JP2009202131A - Liquid coating apparatus and liquid coating method - Google Patents

Liquid coating apparatus and liquid coating method Download PDF

Info

Publication number
JP2009202131A
JP2009202131A JP2008049238A JP2008049238A JP2009202131A JP 2009202131 A JP2009202131 A JP 2009202131A JP 2008049238 A JP2008049238 A JP 2008049238A JP 2008049238 A JP2008049238 A JP 2008049238A JP 2009202131 A JP2009202131 A JP 2009202131A
Authority
JP
Japan
Prior art keywords
electrode
liquid
nozzle
potential
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008049238A
Other languages
Japanese (ja)
Other versions
JP5190280B2 (en
Inventor
Yukihiro Motobe
幸浩 本部
Masanobu Nagahama
正伸 長▲浜▼
Koji Arai
幸次 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2008049238A priority Critical patent/JP5190280B2/en
Publication of JP2009202131A publication Critical patent/JP2009202131A/en
Application granted granted Critical
Publication of JP5190280B2 publication Critical patent/JP5190280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid coating apparatus and a liquid coating method which can disperse liquid widely with a lower applied voltage than ever. <P>SOLUTION: The liquid coating apparatus 1 coating a coating object 2 with a liquid 9 includes: a mounting platform 3 mounting the coating object 2; a nozzle 4 disposed facing the coating object 2 mounted on the mounting platform 3 and ejecting the liquid 9 to the coating object 2; a first electrode 6 electrostatically charging the liquid 9 in the nozzle 4; a second annular electrode 7 disposed around the nozzle 4 which is to be a center axis; and a third electrode 8 fixed on the mounting platform 3 so as to apply electric potential to the coating object 2 wherein the electric potential is set so that a potential V2 of the second electrode 7 is between a potential V1 of the first electrode 6 and a potential V3 of the third electrode 8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は液体塗布装置及び液体塗布方法に関する。詳しくは、ノズルに静電力を作用させて液体を噴霧状に散布し、被塗布物表面の広範囲に液体を塗布する液体塗布装置及び液体塗布方法に関する。   The present invention relates to a liquid coating apparatus and a liquid coating method. More specifically, the present invention relates to a liquid application apparatus and a liquid application method for applying an electrostatic force to a nozzle to spray a liquid in a spray state and applying the liquid over a wide range of the surface of an object to be coated.

従来、液体をノズルから吐出させる際に、ノズルに静電力を作用させて液滴、液糸、ミストを生成し、液流の方向をコントロールすることが行なわれている。例えば、ノズルの軸線方向に被塗布物を配置し、ノズルの軸線方向に静電力を作用させて、液体を曳糸状に吐出する薄膜製造装置等が提案されている。これによれば、ノズルと被塗布物に印加する電圧と液体の比抵抗により、液体の状態が(a)液滴状、(b)曳糸状、(c)噴霧状の3通りに変化し、噴霧状にするには高電圧を要する。(例えば特許文献1参照)   Conventionally, when a liquid is ejected from a nozzle, an electrostatic force is applied to the nozzle to generate droplets, liquid yarn, and mist, and control the direction of the liquid flow. For example, a thin film manufacturing apparatus has been proposed in which an object to be coated is arranged in the axial direction of the nozzle, an electrostatic force is applied in the axial direction of the nozzle, and the liquid is ejected in a string shape. According to this, depending on the voltage applied to the nozzle and the object to be coated and the specific resistance of the liquid, the liquid state changes in three ways: (a) droplet-like, (b) string-like, (c) spray-like, A high voltage is required for spraying. (For example, see Patent Document 1)

特開平8−71489号公報(段落0023〜0104、図1〜図8)JP-A-8-71489 (paragraphs 0023 to 0104, FIGS. 1 to 8)

しかしながら、上記薄膜製造装置などの従来の装置では、広範囲に塗布を行うためにはノズルと被塗布物の距離を大きくするが、この場合、ノズルと被塗布物間の静電力が減少して液が分散し難くなる。そこで、距離を大きくすることによって減少した静電力を補うためには高電圧が必要となるという問題があった。他方、高電圧を印加すると、ノズル先端と被塗布物間で放電が発生し、ノズル先端や被塗布物が破壊されるという問題があった。また、導電性の液体を塗布する場合には、その液体を介してノズル先端と被塗布物間で放電が生じる場合もあるため絶縁距離を大きく確保する必要があるが、この場合にも上記と同様に、ノズルと被塗布物間の静電力が低下して高電圧が必要となるという問題があった。このように、ノズル先端と被塗布物間の距離と印加電圧とのトレードオフ関係の中で塗布に適したノズル先端と被塗布物間の距離の設定は困難であった。   However, in the conventional apparatus such as the above-described thin film manufacturing apparatus, the distance between the nozzle and the object to be coated is increased in order to perform the coating over a wide range. Becomes difficult to disperse. Therefore, there has been a problem that a high voltage is required to compensate for the electrostatic force reduced by increasing the distance. On the other hand, when a high voltage is applied, discharge occurs between the nozzle tip and the coating object, and there is a problem that the nozzle tip and the coating object are destroyed. In addition, when applying a conductive liquid, it may be necessary to ensure a large insulation distance because a discharge may occur between the nozzle tip and the object to be coated via the liquid. Similarly, there has been a problem that the electrostatic force between the nozzle and the object to be coated is reduced and a high voltage is required. As described above, it is difficult to set the distance between the nozzle tip and the coating object suitable for coating in the trade-off relationship between the distance between the nozzle tip and the coating object and the applied voltage.

本発明は、従来より低い印加電圧で液体を広範囲に分散させて塗布できる液体塗布装置及び液体塗布方法を提供することを目的とする。   An object of the present invention is to provide a liquid coating apparatus and a liquid coating method capable of coating a liquid dispersedly over a wide range with a lower applied voltage than conventional ones.

上記課題を解決するために、本発明の第1の態様に係る液体塗布装置1は、例えば図1に示すように、液体9を被塗布物2に塗布する液体塗布装置であって、被塗布物2を載置する載置台3と、載置台3に載置される被塗布物2に対向して配置され、被塗布物2に向けて液体9を吐出するノズル4と、ノズル4内の液体9を帯電状態にする第1の電極6と、ノズル4を中心軸としてノズル4の周りに配置された環状の第2の電極7と、被塗布物2に電位を与えるように載置台3に取り付けられた第3の電極8とを備え、第2の電極7の電位が第1の電極6の電位と第3の電極8の電位の間になるように電位が設定される。   In order to solve the above problems, a liquid application apparatus 1 according to a first aspect of the present invention is a liquid application apparatus that applies a liquid 9 to an object 2 as shown in FIG. A mounting table 3 on which the object 2 is mounted; a nozzle 4 which is disposed opposite to the object 2 to be applied placed on the mounting table 3 and which discharges the liquid 9 toward the object 2; A first electrode 6 that charges the liquid 9, an annular second electrode 7 that is disposed around the nozzle 4 with the nozzle 4 as a central axis, and a mounting table 3 that applies a potential to the workpiece 2. And the potential of the second electrode 7 is set so that the potential of the second electrode 7 is between the potential of the first electrode 6 and the potential of the third electrode 8.

ここにおいて、被塗布物2と液体との組み合わせとして、半導体ウエハとレジスト、絶縁膜溶液、拡散剤や保護膜用溶液の組み合わせ、ガラスやレンズとコーティング液の組み合わせ、板金とメッキ液やペンキの組み合わせ等が挙げられる。また、トレーや型枠に溶融ポリマーを噴霧し、ナノサイズのポリマー粒子、ファイバーなどを得ることもできる。また、ノズル4が被塗布物2に対向して配置されとは、ノズル4からの液吐出方向に被塗布物2が在るように配置されることを意味する。典型的には、被塗布物2が水平に載置され、ノズル4が被塗布物2表面の垂直上方に配置され、被塗布物2の中心がノズル4の軸線上に一致することが好ましいが、必ずしもこれに限定されず、液体が被塗布物2の表面に広範囲に散布されるように配置されれば良い。また、第1の電極6がノズル4内の液体9を帯電状態にするとは、ノズル4が導電体からなる場合には、ノズル4自体を第1の電極6とし内部の液体9に接触して内部の液体9を帯電状態にしても良く、別に設けた電極接続部6Aからノズル4に電気的に接続し、この電極接続部6Aとノズル4を含めて第1の電極6としノズル4内の液体9を帯電状態にしても良い。また、これらの場合にノズル4は液体9に接触する内側が導電体で、外側が絶縁体で覆われていても良いが、この場合には、電極接続部6Aを通してノズル4の内側が電源と電気的に接続される。また、ノズル4が絶縁体からなる場合には、ノズル4の入り口近傍に配置された第1の電極6が中を貫通する液体9に接触して液体9を帯電状態にしてノズル4内に送り込んでも良い。また、環状とは、典型的には円環状をいうが、楕円環状でも良く、矩形環状、多角形環状でも良い。また、環の一部が途切れていても、環の大部分が電極として構成されれば良い。また、第3の電極8が被塗布物2に電位を与えるように載置台3に取り付けられたとは、例えば、被塗布物2が導電体であれば被塗布物2に接触するように電極を取り付ければ良く、載置台3が導電体であれば載置台3の一部に電極を接続すれば良く、載置台3が絶縁体であれば、その上部、下部に円板状、ドーナツ状の電極を取り付けても良く、載置台3の内部に円板状、ドーナツ状の電極を埋め込んでも良い。このようにすると、電気力線が載置台3に載置された被塗布物2を通過して電極に到るので、被塗布物2に電位を与えることができる。   Here, as a combination of the object to be coated 2 and a liquid, a combination of a semiconductor wafer and a resist, an insulating film solution, a diffusing agent and a protective film solution, a combination of glass, a lens and a coating solution, a combination of sheet metal, a plating solution and paint. Etc. Alternatively, molten polymer can be sprayed onto trays or molds to obtain nano-sized polymer particles, fibers, and the like. Further, the phrase “the nozzle 4 is disposed so as to face the object 2” means that the object 2 is disposed in the liquid discharge direction from the nozzle 4. Typically, it is preferable that the object to be coated 2 is placed horizontally, the nozzle 4 is arranged vertically above the surface of the object to be coated 2, and the center of the object to be coated 2 coincides with the axis of the nozzle 4. However, the present invention is not necessarily limited to this, and the liquid may be disposed so as to be spread over a wide range on the surface of the workpiece 2. In addition, the first electrode 6 makes the liquid 9 in the nozzle 4 charged. When the nozzle 4 is made of a conductor, the nozzle 4 itself is used as the first electrode 6 and contacts the liquid 9 inside. The internal liquid 9 may be charged, and is electrically connected to the nozzle 4 from a separately provided electrode connecting portion 6A. The first electrode 6 including the electrode connecting portion 6A and the nozzle 4 is used as the first electrode 6 in the nozzle 4. The liquid 9 may be charged. Further, in these cases, the nozzle 4 may be covered with a conductor on the inside contacting the liquid 9 and covered with an insulator on the outside. In this case, the inside of the nozzle 4 is connected to the power source through the electrode connecting portion 6A. Electrically connected. When the nozzle 4 is made of an insulator, the first electrode 6 disposed in the vicinity of the inlet of the nozzle 4 comes into contact with the liquid 9 penetrating therethrough and the liquid 9 is charged and sent into the nozzle 4. But it ’s okay. The term “annular” typically means an annular shape, but may be an elliptical shape, a rectangular shape, or a polygonal shape. Moreover, even if a part of the ring is interrupted, it is sufficient that the majority of the ring is configured as an electrode. The third electrode 8 is attached to the mounting table 3 so as to apply a potential to the object 2. For example, if the object 2 is a conductor, the electrode is placed in contact with the object 2. If the mounting table 3 is a conductor, an electrode may be connected to a part of the mounting table 3, and if the mounting table 3 is an insulator, a disk-shaped or donut-shaped electrode is formed on the upper and lower portions thereof. Or a disk-shaped or donut-shaped electrode may be embedded in the mounting table 3. In this way, the electric lines of force pass through the object to be applied 2 placed on the mounting table 3 and reach the electrode, so that a potential can be applied to the object to be coated 2.

