JP2009197646A - Variable air intake system - Google Patents

Variable air intake system Download PDF

Info

Publication number
JP2009197646A
JP2009197646A JP2008038882A JP2008038882A JP2009197646A JP 2009197646 A JP2009197646 A JP 2009197646A JP 2008038882 A JP2008038882 A JP 2008038882A JP 2008038882 A JP2008038882 A JP 2008038882A JP 2009197646 A JP2009197646 A JP 2009197646A
Authority
JP
Japan
Prior art keywords
valve
angle
collar
intake system
rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008038882A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Kanda
剛志 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008038882A priority Critical patent/JP2009197646A/en
Priority to DE102009000586A priority patent/DE102009000586A1/en
Priority to US12/369,229 priority patent/US20090205596A1/en
Publication of JP2009197646A publication Critical patent/JP2009197646A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1065Mechanical control linkage between an actuator and the flap, e.g. including levers, gears, springs, clutches, limit stops of the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1005Details of the flap
    • F02D9/1025Details of the flap the rotation axis of the flap being off-set from the flap center axis
    • F02D9/103Details of the flap the rotation axis of the flap being off-set from the flap center axis the rotation axis being located at an edge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/109Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps having two or more flaps
    • F02D9/1095Rotating on a common axis, e.g. having a common shaft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable air intake system capable of surely holding a valve within a range of opening effective to improve fuel consumption. <P>SOLUTION: A plurality of grooves are formed which extend in the axial direction on the inner peripheral surface of a collar at equal intervals and are engageable with rollers. When a valve angle most effective to improve fuel consumption is a maximum effective valve angle θ, a valve angle, at which the fuel consumption improving effect in the valve closing direction becomes zero, is the valve closing side minimum effect valve angle α, a valve angle, at which the fuel consumption improving effect in the valve opening direction becomes zero, is a valve opening side least effective valve angle β, a roller engagement angle at the maximum effective valve angle θ is an ideal engagement angle Z, an angle between the ideal engagement angle Z and the groove in the valve closing direction is a valve closing side recessed angle γ1, and an angle between the ideal engagement angle Z and the groove in the valve opening direction is a valve opening side recessed angle γ2, a reduction ratio of a reduction gear interposed between a clutch and the valve is set to satisfy both of formulas γ1/G≤α and γ2/G≤β. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電動モータの回転出力をバルブへ伝え、バルブの回転力は電動モータへ伝えないクラッチを備えた可変吸気システムに関する。   The present invention relates to a variable intake system including a clutch that transmits a rotational output of an electric motor to a valve and does not transmit a rotational force of the valve to the electric motor.

(従来技術)
内燃機関(以下、エンジン)の吸気通路内にバルブを配置し、このバルブの開度を中間開度に保持することにより、タンブル、スワール等の渦流をエンジンの燃焼室内に発生させることで燃焼状態を改善し、エンジン始動時の排気ガスの浄化や、燃費改善効果を高めることを目的とした可変吸気システムが知られている。
このような技術では、開閉部材の開度が一定であっても、電動モータを通電して開閉部材の開度保持を行っているため、開閉部材の開度保持のための電力が必要となる。
(Conventional technology)
Combustion state by placing a valve in the intake passage of an internal combustion engine (hereinafter referred to as the engine) and maintaining a vortex flow such as tumble and swirl in the combustion chamber of the engine by maintaining the valve opening at an intermediate opening. There is known a variable intake system for improving exhaust gas, purifying exhaust gas when starting an engine, and improving fuel efficiency.
In such a technique, even if the opening degree of the opening and closing member is constant, the electric motor is energized to hold the opening degree of the opening and closing member, so electric power is required to hold the opening degree of the opening and closing member. .

そこで、回転駆動体に伝達される回転力を回転従動体へ伝え、回転従動体に伝達される回転力は固定部材であるカラーに伝えて回転駆動体へは伝えないクラッチ(例えば、特許文献1〜3参照)を用いることで、開閉部材の開度が一定の開度に保たれる際に、電動モータの通電を停止することが考えられる。
なお、特許文献1、2は、カラーを回転従動体の外周に配置した技術であり、特許文献3は、カラーを回転従動体の内周に配置した技術である。
Therefore, a clutch that transmits the rotational force transmitted to the rotational drive body to the rotational follower and transmits the rotational force transmitted to the rotational follower to the collar, which is a fixed member, is not transmitted to the rotational drive body (for example, Patent Document 1). It is conceivable to stop energization of the electric motor when the opening degree of the opening / closing member is maintained at a constant opening degree.
Patent Documents 1 and 2 are techniques in which a collar is disposed on the outer periphery of the rotary follower, and Patent Documents 3 are techniques in which a collar is disposed on the inner periphery of the rotary follower.

しかし、特許文献1〜3に示されるクラッチは、パワーウインドに用いられる技術であり、特許文献1〜3のクラッチを、可変吸気システムのバルブに適用した場合、吸気通路内に発生する圧力脈動によりバルブには脈動による回転力(具体的には、高振動、高負荷、高脈動の回転力)が与えられて、バルブの保持状態(クラッチの係合状態)が解除されてしまう不具合が発生する。即ち、クラッチによってバルブの回転を規制することができないという問題点があった。   However, the clutches disclosed in Patent Documents 1 to 3 are technologies used for power windows, and when the clutches of Patent Documents 1 to 3 are applied to a valve of a variable intake system, the pressure pulsation generated in the intake passage is caused. A rotational force (specifically, high vibration, high load, high pulsation rotational force) due to pulsation is applied to the valve, causing a problem that the valve holding state (clutch engagement state) is released. . That is, there is a problem that the rotation of the valve cannot be regulated by the clutch.

(従来技術の問題点)
そこで、カラーにおけるローラ(噛合体の一例)との噛合面に複数の窪み部を設けて、窪み部においてローラが噛合することでバルブの保持力(クラッチの係合力)を高め、バルブに脈動による回転力が与えられても、バルブの保持状態が解除されることのない技術が提案されている(例えば、特許文献4参照)。
この特許文献4の技術は、カラーに窪み部を設けることで、バルブの保持力を高めているが、言い換えると窪み部がない部分においてはバルブの保持力を高めることができない。具体的には、カラーへ窪み部を均等に12カ所に設けた場合、このバルブ保持の保持分解能力は、360°/12=30°となる。即ち、クラッチの保持分解能力は荒いものとなる。
(Problems of conventional technology)
Therefore, a plurality of depressions are provided on the engagement surface of the collar with the roller (an example of the engagement body), and the holding force of the valve (clutch engagement force) is increased by engaging the roller in the depression, and the valve is caused by pulsation. A technique has been proposed in which the holding state of the valve is not released even when a rotational force is applied (see, for example, Patent Document 4).
The technique of Patent Document 4 increases the holding force of the valve by providing a recess in the collar. In other words, the holding force of the valve cannot be increased in a portion where there is no recess. Specifically, in the case where the depressions are equally provided at 12 positions in the collar, the holding and disassembling ability of this valve holding is 360 ° / 12 = 30 °. That is, the holding and disassembling ability of the clutch is rough.

