JP2005256779A - Variable intake device - Google Patents

Variable intake device Download PDF

Info

Publication number
JP2005256779A
JP2005256779A JP2004071288A JP2004071288A JP2005256779A JP 2005256779 A JP2005256779 A JP 2005256779A JP 2004071288 A JP2004071288 A JP 2004071288A JP 2004071288 A JP2004071288 A JP 2004071288A JP 2005256779 A JP2005256779 A JP 2005256779A
Authority
JP
Japan
Prior art keywords
internal passage
control valve
intake device
variable intake
partition member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004071288A
Other languages
Japanese (ja)
Inventor
Masahiro Fukuda
正博 福田
Shuji Ogawa
修治 緒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2004071288A priority Critical patent/JP2005256779A/en
Publication of JP2005256779A publication Critical patent/JP2005256779A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To keep an amount of air, leaking from a gap between the wall surface of an internal passage and the outer peripheral wall of a partitioning member, at a constant value even if slight dispersion occurs in a closing attitude angle when the partitioning member closes the internal passage, in a variable intake device for an engine. <P>SOLUTION: In the variable intake device 20 having an air flow control valve 30 rotatably situated in the internal passage 22 and changing a passage area of intake air flowing through the internal passage 22, a circular arc face part 23 to keep a given distance away from a locus T on which the air flow control valve 30 is rotated is situated on a wall surface 22a of the internal passage 22. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、内燃機関の可変吸気装置に関するものである。特に、管状体の内部通路内に配置される吸気制御バルブを有する内燃機関の可変吸気装置に関する。   The present invention relates to a variable intake device for an internal combustion engine. In particular, the present invention relates to a variable intake device for an internal combustion engine having an intake control valve disposed in an internal passage of a tubular body.

従来、内燃機関の燃焼室内での燃焼状態を制御するため、燃焼室に通じる吸気管の内部通路に、該内部通路を開閉するためのバタフライ型の楕円形弁体(仕切り部材)が設けられる可変吸気装置がある。この可変吸気装置は、弁体が内部通路断面内の中心付近に設けられた軸芯周りで回動することで、内部通路の開閉を行う。この可変吸気装置は、弁体が閉塞姿勢にあるとき、即ち内部通路が閉じられたとき、弁体に設けられた開口部を通して所定量の空気が流通される。一方、開口部を除く弁体の部分は、内部通路内壁と弁体との外周縁との隙間から漏れる空気量を減少するため、該隙間を極小距離に保つようにしている。しかし、装置の製造誤差や組付け誤差などにより、弁体の閉塞時の回転方向の閉塞姿勢角度にバラツキが生じ、該隙間が増大し、該隙間から漏れる空気量が増加する(例えば、特許文献1の図6参照。)。   Conventionally, in order to control a combustion state in a combustion chamber of an internal combustion engine, a butterfly elliptic valve body (partition member) for opening and closing the internal passage is provided in an internal passage of an intake pipe that leads to the combustion chamber. There is an intake device. This variable intake device opens and closes the internal passage by rotating the valve body around an axis provided near the center in the cross section of the internal passage. In this variable intake device, when the valve body is in a closed posture, that is, when the internal passage is closed, a predetermined amount of air is circulated through an opening provided in the valve body. On the other hand, in the portion of the valve body excluding the opening, in order to reduce the amount of air leaking from the gap between the inner wall of the internal passage and the outer peripheral edge of the valve body, the gap is kept at a minimum distance. However, due to device manufacturing errors, assembly errors, etc., the closing posture angle in the rotational direction when the valve body is closed varies, the gap increases, and the amount of air leaking from the gap increases (for example, Patent Documents). 1 (see FIG. 6).