このように構成すると、第2の電極7を設けることにより、ノズル4と載置台3間の電圧V1−V3を第2の電極7を設けない場合に比して低減しても、液体を分散させて塗布することができる。また、第1の電極6と第2の電極7の距離を一定と仮定すると、第1の電極6から第3の電極8に向かう噴霧は略円錐状となるので、被塗布物2が載置された第3の電極8をノズル4から遠ざけると噴霧範囲を広げることができ、逆に第3の電極8を近づけると噴霧範囲を狭めることができる。したがって、従来より低い印加電圧で液体を広範囲に分散させて塗布できる液体塗布装置を提供できる。   With this configuration, by providing the second electrode 7, the liquid is dispersed even if the voltage V 1 -V 3 between the nozzle 4 and the mounting table 3 is reduced as compared to the case where the second electrode 7 is not provided. Can be applied. Further, assuming that the distance between the first electrode 6 and the second electrode 7 is constant, the spray from the first electrode 6 toward the third electrode 8 is substantially conical, so that the article 2 is placed. When the third electrode 8 is moved away from the nozzle 4, the spraying range can be expanded, and conversely, when the third electrode 8 is brought closer, the spraying range can be narrowed. Therefore, it is possible to provide a liquid coating apparatus capable of coating a liquid dispersed in a wide range with a lower applied voltage than in the past.

また、本発明の第2の態様に係る液体塗布装置1は、第1の態様において、例えば図2(B)に示すように、第1の電極6から第3の電極8に到る電気力線は、ノズル4から外側に放射状に広がり、第2の電極7に近付いた後に、第3の電極8に到達するように形成される。このように構成すると、帯電した液体微粒を電気力線に沿って移動させる力が働くので、被塗布物2表面の広範囲を塗布できる。   Further, in the liquid coating apparatus 1 according to the second aspect of the present invention, in the first aspect, as shown in FIG. 2B, for example, the electric force from the first electrode 6 to the third electrode 8 is obtained. The line extends radially outward from the nozzle 4 and is formed to reach the third electrode 8 after approaching the second electrode 7. If comprised in this way, since the force which moves the charged liquid microparticles | fine-particles along an electric-force line will act, it can apply | coat the wide range of the to-be-coated object 2 surface.

また、本発明の第3の態様に係る液体塗布装置1Aは、第1又は第2の態様において、例えば図4に示すように、第1の電極6と第2の電極7の間に第1の抵抗R1を、第2の電極6と第3の電極7の間に第2の抵抗R2を備え、第1の電極6と第2の電極7との間の電位差V1−V2と第2の電極7と第3の電極8との間の電位差V2−V3の比率は、第1の抵抗R1と第2の抵抗R2の抵抗値の比率により設定される。このように構成すると、抵抗R1,R2を使用できるので、電位付与手段の構成を簡易かつ小型にできる。   In addition, the liquid application apparatus 1A according to the third aspect of the present invention is the first or second aspect in which, as shown in FIG. 4, for example, the first between the first electrode 6 and the second electrode 7 is the first. The second resistor R2 is provided between the second electrode 6 and the third electrode 7, and the potential difference V1-V2 between the first electrode 6 and the second electrode 7 is The ratio of the potential difference V2-V3 between the electrode 7 and the third electrode 8 is set by the ratio of the resistance values of the first resistor R1 and the second resistor R2. If comprised in this way, since resistance R1, R2 can be used, the structure of an electric potential provision means can be simplified and reduced in size.

また、本発明の第4の態様に係る液体塗布装置1は、第1又は第2の態様において、例えば図1に示すように、第1の電極6と第3の電極8の間に第1の電源E1を、第2の電極7と第3の電極8の間に第2の電源E2を備え、第1の電極6と第2の電極7との間の電位差V1−V2と第2の電極7と第3の電極8との間の電位差V2−V3の比率は、第1の電源E1と第2の電源E2の起電力の比率により設定される。このように構成すると、電源E1,E2により、電位の調整が容易である。   In addition, the liquid application apparatus 1 according to the fourth aspect of the present invention is the first or second aspect in which the first electrode 6 and the third electrode 8 are arranged between the first electrode 6 and the third electrode 8 as shown in FIG. The second power source E2 is provided between the second electrode 7 and the third electrode 8, and the potential difference V1-V2 between the first electrode 6 and the second electrode 7 is The ratio of the potential difference V2-V3 between the electrode 7 and the third electrode 8 is set by the ratio of the electromotive forces of the first power supply E1 and the second power supply E2. With this configuration, the potential can be easily adjusted by the power supplies E1 and E2.

また、本発明の第5の態様に係る液体塗布装置1Bは、第1ないし第4のいずれか1態様において、第2の電極7は少なくとも外周側でノズルの液吐出方向側の端部が絶縁体で覆われている。このように構成すると、外周側でノズルの液吐出方向側の端部への電界集中が緩和される。さらに、例えば図5及び図6に示すように、端部だけでなく、外周側全体及び載置台側全体を絶縁体で覆うと、噴霧状の液体が第2の電極7Aの本体部7B及び電極カバー10へ付着することを防止できるので、付着した液滴により本体部7Bが腐食すること、液滴の落下により第2の電極7Aの下側に配置されるワークやステージに余計な液が付着することを防止できる。また、絶縁性を保つには比誘電率εが2以上が好ましく、さらに高い方がより好ましい。 Further, in any one of the first to fourth aspects, the liquid coating apparatus 1B according to the fifth aspect of the present invention is such that the second electrode 7 is insulated at least at the outer peripheral side and the end of the nozzle in the liquid ejection direction Covered with body. If comprised in this way, the electric field concentration to the edge part of the liquid discharge direction side of a nozzle will be relieve | moderated on the outer peripheral side. Further, for example, as shown in FIGS. 5 and 6, when not only the end portion but also the entire outer peripheral side and the entire mounting table side are covered with an insulator, the sprayed liquid is applied to the main body portion 7B and the electrode of the second electrode 7A. Since it can be prevented from adhering to the cover 10, the main body portion 7B is corroded by the adhering droplets, and extra liquid adheres to the work or stage disposed below the second electrode 7A due to the dropping of the droplets. Can be prevented. In order to maintain insulation, the relative dielectric constant ε S is preferably 2 or more, and more preferably higher.

また、本発明の第6の態様に係る液体塗布装置1は、第1の態様において、例えば図1に示すように、第2の電極7は吐出口4の先端から液吐出方向と反対側に所定の長さ離して設置される。ここにおいて、所定の長さとは、噴霧状の液体(ミスト)が第2の電極7に付着するのを避け、かつ第1の電極6から第3の電極8に到る電気力線を広げるのに有効に作用させる高さであり、第2の電極7の半径にもよるが、例えば1〜10mmが好適であり、5〜10mmがより好適である。このように構成すると、噴霧状の液体が第2の電極7に付着し難くなり、また、第1の電極6と第2の電極7のいずれかの電線が断線した際などに、第1の電極6と第2の電極7の間で放電が起こったとしても、所定の長さ離れているためノズル4の先端で放電が起こる可能性は低くなり、先端は保護される。   Further, in the liquid coating apparatus 1 according to the sixth aspect of the present invention, in the first aspect, for example, as shown in FIG. 1, the second electrode 7 is disposed on the side opposite to the liquid discharge direction from the tip of the discharge port 4. Installed at a predetermined length. Here, the predetermined length means that the sprayed liquid (mist) is prevented from adhering to the second electrode 7 and the electric lines of force extending from the first electrode 6 to the third electrode 8 are widened. Although it depends on the radius of the second electrode 7, for example, 1 to 10 mm is preferable, and 5 to 10 mm is more preferable. If comprised in this way, it will become difficult for a spray-like liquid to adhere to the 2nd electrode 7, and when the electric wire in any one of the 1st electrode 6 and the 2nd electrode 7 is disconnected, the 1st Even if a discharge occurs between the electrode 6 and the second electrode 7, since the distance is a predetermined length, the possibility of a discharge occurring at the tip of the nozzle 4 is reduced, and the tip is protected.