一方、可変吸気システムはバルブの開度を、図6に示す燃費改善有効開度範囲(燃費改善効果がゼロより大きい開度範囲:図中、必要精度)内に設定することが要求される。
しかし、従来技術において、カラーに窪み部を設けてバルブの保持力を高める技術では、上述のようにバルブ保持の保持分解能力は荒いものであったため、バルブの開度を燃費改善有効開度範囲内に設定できない可能性がある。
国際公開第00/08349号パンフレット 国際公開第00/08350号パンフレット 特開2001−214946号公報 特開2007−198584号公報
On the other hand, the variable intake system is required to set the valve opening within the fuel efficiency improvement effective opening range shown in FIG. 6 (opening range where the fuel efficiency improvement effect is greater than zero: required accuracy in the figure).
However, in the prior art, in the technology that increases the holding force of the valve by providing a recess in the collar, the holding and disassembling ability of the valve holding is rough as described above, so the valve opening is reduced to the fuel efficiency improving effective opening range. May not be set in
International Publication No. 00/08349 Pamphlet International Publication No. 00/08350 Pamphlet JP 2001-214946 A JP 2007-198584 A

本発明は、上記問題点に鑑みてなされたものであり、その目的は、燃費改善有効開度範囲内においてバルブを確実に保持できる可変吸気システムの提供にある。   The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a variable intake system that can reliably hold a valve within a fuel efficiency improvement effective opening range.

[請求項1の手段]
請求項1の手段を採用する可変吸気システムは、
燃費改善効果が最も大きい時のバルブのバルブ角を最大効果バルブ角θ、
バルブのバルブ角が最大効果バルブ角θから閉弁方向へ変化して燃費改善効果がゼロとなる時のバルブ角を閉弁側最小効果バルブ角α、
バルブのバルブ角が最大効果バルブ角θから開弁方向へ変化して燃費改善効果がゼロとなる時のバルブ角を開弁側最小効果バルブ角β、
バルブが最大効果バルブ角θの時においてカラーと噛合体が接触する角度位置を理想噛合角Z、
理想噛合角Zと、この理想噛合角Zに最も近い閉弁方向の窪み部の設定位置xとの間の角度を閉弁側窪み角γ1、
理想噛合角Zと、この理想噛合角Zに最も近い開弁方向の窪み部の設定位置yとの間の角度を開弁側窪み角γ2とした場合、
減速機の減速比Gが、
γ1/G≦αとγ2/G≦βの両方を満足する。
[Means of claim 1]
A variable intake system employing the means of claim 1 is provided.
The valve angle of the valve when the fuel efficiency improvement effect is greatest is the maximum effect valve angle θ,
When the valve angle of the valve changes from the maximum effect valve angle θ to the valve closing direction and the fuel efficiency improvement effect becomes zero, the valve angle is set to the valve closing side minimum effect valve angle α,
When the valve angle of the valve changes from the maximum effective valve angle θ to the valve opening direction and the fuel efficiency improvement effect becomes zero, the valve angle when the valve opening side minimum effective valve angle β,
When the valve is at the maximum effective valve angle θ, the angular position where the collar and the meshing body contact each other is the ideal meshing angle Z,
The angle between the ideal engagement angle Z and the set position x of the recess in the valve closing direction closest to the ideal engagement angle Z is defined as the valve closing side recess angle γ1,
When the angle between the ideal engagement angle Z and the setting position y of the recess in the valve opening direction closest to the ideal engagement angle Z is the valve opening side recess angle γ2,
The reduction ratio G of the reducer is
Both γ1 / G ≦ α and γ2 / G ≦ β are satisfied.

これにより、バルブが閉弁側最小効果バルブ角αの時においてカラーと噛合体が接触する角度位置を閉弁側最小効果噛合角aとし、
バルブが開弁側最小効果バルブ角βの時においてカラーと噛合体が接触する角度位置を開弁側最小効果噛合角bとした場合、
理想噛合角Zと閉弁側最小効果噛合角aの間に必ず1つ以上の窪み部が存在するとともに、理想噛合角Zと開弁側最小効果噛合角bの間に必ず1つ以上の窪み部が存在することになり、燃費改善有効開度範囲(閉弁側最小効果バルブ角αと開弁側最小効果バルブ角βの間)内においてバルブを確実に保持することができる。
Thereby, when the valve is at the valve closing side minimum effect valve angle α, the angular position where the collar and the meshing body come into contact is set as the valve closing side minimum effect engagement angle a,
When the valve is at the valve opening side minimum effect valve angle β, the angle position where the collar and the meshing body contact each other is the valve opening side minimum effect meshing angle b.
There is always at least one recess between the ideal engagement angle Z and the valve closing side minimum effect engagement angle a, and at least one recess between the ideal engagement angle Z and the valve opening side minimum effect engagement angle b. Therefore, the valve can be reliably held within the fuel efficiency improvement effective opening range (between the valve closing side minimum effect valve angle α and the valve opening side minimum effect valve angle β).

[請求項2の手段]
請求項2の手段を採用する可変吸気システムのカラーは、回転駆動体および回転従動体の外周に配置されるものである。
[Means of claim 2]
The collar of the variable intake system adopting the means of claim 2 is arranged on the outer periphery of the rotary drive body and the rotary follower body.

[請求項3の手段]
請求項3の手段を採用する可変吸気システムの噛合体は、カラーに対して転動するローラである。
[Means of claim 3]
The meshing body of the variable intake system employing the means of claim 3 is a roller that rolls against the collar.

[請求項4の手段]
請求項4の手段を採用する可変吸気システムの窪み部は、ローラの外周面の一部が嵌まり込む溝によって設けられる。
なお、溝形状は、V字溝、円弧溝、矩形溝、傾斜溝など限定されるものではない。
[Means of claim 4]
The recess of the variable intake system employing the means of claim 4 is provided by a groove into which a part of the outer peripheral surface of the roller is fitted.
The groove shape is not limited to a V-shaped groove, a circular arc groove, a rectangular groove, an inclined groove, or the like.

最良の形態の可変吸気システムは、通電により回転出力を発生する電動モータと、こ の電動モータによって駆動され、エンジンの吸気通路内に配置されたバルブと、電動モータの回転出力をバルブへ伝達し、このバルブの回転力を電動モータへ伝えないクラッチとを備える。
この可変吸気システムは、クラッチとバルブの間に、電動モータの回転出力を減速してバルブに伝える減速機が設けられている。
The variable intake system of the best mode is an electric motor that generates rotational output when energized, a valve that is driven by this electric motor and disposed in the intake passage of the engine, and transmits the rotational output of the electric motor to the valve. And a clutch that does not transmit the rotational force of the valve to the electric motor.
In this variable intake system, a speed reducer is provided between the clutch and the valve to decelerate the rotational output of the electric motor and transmit it to the valve.

