JPH06193452A - Intake air control device for engine - Google Patents

Intake air control device for engine

Info

Publication number
JPH06193452A
JPH06193452A JP4346033A JP34603392A JPH06193452A JP H06193452 A JPH06193452 A JP H06193452A JP 4346033 A JP4346033 A JP 4346033A JP 34603392 A JP34603392 A JP 34603392A JP H06193452 A JPH06193452 A JP H06193452A
Authority
JP
Japan
Prior art keywords
intake
intake air
control valve
valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4346033A
Other languages
Japanese (ja)
Inventor
Mitsuo Suzuki
三男 鈴木
Yoshiyuki Higaki
祥之 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP4346033A priority Critical patent/JPH06193452A/en
Publication of JPH06193452A publication Critical patent/JPH06193452A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To provide an engine intake air control divice which can prevent turbulance of intake air flow and generate tumble with certainty. CONSTITUTION:An intake air control device comprises such an intake air control valve 21 as allowing intake air to flow while deviating it to the side of the ceiling wall 17f of an intake passage 17 by throttling the bottom wall 17d of the intake air passage 17, and such a streamlining member 20 as streamlining the intake air to the ceiling wall side flow and the bottom wall side flow at a downstream side part from the intake control valve 21 of the intake passage 17. A control means for setting minimum opening of the intake air control valve 21 in such a way that the higher an engine speed is, the larger it is, under a small throttle valve opening condition. An intake air amount flowing into the bottom wall side portion on the downstream side of the intake air control valve is increased follwing the increase in an intake flow rate, so that turbulance of the intake air caused by a negative pressure is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸気通路内に配設され
た吸気制御弁により吸気通路面積を可変制御する場合
の、吸気流の乱れを防止してタンブルを確実に発生でき
るようにしたエンジンの吸気制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention prevents turbulence of the intake air flow and reliably generates tumble when the intake air passage area is variably controlled by an intake air control valve arranged in the intake air passage. The present invention relates to an intake control device for an engine.

【0002】[0002]

【従来の技術】エンジンの燃費率の向上を図るために、
A/F(空燃比)を高く設定した希薄空燃比型のエンジ
ンが実用に供されている。このようなエンジンにおいて
燃費率をさらに向上させるためには、吸気量の少ない運
転領域でも吸気の流速を高めることにより燃焼室内に例
えばタンブル(縦渦)を発生させ、希薄燃焼を安定化さ
せることが効果的であることが知られている。このよう
なタンブルを発生できる吸気制御装置として、本件出願
人は、先に吸気通路の底壁内に吸気制御弁を回動自在に
配設するとともに、該吸気制御弁より下流側部分にて吸
気の流れを天壁側と底壁側とに整流する整流部材を配設
し、低吸入空気量時に吸気通路の底壁側部分を絞り込む
ことにより吸入空気を天壁側に偏らせて流し、もって吸
入空気を燃焼室中心側から縦方向に流入させるようにし
た吸気制御装置を提案している(例えば特願平3−11
1182号参照)。
2. Description of the Related Art In order to improve the fuel efficiency of an engine,
A lean air-fuel ratio engine with a high A / F (air-fuel ratio) has been put into practical use. In order to further improve the fuel consumption rate in such an engine, it is possible to stabilize the lean combustion by generating, for example, tumble (longitudinal vortex) in the combustion chamber by increasing the flow velocity of the intake air even in an operating region where the intake air amount is small. It is known to be effective. As an intake control device capable of generating such a tumble, the applicant of the present application first arranged the intake control valve rotatably in the bottom wall of the intake passage, and intake air at a portion downstream of the intake control valve. A rectifying member is arranged to rectify the flow of the intake air to the top wall side and the bottom wall side, and when the intake air amount is low, the intake air is diverted to the top wall side by narrowing down the bottom wall side part of the intake passage. An intake control device has been proposed in which intake air is allowed to flow in vertically from the center of the combustion chamber (for example, Japanese Patent Application No. 3-11.
1182).

【0003】[0003]

【発明が解決しようとする課題】ところで上記提案に係
る吸気制御装置は、上述のように低吸入空気量時には吸
気制御弁を閉じることにより吸気通路面積を絞り込んで
吸気流速を上昇させることによってタンブルを発生させ
るようにしている。ところで低スロットル開度の場合で
もエンジン回転数が高くなると吸気間隔が短くなり、そ
れだけ吸気慣性による吸入空気量が増加する。従って上
記吸気制御弁の開度制御のいかんによってはこの吸気制
御弁が吸気抵抗となって吸入吸気量が減少するおそれが
ある。
By the way, in the intake control device according to the above-mentioned proposal, when the intake air amount is low as described above, the intake control valve is closed to narrow the intake passage area and increase the intake flow velocity, thereby reducing the tumble. I am trying to raise it. By the way, even when the throttle opening is low, the intake interval becomes shorter as the engine speed increases, and the intake air amount due to the intake inertia increases accordingly. Therefore, depending on the control of the opening degree of the intake control valve, the intake control valve may become an intake resistance and the intake intake amount may decrease.