上記課題を解決するために、本発明の第7の態様に係る液体塗布方法は、例えば図3に示すように、液体を被塗布物2に塗布する液体塗布方法であって、被塗布物2を載置台3に載置し、被塗布物2に向けて液体9を吐出するノズル4に対向して配置する被塗布物配置工程(S1)と、ノズル4内の液体9を帯電状態にする第1の電極6と、ノズル4を中心軸としてノズル4の周りに配置された環状の第2の電極7と、被塗布物2に電位を与えるように載置台3に取り付けられた第3の電極8に対して、第2の電極7の電位が第1の電極6の電位と第3の電極8の電位の間になるように電位を設定する電位設定工程(S2)と、ノズル4から被塗布物2に向けて液体を吐出し、被塗布物2の表面全体に液体を噴霧状に散布する液体散布工程(S3)とを備える。   In order to solve the above problem, a liquid application method according to a seventh aspect of the present invention is a liquid application method for applying a liquid to an object to be applied 2 as shown in FIG. Is placed on the mounting table 3, and the coating object placement step (S 1) is arranged so as to face the nozzle 4 that discharges the liquid 9 toward the coating object 2, and the liquid 9 in the nozzle 4 is charged. A first electrode 6, an annular second electrode 7 disposed around the nozzle 4 with the nozzle 4 as a central axis, and a third electrode attached to the mounting table 3 so as to apply a potential to the workpiece 2. From the nozzle 4, a potential setting step (S 2) for setting the potential so that the potential of the second electrode 7 is between the potential of the first electrode 6 and the potential of the third electrode 8 with respect to the electrode 8. A liquid spraying process in which liquid is discharged toward the object to be coated 2 and the liquid is sprayed on the entire surface of the object to be coated 2 ( 3) and a.

このように構成すると、第2の電極7を用いることにより、ノズル4と載置台3間の電圧V1−V3を第2の電極7を設けない場合に比して低減しても、液体を分散させて塗布することができる。したがって、従来より低い印加電圧で液体を広範囲に分散させて塗布できる液体塗布方法を提供できる。   With this configuration, by using the second electrode 7, even if the voltage V1-V3 between the nozzle 4 and the mounting table 3 is reduced as compared with the case where the second electrode 7 is not provided, the liquid is dispersed. Can be applied. Therefore, it is possible to provide a liquid application method capable of applying a liquid dispersed in a wide range with an applied voltage lower than that in the prior art.

本発明によれば、従来より低い印加電圧で液体を広範囲に分散させて塗布できる液体塗布装置及び液体塗布方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the liquid application apparatus and liquid application method which can apply | coat by disperse | distributing a liquid to a wide range with the applied voltage lower than before can be provided.

以下に図面に基づき本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[第1の実施の形態]
図1に、第1の実施の形態における液体塗布装置の構成例を示す。図1において、1は液体塗布装置である。2は被塗布物で、載置台3に載置されている。本実施の形態では、載置台3は水平に設置され、ノズル4は載置台3に対向して鉛直下方向きに設置される。ノズル4はオペレートバルブ5を介して図示しない液体タンクに接続され、オペレートバルブ5を開にすると、液体タンクから液体がノズル4に供給される。当初はオペレートバルブ5を閉にしておく。
[First Embodiment]
FIG. 1 shows an example of the configuration of the liquid coating apparatus in the first embodiment. In FIG. 1, 1 is a liquid coating device. Reference numeral 2 denotes an object to be coated, which is placed on the placing table 3. In the present embodiment, the mounting table 3 is installed horizontally, and the nozzle 4 is installed facing the mounting table 3 vertically downward. The nozzle 4 is connected to a liquid tank (not shown) via an operating valve 5, and when the operating valve 5 is opened, liquid is supplied from the liquid tank to the nozzle 4. Initially, the operating valve 5 is closed.

ノズル4は金属や合金等の導電体で形成され、電極接続部6Aはノズル4に電気的に接続され、電極接続部6Aとノズル4により第1の電極6が構成される。ノズル4は内側の液体9に接触する部分が導電性であれば良く、周囲が絶縁体で覆われていても良い。これにより、ノズル内の液体は帯電し、吐出口から噴霧状に分散される。ノズル4は吐出される液体微粒(噴霧すなわちミストを構成する個々の液体微粒)の多くが帯電されるように、吐出口付近ではテーパ環状にして吐出口を絞っている。第2の電極7はノズル4を中心軸としてノズル4の周りに配置されている。第2の電極の位置をノズル4の吐出口より高くするのは、ミストが第2の電極に付着し難くして、ノズル4と第2の電極間の放電を防止するためである。例えば、ノズル4の吐出口の先端からの第2の電極6のまでの間隔は1〜10mmが好ましく、5〜10mmがより好ましい。また、ノズル4と第2の電極7との間隔は、狭いと放電が生じるようになり、大きいと電界が有効に作用しなくなるので、適切な範囲とする必要がある。例えば、ノズル4の外径を最大で6mmとした場合には、第2の電極7の内径を10〜20mmとするのが好ましい。また、第3の電極8は載置台3に取り付けられ、載置台3に載置された被塗布物2に電位を与えるようになっている。第3の電極8は接地され、第3の電極8の電位V3は0Vである。例えば、第3の電極8は載置台3の上部に一体的に取り付けられる。なお、図示されないが、ノズル4と第2の電極7を支持・移動するワーク、載置台3に被塗布物2を載置・除去するワーク、載置台3を上下させるワーク、載置台3やこれらのワークを搭載するステージなどが在る。   The nozzle 4 is formed of a conductor such as a metal or an alloy, the electrode connecting portion 6A is electrically connected to the nozzle 4, and the electrode connecting portion 6A and the nozzle 4 constitute the first electrode 6. The nozzle 4 only needs to be electrically conductive at the portion in contact with the inner liquid 9, and the periphery may be covered with an insulator. As a result, the liquid in the nozzle is charged and dispersed in a spray form from the discharge port. The nozzle 4 has a tapered annular shape in the vicinity of the discharge port to narrow down the discharge port so that many of the discharged liquid particles (spray, that is, individual liquid particles constituting the mist) are charged. The second electrode 7 is arranged around the nozzle 4 with the nozzle 4 as a central axis. The reason why the position of the second electrode is made higher than the discharge port of the nozzle 4 is to prevent mist from adhering to the second electrode and to prevent discharge between the nozzle 4 and the second electrode. For example, the distance from the tip of the discharge port of the nozzle 4 to the second electrode 6 is preferably 1 to 10 mm, and more preferably 5 to 10 mm. Further, if the gap between the nozzle 4 and the second electrode 7 is narrow, discharge occurs, and if it is large, the electric field does not act effectively, so it is necessary to set it within an appropriate range. For example, when the outer diameter of the nozzle 4 is 6 mm at the maximum, the inner diameter of the second electrode 7 is preferably 10 to 20 mm. Further, the third electrode 8 is attached to the mounting table 3 so as to apply a potential to the workpiece 2 mounted on the mounting table 3. The third electrode 8 is grounded, and the potential V3 of the third electrode 8 is 0V. For example, the third electrode 8 is integrally attached to the upper part of the mounting table 3. Although not shown, a work that supports and moves the nozzle 4 and the second electrode 7, a work that places and removes the workpiece 2 on the placement table 3, a work that moves the placement table 3 up and down, the placement table 3, and these There is a stage equipped with this work.

本実施の形態では、第1の電極6と第2の電極7との間の電位差V1−V2と第2の電極7と第3の電極8との間の電位差V2−V3の比率は電源の起電力の比率により設定される例を示す。E1,E2は第1、第2の電源、SW1,SW2はそれぞれ第1、第2の電源E1,E2と第1、第2の電極6,7との接続をオンオフする第1、第2のスイッチである。第1のスイッチSW1をオンにすると、第1の電極6と第3の電極8間に第1の電源E1の起電力により電圧V1−V3が印加され、ノズル4に電位V1が付与される。第2のスイッチSW2をオンにすると、第2の電極7と第3の電極8間に第2の電源E2の起電力により電圧V2−V3が印加され、第2の電極7に電位V2が付与される。結果的にノズル4と第2の電極7間に電位差V1−V2が与えられる。ここで、第2の電極7の電位V2は第1の電極6の電位V1と第3の電極8の電位V3の間になるように、すなわち、V1>V2>V3(=0V)に設定される。図中第1〜第3の電極6〜8に印加される電位V1〜V3を( )内に示す。例えば、第1の電極6と第3の電極8間に印加される電圧V1−V3を10kV、第2の電極7と第3の電極8間に印加される電圧V2−V3を6kVとすると、ノズル4と第2の電極7間に印加される電圧V1−V2は4kVとなり、第1の電極6の電位V1と第2の電極7の電位V2間の電位差(V1−V2)と第2の電極6の電位V2と第3の電極8間の電位差(V2−V3)の比率は3:2となる。なお、本実施の形態では、第1、第2の電源E1,E2の起電力をそれぞれ可変にすることにより、電位の調整が容易であるという利点がある。また、第1、第2のスイッチSW1,SW2を連動して開閉するように構成することにより、第1、第2のスイッチSW1,SW2のいずれか一方のみが開となり、第1の電極6と第2の電極7の間の電位差が大きくなることを防止できる。また、スイッチのオン・オフの時間差による各電極への電圧印加のタイミングずれの発生を防止でき、適切な電気力線を瞬時に形成・解消できる。   In the present embodiment, the ratio of the potential difference V1-V2 between the first electrode 6 and the second electrode 7 and the potential difference V2-V3 between the second electrode 7 and the third electrode 8 is the power supply The example set by the ratio of electromotive force is shown. E1 and E2 are first and second power supplies, and SW1 and SW2 are first and second switches for turning on and off the connection between the first and second power supplies E1 and E2 and the first and second electrodes 6 and 7, respectively. Switch. When the first switch SW1 is turned on, the voltage V1-V3 is applied between the first electrode 6 and the third electrode 8 by the electromotive force of the first power supply E1, and the potential V1 is applied to the nozzle 4. When the second switch SW2 is turned on, the voltage V2-V3 is applied between the second electrode 7 and the third electrode 8 by the electromotive force of the second power source E2, and the potential V2 is applied to the second electrode 7. Is done. As a result, a potential difference V1-V2 is given between the nozzle 4 and the second electrode 7. Here, the potential V2 of the second electrode 7 is set to be between the potential V1 of the first electrode 6 and the potential V3 of the third electrode 8, that is, V1> V2> V3 (= 0V). The In the drawing, potentials V1 to V3 applied to the first to third electrodes 6 to 8 are shown in parentheses. For example, if the voltage V1-V3 applied between the first electrode 6 and the third electrode 8 is 10 kV, and the voltage V2-V3 applied between the second electrode 7 and the third electrode 8 is 6 kV, The voltage V1−V2 applied between the nozzle 4 and the second electrode 7 becomes 4 kV, and the potential difference (V1−V2) between the potential V1 of the first electrode 6 and the potential V2 of the second electrode 7 and the second The ratio of the potential V2 of the electrode 6 and the potential difference (V2-V3) between the third electrode 8 is 3: 2. In the present embodiment, there is an advantage that the potential can be easily adjusted by making the electromotive forces of the first and second power sources E1 and E2 variable. Further, by configuring the first and second switches SW1 and SW2 to open and close in conjunction with each other, only one of the first and second switches SW1 and SW2 is opened. An increase in the potential difference between the second electrodes 7 can be prevented. In addition, it is possible to prevent the occurrence of a shift in the timing of voltage application to each electrode due to the time difference between on and off of the switch, and it is possible to instantly form and eliminate appropriate lines of electric force.