クラッチは、電動モータによって回転駆動される回転駆動体と、この回転駆動体と周方向に当接して回転駆動される回転従動体と、回転中心の周囲に環状配置された回転不能のカラーと、回転従動体とカラーの径方向間に配置される噛合体とを備える。
回転従動体は、カラーとの径方向間に、径方向の隙間の大きい隙間大と、この隙間大の周方向の両側に、当該隙間大より径方向寸法の小さい隙間小とを形成する。
噛合体(ロータ等)は、隙間大より径方向寸法が小さく、且つ隙間小より径方向寸法が大きい。
回転駆動体は、回転従動体と周方向に当接する状態において噛合体を隙間大側に移動させる噛合解除突起を備える。
カラーは、噛合体が噛合する面に、複数の窪み部(傾斜部や溝など)を備える。
The clutch is a rotationally driven body that is rotationally driven by an electric motor, a rotational follower that is rotationally driven in contact with the rotationally driven body in the circumferential direction, a non-rotatable collar that is annularly arranged around the rotational center, A rotating follower and a meshing body disposed between the radial directions of the collar.
The rotary follower forms a large gap having a large radial gap and a small gap having a smaller radial dimension than the large gap on both sides of the gap in the circumferential direction between the collar and the collar.
The meshing body (rotor or the like) has a smaller radial dimension than the large gap and a larger radial dimension than the small gap.
The rotational driving body includes a mesh release protrusion that moves the meshing body to the large gap side in a state where the rotational driving body is in contact with the rotational follower in the circumferential direction.
The collar includes a plurality of depressions (inclined portions, grooves, and the like) on the surface with which the meshing body meshes.

ここで、燃費改善効果が最も大きい時のバルブのバルブ角を最大効果バルブ角θ、
バルブのバルブ角が最大効果バルブ角θから閉弁方向へ変化して燃費改善効果がゼロとなる時のバルブ角を閉弁側最小効果バルブ角α、
バルブのバルブ角が最大効果バルブ角θから開弁方向へ変化して燃費改善効果がゼロとなる時のバルブ角を開弁側最小効果バルブ角β、
バルブが最大効果バルブ角θの時においてカラーと噛合体が接触する角度位置を理想噛合角Z、
理想噛合角Zと、この理想噛合角Zに最も近い閉弁方向の窪み部の設定位置xとの間の角度を閉弁側窪み角γ1、
理想噛合角Zと、この理想噛合角Zに最も近い開弁方向の窪み部の設定位置yとの間の角度を開弁側窪み角γ2とした場合、
減速機の減速比Gが、
γ1/G≦αとγ2/G≦βの両方の式を同時に満足するように設けられている。
Here, the valve angle of the valve when the fuel economy improvement effect is the greatest is the maximum effect valve angle θ,
When the valve angle of the valve changes from the maximum effect valve angle θ to the valve closing direction and the fuel efficiency improvement effect becomes zero, the valve angle is set to the valve closing side minimum effect valve angle α,
When the valve angle of the valve changes from the maximum effective valve angle θ to the valve opening direction and the fuel efficiency improvement effect becomes zero, the valve angle when the valve opening side minimum effective valve angle β,
When the valve is at the maximum effective valve angle θ, the angular position where the collar and the meshing body contact each other is the ideal meshing angle Z,
The angle between the ideal engagement angle Z and the set position x of the recess in the valve closing direction closest to the ideal engagement angle Z is defined as the valve closing side recess angle γ1,
When the angle between the ideal engagement angle Z and the setting position y of the recess in the valve opening direction closest to the ideal engagement angle Z is the valve opening side recess angle γ2,
The reduction ratio G of the reducer is
It is provided so as to satisfy both the expressions γ1 / G ≦ α and γ2 / G ≦ β at the same time.

実施例1を図1〜図6を参照して説明する。
実施例1の可変吸気システムは、エンジンの吸気通路内に配置されたバルブの開度を可変させるシステムであり、バルブの他に、通電により正方向あるいは逆方向に回転する電動モータ1と、この電動モータ1の回転出力を減速してバルブに伝える減速機2と、電動モータ1と減速機2の間に介在されるクラッチ3から構成され、電動モータ1が制御装置(ECU等)に通電制御されるものである。
なお、バルブは、板状の開閉部材の一辺にバルブ駆動軸を持つヒンジ式バルブ構造を採用して全開時の空気抵抗の増加を抑えるものである。
A first embodiment will be described with reference to FIGS.
The variable intake system of the first embodiment is a system that varies the opening degree of a valve disposed in an intake passage of an engine. In addition to the valve, an electric motor 1 that rotates in a forward direction or a reverse direction when energized, The speed reducer 2 is configured to decelerate the rotational output of the electric motor 1 and transmit it to the valve, and the clutch 3 interposed between the electric motor 1 and the speed reducer 2. The electric motor 1 controls the energization of a control device (ECU or the like). It is what is done.
The valve employs a hinged valve structure having a valve drive shaft on one side of a plate-like opening / closing member to suppress an increase in air resistance when fully opened.

先ず、クラッチ3の基本構造を説明する。
クラッチ3は、電動モータ1によって回転駆動される回転駆動体4と、この回転駆動体4と周方向に当接して回転駆動される回転従動体5と、回転中心の周囲に環状配置された回転不能のカラー6と、回転従動体5とカラー6の径方向間に配置されるローラ(噛合体の一例)7とを備える。なお、クラッチ3を構成する各部品は、金属部品であっても、硬質な樹脂部品であっても良い。
First, the basic structure of the clutch 3 will be described.
The clutch 3 includes a rotational drive body 4 that is rotationally driven by the electric motor 1, a rotational follower 5 that is rotationally driven in contact with the rotational drive body 4 in the circumferential direction, and a rotational arrangement that is arranged around the rotational center. An impossible collar 6, and a roller (an example of a meshing body) 7 disposed between the rotary follower 5 and the radial direction of the collar 6 are provided. Each component constituting the clutch 3 may be a metal component or a hard resin component.

実施例1におけるカラー6は、回転駆動体4および回転従動体5の外周を覆う筒形状を呈する。カラー6の内周面8は、ローラ7との噛合面になり、カラー6の内周面8の軸心は、回転駆動体4および回転従動体5の回転中心と一致する。このカラー6は、クラッチハウジング9内に固定されて回転不能になっている。
なお、この実施例では、カラー6をクラッチハウジング9内に取り付ける例を示すが、カラー6をクラッチハウジング9と一体に設けても良い。
The collar 6 according to the first embodiment has a cylindrical shape that covers the outer periphery of the rotary drive body 4 and the rotary follower 5. The inner peripheral surface 8 of the collar 6 becomes a meshing surface with the roller 7, and the axial center of the inner peripheral surface 8 of the collar 6 coincides with the rotation center of the rotary drive body 4 and the rotary follower 5. The collar 6 is fixed in the clutch housing 9 and cannot be rotated.
In this embodiment, an example in which the collar 6 is mounted in the clutch housing 9 is shown, but the collar 6 may be provided integrally with the clutch housing 9.

回転従動体5は、減速機2の入力軸(クラッチ3からみたら出力側)11と結合されるものであり、回転中心から外側に向かう1つあるいは複数(この実施例では3つ)の従動扇部12を備える。従動扇部12の径方向外面には、カラー6の内周面8の接線方向に対して平行な平面形状の外面部13が形成されている。
これによって、従動扇部12の外面部13と、カラー6の内周面8との径方向間に、径方向の隙間の大きい隙間大L1と、この隙間大L1の周方向の両側に、隙間大L1より径方向寸法の小さい隙間小L2とが形成される。
The rotary follower 5 is coupled to the input shaft (output side when viewed from the clutch 3) 11 of the speed reducer 2, and one or a plurality (three in this embodiment) of follower fans from the center of rotation to the outside. The unit 12 is provided. On the outer surface in the radial direction of the driven fan portion 12, an outer surface portion 13 having a planar shape parallel to the tangential direction of the inner peripheral surface 8 of the collar 6 is formed.
As a result, a large gap L1 having a large radial gap between the outer surface 13 of the follower fan 12 and the inner peripheral surface 8 of the collar 6, and gaps on both sides of the gap L1 in the circumferential direction are provided. A small gap L2 having a smaller radial dimension than the large L1 is formed.