一方、内燃機関の空気量調整装置として、スロットル装置がある。この装置は、調整される空気の流量が略円形弁体(スロットルプレート)の開度と比例関係になるように、スロットルプレートの周縁部と対向するスロットルボア面がスロットルプレートの領域において球冠状を呈している。この球冠状のスロットルボア面は、スロットルプレートの閉塞される位置からスロットルプレートの旋回角度が増加するに伴って、スロットルプレートが旋回する軌跡からの距離が徐々に拡がる構造を有する。しかし、この構造では、スロットルプレートの閉塞時の回転方向の閉塞姿勢角度にバラツキが生じた場合、スロットルボア面とスロットルプレートの周縁部との隙間が増大し、該隙間から漏れる空気量が増加する(例えば、特許文献2の図6参照。)。
特開2002−309945号公報 特開2002−138861号公報
On the other hand, there is a throttle device as an air amount adjusting device for an internal combustion engine. In this device, the throttle bore surface facing the peripheral edge of the throttle plate has a spherical shape in the area of the throttle plate so that the flow rate of the air to be adjusted is proportional to the opening of the substantially circular valve body (throttle plate). Presents. This spherical crown-shaped throttle bore surface has a structure in which the distance from the trajectory where the throttle plate turns gradually increases as the turning angle of the throttle plate increases from the position where the throttle plate is closed. However, in this structure, when there is a variation in the closing posture angle in the rotational direction when the throttle plate is closed, the gap between the throttle bore surface and the peripheral edge of the throttle plate increases, and the amount of air leaking from the gap increases. (For example, refer to FIG. 6 of Patent Document 2).
JP 2002-309945 A JP 2002-138861 A

そこで本発明は、エンジンの可変吸気装置において、仕切り部材が内部通路を閉塞する時、閉塞姿勢角度に多少のバラツキが生じても、内部通路内壁と仕切り部材の外周縁との隙間から漏れる空気量を一定に保つことを技術的課題とする。   Accordingly, the present invention provides a variable intake device for an engine, wherein when the partition member closes the internal passage, the amount of air leaking from the gap between the inner wall of the internal passage and the outer peripheral edge of the partition member even if there is some variation in the closed posture angle. It is a technical issue to keep this constant.

上記課題を解決するために、請求項1の発明にて講じた技術的手段は、管状体の内部通路内に回動可能に配置され、前記内部通路を流れる流体の通過面積を変化させる仕切り部材を有する可変吸気装置において、前記内部通路の壁面は、前記仕切り部材が回動する軌跡と所定の距離を保つ壁面を有することである。   In order to solve the above-mentioned problems, the technical means taken in the invention of claim 1 is a partition member which is rotatably arranged in the internal passage of the tubular body and changes the passage area of the fluid flowing through the internal passage. The wall surface of the internal passage has a wall surface that maintains a predetermined distance from the trajectory of the partition member rotating.

上記手段によれば、内部通路の内壁は、仕切り部材が回動する軌跡と所定の距離を一定に保つ壁面を有することにより、仕切り部材が内部通路を閉塞する時、内部通路内壁と仕切り部材の外周縁との隙間が仕切り部材の製造誤差及び組付け誤差による閉塞姿勢角度のバラツキの影響を受けず変化しない。このため、仕切り部材が内部通路を閉塞する時、弁体に設けた開口部で生ずる空気の流速が目標通りのものになる。   According to the above means, the inner wall of the internal passage has a wall surface that keeps a predetermined distance constant and a trajectory of rotation of the partition member, so that when the partition member closes the internal passage, the inner wall of the internal passage and the partition member The gap with the outer peripheral edge is not affected by variations in the closing posture angle due to manufacturing errors and assembly errors of the partition member, and does not change. For this reason, when the partition member closes the internal passage, the flow velocity of the air generated in the opening provided in the valve body becomes a target.

上記課題を解決するために、請求項2の発明にて講じた技術的手段は、前記壁面は円弧面から構成されることである。   In order to solve the above-mentioned problem, the technical means taken in the invention of claim 2 is that the wall surface is constituted by an arc surface.