このように電位が設定された状態でオペレートバルブ5を開にして、ノズル4に液体を供給すると、静電力の作用により液体が噴霧状になって散布される。ノズル4と第3の電極8間に電圧が印加されていないときは、液体はノズルから吐出される初速度と重力により鉛直下方に滴下されるが、電圧が印加されると、液体9はノズル4から電荷を得てミスト化され、電極間に形成された電気力線に沿って移動するような力を受けて、載置台3上の被塗布物2の表面に散布される。これにより被塗布物2に液体が塗布される。   When the operating valve 5 is opened with the potential set in this manner and the liquid is supplied to the nozzle 4, the liquid is sprayed and dispersed by the action of the electrostatic force. When no voltage is applied between the nozzle 4 and the third electrode 8, the liquid is dropped vertically downward by the initial velocity and gravity discharged from the nozzle, but when the voltage is applied, the liquid 9 The electric charge is obtained from 4 and is misted, and is applied to the surface of the object to be coated 2 on the mounting table 3 by receiving a force that moves along the electric lines of force formed between the electrodes. As a result, the liquid is applied to the workpiece 2.

図2に第2の電極7の有無による電気力線の差異を示す。図2(A)に第2の電極7が無い場合、図2(B)に第2の電極7が有る場合の電気力線を模式的に示す。図2(A)の液体塗布装置を1Eで示す。すなわち、第2の電極7が無い場合には、図2(A)に示すように、電気力線はノズル4から載置台3に向かって、略円錐状に形成され、ノズル4から吐出された液体微粒は、第1の電極6と第3の電極8間に形成される電気力線に沿うように被塗布物2に散布される。これに対して、第2の電極7が有る場合には、図2(B)に示すように、電気力線はノズル4から放射状に広がるように形成され、液体微粒は被塗布物2表面の広い範囲に散布されるようになる。この場合、第1の電極6と第3の電極8間の電気力線φ2は、ノズル4から外側に放射状に広がり、第2の電極7の方向に導かれ、第2の電極7のほぼ直下で最も第2の電極7に近付き、その後は第3の電極8の方向すなわち下方に向かって導かれる。少なくとも、電気力線φ2は第2の電極7の半径を越えて外周方向に広がり、第3の電極8に到るように形成される。これにより、第2の電極7が無い場合に比較して、液体微粒は広い範囲に拡散される。また、液体微粒の拡散方向は主に第1の電極6と第2の電極7で定まるため、第1の電極6と第3の電極8の間隔は、塗布範囲に応じて自由に設定することができる。すなわち、塗布範囲を大きくしたい場合には被塗布物2が載置された載置台3の位置を下げ、塗布範囲を小さくしたい場合には被塗布物2が載置された載置台3の位置を上げれば良い。   FIG. 2 shows the difference in the lines of electric force depending on the presence / absence of the second electrode 7. FIG. 2A schematically shows the lines of electric force when the second electrode 7 is not present and FIG. 2B when the second electrode 7 is present. The liquid coating apparatus of FIG. That is, when there is no second electrode 7, as shown in FIG. 2A, the lines of electric force are formed in a substantially conical shape from the nozzle 4 toward the mounting table 3 and discharged from the nozzle 4. The liquid fine particles are dispersed on the object to be coated 2 along the electric lines of force formed between the first electrode 6 and the third electrode 8. On the other hand, when there is the second electrode 7, as shown in FIG. 2B, the electric lines of force are formed so as to spread radially from the nozzle 4, and the liquid fine particles are formed on the surface of the article 2 to be coated. It will be spread over a wide area. In this case, the electric lines of force φ2 between the first electrode 6 and the third electrode 8 radiate outward from the nozzle 4, are guided in the direction of the second electrode 7, and are almost directly below the second electrode 7. Then, it approaches the second electrode 7 most and then is guided in the direction of the third electrode 8, that is, downward. At least the electric lines of force φ2 extend beyond the radius of the second electrode 7 in the outer peripheral direction and are formed so as to reach the third electrode 8. Thereby, compared with the case where there is no 2nd electrode 7, a liquid fine particle is spread | diffused in the wide range. Moreover, since the diffusion direction of the liquid fine particles is mainly determined by the first electrode 6 and the second electrode 7, the interval between the first electrode 6 and the third electrode 8 can be freely set according to the application range. Can do. That is, when it is desired to increase the application range, the position of the mounting table 3 on which the object 2 is placed is lowered, and when the application range is desired to be reduced, the position of the mounting table 3 on which the object 2 is placed is set. Just raise it.

図3に本実施の形態による液体塗布方法の処理フロー例を示す。まず、被塗布物2を載置台3に載置し、導電体からなるノズル4に対向して配置する(被塗布物配置工程:ステップS1)。この際に、被塗布物2を載置した載置台3をノズル4下に移動しても良く、ノズル4を、被塗布物2を載置した載置台3上に移動しても良く、予めノズル4を載置台3上に配置しておき、被塗布物2を載置台3上にベルトコンベア等で移送するようにしても良い。次に、第1のスイッチSW1をオンにして、第1の電極6と第3の電極8間に第1の電源E1の起電力により電圧V1−V3を印加し、ノズル4に電位V1を付与する。また、第2のスイッチSW2をオンにして、第2の電極7と第3の電極8間に第2の電源E2の起電力により電圧V2−V3を印加し、ノズル4の周りに配置された環状の第2の電極7に電位V2を付与する(電位設定工程:S2)。結果的にノズル4と第2の電極7間に電位差V1−V2が付与される。第1のスイッチSW1と第2のスイッチSW2とは連動して開閉されるので、これをオンすることにより、第1の電極6と第2の電極7に同時に電位V1とV2が付与される。この際に、第2の電極の電位V2が第1の電極の電位V1と第3の電極の電位の間になるように、すなわち、V1>V2>V3(=0V)になるように、電位を設定する。   FIG. 3 shows an example of a processing flow of the liquid application method according to the present embodiment. First, the object to be coated 2 is placed on the mounting table 3 and disposed to face the nozzle 4 made of a conductor (coating object placement step: step S1). At this time, the mounting table 3 on which the coating object 2 is placed may be moved below the nozzle 4, or the nozzle 4 may be moved on the mounting table 3 on which the coating object 2 is placed, The nozzle 4 may be arranged on the mounting table 3, and the workpiece 2 may be transferred onto the mounting table 3 by a belt conveyor or the like. Next, the first switch SW1 is turned on, the voltage V1-V3 is applied between the first electrode 6 and the third electrode 8 by the electromotive force of the first power supply E1, and the potential V1 is applied to the nozzle 4. To do. Further, the second switch SW2 is turned on, and the voltage V2-V3 is applied between the second electrode 7 and the third electrode 8 by the electromotive force of the second power supply E2, and is arranged around the nozzle 4. A potential V2 is applied to the annular second electrode 7 (potential setting step: S2). As a result, a potential difference V1-V2 is applied between the nozzle 4 and the second electrode 7. Since the first switch SW1 and the second switch SW2 are opened and closed in conjunction with each other, the potentials V1 and V2 are simultaneously applied to the first electrode 6 and the second electrode 7 by turning on the first switch SW1 and the second switch SW2. At this time, the potential V2 of the second electrode is set to be between the potential V1 of the first electrode and the potential of the third electrode, that is, V1> V2> V3 (= 0 V). Set.

次に、オペレートバルブ5を開にしてノズル4内に液体を導入し、ノズル4から被塗布物2に向けて液体9を吐出する。これにより、被塗布物2の表面全体に液体微粒が噴霧状に散布される(液体散布工程:S3)。ノズル4から吐出された液体9は、ノズル4と第2の電極7間に電圧V1−V2が印加されているためにミスト化され(噴霧状となり)、散布範囲が拡大する。詳しく説明すると、基本的には、ノズル4と被塗布物2間に形成された電界の作用により、ミスト化された液体9は、被塗布物2の方向に向かって飛散する。しかし、ノズル4と第2の電極7間に形成された電界の作用により、ミスト化された液体9は、ノズル4を中心軸として放射外方向(被塗布物2の内周方から外周方向)に広がろうとする力が働く。このため、ノズル4から吐出された液体9は、ノズル4から第2の電極7の方向に引き寄せられて飛散し、ノズル4を中心として放射外方向に広がるが、その後、ノズル4と被塗布物2間に形成された電界によって、被塗布物2の方向に向かって散布される。例えば、第1の電極6と第3の電極8間に印加される電圧V1−V3を10kV、第2の電極7と第3の電極8間に印加される電圧V2−V3を6kVとすると、第1の電極6と第2の電極7との間の電位差V1−V2と第2の電極7と第3の電極8との間の電位差V2−V3の比率は2:3である。このように、ノズル4と被塗布物2間に形成された電界の作用及びノズル4と第2の電極7間に形成された電界の作用によって、液体9を分散させて被塗布物2に塗布することができるため、第2の電極7を設けない場合に比して、ノズル4と被塗布物2間の電圧V1−V3を低減した状態でも、十分に塗布面積を拡大することが可能となる。   Next, the operation valve 5 is opened to introduce a liquid into the nozzle 4, and the liquid 9 is ejected from the nozzle 4 toward the application object 2. Thereby, a liquid fine particle is sprayed on the whole surface of the to-be-coated object 2 (liquid spraying process: S3). The liquid 9 ejected from the nozzle 4 is misted (sprayed) because the voltage V1-V2 is applied between the nozzle 4 and the second electrode 7, and the spraying range is expanded. More specifically, basically, the misted liquid 9 is scattered in the direction of the coating object 2 by the action of the electric field formed between the nozzle 4 and the coating object 2. However, due to the action of the electric field formed between the nozzle 4 and the second electrode 7, the liquid 9 that has been mist is emitted radially from the nozzle 4 as the central axis (from the inner periphery to the outer periphery of the coating object 2). The power to spread is working. For this reason, the liquid 9 ejected from the nozzle 4 is attracted and scattered from the nozzle 4 in the direction of the second electrode 7 and spreads outward in the radial direction around the nozzle 4. The electric field formed between the two is dispersed toward the object to be coated 2. For example, if the voltage V1-V3 applied between the first electrode 6 and the third electrode 8 is 10 kV, and the voltage V2-V3 applied between the second electrode 7 and the third electrode 8 is 6 kV, The ratio of the potential difference V1-V2 between the first electrode 6 and the second electrode 7 and the potential difference V2-V3 between the second electrode 7 and the third electrode 8 is 2: 3. In this way, the liquid 9 is dispersed and applied to the object 2 by the action of the electric field formed between the nozzle 4 and the object 2 and the action of the electric field formed between the nozzle 4 and the second electrode 7. Therefore, compared to the case where the second electrode 7 is not provided, it is possible to sufficiently expand the coating area even when the voltage V1-V3 between the nozzle 4 and the workpiece 2 is reduced. Become.