【0004】また、上記提案装置では、吸気制御弁を絞
り込んで流速を上昇させ、かつ整流部材で吸気流を整流
することによりタンブルを発生させるように構成されて
いる。ところが、上記吸気制御弁によって吸気通路を絞
り込むと、吸気制御弁より下流側の整流部材と底壁とで
囲まれた空間が負圧になり、ここに吸気流が整流部材の
下流側から上記空間に巻き込まれて乱れが生じ易く、そ
の結果期待どおりのタンブルが得られない場合があるこ
とが判明した。
Further, in the above-mentioned proposed device, tumble is generated by narrowing the intake control valve to increase the flow velocity and rectifying the intake flow by the rectifying member. However, when the intake passage is narrowed by the intake control valve, the space surrounded by the rectification member and the bottom wall on the downstream side of the intake control valve becomes negative pressure, and the intake flow is introduced from the downstream side of the rectification member to the space. It was found that the tumbles were apt to be caught in the and the tumbles could not be obtained as expected.

【0005】本発明は、上記実情に鑑みてなされたもの
で、吸気通路を絞り込んだときの吸気抵抗の増大、吸気
流の乱れを防止してタンブルを確実に発生できるエンジ
ンの吸気制御装置を提供することを目的としている。
The present invention has been made in view of the above circumstances, and provides an intake control device for an engine capable of reliably generating tumble by preventing an increase in intake resistance when the intake passage is narrowed and a disturbance in the intake flow. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、吸気
通路の底壁内に、該底壁側部分を絞り込むことにより吸
入空気を吸気通路の天壁側に偏らせて流す吸気制御弁を
回動可能に配設し、低スロットル弁開度時においてエン
ジン回転数が高いほど上記吸気制御弁の最小開度を大き
く制御する開度制御手段を設けたことを特徴とするエン
ジンの吸気制御装置である。
According to a first aspect of the present invention, an intake control valve that allows intake air to flow toward a top wall of an intake passage by narrowing the bottom wall side portion in the bottom wall of the intake passage. The intake control of the engine is characterized in that the opening control means is provided for rotatably arranging and controlling the minimum opening of the intake control valve to increase as the engine speed increases at low throttle valve opening. It is a device.

【0007】また請求項2の発明は、上記吸気通路の吸
気制御弁より下流側部分にて吸気を天壁側流れと底壁側
流れとに整流するための整流部材を配設し、低スロット
ル開度時において、高エンジン回転数ほど上記整流部材
と吸気制御弁との隙間が大きくなるように吸気制御弁の
最小開度を大きく制御することを特徴としている。
According to a second aspect of the present invention, a rectifying member for rectifying the intake air into a flow on the top wall side and a flow on the bottom wall side is provided in a portion of the intake passage downstream of the intake control valve, and a low throttle is provided. At the time of opening, the minimum opening of the intake control valve is controlled to be large so that the clearance between the rectifying member and the intake control valve becomes larger as the engine speed increases.

【0008】[0008]

【作用】本発明に係る吸気制御装置によれば、吸気制御
弁は、低スロットル弁開度時においては閉側に回動する
のであるが、この場合にエンジン回転数が高いほど吸気
制御弁の最小開度が大きく制御される。従ってエンジン
回転数の増加により吸気慣性が大きくなり、吸気量が増
加した場合において吸気制御弁が吸入抵抗を増加させる
のを回避でき、その結果、十分な吸気量が得られる。
According to the intake control device of the present invention, the intake control valve rotates to the closing side when the throttle valve opening is low. In this case, the higher the engine speed, the more the intake control valve operates. The minimum opening is largely controlled. Therefore, it is possible to avoid the intake control valve from increasing the intake resistance when the intake inertia increases due to the increase in the engine speed and the intake amount increases, and as a result, a sufficient intake amount is obtained.