上記手段によれば、壁面は円弧面部から構成されることにより、仕切り部材が内部通路を閉塞する時、内部通路内壁と仕切り部材の外周縁との隙間が該円弧面部内では所定の距離が保たれ、閉塞時、該隙間からの漏れ量を一定に保つことができる。   According to the above means, when the partition member closes the internal passage, the wall surface is constituted by the arc surface portion, so that the gap between the inner passage inner wall and the outer peripheral edge of the partition member maintains a predetermined distance in the arc surface portion. When sagging or closing, the amount of leakage from the gap can be kept constant.

上記課題を解決するために、請求項3の発明にて講じた技術的手段は、前記仕切り部材の外周縁は、前記内部通路の前記円弧面部と略同一の曲率を有する円弧状断面から形成されることである。   In order to solve the above problem, the technical means taken in the invention of claim 3 is that the outer peripheral edge of the partition member is formed from an arc-shaped cross section having substantially the same curvature as the arc surface portion of the internal passage. Is Rukoto.

上記手段によれば、仕切り部材の外周縁は、内部通路の円弧面と略同一の曲率を有する円弧状断面から形成されることにより、仕切り部材が内部通路を閉塞する時、内部通路内壁と仕切り部材の外周縁との隙間が該円弧内では所定の距離が保たれ、閉塞時、該隙間からの漏れ量を一定に保つことができる。   According to the above means, the outer peripheral edge of the partition member is formed from an arc-shaped cross section having substantially the same curvature as the arc surface of the internal passage, so that when the partition member closes the internal passage, The gap with the outer peripheral edge of the member is kept at a predetermined distance within the arc, and the amount of leakage from the gap can be kept constant when closed.

本願発明によれば、内部通路の内壁は、仕切り部材が回動する軌跡と所定の距離を一定に保つ壁面を有することにより、仕切り部材が内部通路を閉塞する時、内部通路内壁と仕切り部材の外周縁との隙間が仕切り部材の製造誤差及び組付け誤差による閉塞姿勢角度のバラツキの影響を受けにくく、隙間から漏れる空気量を一定に保つことができる。   According to the present invention, the inner wall of the internal passage has a wall surface that keeps a predetermined distance constant and a trajectory of rotation of the partition member, so that when the partition member closes the internal passage, the inner wall of the internal passage and the partition member The gap with the outer peripheral edge is not easily affected by variations in the closing posture angle due to manufacturing errors and assembly errors of the partition member, and the amount of air leaking from the gap can be kept constant.