次に、オペレートバルブ5を閉にしてノズル4への液体を導入を停止し(ステップS4)、第1及び第2の電源E1,E2の第1、第2のスイッチSW1,SW2をオフにする(ステップS5)。第1のスイッチSW1と第2のスイッチSW2とは連動して開閉される。次に、載置台3から被塗布物2を取り出す(ステップS6)。   Next, the operation valve 5 is closed to stop introducing the liquid into the nozzle 4 (step S4), and the first and second switches SW1 and SW2 of the first and second power sources E1 and E2 are turned off. (Step S5). The first switch SW1 and the second switch SW2 are opened and closed in conjunction with each other. Next, the workpiece 2 is taken out from the mounting table 3 (step S6).

本実施の形態によれば、第2の電極7を設けることにより、第2の電極7を設けない場合に比して、ノズル4と載置台3間の電圧V1−V3を低減した状態でも、液体9を分散させて塗布することができる。第2の電極7を設けることにより、例えば、第1の電極6と第3の電極8の間隔が100mmの場合に約1.5倍の塗布面積を得ることができた。したがって、第2の電極7を設けることにより、第2の電極7を設けない場合に比べて印加電圧を低減して液体を広範囲に分散させて塗布できる液体塗布装置及び液体塗布方法を提供できる。   According to the present embodiment, by providing the second electrode 7, even when the voltage V <b> 1-V <b> 3 between the nozzle 4 and the mounting table 3 is reduced as compared with the case where the second electrode 7 is not provided, The liquid 9 can be dispersed and applied. By providing the second electrode 7, for example, when the distance between the first electrode 6 and the third electrode 8 is 100 mm, a coating area of about 1.5 times can be obtained. Therefore, by providing the second electrode 7, it is possible to provide a liquid coating apparatus and a liquid coating method that can be applied by dispersing the liquid over a wide range by reducing the applied voltage as compared with the case where the second electrode 7 is not provided.

[第2の実施の形態]
第1の実施の形態は、第1の電極と第2の電極との間の電位差と第2の電極と第3の電極との間の電位差の比率は電源の起電力の比率により設定される例を説明したが、第2の実施の形態では、第1の電極と第2の電極との間の電位差と第2の電極と第3の電極との間の電位差の比率は抵抗の抵抗値の比率により設定される例を説明する。
[Second Embodiment]
In the first embodiment, the ratio of the potential difference between the first electrode and the second electrode and the ratio of the potential difference between the second electrode and the third electrode are set by the ratio of the electromotive force of the power source. Although the example has been described, in the second embodiment, the ratio of the potential difference between the first electrode and the second electrode and the potential difference between the second electrode and the third electrode is the resistance value of the resistor. An example in which the ratio is set will be described.

図4に、第2の実施の形態における液体塗布装置の構成例を示す。図2において、図1と同じ部位には同一の符号を付して重複した説明を省略する(以下の実施の形態についても同様とする)。主として第1の実施の形態と異なる点を説明する。第1の電極6と第3の電極8間に第1の電源E1の起電力により電圧V1−V3が印加される(この点は第1の実施の形態と同じである)。第1の電源E1と第1の電極6間に第3のスイッチSW3が設けられている。第1の電極6と第2の電極7との間に第1の抵抗R1が、第2の電極7と第3の電極8との間に第2の抵抗R2が設置され、これにより、第1の電極6と第2の電極7との間の電位差(V1−V2)と第2の電極7と第3の電極8との間の電位差(V2−V3=V2)の比率は、第1の抵抗R1と第2の抵抗R2の抵抗値の比率により定まる。この比率は例えば3:2とする。第3のスイッチSW3をオンすることにより第1の電極6と第2の電極7に同時に電位V1とV2が付与される。電位付与回路を抵抗で構成するので、簡易で小型に構成できるという利点がある。なお、抵抗を高くすると電源の容量も少なくてすむ。特に、各電極への電圧の供給が、第1の電源E1及び第3のスイッチSW3の1組のみで行なわれるため、スイッチのオン・オフ時の遅延時間による各電極への電圧印加のタイミングずれの発生を防止でき、適切な電気力線を瞬時に形成・解消できる。その他の構成及び処理フローは第1の実施の形態と同様であり、第1の実施の形態と同様な効果を奏する。   FIG. 4 shows a configuration example of the liquid coating apparatus according to the second embodiment. In FIG. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted (the same applies to the following embodiments). Differences from the first embodiment will be mainly described. Voltages V1-V3 are applied between the first electrode 6 and the third electrode 8 by the electromotive force of the first power supply E1 (this is the same as in the first embodiment). A third switch SW3 is provided between the first power supply E1 and the first electrode 6. A first resistor R1 is installed between the first electrode 6 and the second electrode 7, and a second resistor R2 is installed between the second electrode 7 and the third electrode 8, whereby the first resistor R1 is installed. The ratio of the potential difference (V1−V2) between the first electrode 6 and the second electrode 7 and the potential difference (V2−V3 = V2) between the second electrode 7 and the third electrode 8 is It is determined by the ratio of the resistance values of the resistor R1 and the second resistor R2. This ratio is, for example, 3: 2. By turning on the third switch SW3, the potentials V1 and V2 are simultaneously applied to the first electrode 6 and the second electrode 7. Since the potential applying circuit is configured by a resistor, there is an advantage that it can be configured simply and compactly. If the resistance is increased, the capacity of the power source can be reduced. In particular, the supply of voltage to each electrode is performed by only one set of the first power supply E1 and the third switch SW3. Therefore, the timing difference in voltage application to each electrode due to the delay time when the switch is turned on / off. Can be prevented, and appropriate lines of electric force can be formed and eliminated instantly. Other configurations and processing flow are the same as those of the first embodiment, and the same effects as those of the first embodiment are obtained.

[第3の実施の形態]
第1の実施の形態は、第2の電極が環状の電極である例を説明したが、第3の実施の形態では、第2の電極の外周下端部が絶縁体で覆われている例を説明する。主として第1の実施の形態と異なる点を説明する。
[Third Embodiment]
In the first embodiment, the example in which the second electrode is an annular electrode has been described. In the third embodiment, the lower end of the outer periphery of the second electrode is covered with an insulator. explain. Differences from the first embodiment will be mainly described.

図5に、第3の実施の形態における液体塗布装置1Bの構成例を、図6に、第3の実施の形態における第2の電極7Aの構成例を示す。少なくとも第2の電極7Aの本体部7Bの外周側でノズルの液吐出方向側の端部(エッジ部分)が絶縁体の電極カバー10で覆われている。図6(A)に絶縁体の電極カバー10を有する第2の電極7Aの斜視図を、図6(B)に、これを図6(A)の矢印方向から見たA−A断面図を示す。図5、図6において、カバー10を有する第2の電極を7A、環状の電極本体部を7Bで示す。環状の電極本体部7Bの外側と液吐出方向側(本実施の形態では下側)の大部分は誘電率の高い絶縁体の電極カバー10に覆われている。絶縁体は、例えば、テフロン(登録商標)(比誘電率ε=約2)を使用できる。少なくとも環状の電極本体部7Bの外周側でノズルの液吐出方向側の端部を絶縁体で覆うことによって、上記端部における電界の集中が緩和されて、放電を防止できる電極構成を提供できる。さらに、図5、図6に示すように、外周側全体及び載置台側全体を絶縁体で覆うと第2の電極7A周辺の電界が弱まり、帯電されミスト化された液体微粒が環状の第2の電極本体部7B及び電極カバー10に付着することを防止できるので、付着した液滴により本体部7Bが腐食すること、液滴の落下により第2の電極7Aの下側に配置されるワークやステージに余計な液が付着することを防止できる。その他の構成及び処理フローは第1の実施の形態と同様である。 FIG. 5 shows a configuration example of the liquid coating apparatus 1B in the third embodiment, and FIG. 6 shows a configuration example of the second electrode 7A in the third embodiment. At least the end portion (edge portion) on the liquid discharge direction side of the nozzle on the outer peripheral side of the main body portion 7B of the second electrode 7A is covered with an insulating electrode cover 10. FIG. 6A is a perspective view of the second electrode 7A having the insulating electrode cover 10, and FIG. 6B is a cross-sectional view taken along the line AA in FIG. Show. 5 and 6, the second electrode having the cover 10 is indicated by 7A, and the annular electrode main body is indicated by 7B. Most of the outer side of the annular electrode body 7B and the liquid discharge direction side (lower side in the present embodiment) are covered with an electrode cover 10 of an insulator having a high dielectric constant. As the insulator, for example, Teflon (registered trademark) (relative permittivity ε S = about 2) can be used. By covering at least the end portion of the nozzle on the liquid discharge direction side with the insulator on the outer peripheral side of the annular electrode main body portion 7B, it is possible to provide an electrode configuration in which the concentration of the electric field at the end portion is relaxed and discharge can be prevented. Furthermore, as shown in FIGS. 5 and 6, when the entire outer peripheral side and the entire mounting table side are covered with an insulator, the electric field around the second electrode 7A is weakened, and the charged and mist-like liquid fine particles are formed in the second annular shape. Can be prevented from adhering to the electrode main body portion 7B and the electrode cover 10, so that the main body portion 7B is corroded by the adhering liquid droplets, and the workpiece disposed below the second electrode 7A due to the drop of the liquid droplets It is possible to prevent extra liquid from adhering to the stage. Other configurations and processing flow are the same as those in the first embodiment.