ローラ7は、従動扇部12の外面部13と、カラー6の内周面8との径方向間に配置された円柱体であり、ローラ7の両側が、回転従動体5および回転従動体5の回転中心に対して回転自在に支持されたホルダ14によって回転自在に支持される。
このローラ7の直径L3は、隙間大L1より径方向寸法が小さく、且つ隙間小L2より径方向寸法が大きく設けられている。即ちL1>L3>L2の関係に設けられている。これにより、ローラ7は、常に従動扇部12の外面部13と、カラー6の内周面8との径方向間に配置される。
The roller 7 is a cylindrical body disposed between the outer surface portion 13 of the driven fan portion 12 and the inner peripheral surface 8 of the collar 6, and both sides of the roller 7 are the rotation driven body 5 and the rotation driven body 5. The holder 14 is rotatably supported with respect to the center of rotation.
The diameter L3 of the roller 7 is smaller in the radial dimension than the large gap L1 and larger in the radial dimension than the small gap L2. That is, they are provided in a relationship of L1>L3> L2. Thus, the roller 7 is always disposed between the outer surface portion 13 of the driven fan portion 12 and the inner peripheral surface 8 of the collar 6 in the radial direction.

そして、従動扇部12の外面部13と、カラー6の内周面8との径方向距離が、ローラ7の直径L3より大きい位置にローラ7が存在すると、回転従動体5はカラー6に対して回転できる。また、従動扇部12の外面部13と、カラー6の内周面8との径方向距離が、ローラ7の直径L3と一致すると、ローラ7が従動扇部12の外面部13と、カラー6の内周面8との間に挟み付けられた状態となる。即ち、回転従動体5がローラ7を介してカラー6に噛合した状態となり、回転従動体5の回転がカラー6によって阻止される。   When the roller 7 exists at a position where the radial distance between the outer surface portion 13 of the driven fan portion 12 and the inner peripheral surface 8 of the collar 6 is larger than the diameter L3 of the roller 7, the rotary follower 5 is in relation to the collar 6. Can be rotated. Further, when the radial distance between the outer surface portion 13 of the driven fan portion 12 and the inner peripheral surface 8 of the collar 6 coincides with the diameter L3 of the roller 7, the roller 7 and the collar 6 have the outer surface portion 13 of the driven fan portion 12. It will be in the state pinched | interposed between the inner peripheral surfaces 8. That is, the rotary follower 5 is engaged with the collar 6 via the roller 7, and the rotation of the rotary follower 5 is blocked by the collar 6.

回転駆動体4は、電動モータ1の出力軸(クラッチ3からみたら入力側)15と結合されるものであり、従動扇部12の周方向間に配置される1つあるいは複数(この実施例では3つ)の駆動扇部16を備える。これにより、電動モータ1によって回転駆動体4が回転駆動されると、駆動扇部16が従動扇部12に当接し、回転駆動体4の回転力が回転従動体5に伝達される。   The rotary drive body 4 is connected to the output shaft 15 (input side as viewed from the clutch 3) 15 of the electric motor 1, and one or a plurality (in this embodiment) are disposed between the circumferential directions of the driven fan section 12. Three) driving fan sections 16 are provided. As a result, when the rotary drive body 4 is rotationally driven by the electric motor 1, the drive fan portion 16 comes into contact with the driven fan portion 12, and the rotational force of the rotary drive body 4 is transmitted to the rotary follower body 5.

駆動扇部16の周方向の両側の側面の外側には、回転方向に突出した噛合解除突起17が設けられている。この噛合解除突起17は、駆動扇部16が従動扇部12に当接する状態において、ホルダ14を隙間大L1側に移動させて、ホルダ14に支持されるローラ7を隙間大L1側に移動させるものである。即ち、従動扇部12の外面部13と、カラー6の内周面8との径方向距離がローラ7の直径L3より大きい位置にローラ7を移動させて、従動扇部12とカラー6との間においてローラ7の回転を自由にさせるものである。   Engagement release protrusions 17 protruding in the rotational direction are provided on the outer sides of the side surfaces on both sides in the circumferential direction of the drive fan 16. The engagement release protrusion 17 moves the holder 14 to the large gap L1 side and moves the roller 7 supported by the holder 14 to the large gap L1 side in a state where the driving fan section 16 contacts the driven fan section 12. Is. That is, the roller 7 is moved to a position where the radial distance between the outer surface portion 13 of the driven fan portion 12 and the inner peripheral surface 8 of the collar 6 is larger than the diameter L3 of the roller 7, and the driven fan portion 12 and the collar 6 are moved. The roller 7 can freely rotate in the meantime.

減速機2は、歯車減速装置を採用しており、一例を図3を参照して説明する。この実施例の減速機2は、回転従動体5と一体に回転するウォームギヤ21、このウォームギヤ21に減速駆動される中間ギヤ22、この中間ギヤ22に減速駆動される最終ギヤ23からなり、最終ギヤ23に設けられた減速機出力軸24がバルブ駆動軸に結合される。   The reduction gear 2 employs a gear reduction device, and an example will be described with reference to FIG. The speed reducer 2 of this embodiment includes a worm gear 21 that rotates integrally with the rotary follower 5, an intermediate gear 22 that is driven to reduce by the worm gear 21, and a final gear 23 that is driven to reduce by the intermediate gear 22. A reduction gear output shaft 24 provided at 23 is coupled to the valve drive shaft.

ここで、上記構成よりなるクラッチ3の基本作動を説明する。
(電動モータ1の通電時)
制御装置により電動モータ1が通電制御されて、電動モータ1が正方向または逆方向に回転する際は、回転駆動体4に伝えられた回転力によって、噛合解除突起17がローラ7を隙間大L1側に移動させる。これにより、回転駆動体4および回転従動体5は、カラー6に対して自由に移動できる状態となる。そして、回転駆動体4が回転従動体5に当接し、回転駆動体4の回転力が回転従動体5に伝えられ、回転駆動体4とともに回転従動体5が回転する。回転従動体5の回転が減速機2で減速されて、吸気通路内に配置されたバルブの開度を操作する。
Here, the basic operation of the clutch 3 configured as described above will be described.
(When the electric motor 1 is energized)
When the electric motor 1 is energized and controlled by the control device, and the electric motor 1 rotates in the forward direction or the reverse direction, the mesh release protrusion 17 causes the roller 7 to move the roller 7 with a large gap L1 due to the rotational force transmitted to the rotary drive 4. Move to the side. As a result, the rotational driving body 4 and the rotational follower 5 are in a state of being freely movable with respect to the collar 6. Then, the rotational drive body 4 comes into contact with the rotational follower 5, the rotational force of the rotational drive body 4 is transmitted to the rotational follower 5, and the rotational follower 5 rotates together with the rotational drive body 4. The rotation of the rotary follower 5 is decelerated by the speed reducer 2 to operate the opening degree of the valve disposed in the intake passage.