本発明の第1の実施の形態について、図1乃至図5を用いて説明する。図1はエンジンヘッド10に組み付けられる可変吸気装置20の概略構成図を示す。可変吸気装置20は、エンジンヘッド10に設けられたエンジンバルブ11により開閉される燃焼室12に連通される内部通路22を有する吸気管(管状体)21を有する。内部通路22内には、内部通路22を流れる空気(流体)の通過面積Aを変化させる気流制御バルブ(仕切り部材)30が配置されている。可変吸気装置20は、駆動手段50により気流制御バルブ30を回動自在に操作することで通過面積Aを変化させる。可変吸気装置20は、通過面積Aを変化させ、気流制御バルブ30の上流(図1の右方向)から下流(図1の左方向)にある燃焼室12へ流動する吸気の流速を調整する。図2に示すように、気流制御バルブ30は、閉塞時上流側から見た正面形状は図2の上側、下側に直線部を有する略矩形の板状部材から構成されている。なお、気流制御バルブ30の正面形状は、その外周縁31aの回動する軌跡が内部通路22の壁面を構成する内壁22aと所定の距離を一定に保つ形状であれば、その形状は問わない。気流制御バルブ30は、バルブ部31とバルブ部31に一体に構成されてエンジンヘッド10に配置される図示しないカム軸に平行なシャフト部32とから構成されている。シャフト部32は、隣接する気流制御バルブ30のシャフト部32又は気流制御バルブ30を回動させる駆動手段50に連結される。駆動手段50からの回動駆動力は、シャフト部32を介してバルブ部31に伝達され、更に、隣接する気流制御バルブ30に伝達される。シャフト部32は内部通路22の上下略中央に配置されている。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic configuration diagram of a variable intake device 20 assembled to the engine head 10. The variable intake device 20 includes an intake pipe (tubular body) 21 having an internal passage 22 that communicates with a combustion chamber 12 that is opened and closed by an engine valve 11 provided in the engine head 10. An air flow control valve (partition member) 30 that changes the passage area A of air (fluid) flowing through the internal passage 22 is disposed in the internal passage 22. The variable intake device 20 changes the passage area A by operating the airflow control valve 30 so as to be rotatable by the driving means 50. The variable intake device 20 changes the passage area A and adjusts the flow rate of the intake air flowing from the upstream (right direction in FIG. 1) to the combustion chamber 12 downstream (left direction in FIG. 1) of the airflow control valve 30. As shown in FIG. 2, the airflow control valve 30 is configured by a substantially rectangular plate-like member having a straight portion on the upper side and the lower side in FIG. The shape of the airflow control valve 30 is not limited as long as the trajectory of rotation of the outer peripheral edge 31a is a shape that keeps a predetermined distance from the inner wall 22a constituting the wall surface of the internal passage 22 constant. The airflow control valve 30 includes a valve portion 31 and a shaft portion 32 that is integrally formed with the valve portion 31 and that is disposed in the engine head 10 and is parallel to a cam shaft (not shown). The shaft portion 32 is connected to the driving portion 50 that rotates the shaft portion 32 of the adjacent airflow control valve 30 or the airflow control valve 30. The rotational driving force from the driving unit 50 is transmitted to the valve unit 31 via the shaft unit 32 and further transmitted to the adjacent air flow control valve 30. The shaft portion 32 is disposed at a substantially vertical center of the internal passage 22.

図3、4に示すように、内部通路22の内壁22aの下側であって、気流制御バルブ30の上流側に気流制御バルブ30の閉塞姿勢角を中心に約±15°回動する範囲は、気流制御バルブ30が回動する軌跡Tと所定の距離を一定に保つ円弧面部23である。円弧面部23は、図3、図4中の破線で示す気流制御バルブ30の回動軌跡Tと所定の距離を一定に保つ断面形状を有し、気流制御バルブ30のシャフト部32の軸方向に延在する帯状曲面である。これにより、気流制御バルブ30が内部通路22を閉塞する時、内部通路22の内壁22aと気流制御バルブ30の外周縁31aとの隙間Sがバルブ部31の製造誤差及びシャフト部32への組付け誤差等による閉塞姿勢角度のバラツキの影響を受けず所定の距離を一定に保つことができる。内部通路22の内壁22aは、その断面積が気流制御バルブ30の下流側で縮径され、エンジンヘッド10に設けられた図示しない開口部に滑らかに接続される。   As shown in FIGS. 3 and 4, the range of about ± 15 ° rotation about the closing posture angle of the airflow control valve 30 on the upstream side of the airflow control valve 30 below the inner wall 22 a of the internal passage 22 is as follows. A circular arc surface portion 23 that keeps a predetermined distance from the trajectory T about which the airflow control valve 30 rotates. The arcuate surface portion 23 has a cross-sectional shape that keeps a predetermined distance from the rotation trajectory T of the airflow control valve 30 indicated by a broken line in FIGS. 3 and 4 in the axial direction of the shaft portion 32 of the airflow control valve 30. It is a belt-like curved surface that extends. Thereby, when the airflow control valve 30 closes the internal passage 22, the clearance S between the inner wall 22 a of the internal passage 22 and the outer peripheral edge 31 a of the airflow control valve 30 is caused by manufacturing errors of the valve portion 31 and assembly to the shaft portion 32. The predetermined distance can be kept constant without being affected by variations in the closing posture angle due to errors or the like. The inner wall 22 a of the internal passage 22 is reduced in diameter on the downstream side of the airflow control valve 30 and is smoothly connected to an opening (not shown) provided in the engine head 10.