[第4の実施の形態]
第1の実施の形態は、第2の電極が円環状の電極であり、被塗布物及び載置台が円形の例を説明したが、第4の実施の形態では、第2の電極が矩形で環状の電極であり、被塗布物及び載置台が矩形の例を説明する。第2の電極の形状が矩形であっても、ノズルから吐出された液体微粒は、第2の電極に上記の電位V2が付与されると、第1の電極と第3の電極間に形成される電気力線は広がるように形成され、液体微粒は広い範囲に散布されるようになる。そして、電気力線の広がり及び液体微粒の広がりは第2の電極の形状に依存するので、被塗布物が矩形の場合には、第2の電極の形状も矩形であることが望ましい。その他の構成及び処理フローは第1の実施の形態と同様である。
[Fourth Embodiment]
In the first embodiment, the second electrode is an annular electrode and the object to be coated and the mounting table are circular. However, in the fourth embodiment, the second electrode is rectangular. An example in which the object to be coated and the mounting table are rectangular will be described. Even if the shape of the second electrode is rectangular, the liquid fine particles discharged from the nozzle are formed between the first electrode and the third electrode when the potential V2 is applied to the second electrode. The electric field lines are formed so as to spread, and the liquid fine particles are spread over a wide range. Since the spread of the lines of electric force and the spread of the liquid fine particles depend on the shape of the second electrode, it is desirable that the shape of the second electrode is also rectangular when the object to be coated is rectangular. Other configurations and processing flow are the same as those in the first embodiment.

[第5の実施の形態]
第1の実施の形態は、第3の電極が円形で、載置台の上部に取り付けられる例を説明したが、第5の実施の形態ではドーナツ状であり、載置台の下部に取り付けられる例を説明する。
[Fifth Embodiment]
In the first embodiment, an example in which the third electrode is circular and attached to the upper portion of the mounting table has been described. However, in the fifth embodiment, an example in which the third electrode has a donut shape and is attached to the lower portion of the mounting table. explain.

図7に、第5の実施の形態における第3の電極8Aの例を示す。図7(A)に正面の底面側から見た斜視図を、図7(B)に中心軸を通る断面図を示す。ドーナツ状の外周が載置台3の外周と一致する例を示す。被塗布物2のノズル4の中心軸近傍の表面においては、液体微粒が初速度と重力の影響を受けて、被塗布物2の外周部に比して塗布量が多くなる傾向にあり、これを抑制するために、ドーナツ状の第3の電極8Aが非導電体の載置台3の下部に取り付けられている。本実施の形態においては、被塗布物2及び載置台3の厚さにもよるが、ドーナツ状の穴の部分を除いて、第1の実施の形態と同様な電気力線が形成される。したがって、被塗布物2のノズル4直下の近傍において、液体が過剰に塗布されることを防止でき、全体的に均一に塗布することが可能となる。その他の構成及び処理フローは第1の実施の形態と同様である。   FIG. 7 shows an example of the third electrode 8A in the fifth embodiment. FIG. 7A is a perspective view as seen from the front bottom side, and FIG. 7B is a cross-sectional view through the central axis. An example in which the outer periphery of the donut shape coincides with the outer periphery of the mounting table 3 is shown. On the surface of the object 2 near the center axis of the nozzle 4, the liquid fine particles are affected by the initial velocity and gravity, and the amount of application tends to be larger than the outer periphery of the object 2. In order to suppress this, the doughnut-shaped third electrode 8A is attached to the lower part of the non-conductive mounting table 3. In the present embodiment, although it depends on the thickness of the workpiece 2 and the mounting table 3, electric lines of force similar to those in the first embodiment are formed except for the donut-shaped hole portion. Accordingly, it is possible to prevent the liquid from being applied excessively in the vicinity of the object 2 just below the nozzle 4 and to apply the liquid uniformly. Other configurations and processing flow are the same as those in the first embodiment.

[第6の実施の形態]
第1の実施の形態は、ノズルを中心軸として環状の第2の電極7が単数配置される例を説明したが、第6の実施の形態ではノズルを中心軸として環状の電極が複数配置される場合について説明する。
[Sixth Embodiment]
In the first embodiment, an example in which a single annular second electrode 7 is arranged with the nozzle as the central axis has been described, but in the sixth embodiment, a plurality of annular electrodes are arranged with the nozzle as the central axis. A description will be given of the case.

図8に、第6の実施の形態における液体塗布装置1Cの構成例を示す。主として第1の実施の形態と異なる点を説明する。載置台3に載置された被塗布物2の上方に、ノズル4を中心軸としてノズル4の周りに環状の第4の電極74が、ノズル4を中心軸としてノズル4の周りのやや下方に環状の第5の電極75が配置されている。第4の電極74はノズル4に近く、比較的高い位置に配置されている。第4の電極74の電位V4及び第5の電極75の電位V5は、電源E4及び電源E5の起電力により、V1>V4>V5>V3になるように設定される。例えば、第1の電極6の電位V1を10kV、第4の電極74の電位V4を7kV、第5の電極75の電位V5を4kV、第3の電極8の電位V3を0kVとする。SW4及びSW5はそれぞれ、第4、第5の電源E4,E5と第4、第5の電極74,75との接続をオンオフする第4、第5のスイッチである。スイッチSW1,SW4及びSW5は連動して開閉される。第1の電極6と第3の電極8間に形成される電気力線φ3は、第4の電極74及び第5の電極75の両者の影響により広がる。第5の電極75を第3の電極8近傍に配置した場合は広がりが抑えられ、第4の電極74近傍に配置した場合にはさらに広がるように形成される。このように第5の電極の電位を調整することにより、液体微粒の散布範囲を調整することが可能である。なお、第4の電極74及び第5の電極の電位を調整することによっても、液体微粒の散布範囲を調整可能である。その他の構成及び処理フローは第1の実施の形態と同様である。   FIG. 8 shows a configuration example of a liquid coating apparatus 1C according to the sixth embodiment. Differences from the first embodiment will be mainly described. An annular fourth electrode 74 around the nozzle 4 with the nozzle 4 as the central axis is located above the workpiece 2 placed on the mounting table 3 and slightly below the nozzle 4 with the nozzle 4 as the central axis. An annular fifth electrode 75 is disposed. The fourth electrode 74 is close to the nozzle 4 and is disposed at a relatively high position. The potential V4 of the fourth electrode 74 and the potential V5 of the fifth electrode 75 are set such that V1> V4> V5> V3 by the electromotive forces of the power supply E4 and the power supply E5. For example, the potential V1 of the first electrode 6 is 10 kV, the potential V4 of the fourth electrode 74 is 7 kV, the potential V5 of the fifth electrode 75 is 4 kV, and the potential V3 of the third electrode 8 is 0 kV. SW4 and SW5 are fourth and fifth switches for turning on and off the connection between the fourth and fifth power sources E4 and E5 and the fourth and fifth electrodes 74 and 75, respectively. The switches SW1, SW4 and SW5 are opened and closed in conjunction with each other. The electric lines of force φ3 formed between the first electrode 6 and the third electrode 8 spread due to the influence of both the fourth electrode 74 and the fifth electrode 75. When the fifth electrode 75 is arranged in the vicinity of the third electrode 8, the spread is suppressed, and when the fifth electrode 75 is arranged in the vicinity of the fourth electrode 74, the fifth electrode 75 is formed to further spread. By adjusting the potential of the fifth electrode in this way, it is possible to adjust the spray range of the liquid fine particles. Note that the dispersion range of the liquid fine particles can also be adjusted by adjusting the potentials of the fourth electrode 74 and the fifth electrode. Other configurations and processing flow are the same as those in the first embodiment.

[第7の実施の形態]
第1の実施の形態では、ノズル4が導電体であり、電極接続部6Aとノズル4を含めて第1の電極6としノズル4内の液体9を帯電状態にする例を説明したが、第7の実施の形態では、ノズルが絶縁体からなり、ノズルの入り口近傍に配置された第1の電極が中を貫通する液体に接触して液体を帯電状態にしてノズル内に送り込む例を示す。
[Seventh Embodiment]
In the first embodiment, the nozzle 4 is a conductor, and the example in which the electrode 9 including the electrode connecting portion 6A and the nozzle 4 is used as the first electrode 6 and the liquid 9 in the nozzle 4 is charged is described. In the seventh embodiment, an example is shown in which the nozzle is made of an insulator, and the first electrode arranged in the vicinity of the entrance of the nozzle comes into contact with the liquid penetrating therethrough to charge the liquid into the nozzle.

第1の実施の形態(図1参照)におけるノズル4が導電体から絶縁体に変わり第1の電極を構成せず、電極接続部6Aのみが第1の電極6を構成する。この電極接続部6Aが中を貫通する液体9に接触して液体9を帯電状態にし、帯電した液体9がノズル4内に送り込まれる。この場合でも、ノズル4から吐出される液体9は帯電しており、第2の電極7の存在により、液体微粒は被塗布物2表面の広い範囲に散布される。また、電気力線はノズル4からではなく、電極接続部6Aから第2の電極7の方向に導かれ、さらに第3の電極8の方向に向かって導かれ、液体の散布経路が幾分変化する。その他の構成及び処理フローは第1の実施の形態と同様である。   The nozzle 4 in the first embodiment (see FIG. 1) changes from a conductor to an insulator and does not constitute the first electrode, and only the electrode connection portion 6A constitutes the first electrode 6. The electrode connecting portion 6A comes into contact with the liquid 9 penetrating therethrough to make the liquid 9 charged, and the charged liquid 9 is fed into the nozzle 4. Even in this case, the liquid 9 discharged from the nozzle 4 is charged, and the presence of the second electrode 7 causes the liquid fine particles to be dispersed over a wide area on the surface of the object to be coated 2. In addition, the lines of electric force are guided not from the nozzle 4 but from the electrode connecting portion 6A toward the second electrode 7 and further toward the third electrode 8, and the liquid spraying path changes somewhat. To do. Other configurations and processing flow are the same as those in the first embodiment.

[第8の実施の形態]
第1の実施の形態は、被塗布物2が水平に載置され、ノズル4が被塗布物2表面の垂直上方に配置され、被塗布物2の中心がノズル4の軸線上に在る例を説明したが、第8の実施の形態では、被塗布物2が垂直に載置され、ノズル4が被塗布物2表面の垂直方向に配置され、被塗布物2の中心がノズル4の軸線上に在る例について説明する。
[Eighth Embodiment]
In the first embodiment, the object 2 is placed horizontally, the nozzle 4 is disposed vertically above the surface of the object 2, and the center of the object 2 is on the axis of the nozzle 4. However, in the eighth embodiment, the workpiece 2 is placed vertically, the nozzle 4 is arranged in the vertical direction of the surface of the workpiece 2, and the center of the workpiece 2 is the axis of the nozzle 4. An example on the line will be described.