(電動モータ1の通電停止時)
バルブの開度位置が目的の開度に設定されると、制御装置は電動モータ1の通電を停止する。この状態で、手動等によりバルブに回動負荷を与えて、回転従動体5に回転力を与えると、回転従動体5の僅かな回転変化によって、ローラ7が回転従動体5とカラー6の間で挟み付けられ、回転従動体5とカラー6がローラ7を介して噛合する。この結果、回転従動体5の回転は不能となり、バルブの回動が阻止される。
(When the electric motor 1 is de-energized)
When the opening position of the valve is set to the target opening, the control device stops energization of the electric motor 1. In this state, when a rotational load is applied to the valve manually and the rotational force is applied to the rotary follower 5, the roller 7 is moved between the rotary follower 5 and the collar 6 by a slight rotational change of the rotary follower 5. The rotary follower 5 and the collar 6 mesh with each other via the roller 7. As a result, the rotation follower 5 cannot rotate and the rotation of the valve is prevented.

(実施例1の特徴1)
しかし、吸気通路内に発生する圧力脈動により、バルブには脈動による回転力(具体的には、高振動、高負荷、高脈動の回転力)が与えられる。特にヒンジ式バルブ構造を採用するこの実施例の場合には、非常に大きな圧力脈動がバルブ駆動軸に作用する。すると、その脈動による回転力が減速機2を介して回転従動体5に伝わり、ローラ7の噛合状態が解除されてしまう。即ち、クラッチ3によってバルブの回転を規制することができなくなってしまう。
(Characteristic 1 of Example 1)
However, due to the pressure pulsation generated in the intake passage, a rotational force (specifically, high vibration, high load, high pulsating rotational force) is applied to the valve. Particularly in this embodiment employing a hinged valve structure, a very large pressure pulsation acts on the valve drive shaft. Then, the rotational force due to the pulsation is transmitted to the rotational follower 5 via the speed reducer 2, and the meshing state of the roller 7 is released. That is, the rotation of the valve cannot be restricted by the clutch 3.

そこで、この実施例1では、クラッチ3によるバルブの保持能力を高めるために、次の技術を採用している。
クラッチ3を構成するカラー6には、ローラ7と噛合する内周面8に、ローラ7が押し付けられた状態で、ローラ7の移動および回転を阻止する窪み部が設けられている。
この実施例の窪み部は、ローラ7が浅く嵌まり合うことができる溝25であり、この溝25はローラ7の軸と平行に設けられている。溝25の形状は、図2(b)に示すように、ローラ7の曲面と略一致するR面でも良いし、ローラ7の曲面より大きい曲率のR面でも良いし、ローラ7の曲面より小さい曲率のR面でも良い。また、溝形状は、R面に限定されるものではなく、矩形溝、三角溝(緩やかな傾斜面を含む)など、他の形状であっても良い。
溝25の数は、カラー6の内周面8に複数(例えば、9本)設けられるものであり、等間隔を隔てて設けられている。
Therefore, in the first embodiment, the following technique is adopted in order to increase the holding ability of the valve by the clutch 3.
The collar 6 that constitutes the clutch 3 is provided with a recess that prevents the roller 7 from moving and rotating when the roller 7 is pressed against an inner peripheral surface 8 that meshes with the roller 7.
The recess in this embodiment is a groove 25 in which the roller 7 can be fitted shallowly. The groove 25 is provided in parallel to the axis of the roller 7. As shown in FIG. 2B, the shape of the groove 25 may be an R surface that substantially matches the curved surface of the roller 7, may be an R surface having a larger curvature than the curved surface of the roller 7, or may be smaller than the curved surface of the roller 7. The R side of the curvature may be used. The groove shape is not limited to the R surface, and may be other shapes such as a rectangular groove and a triangular groove (including a gently inclined surface).
A plurality of (for example, nine) grooves 25 are provided on the inner peripheral surface 8 of the collar 6 and are provided at equal intervals.

このように、クラッチ3を構成するカラー6の内周面8に溝25を設けたことにより、電動モータ1の通電が停止している状態において、ローラ7が溝25に嵌まり合うことでローラ7が強くカラー6に噛合して、ローラ7とカラー6の摩擦力に頼らず、回転従動体5の回動を阻止することができる。この結果、圧力脈動によりバルブの開度位置が変化する不具合を阻止できる。
なお、電動モータ1が駆動されて、回転駆動体4が正方向または逆方向に回転駆動される際は、噛合解除突起17がローラ7を隙間大L1側に移動させて、ローラ7による噛合を解除する。そして、回転駆動体4が回転従動体5に当接し、回転駆動体4の回転力が回転従動体5に伝わって、バルブの開度位置を操作する。
Thus, by providing the groove 25 on the inner peripheral surface 8 of the collar 6 constituting the clutch 3, the roller 7 fits into the groove 25 in a state where the energization of the electric motor 1 is stopped. 7 strongly meshes with the collar 6, and the rotation of the rotary follower 5 can be prevented without depending on the frictional force between the roller 7 and the collar 6. As a result, the problem that the opening position of the valve changes due to pressure pulsation can be prevented.
When the electric motor 1 is driven and the rotary drive body 4 is driven to rotate in the forward direction or the reverse direction, the mesh release projection 17 moves the roller 7 to the large gap L1 side so that the mesh with the roller 7 is engaged. To release. Then, the rotary drive body 4 comes into contact with the rotary follower 5 and the rotational force of the rotary drive body 4 is transmitted to the rotary follower 5 to manipulate the opening position of the valve.

(実施例1の特徴2)
一方、可変吸気システムには、バルブの開度を燃費改善有効開度範囲内に設定することが要求される。
具体的に、(a)バルブを閉じるほどに、ポンピングロスが増大し、燃費が悪化する(図4参照)。
一方、(b)バルブの開度を小さくして、燃焼室内に渦流を発生させることで燃焼状態を改善し、内部(外部)限界EGR率を向上させることができる。即ち、バルブ開度が小さい時のEGR率を増やすことで、冷却損失、ポンピングロスを低減させて、燃費向上効果を得ることができる(図5参照)。
(Characteristic 2 of Example 1)
On the other hand, the variable intake system is required to set the opening of the valve within the fuel efficiency improvement effective opening range.
Specifically, (a) as the valve is closed, the pumping loss increases and the fuel consumption deteriorates (see FIG. 4).
On the other hand, (b) by reducing the valve opening and generating a vortex in the combustion chamber, the combustion state can be improved and the internal (external) limit EGR rate can be improved. That is, by increasing the EGR rate when the valve opening is small, the cooling loss and the pumping loss can be reduced, and the fuel efficiency improvement effect can be obtained (see FIG. 5).