図4に示すように、バルブ部31は、シャフト部32に垂直な断面の外周縁31aが、内部通路22の円弧面部23と略同一の曲率を有する円弧状断面から形成される。これにより、気流制御バルブ30が内部通路22を閉塞する時、内部通路22の内壁22aと気流制御バルブ30の外周縁31aとの隙間Sが所定の距離を一定に保つことができ、閉塞時の隙間Sからの漏れ量を一定に保つことができる。   As shown in FIG. 4, the valve portion 31 has an arcuate cross section in which an outer peripheral edge 31 a having a cross section perpendicular to the shaft portion 32 has substantially the same curvature as the arc surface portion 23 of the internal passage 22. Thereby, when the airflow control valve 30 closes the internal passage 22, the gap S between the inner wall 22a of the internal passage 22 and the outer peripheral edge 31a of the airflow control valve 30 can keep a predetermined distance constant. The amount of leakage from the gap S can be kept constant.

以上のように構成した本実施の形態の吸気装置20の作用を説明する。   The operation of the intake device 20 of the present embodiment configured as described above will be described.

エンジンの運転状況に応じて、例えばアイドル時の吸気流量が少ない場合、排気ガスの改善及び燃費向上のため、燃焼室12内に流入する吸気に渦流が必要となる。この渦流が必要になると、気流制御バルブ30は駆動手段50により回動されて内部通路22を閉塞する。このとき、吸気は、図1又は図3に示すバルブ部31と内部通路22の内壁22aとの間に形成される開口部C、或いは図5に示すバルブ部31の開口部31cを通して燃焼室12へ向かって流れ、燃焼室12内で渦流が発生する。ところで、気流制御バルブ30が内部通路22を閉塞する時、内部通路22の内壁22aと気流制御バルブ30の外周縁31aとの隙間Sから気流制御バルブ30の下流に空気が漏れると、開口部C又は開口部31cを通過する空気量が減少する。このため、吸気装置20は、所望の流速を確保できず、燃焼室12内に渦流を十分に発生させることができない。しかし、気流制御バルブ30が回動する軌跡Tと所定の距離を一定に保つ円弧面部23が内壁面22aに形成されるため、隙間Sは、所定の距離を一定に保つことができ、開口部C或いは開口部31cで生じる流速を一定に保ち、燃焼室12で発生させる渦流の減少を防止することができる。   Depending on the operating conditions of the engine, for example, when the intake flow rate during idling is small, vortex flow is required for the intake air flowing into the combustion chamber 12 in order to improve exhaust gas and improve fuel efficiency. When this vortex is required, the airflow control valve 30 is rotated by the driving means 50 to close the internal passage 22. At this time, the intake air passes through the opening C formed between the valve portion 31 shown in FIG. 1 or FIG. 3 and the inner wall 22a of the internal passage 22 or the opening 31c of the valve portion 31 shown in FIG. And a vortex is generated in the combustion chamber 12. By the way, when the air flow control valve 30 closes the internal passage 22, if air leaks downstream of the air flow control valve 30 from the gap S between the inner wall 22 a of the internal passage 22 and the outer peripheral edge 31 a of the air flow control valve 30, the opening C Alternatively, the amount of air passing through the opening 31c decreases. For this reason, the intake device 20 cannot secure a desired flow velocity, and cannot sufficiently generate a vortex in the combustion chamber 12. However, since the circular arc surface portion 23 that keeps the predetermined distance from the trajectory T where the airflow control valve 30 rotates is formed on the inner wall surface 22a, the gap S can keep the predetermined distance constant, and the opening portion C or the flow velocity generated in the opening 31c can be kept constant, and the reduction of the vortex generated in the combustion chamber 12 can be prevented.