図9に、第7の実施の形態における液体塗布装置1Dの構成例を示す。主として第1の実施の形態と異なる点を説明する。第7の実施の形態の構成は、第1の実施の形態の構成すなわち、被塗布物2、載置台3、ノズル4、第1〜第3の電極6〜8の配置を垂直−水平面内に90°回転した(水平方向と垂直方向が入れ替わる)構成とする。したがって、電気力線も同様に90°回転する。その他の構成及び処理フローは第1の実施の形態と同様である。   FIG. 9 shows a configuration example of a liquid coating apparatus 1D according to the seventh embodiment. Differences from the first embodiment will be mainly described. The configuration of the seventh embodiment is the same as the configuration of the first embodiment, that is, the arrangement of the coating object 2, the mounting table 3, the nozzle 4, and the first to third electrodes 6 to 8 in the vertical-horizontal plane. The structure is rotated by 90 ° (the horizontal direction and the vertical direction are switched). Therefore, the electric field lines are similarly rotated by 90 °. Other configurations and processing flow are the same as those in the first embodiment.

以上、本発明の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、実施の形態に種々変更を加えられることは明白である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it is obvious that various modifications can be made to the embodiments.

例えば、第1の実施の形態では、第1〜第3の電極の電位をV1>V2>V3(=0V)に設定する例を説明したが、V1<V2<V3(=0V)のように極性を逆に設定しても良く、第3の電極の電位V3を0V以外に設定しても良い。また、第1の実施の形態では、第1〜第3の電極の電位を設定した後に、液体をノズルから吐出する例を説明したが、第1〜第3の電極の電位を設定した後に、液体をノズルから吐出し、その後に第1、第2の電極の電位を調整して液体の散布範囲を調整しても良い。また、第1の実施の形態では、ノズルが金属等の導電体の例を説明したが、ノズルに絶縁体をコーティングしても良い。また、第1の実施の形態では複数の電極間に電源を並列に配置する例を説明したが、直列に配置する構成も可能であり、第2の実施の形態では複数の電極間に抵抗を直列に配置する例を説明したが、並列に配置する構成も可能である。また、その他、第1〜第3の電極の電位、設置位置、寸法等は種々変更可能である。   For example, in the first embodiment, the example in which the potentials of the first to third electrodes are set to V1> V2> V3 (= 0V) has been described, but V1 <V2 <V3 (= 0V) The polarity may be reversed, and the potential V3 of the third electrode may be set to other than 0V. In the first embodiment, the example in which the liquid is discharged from the nozzle after setting the potentials of the first to third electrodes has been described. However, after the potentials of the first to third electrodes are set, The liquid spraying range may be adjusted by discharging the liquid from the nozzle and then adjusting the potentials of the first and second electrodes. In the first embodiment, an example in which the nozzle is a conductor such as a metal has been described. However, the nozzle may be coated with an insulator. In the first embodiment, the example in which the power supply is arranged in parallel between the plurality of electrodes has been described. However, a configuration in which the power supply is arranged in series is also possible, and in the second embodiment, a resistance is provided between the plurality of electrodes. Although an example of arranging in series has been described, a configuration of arranging in parallel is also possible. In addition, the potential, installation position, dimensions, and the like of the first to third electrodes can be variously changed.

本発明は、半導体デバイスの製造における液体の塗布、ガラスやレンズのコーティング、メッキやペンキの塗布等に利用可能である。   The present invention can be used for liquid application, glass or lens coating, plating or paint application in the manufacture of semiconductor devices.

第1の実施の形態における液体塗布装置の構成例を示す図である。It is a figure which shows the structural example of the liquid application apparatus in 1st Embodiment. 第2の電極の有無による電気力線の差異を示す図である。It is a figure which shows the difference of the electric force line by the presence or absence of a 2nd electrode. 第1の実施の形態における液体塗布方法の処理フロー例を示す図である。It is a figure which shows the example of a processing flow of the liquid application method in 1st Embodiment. 第2の実施の形態における液体塗布装置の構成例を示す図である。It is a figure which shows the structural example of the liquid application apparatus in 2nd Embodiment. 第3の実施の形態における液体塗布装置の構成例を示す図である。It is a figure which shows the structural example of the liquid application apparatus in 3rd Embodiment. 第3の実施の形態における第2の電極の構成例を示す図である。It is a figure which shows the structural example of the 2nd electrode in 3rd Embodiment. 第5の実施の形態における第3の電極の形状の例を示す図である。It is a figure which shows the example of the shape of the 3rd electrode in 5th Embodiment. 第6の実施の形態における液体塗布装置の構成例を示す図である。It is a figure which shows the structural example of the liquid application apparatus in 6th Embodiment. 第8の実施の形態における液体塗布装置の構成例を示す図である。It is a figure which shows the structural example of the liquid application apparatus in 8th Embodiment.

符号の説明Explanation of symbols

1,1A〜1E 液体塗布装置
2 被塗布物
3 載置台
4 ノズル
5 オペレートバルブ
6 第1の電極
6A 電極接続部
7 第2の電極
7A カバーを有する第2の電極
7B 第2の電極の本体部
8,8A 第3の電極
9 液体微粒
10 電極カバー
74 第4の電極
75 第5の電極
E1,E2 第1、第2の電源
E4,E5 第4、第5の電源
SW1〜SW5 第1〜第5のスイッチ
V1〜V5 第1〜第5の電極の電位
φ1,φ2,φ3 電気力線
DESCRIPTION OF SYMBOLS 1,1A-1E Liquid application apparatus 2 To-be-coated object 3 Mounting stand 4 Nozzle 5 Operate valve 6 1st electrode 6A Electrode connection part 7 2nd electrode 7A 2nd electrode 7B which has a cover 2nd electrode main-body part 8, 8A Third electrode 9 Liquid fine particle 10 Electrode cover 74 Fourth electrode 75 Fifth electrode E1, E2 First and second power sources E4, E5 Fourth and fifth power sources SW1 to SW5 First to second 5 switches V1 to V5 potentials φ1, φ2, and φ3 of the first to fifth electrodes

Claims (7)

液体を被塗布物に塗布する液体塗布装置であって;
前記被塗布物を載置する載置台と;
前記載置台に載置される前記被塗布物に対向して配置され、前記被塗布物に向けて前記液体を吐出するノズルと;
前記ノズル内の前記液体を帯電状態にする第1の電極と;
前記ノズルを中心軸として前記ノズルの周りに配置された環状の第2の電極と;
前記被塗布物に電位を与えるように前記載置台に取り付けられた第3の電極とを備え;
前記第2の電極の電位が前記第1の電極の電位と前記第3の電極の電位の間になるように電位が設定される;
液体塗布装置。
A liquid application device for applying a liquid to an object;
A mounting table for mounting the object to be coated;
A nozzle that is disposed opposite to the object to be coated placed on the mounting table and that discharges the liquid toward the object to be coated;
A first electrode for charging the liquid in the nozzle;
An annular second electrode disposed around the nozzle with the nozzle as a central axis;
A third electrode attached to the mounting table so as to apply a potential to the object to be coated;
The potential is set such that the potential of the second electrode is between the potential of the first electrode and the potential of the third electrode;
Liquid applicator.
前記第1の電極から前記第3の電極に到る電気力線は、前記ノズルから外側に放射状に広がり、前記第2の電極に近付いた後に、前記第3の電極に到達するように形成される;
請求項1に記載の液体塗布装置。
The lines of electric force from the first electrode to the third electrode spread radially outward from the nozzle and are formed so as to reach the third electrode after approaching the second electrode. ;
The liquid coating apparatus according to claim 1.
前記第1の電極と前記第2の電極の間に第1の抵抗を、前記第2の電極と前記第3の電極の間に第2の抵抗を備え;
前記第1の電極と前記第2の電極との間の電位差と前記第2の電極と前記第3の電極との間の電位差の比率は、前記第1の抵抗と前記第2の抵抗の抵抗値の比率により設定される;
請求項1又は請求項2に記載の液体塗布装置。
A first resistor is provided between the first electrode and the second electrode, and a second resistor is provided between the second electrode and the third electrode;
The ratio of the potential difference between the first electrode and the second electrode and the potential difference between the second electrode and the third electrode is the resistance of the first resistor and the second resistor. Set by the ratio of values;
The liquid coating apparatus according to claim 1 or 2.
前記第1の電極と前記第3の電極の間に第1の電源を、前記第2の電極と前記第3の電極の間に第2の電源を備え;
前記第1の電極と前記第2の電極との間の電位差と前記第2の電極と前記第3の電極との間の電位差の比率は、前記第1の電源と前記第2の電源の起電力の比率により設定される;
請求項1又は請求項2に記載の液体塗布装置。
A first power source is provided between the first electrode and the third electrode, and a second power source is provided between the second electrode and the third electrode;
The ratio of the potential difference between the first electrode and the second electrode and the potential difference between the second electrode and the third electrode is determined by the occurrence of the first power source and the second power source. Set by power ratio;
The liquid coating apparatus according to claim 1 or 2.
前記第2の電極は少なくとも外周側でノズルの液吐出方向側の端部が絶縁体で覆われている。
請求項1ないし請求項4のいずれか1項に記載の液体塗布装置。
The second electrode has at least the outer peripheral side and the end of the nozzle in the liquid discharge direction is covered with an insulator.
The liquid coating apparatus according to any one of claims 1 to 4.
前記第2の電極は前記吐出口の先端から液吐出方向と反対側に所定の長さ離して設置される。
請求項1に記載の液体塗布装置。
The second electrode is disposed at a predetermined length away from the tip of the discharge port on the side opposite to the liquid discharge direction.
The liquid coating apparatus according to claim 1.
液体を被塗布物に塗布する液体塗布方法であって;
前記被塗布物を載置台に載置し、前記被塗布物に向けて前記液体を吐出するノズルに対向して配置する被塗布物配置工程と;
前記ノズル内の前記液体を帯電状態にする第1の電極と、前記ノズルを中心軸として前記ノズルの周りに配置された環状の第2の電極と、前記被塗布物に電位を与えるように前記載置台に取り付けられた第3の電極に対して、前記第2の電極の電位が前記第1の電極の電位と前記第3の電極の電位の間になるように電位を設定する電位設定工程と;
前記ノズルから前記被塗布物に向けて前記液体を吐出し、前記被塗布物の表面全体に前記液体を噴霧状に散布する液体散布工程とを備える;
液体塗布方法。
A liquid application method for applying a liquid to an object to be coated;
An object placement step of placing the object to be placed on a mounting table and arranging the object to be opposed to a nozzle that discharges the liquid toward the object to be coated;
A first electrode for charging the liquid in the nozzle to be charged; a second annular electrode disposed around the nozzle with the nozzle as a central axis; and a potential so as to apply a potential to the object to be coated. A potential setting step of setting a potential with respect to the third electrode attached to the mounting table so that the potential of the second electrode is between the potential of the first electrode and the potential of the third electrode. When;
A liquid spraying step of discharging the liquid from the nozzle toward the coating object and spraying the liquid in a spray form on the entire surface of the coating object;
Liquid application method.
JP2008049238A 2008-02-29 2008-02-29 Liquid coating apparatus and liquid coating method Active JP5190280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049238A JP5190280B2 (en) 2008-02-29 2008-02-29 Liquid coating apparatus and liquid coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049238A JP5190280B2 (en) 2008-02-29 2008-02-29 Liquid coating apparatus and liquid coating method