上記(a)、(b)の関係より、燃費改善効果が得られるバルブの開度範囲が存在する(図6参照)。即ち、所定の開度範囲よりバルブを全閉に近づけた場合には、EGRによる燃費改善よりも、ポンピングロスによる燃費悪化率の影響が大きくなり、全体として燃費が悪化する。逆に、所定の開度範囲よりバルブの開度を大きくした場合には、EGRによる燃費改善効果が得られなくなって、全体として燃費が悪化する。
このように、バルブの開度には燃費を改善できる開度範囲が存在しており、可変吸気システムには、バルブの開度を燃費改善有効開度範囲内に設定することが要求される。
From the relationship of (a) and (b) above, there is a valve opening range in which a fuel efficiency improvement effect can be obtained (see FIG. 6). That is, when the valve is brought closer to full closure than the predetermined opening range, the influence of the fuel consumption deterioration rate due to the pumping loss becomes larger than the fuel consumption improvement by EGR, and the fuel consumption is deteriorated as a whole. On the other hand, when the opening of the valve is made larger than the predetermined opening range, the fuel efficiency improvement effect by EGR cannot be obtained, and the fuel efficiency is deteriorated as a whole.
Thus, there is an opening range in which the fuel consumption can be improved in the opening of the valve, and the variable intake system is required to set the opening of the valve within the fuel efficiency improvement effective opening range.

しかるに、上述したように、カラー6の内周面8に複数の溝25を設けて、溝25においてローラ7が噛合することでバルブの保持力(クラッチ3の係合力)を高める技術は、クラッチ3の保持分解能力は荒いものであり、バルブの開度を燃費改善有効開度範囲内に設定できない可能性がある。   However, as described above, a technique in which a plurality of grooves 25 are provided in the inner peripheral surface 8 of the collar 6 and the roller 7 meshes with the grooves 25 to increase the holding force of the valve (engagement force of the clutch 3) is a clutch. The holding / decomposing ability of No. 3 is rough, and there is a possibility that the opening of the valve cannot be set within the fuel efficiency improvement effective opening range.

そこで、この実施例1では、図1に示すように、
燃費改善効果が最も大きい時のバルブのバルブ角を最大効果バルブ角θとし、
バルブのバルブ角が最大効果バルブ角θから閉弁方向へ変化して燃費改善効果がゼロとなる時のバルブ角を閉弁側最小効果バルブ角αとし、
バルブのバルブ角が最大効果バルブ角θから開弁方向へ変化して燃費改善効果がゼロとなる時のバルブ角を開弁側最小効果バルブ角βとし、
バルブが最大効果バルブ角θの時においてカラー6とローラ7が接触する角度位置を理想噛合角Zとし、
バルブが閉弁側最小効果バルブ角αの時においてカラー6とローラ7が接触する角度位置を閉弁側最小効果噛合角aとし、
バルブが開弁側最小効果バルブ角βの時においてカラー6とローラ7が接触する角度位置を開弁側最小効果噛合角bとし、
理想噛合角Zと、この理想噛合角Zに最も近い閉弁方向の溝25の設定位置xとの間の角度を閉弁側窪み角γ1とし、
理想噛合角Zと、この理想噛合角Zに最も近い開弁方向の溝25の設定位置yとの間の角度を開弁側窪み角γ2とした場合、
減速機2の減速比Gが、
γ1/G≦αと、γ2/G≦βとの両方の式を満足するように設定されている。
なお、閉弁側窪み角γ1と開弁側窪み角γ2は同じ角度であるため、共通の角度γで表した場合には、γ/G≦α、γ/G≦βを満足するように設定するものである。
Therefore, in the first embodiment, as shown in FIG.
The valve angle of the valve when the fuel efficiency improvement effect is the greatest is the maximum effect valve angle θ,
The valve angle when the valve angle of the valve changes from the maximum effect valve angle θ to the valve closing direction and the fuel efficiency improvement effect becomes zero is the valve closing side minimum effect valve angle α,
The valve angle when the valve angle of the valve changes from the maximum effect valve angle θ to the valve opening direction and the fuel efficiency improvement effect becomes zero is the valve opening side minimum effect valve angle β,
When the valve is at the maximum effective valve angle θ, the angular position where the collar 6 and the roller 7 contact is the ideal meshing angle Z,
When the valve is at the valve closing side minimum effect valve angle α, the angular position where the collar 6 and the roller 7 contact is defined as the valve closing side minimum effect engagement angle a,
When the valve is at the valve-opening side minimum effect valve angle β, the angular position where the collar 6 and the roller 7 are in contact is defined as the valve-opening side minimum effect meshing angle b.
The angle between the ideal engagement angle Z and the set position x of the groove 25 in the valve closing direction closest to the ideal engagement angle Z is defined as a valve closing side depression angle γ1.
When the angle between the ideal engagement angle Z and the setting position y of the groove 25 in the valve opening direction closest to the ideal engagement angle Z is the valve opening side depression angle γ2,
The reduction ratio G of the reducer 2 is
It is set so as to satisfy both the expressions γ1 / G ≦ α and γ2 / G ≦ β.
Since the valve-closing side depression angle γ1 and the valve-opening side depression angle γ2 are the same angle, they are set so as to satisfy γ / G ≦ α and γ / G ≦ β when expressed by a common angle γ. To do.

(実施例1の効果)
実施例1の可変吸気システムは、上記の構成を採用することによって、理想噛合角Zと閉弁側最小効果噛合角aの間に必ず1つ以上の溝25が存在するとともに、理想噛合角Zと開弁側最小効果噛合角bの間に必ず1つ以上の溝25が存在することになり、燃費改善有効開度範囲(閉弁側最小効果バルブ角αと開弁側最小効果バルブ角βの間)内においてバルブを確実に保持することができる。
即ち、最大効果バルブ角θにおいて電動モータ1の通電が停止された状態で、バルブの受ける高振動、高負荷、高脈動が、減速機2を介して回転従動体5に伝えられても、ローラ7が閉弁側最小効果噛合角aと開弁側最小効果噛合角bの間の溝25に嵌まって、ローラ7が強くカラー6に噛合して回転従動体5の回動が阻止されるため、燃費改善有効開度範囲内においてバルブの開度位置を固定することができる。
(Effect of Example 1)
The variable intake system of the first embodiment employs the above-described configuration, so that at least one groove 25 is always present between the ideal meshing angle Z and the valve closing side minimum effective meshing angle a, and the ideal meshing angle Z Therefore, there is always at least one groove 25 between the valve opening side minimum effect engagement angle b and the fuel efficiency improvement effective opening range (the valve closing side minimum effect valve angle α and the valve opening side minimum effect valve angle β). The valve can be securely held within the
That is, even when energization of the electric motor 1 is stopped at the maximum effect valve angle θ, high vibration, high load, and high pulsation received by the valve are transmitted to the rotary follower 5 via the speed reducer 2, the roller 7 is fitted in the groove 25 between the valve closing side minimum effect meshing angle a and the valve opening side minimum effect meshing angle b, so that the roller 7 strongly meshes with the collar 6 and the rotation follower 5 is prevented from rotating. Therefore, the opening position of the valve can be fixed within the fuel efficiency improvement effective opening range.