本発明の第1の実施の形態における可変吸気装置の概略構成図である。It is a schematic block diagram of the variable intake device in the 1st Embodiment of this invention. 気流制御バルブ30の閉塞時における図1のB−B断面図である。FIG. 3 is a cross-sectional view taken along line BB in FIG. 1 when the airflow control valve 30 is closed. 気流制御バルブ30の概略拡大図である。2 is a schematic enlarged view of an airflow control valve 30. FIG. 気流制御バルブ30の全閉時における円弧面部23周りの要部拡大図である。FIG. 4 is an enlarged view of a main part around an arc surface portion 23 when the airflow control valve 30 is fully closed. 気流制御バルブ30に開口部31cを設けた場合の閉塞時における図1のB−B断面図である。It is BB sectional drawing of FIG. 1 at the time of obstruction | occlusion at the time of providing the opening part 31c in the airflow control valve 30. FIG.

符号の説明Explanation of symbols

20・・・可変吸気装置
21・・・吸気管(管状体)
22・・・内部通路
22a・・・壁面(内壁)
23・・・円弧面部
30・・・気流制御バルブ(仕切り部材)
31a・・・外周縁
T・・・軌跡
20 ... Variable intake system 21 ... Intake pipe (tubular body)
22 ... Internal passage 22a ... Wall surface (inner wall)
23 ... Arc surface part 30 ... Airflow control valve (partition member)
31a ... outer periphery T ... locus

Claims (3)

管状体の内部通路内に回動可能に配置され、前記内部通路を流れる流体の通過面積を変化させる仕切り部材を有する可変吸気装置において、
前記内部通路の壁面は、前記仕切り部材が回動する軌跡と所定の距離を保つ壁面を有することを特徴とする可変吸気装置。
In the variable intake device having a partition member that is rotatably arranged in the internal passage of the tubular body and changes the passage area of the fluid flowing through the internal passage,
The wall surface of the internal passage has a wall surface that maintains a predetermined distance from a trajectory of the partition member rotating.
前記壁面は円弧面部から構成されることを特徴とする請求項1に記載の可変吸気装置。 The variable intake device according to claim 1, wherein the wall surface is configured by an arcuate surface portion. 前記仕切り部材の外周縁は、前記内部通路の前記円弧面部と略同一の曲率を有する円弧状断面から形成されることを特徴とする請求項2に記載の可変吸気装置。   The variable intake device according to claim 2, wherein an outer peripheral edge of the partition member is formed from an arc-shaped cross section having substantially the same curvature as the arc surface portion of the internal passage.
JP2004071288A 2004-03-12 2004-03-12 Variable intake device Pending JP2005256779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071288A JP2005256779A (en) 2004-03-12 2004-03-12 Variable intake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071288A JP2005256779A (en) 2004-03-12 2004-03-12 Variable intake device

Publications (1)

Publication Number Publication Date
JP2005256779A true JP2005256779A (en) 2005-09-22

Family

ID=35082741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071288A Pending JP2005256779A (en) 2004-03-12 2004-03-12 Variable intake device

Country Status (1)