Publications (2)

Publication Number Publication Date
JP2009202131A true JP2009202131A (en) 2009-09-10
JP5190280B2 JP5190280B2 (en) 2013-04-24

Family

ID=41144929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049238A Active JP5190280B2 (en) 2008-02-29 2008-02-29 Liquid coating apparatus and liquid coating method

Country Status (1)

Country Link
JP (1) JP5190280B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105557A1 (en) * 2012-01-11 2013-07-18 コニカミノルタ株式会社 Electrostatic spray device
WO2013105558A1 (en) * 2012-01-11 2013-07-18 コニカミノルタ株式会社 Electrostatic spray device and manufacturing method of organic thin film device
WO2015040883A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Method for manufacturing solid electrolytic capacitor
WO2015151970A1 (en) * 2014-03-31 2015-10-08 ナガセテクノエンジニアリング株式会社 Electrostatic coating device, power source device for electrostatic coating device and electrostatic coating method
KR101603048B1 (en) * 2015-12-17 2016-03-11 홍석원 Painting equipment
JP2016131961A (en) * 2015-01-22 2016-07-25 アネスト岩田株式会社 Electrostatic sprayer
JP2016137479A (en) * 2015-01-22 2016-08-04 アネスト岩田株式会社 Electrostatic atomization device
JP2016144786A (en) * 2015-02-09 2016-08-12 アネスト岩田株式会社 Electrostatic atomizer
JP2017056435A (en) * 2015-09-18 2017-03-23 アネスト岩田株式会社 Electrostatic atomizer booth and electrostatic atomizer equipped with booth
WO2017082279A1 (en) * 2015-11-09 2017-05-18 アネスト岩田株式会社 Electrostatic spray device and electrostatic spray method
WO2017082278A1 (en) * 2015-11-09 2017-05-18 アネスト岩田株式会社 Electrostatic spray device
JP2019017304A (en) * 2017-07-18 2019-02-07 有光工業株式会社 Electrostatic spray nozzle, electrostatic spray device, spray method of electrostatic spray device, spray device and spray method of spray device
JP2019058862A (en) * 2017-09-26 2019-04-18 アネスト岩田株式会社 Electrostatic spray method and electrostatic spray device of the same
JP2020089840A (en) * 2018-12-06 2020-06-11 旭サナック株式会社 Spray gun for electrostatic painting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580094B1 (en) 1999-10-29 2003-06-17 Semiconductor Energy Laboratory Co., Ltd. Electro luminescence display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4731089B1 (en) * 1968-09-16 1972-08-11
JPS5117235A (en) * 1974-08-04 1976-02-12 Senichi Masuda Seidenfuntaitochakusochi
JPS5717235A (en) * 1980-07-04 1982-01-28 Sansui Electric Co Frequency controlling oscillator
JPS6369555A (en) * 1986-08-29 1988-03-29 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− Electrostatic spray coating head and coating method using said head
JPH03274283A (en) * 1990-03-26 1991-12-05 Matsushita Electric Ind Co Ltd Production of thin film
JPH08167551A (en) * 1994-12-12 1996-06-25 Hitachi Ltd Thin film application device
JP2002509794A (en) * 1998-03-27 2002-04-02 サーントゥル ナシオナル ドゥ ラ ルシェルシュ シャーンティフィク (セ エン エール エス) Electrohydrodynamic spraying means
JP2006015293A (en) * 2004-07-05 2006-01-19 Minoru Industrial Co Ltd Electrode part for electrostatic atomization
JP2007229851A (en) * 2006-02-28 2007-09-13 Institute Of Physical & Chemical Research Micro-pattern forming apparatus, micro-pattern structure and manufacturing method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4731089B1 (en) * 1968-09-16 1972-08-11
JPS5117235A (en) * 1974-08-04 1976-02-12 Senichi Masuda Seidenfuntaitochakusochi
JPS5717235A (en) * 1980-07-04 1982-01-28 Sansui Electric Co Frequency controlling oscillator
JPS6369555A (en) * 1986-08-29 1988-03-29 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− Electrostatic spray coating head and coating method using said head
JPH03274283A (en) * 1990-03-26 1991-12-05 Matsushita Electric Ind Co Ltd Production of thin film
JPH08167551A (en) * 1994-12-12 1996-06-25 Hitachi Ltd Thin film application device
JP2002509794A (en) * 1998-03-27 2002-04-02 サーントゥル ナシオナル ドゥ ラ ルシェルシュ シャーンティフィク (セ エン エール エス) Electrohydrodynamic spraying means
JP2006015293A (en) * 2004-07-05 2006-01-19 Minoru Industrial Co Ltd Electrode part for electrostatic atomization
JP2007229851A (en) * 2006-02-28 2007-09-13 Institute Of Physical & Chemical Research Micro-pattern forming apparatus, micro-pattern structure and manufacturing method therefor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105557A1 (en) * 2012-01-11 2013-07-18 コニカミノルタ株式会社 Electrostatic spray device
WO2013105558A1 (en) * 2012-01-11 2013-07-18 コニカミノルタ株式会社 Electrostatic spray device and manufacturing method of organic thin film device
JPWO2013105557A1 (en) * 2012-01-11 2015-05-11 コニカミノルタ株式会社 Electrostatic spray equipment
WO2015040883A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Method for manufacturing solid electrolytic capacitor
WO2015151970A1 (en) * 2014-03-31 2015-10-08 ナガセテクノエンジニアリング株式会社 Electrostatic coating device, power source device for electrostatic coating device and electrostatic coating method
US10124352B2 (en) 2014-03-31 2018-11-13 Nagase Techno-Engineering Co., Ltd. Electrostatic coating device, power source device for electrostatic coating device and electrostatic coating method
JP2016131961A (en) * 2015-01-22 2016-07-25 アネスト岩田株式会社 Electrostatic sprayer
JP2016137479A (en) * 2015-01-22 2016-08-04 アネスト岩田株式会社 Electrostatic atomization device
JP2016144786A (en) * 2015-02-09 2016-08-12 アネスト岩田株式会社 Electrostatic atomizer
JP2017056435A (en) * 2015-09-18 2017-03-23 アネスト岩田株式会社 Electrostatic atomizer booth and electrostatic atomizer equipped with booth
JP2017087124A (en) * 2015-11-09 2017-05-25 アネスト岩田株式会社 Electrostatic atomizer
CN108348934B (en) * 2015-11-09 2020-11-06 阿耐思特岩田株式会社 Electrostatic spraying device
WO2017082279A1 (en) * 2015-11-09 2017-05-18 アネスト岩田株式会社 Electrostatic spray device and electrostatic spray method
JP2017087125A (en) * 2015-11-09 2017-05-25 アネスト岩田株式会社 Electrostatic atomizer and electrostatic atomization method
CN108348934A (en) * 2015-11-09 2018-07-31 阿耐思特岩田株式会社 Electrostatic atomizer
WO2017082278A1 (en) * 2015-11-09 2017-05-18 アネスト岩田株式会社 Electrostatic spray device
US10618067B2 (en) 2015-11-09 2020-04-14 Anest Iwata Corporation Electrostatic spray device and electrostatic spray method
KR101603048B1 (en) * 2015-12-17 2016-03-11 홍석원 Painting equipment
JP2019017304A (en) * 2017-07-18 2019-02-07 有光工業株式会社 Electrostatic spray nozzle, electrostatic spray device, spray method of electrostatic spray device, spray device and spray method of spray device
JP2021182932A (en) * 2017-07-18 2021-12-02 有光工業株式会社 Spraying device and spraying method of spraying device
JP7175530B2 (en) 2017-07-18 2022-11-21 有光工業株式会社 Spraying device and spraying method of the spraying device
JP7175488B2 (en) 2017-07-18 2022-11-21 有光工業株式会社 Electrostatic spraying nozzle, electrostatic spraying device, and spraying method of electrostatic spraying device
JP2019058862A (en) * 2017-09-26 2019-04-18 アネスト岩田株式会社 Electrostatic spray method and electrostatic spray device of the same
JP2020089840A (en) * 2018-12-06 2020-06-11 旭サナック株式会社 Spray gun for electrostatic painting
JP7177468B2 (en) 2018-12-06 2022-11-24 旭サナック株式会社 Spray gun for electrostatic painting

Also Published As

Publication number Publication date
JP5190280B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5190280B2 (en) Liquid coating apparatus and liquid coating method
RU2523813C2 (en) Electrode system for electrostatic spraying
KR860006291A (en) Electrostatic spraying device and method
WO2005099319A1 (en) Corona discharge type ionizer
US5749529A (en) Method of producing corona discharge and electrostatic painting system employing corona discharge
JPH08153669A (en) Thin film forming method and formation device
RU2641741C2 (en) Electrostatic spraying device for spraying liquid coating material and device for spraying containing such spraying device
JP6637851B2 (en) Electrostatic spray generator
JP4445830B2 (en) Electrostatic sprayer
US6076751A (en) Method of charging using nonincendive rotary atomizer
US5957395A (en) Safe charging
US6276618B1 (en) Electrostatic powder spray gun
US11154883B2 (en) Electrostatic coating machine
JP2015073948A (en) Rotary atomization electrostatic coating device
EP0697255A2 (en) Method and apparatus for electrostatic powder coating
JP2001113207A (en) Electrostatic coating device
JP7475189B2 (en) Masking jig
KR100507838B1 (en) Electrospray Device Having Guard Plate Of Insulated Electric Potential And Method Thereof
JP5919456B2 (en) Electrostatic coating equipment
JP2010248651A (en) Device and method for accumulating fine particle and fine particle accumulation film formed by the device
JP3424883B2 (en) Spray gun type electrostatic coating equipment
JP6672575B2 (en) Electrostatic spraying device
JP2023511952A (en) Electrostatic spray device
JP2019058864A (en) Electrostatic spray method and electrostatic spray device for the electrostatic spray method
JP7502896B2 (en) Electrostatic spraying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5190280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250