[変形例]
上記の実施例では、クラッチ3とバルブとの間のみに減速機2を配置する例を示したが、電動モータ1とクラッチ3の間に別の減速機を追加配置しても良い。
窪み部(溝25、傾斜等)を設ける数について、最低条件は上述したように理想噛合角Zの閉弁方向と開弁方向にγ1/G≦α、γ2/G≦βとなる位置に2つの溝を設けることであるが、もちろんそれ以上に窪み部(溝25、傾斜等)の数が多くても良い。つまり、γ/G≦α、γ/G≦βを満たすような角度γの等間隔で窪み部(溝25、傾斜等)を設けても良い。
[Modification]
In the above embodiment, the example in which the speed reducer 2 is disposed only between the clutch 3 and the valve has been described. However, another speed reducer may be additionally disposed between the electric motor 1 and the clutch 3.
As for the number of depressions (grooves 25, inclinations, etc.), the minimum condition is 2 at positions where γ1 / G ≦ α and γ2 / G ≦ β in the valve closing direction and valve opening direction of the ideal meshing angle Z as described above. One groove is provided, but of course, the number of depressions (groove 25, inclination, etc.) may be larger than that. That is, depressions (grooves 25, inclinations, etc.) may be provided at equal intervals of angle γ that satisfy γ / G ≦ α and γ / G ≦ β.

上記の実施例では、バルブの一例としてヒンジ式バルブ構造を採用する例を示したが、バタフライ式バルブ構造であっても良い。
上記の実施例では、従動扇部12の外面部13を平面に設ける例を示したが、外面部13の中心に軸方向に伸びてローラ7と噛合可能な円弧状の噛合溝を形成しても良い。
上記の実施例では、ローラ7をホルダ14で保持する例を示したが、ホルダ14を廃止したものであっても良い。
上記の実施例では、噛合体の一例として、ローラ7を示したが、ボールなど、他の転がり部品でも良い。また、転がり部品の外形は、真円である必要はなく、楕円など転がりが阻害される形状であっても良い。さらに、噛合体は、転がり部材である必要はなく、回転従動体5とカラー6との間で摺動可能な部材であっても良い。
In the above embodiment, an example in which a hinge type valve structure is adopted as an example of the valve is shown, but a butterfly type valve structure may be used.
In the above-described embodiment, an example in which the outer surface portion 13 of the driven fan portion 12 is provided on a flat surface is shown. However, an arc-shaped engagement groove that extends in the axial direction and can mesh with the roller 7 is formed at the center of the outer surface portion 13. Also good.
In the above embodiment, an example in which the roller 7 is held by the holder 14 has been shown, but the holder 14 may be omitted.
In the above embodiment, the roller 7 is shown as an example of the meshing body, but other rolling parts such as a ball may be used. In addition, the outer shape of the rolling component does not need to be a perfect circle, and may be a shape such as an ellipse that inhibits rolling. Furthermore, the meshing body does not have to be a rolling member, and may be a member that can slide between the rotary follower 5 and the collar 6.

上記の実施例では、回転駆動体4および回転従動体5の外周にカラー6を配置する例を示したが、回転駆動体4および回転従動体5の内周にカラー6を配置したものであっても良い。その場合は、カラー6の外周面が噛合体(ローラ7等)と噛合する面となるため、カラー6の外周面に窪み部(溝25や傾斜等)を設けることになる。
上記の実施例では、回転駆動体4と回転従動体5の当接部分を面接触にした例を示したが、面接触ではなく、点接触や線接触など他の当接形態でも良い。
In the above embodiment, an example in which the collar 6 is arranged on the outer circumference of the rotary drive body 4 and the rotary follower 5 has been shown. However, the collar 6 is arranged on the inner circumference of the rotary drive body 4 and the rotary follower 5. May be. In this case, since the outer peripheral surface of the collar 6 becomes a surface that meshes with the meshing body (roller 7 or the like), the outer peripheral surface of the collar 6 is provided with a recess (such as a groove 25 or an inclination).
In the above-described embodiment, an example in which the contact portion between the rotary drive body 4 and the rotation follower 5 is surface contact is shown. However, other contact forms such as point contact and line contact may be used instead of surface contact.

燃費改善率を基準としてバルブ角とローラ噛合角を整合させた説明図である。It is explanatory drawing which matched the valve angle and the roller meshing angle on the basis of the fuel consumption improvement rate. クラッチの説明図である。It is explanatory drawing of a clutch. 電動モータ、クラッチ、減速機の斜視図、およびクラッチハウジング内におけるクラッチの断面図である。It is a perspective view of an electric motor, a clutch, and a reduction gear, and sectional drawing of a clutch in a clutch housing. ポンピングロスによる燃費悪化率とバルブ開度の関係を示すグラフである。It is a graph which shows the relationship between the fuel consumption deterioration rate by a pumping loss, and a valve opening degree. EGRによる燃費改善率とバルブ開度の関係を示すグラフである。It is a graph which shows the fuel consumption improvement rate by EGR, and the relationship between valve opening. 燃費改善率とバルブ開度との関係を示すグラフである。It is a graph which shows the relationship between a fuel consumption improvement rate and a valve opening degree.

符号の説明Explanation of symbols

1 電動モータ
2 減速機
3 クラッチ
4 回転駆動体
5 回転従動体
6 カラー
7 ローラ(噛合体)
17 噛合解除突起
25 溝(窪み部)
L1 隙間大
L2 隙間小
L3 ローラの直径
θ 最大効果バルブ角
α 閉弁側最小効果バルブ角
β 開弁側最小効果バルブ角
a 閉弁側最小効果噛合角
b 開弁側最小効果噛合角
Z 理想噛合角
x 理想噛合角Zより閉弁方向にある窪み部の角度位置
γ1 閉弁側窪み角
y 理想噛合角Zより開弁方向にある窪み部の角度位置
γ2 開弁側窪み角
DESCRIPTION OF SYMBOLS 1 Electric motor 2 Reduction gear 3 Clutch 4 Rotation drive body 5 Rotation follower 6 Collar 7 Roller (meshing body)
17 Engagement release protrusion 25 Groove (dent)
L1 Large clearance L2 Small clearance L3 Roller diameter θ Maximum effect valve angle α Valve closing side minimum effect valve angle β Valve opening side minimum effect valve angle a Valve closing side minimum effect meshing angle b Valve opening side minimum effect meshing angle Z Ideal meshing Angle x Angular position of the recess in the valve closing direction from the ideal engagement angle Z γ1 Valve closing side recess angle y Angular position of the recess in the valve opening direction from the ideal engagement angle Z γ2 Valve opening side recess angle

Claims (4)

