 (en) METHOD FOR REFURBISHING PtAl COATING TO TURBINE HARDWARE REMOVED FROM SERVICE
CN103433576A (en) Self-inductive-internal flushing liquid electric spark processing method for metal with insulating ceramic coating
JP2005097728A (en) Wire electrode and method for making the same
TW200816344A (en) Structure for electrostatic chuck potential supply part and its manufacturing and reproduction method
US7416652B2 (en) Method for manufacturing an electrode for the electrochemical machining of a workpiece and an electrode manufactured according to this method
JPWO2002072911A1 (en) Sputtering target with less generation of particles, equipment in backing plate or sputtering apparatus and roughening method by electric discharge machining
CA2781967C (en) Method for roughening metal surfaces and article manufactured thereby
EP0688624A1 (en) Electric discharge machining method for insulating material using electroconductive layer formed thereon
JPH09136260A (en) Cooling hole machining method for gas turbine blade
US6020568A (en) Electro mechanical process and apparatus for metal deposition
JP2005002882A (en) Moving blade, coating method for snubber, repair method for snubber, and method for manufacturing restoration moving blade
GB2389554A (en) Machining apparatus and a method for machining
CN112501540A (en) Preparation method of ceramic layer applied to integrated circuit industry
CN103406611B (en) A kind of auxiliary electrode suitable in curved surface insulating ceramics spark machined
CN112210741A (en) Preparation method of ceramic layer applied to integrated circuit industry
JPS61168422A (en) Machining method of ceramics
JP2004002911A (en) Surface treatment method for rare earth magnet
CN113478032B (en) Electrolytic machining electrode for high-aspect-ratio groove and machining method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021210

LAPS Cancellation because of no payment of annual fees