【0009】また請求項2の発明によれば、エンジン回
転数が低く吸入空気量が少ないほど吸気制御弁と整流部
材との隙間が小さくなり、エンジン回転数が高くなって
吸入空気量が多くなるほど上記隙間が大きくなるように
開閉制御される。これにより、低吸入空気量時は、略全
量の吸気が吸気通路の、整流部材より天壁側部分を流れ
ることから吸気流速をそれほど下げることはなく、また
吸入空気量が増加するにつれて上記隙間から流入した吸
気流により吸気制御弁下流の底壁側部分に生じる負圧を
抑制でき、吸気流の乱れを防止できる。その結果、吸入
空気量が変化しても吸気の乱流を防止しながらタンブル
を確実に発生させることができ、燃費の改善を図ること
ができる。
According to the second aspect of the present invention, the lower the engine speed and the intake air amount, the smaller the gap between the intake control valve and the rectifying member, and the higher the engine speed and the intake air amount. Opening / closing is controlled so that the above-mentioned gap becomes large. As a result, when the intake air amount is low, almost all of the intake air flows through the portion of the intake passage that is closer to the ceiling wall than the rectifying member, so the intake flow velocity is not reduced so much, and as the intake air amount increases, The negative pressure generated in the bottom wall side portion downstream of the intake control valve by the inflow of the intake air can be suppressed, and the turbulence of the intake air can be prevented. As a result, tumble can be reliably generated while preventing turbulence of intake air even if the intake air amount changes, and fuel consumption can be improved.

【0010】[0010]

【実施例】以下、本発明の実施例を図について説明す
る。図1ないし図4は本発明の一実施例によるエンジン
の吸気制御装置を説明するための図であり、図1ないし
図3は本実施例装置の構造を説明するための図、図4は
エンジン回転数−スロトッル弁開度−吸気制御弁開度の
関係を示す三次元マップ図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 are diagrams for explaining an engine intake control device according to an embodiment of the present invention, FIGS. 1 to 3 are diagrams for explaining the structure of the present embodiment device, and FIG. 4 is an engine. It is a three-dimensional map figure which shows the relationship of rotation speed-slottle valve opening-intake control valve opening.

【0011】図1において、1は水冷式4サイクル4バ
ルブエンジンであり、これはクランクケース2上にシリ
ンダブロック3,シリンダヘッド4を積層してヘッドボ
ルトで締結し、該シリンダヘッド4のヘッドガバー側合
面4iにヘッドガバー5を装着した構造のものである。
上記シリンダブロック3に形成されたシリンダボア3a
内にはピストン7が摺動自在に挿入配置されており、該
ピストン7はコンロッド8でクランク軸(図示せず)に
連結されている。
In FIG. 1, reference numeral 1 denotes a water-cooled four-cycle four-valve engine, in which a cylinder block 3 and a cylinder head 4 are stacked on a crankcase 2 and fastened with head bolts, and the cylinder head 4 has a head cover side. The structure is such that the head cover 5 is attached to the mating surface 4i.
Cylinder bore 3a formed in the cylinder block 3
A piston 7 is slidably inserted therein, and the piston 7 is connected to a crankshaft (not shown) by a connecting rod 8.

【0012】上記シリンダヘッド4のシリンダブロック
側合面4aには燃焼室を構成する燃焼凹部4bが凹設さ
れている。この燃焼凹部4bには吸気弁開口4c,排気
弁開口4dがそれぞれ2つずつ開口している。この各排
気弁開口4dには排気弁10のバルブヘッド10aが、
各吸気弁開口4cには吸気弁11のバルブヘッド11a
がそれぞれ開閉可能に配設されている。この排気,吸気
弁10,11のバルブステム10b,11bはカム軸方
向に見て所定の挟み角をなすように斜め上方に延びてお
り、その上端には排気,吸気リフタ12,13がそれぞ
れ装着されている。また該各リフタ12,13上には、
これを押圧駆動する排気,吸気カム軸14,15が気筒
軸と直角方向に向けて、かつ互いに平行に配設されてい
る。なお、12a,13aは各弁を閉方向に付勢するバ
ルブスプリング、29は点火プラグである。
On the cylinder block side mating surface 4a of the cylinder head 4, a combustion concave portion 4b forming a combustion chamber is provided. The combustion recess 4b has two intake valve openings 4c and two exhaust valve openings 4d. At each exhaust valve opening 4d, the valve head 10a of the exhaust valve 10 is
The valve head 11a of the intake valve 11 is provided in each intake valve opening 4c.
Are arranged so that they can be opened and closed, respectively. The valve stems 10b and 11b of the exhaust and intake valves 10 and 11 extend obliquely upward so as to form a predetermined included angle when viewed in the cam axis direction, and exhaust and intake lifters 12 and 13 are attached to the upper ends thereof, respectively. Has been done. Further, on each of the lifters 12 and 13,
Exhaust and intake cam shafts 14 and 15 that press and drive the cylinders are arranged in a direction perpendicular to the cylinder axis and parallel to each other. In addition, 12a and 13a are valve springs for urging each valve in the closing direction, and 29 is an ignition plug.