通電により回転出力を発生する電動モータと、
この電動モータによって駆動され、内燃機関の吸気通路内に配置されたバルブと、
前記電動モータの回転出力を前記バルブへ伝達し、このバルブの回転力を前記電動モータへ伝えないクラッチと、
を備えた可変吸気システムにおいて、
この可変吸気システムは、前記電動モータの回転出力を減速して前記バルブに伝える減速機を備え、
前記クラッチは、前記電動モータによって回転駆動される回転駆動体と、
この回転駆動体と周方向に当接して回転駆動される回転従動体と、
回転中心の周囲に環状配置された回転不能のカラーと、
前記回転従動体と前記カラーの径方向間に配置される噛合体とを備え、
前記回転従動体は、前記カラーとの径方向間に、径方向の隙間の大きい隙間大と、この隙間大の周方向の両側に、当該隙間大より径方向寸法の小さい隙間小とを形成するものであり、
前記噛合体は、前記隙間大より径方向寸法が小さく、且つ前記隙間小より径方向寸法が大きいものであり、
前記回転駆動体は、前記回転従動体と周方向に当接する状態において前記噛合体を前記隙間大側に移動させる噛合解除突起を備えるものであり、
前記カラーは、前記噛合体が噛合する面に複数の窪み部を備えるものであり、
燃費改善効果が最も大きい時の前記バルブのバルブ角を最大効果バルブ角θとし、
前記バルブのバルブ角が最大効果バルブ角θから閉弁方向へ変化して燃費改善効果がゼロとなる時のバルブ角を閉弁側最小効果バルブ角αとし、
前記バルブのバルブ角が最大効果バルブ角θから開弁方向へ変化して燃費改善効果がゼロとなる時のバルブ角を開弁側最小効果バルブ角βとし、
前記バルブが最大効果バルブ角θの時において前記カラーと前記噛合体が接触する角度位置を理想噛合角Zとし、
前記理想噛合角Zと、この理想噛合角Zに最も近い閉弁方向の窪み部の設定位置xとの間の角度を閉弁側窪み角γ1とし、
前記理想噛合角Zと、この理想噛合角Zに最も近い開弁方向の窪み部の設定位置yとの間の角度を開弁側窪み角γ2とした場合、
前記減速機の減速比Gは、
γ1/G≦αと、
γ2/G≦βと
を満足することを特徴とする可変吸気システム。
An electric motor that generates rotational output when energized;
A valve driven by the electric motor and disposed in the intake passage of the internal combustion engine;
A clutch that transmits the rotational output of the electric motor to the valve and does not transmit the rotational force of the valve to the electric motor;
In a variable intake system with
The variable intake system includes a speed reducer that decelerates and transmits the rotational output of the electric motor to the valve.
The clutch includes a rotational drive body that is rotationally driven by the electric motor;
A rotational follower that is rotationally driven in contact with the rotational drive body in the circumferential direction;
A non-rotatable collar annularly arranged around the center of rotation;
A rotating body and a meshing body disposed between the collars in the radial direction;
The rotary follower forms a large gap having a large radial gap and a small gap having a smaller radial dimension than the gap large on both sides of the gap in the circumferential direction between the collar and the collar. Is,
The meshing body has a smaller radial dimension than the large gap and a larger radial dimension than the small gap,
The rotational driving body includes a mesh release protrusion that moves the meshing body to the large gap side in a state of contacting the rotational follower in the circumferential direction,
The collar is provided with a plurality of depressions on the surface with which the meshing body meshes,
The valve angle of the valve when the fuel efficiency improvement effect is the largest is the maximum effect valve angle θ,
The valve angle when the valve angle of the valve changes from the maximum effect valve angle θ to the valve closing direction and the fuel efficiency improvement effect becomes zero is the valve closing side minimum effect valve angle α,
The valve angle when the valve angle of the valve changes from the maximum effective valve angle θ to the valve opening direction and the fuel efficiency improvement effect becomes zero is the valve opening side minimum effective valve angle β,
An ideal meshing angle Z is defined as an angular position where the collar and the meshing body come into contact when the valve has a maximum effect valve angle θ.
The angle between the ideal engagement angle Z and the setting position x of the recess in the valve closing direction closest to the ideal engagement angle Z is defined as a valve closing side recess angle γ1.
When the angle between the ideal engagement angle Z and the set position y of the recess in the valve opening direction closest to the ideal engagement angle Z is the valve opening side recess angle γ2,
The reduction ratio G of the reducer is
γ1 / G ≦ α,
A variable intake system characterized by satisfying γ2 / G ≦ β.
請求項1に記載の可変吸気システムにおいて、
前記カラーは、前記回転駆動体および前記回転従動体の外周に配置されることを特徴とする可変吸気システム。
The variable intake system of claim 1,
The variable intake system according to claim 1, wherein the collar is disposed on an outer periphery of the rotary driver and the rotary follower.
請求項1または請求項2に記載の可変吸気システムにおいて、
前記噛合体は、前記カラーに対して転動するローラであることを特徴とする可変吸気システム。
The variable intake system according to claim 1 or 2,
The variable intake system, wherein the meshing body is a roller that rolls relative to the collar.
請求項3に記載の可変吸気システムにおいて、
前記窪み部は、前記ローラの外周面の一部が嵌まり込む溝によって設けられることを特徴とする可変吸気システム。
The variable intake system of claim 3,
The variable intake system, wherein the recess is provided by a groove into which a part of the outer peripheral surface of the roller is fitted.
JP2008038882A 2008-02-20 2008-02-20 Variable air intake system Pending JP2009197646A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008038882A JP2009197646A (en) 2008-02-20 2008-02-20 Variable air intake system
DE102009000586A DE102009000586A1 (en) 2008-02-20 2009-02-03 Variable air intake system
US12/369,229 US20090205596A1 (en) 2008-02-20 2009-02-11 Variable air intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038882A JP2009197646A (en) 2008-02-20 2008-02-20 Variable air intake system

Publications (1)

Publication Number Publication Date
JP2009197646A true JP2009197646A (en) 2009-09-03

Family

ID=40896876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038882A Pending JP2009197646A (en) 2008-02-20 2008-02-20 Variable air intake system

Country Status (3)

Country Link
US (1) US20090205596A1 (en)
JP (1) JP2009197646A (en)
DE (1) DE102009000586A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097757B (en) * 2010-07-16 2016-10-12 艾拓有限公司 Self-locking mechanism for valve actuator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292176C (en) 1998-08-03 2006-12-27 阿斯莫有限公司 Driving device with motor and speed reducing mechanism
EP1101967B1 (en) 1998-08-03 2015-03-18 Asmo Co. Ltd. Clutch and drive device having the clutch
JP2001214946A (en) 2000-02-02 2001-08-10 Asmo Co Ltd Clutch and motor
JP4940793B2 (en) 2005-12-26 2012-05-30 株式会社デンソー Two-way clutch

Also Published As

Publication number Publication date
US20090205596A1 (en) 2009-08-20
DE102009000586A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP4715396B2 (en) Fluid control valve
JP4661668B2 (en) Valve open / close control device
JP5673602B2 (en) Valve device
JP4940793B2 (en) Two-way clutch
US20120326069A1 (en) Step type valve
JP5071243B2 (en) clutch
CN110869594B (en) Throttle valve device
JP2010138736A (en) Valve timing control device for internal combustion engine
JP2011179625A (en) Ball valve
JP2011196464A (en) Ball valve type valve device
JP5626270B2 (en) EGR valve
JP2012163017A (en) Butterfly valve
JP5131317B2 (en) Valve open / close control device
WO2018216526A1 (en) Electric valve actuator and valve device
JP4929913B2 (en) Flow control valve
JP2009197646A (en) Variable air intake system
JP6459632B2 (en) Intake / exhaust device for internal combustion engine
JP2019002497A (en) Shell-type roller bearing
US10711690B2 (en) Wastegate assembly and turbocharger including the same
KR101973480B1 (en) Mounting structure of reversible torsion spring and gear housing
WO2019009134A1 (en) Throttle valve device
JP2013241899A (en) Valve device
JP2005256779A (en) Variable intake device
JP2011122659A (en) Butterfly valve
JP5527295B2 (en) Power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209