Country Link
JP (1) JP2005256779A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029104A3 (en) * 2005-09-08 2007-05-03 Toyota Motor Co Ltd Intake port structure for internal combustion engine
JP2008106707A (en) * 2006-10-27 2008-05-08 Denso Corp Intake air heating device for internal combustion engine
JP2009127522A (en) * 2007-11-22 2009-06-11 Aisin Seiki Co Ltd Airflow control apparatus and manufacturing method thereof
JP2010174921A (en) * 2009-01-27 2010-08-12 Toa Valve Engineering Inc Valve for high-temperature fluid
JP2011012617A (en) * 2009-07-03 2011-01-20 Denso Corp Intake control device for internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193452A (en) * 1992-12-25 1994-07-12 Yamaha Motor Co Ltd Intake air control device for engine
JPH0771257A (en) * 1993-08-30 1995-03-14 Yamaha Motor Co Ltd Intake air control device for two-valve engine
JPH07174028A (en) * 1993-12-21 1995-07-11 Nissan Motor Co Ltd Intake device for internal combustion engine
JP2000329016A (en) * 1999-05-17 2000-11-28 Yamaha Motor Co Ltd Intake passage structure for engine
JP2002070566A (en) * 2000-08-24 2002-03-08 Hitachi Ltd Intake system having integral mold type tumble control valve
JP2002309946A (en) * 2001-04-11 2002-10-23 Toyota Motor Corp Intake system for internal combustion engine
JP2003106158A (en) * 2001-09-28 2003-04-09 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193452A (en) * 1992-12-25 1994-07-12 Yamaha Motor Co Ltd Intake air control device for engine
JPH0771257A (en) * 1993-08-30 1995-03-14 Yamaha Motor Co Ltd Intake air control device for two-valve engine
JPH07174028A (en) * 1993-12-21 1995-07-11 Nissan Motor Co Ltd Intake device for internal combustion engine
JP2000329016A (en) * 1999-05-17 2000-11-28 Yamaha Motor Co Ltd Intake passage structure for engine
JP2002070566A (en) * 2000-08-24 2002-03-08 Hitachi Ltd Intake system having integral mold type tumble control valve
JP2002309946A (en) * 2001-04-11 2002-10-23 Toyota Motor Corp Intake system for internal combustion engine
JP2003106158A (en) * 2001-09-28 2003-04-09 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029104A3 (en) * 2005-09-08 2007-05-03 Toyota Motor Co Ltd Intake port structure for internal combustion engine
US7900595B2 (en) 2005-09-08 2011-03-08 Toyota Jidosha Kabushiki Kaisha Intake port structure for internal combustion engine
JP2008106707A (en) * 2006-10-27 2008-05-08 Denso Corp Intake air heating device for internal combustion engine
JP2009127522A (en) * 2007-11-22 2009-06-11 Aisin Seiki Co Ltd Airflow control apparatus and manufacturing method thereof
JP2010174921A (en) * 2009-01-27 2010-08-12 Toa Valve Engineering Inc Valve for high-temperature fluid
JP2011012617A (en) * 2009-07-03 2011-01-20 Denso Corp Intake control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4840445B2 (en) Intake device for internal combustion engine
EP1040291B1 (en) Noise attenuating device for butterfly valves
EP2103793A2 (en) Flow rate control system for turbocharger
JP2010101271A (en) Variable displacement turbine
US6062205A (en) Valve assemblies
EP1619371B1 (en) Throttle valve
JP2005256779A (en) Variable intake device
EP1323962B1 (en) Throttle valve and throttle
JP4415447B2 (en) Variable capacity turbocharger
JP2010116796A (en) Intake air-flow control device for internal combustion engine
JP2007040488A (en) Flow control valve
JP4971242B2 (en) Intake device for internal combustion engine
JP2011106406A (en) Intake device for internal combustion engine
JP4565344B2 (en) Intake control device for internal combustion engine
JP2012102623A (en) Variable intake system
US20190360432A1 (en) Flow control valve for charge forming device
JP2004204784A (en) Throttle valve device
EP2388457B1 (en) Throttle valve for an internal combustion engine with eccentric shutter
JP2006299934A (en) Exhaust gas recirculating device and throttle valve device of diesel engine having exhaust gas recirculating device
JP7261291B2 (en) Valve assembly and method
JP2013096364A (en) Gas flow rate control valve for internal combustion engine
KR20110062589A (en) Intake system of engine
JP2005140051A (en) Variable intake device
JP2008025357A (en) Fuel supply device for gas engine
JP2005140050A (en) Variable intake device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330