【0013】上記2つの排気弁開口4dは二股状の排気
通路16でシリンダヘッド4の前壁4f側に導出されて
おり、該排気通路16の壁面開口16aには排気管(図
示せず)が接続されている。また上記各吸気弁開口4
c,4c´はそれぞれ吸気通路17,17´によりシリ
ンダヘッド4の後壁4g側に導出されている。この各吸
気通路17,17´は気筒軸方向に見ると(図3参照)
互いに平行になっており、またカム軸方向に見ると(図
1参照)上記吸気弁開口4cからシリンダ後壁4g側に
円弧状に屈曲した後、略直線状に延びている。そしてこ
の各吸気通路17,17´の各壁面開口17aには共通
のキャブジョイント18が接続されており、該ジョイン
ト18内で1つの通路に合流している。このキャブジョ
イント18には1つの気化器19が接続されている。該
気化器19はスロトッル操作によって開閉するバタフラ
イ式スロットル弁19aと、エンジンの吸気負圧で自動
的に開閉するピストン弁19bとを有する自動可変ベン
チュリ式のものである。
The two exhaust valve openings 4d are led out to the front wall 4f side of the cylinder head 4 by a bifurcated exhaust passage 16, and an exhaust pipe (not shown) is provided in a wall opening 16a of the exhaust passage 16. It is connected. In addition, each intake valve opening 4
c and 4c 'are led out to the rear wall 4g side of the cylinder head 4 by intake passages 17 and 17', respectively. The intake passages 17 and 17 'are viewed in the cylinder axis direction (see FIG. 3).
They are parallel to each other, and when viewed in the cam axis direction (see FIG. 1), they are bent in an arc shape from the intake valve opening 4c to the cylinder rear wall 4g side and then extend in a substantially straight line shape. A common cab joint 18 is connected to the wall surface openings 17a of the intake passages 17 and 17 ', and joins into one passage in the joint 18. One carburetor 19 is connected to the cab joint 18. The carburetor 19 is of an automatic variable venturi type having a butterfly type throttle valve 19a which is opened and closed by a throttle operation and a piston valve 19b which is automatically opened and closed by an intake negative pressure of the engine.

【0014】上記吸気通路17の吸気弁開口近傍の屈曲
部17bには、弁穴17cがカム軸方向に貫通形成され
ている。この弁穴17cは、その軸線が該吸気通路17
の底壁17dの表面付近に位置し、吸気通路17内部分
は略半円状に形成されており、隣接する2つの気筒用吸
気通路を連通している。
A valve hole 17c is formed in the bent portion 17b of the intake passage 17 near the opening of the intake valve in the cam shaft direction. The axis of the valve hole 17c is the intake passage 17
Is located in the vicinity of the surface of the bottom wall 17d, the inner portion of the intake passage 17 is formed in a substantially semicircular shape, and communicates two adjacent intake passages for cylinders.

【0015】上記弁穴17c内には、各吸気通路17,
17´の通路断面積を変化させるための吸気制御弁21
が回動自在に挿入配置されている。この吸気制御弁21
は、丸棒の一部を吸気通路17の下部内面と連続面をな
すよう切り欠くことにより各吸気通路17,17´を開
閉する弁部21aを形成してなるものであり、この弁部
21aが弁穴17c内に没入して吸気通路内面と面一と
なる全開位置と、上記弁部21aが底壁17d面から略
垂直に起立して吸気通路17を50〜70%、好ましく
は67%程度絞り込む全閉位置との間で回動可能となっ
ている。この場合、上記弁部21aの外周面が上流側に
位置するように回動する。
In the valve hole 17c, each intake passage 17,
Intake control valve 21 for changing the passage cross-sectional area of 17 '
Is rotatably inserted and arranged. This intake control valve 21
Is formed by notching a part of the round bar so as to form a continuous surface with the lower inner surface of the intake passage 17, thereby forming a valve portion 21a for opening and closing the intake passages 17 and 17 '. Is sunk into the valve hole 17c and is flush with the inner surface of the intake passage, and the valve portion 21a stands substantially vertically from the surface of the bottom wall 17d so that the intake passage 17 is 50 to 70%, preferably 67%. It can be rotated between the fully closed position and the closed position. In this case, the valve portion 21a is rotated so that the outer peripheral surface thereof is located on the upstream side.

【0016】また上記キャブジョイント18内には、切
換弁26が配設されている。この切換弁26は、該ジョ
イント18を上記吸気制御弁21と平行に貫通するよう
に配設された弁軸26aと、該弁軸26aに固着され上
記一方の吸気通路17´を開閉する弁板26bとから構
成されている。
A switching valve 26 is arranged in the cab joint 18. The switching valve 26 includes a valve shaft 26a arranged to penetrate the joint 18 in parallel with the intake control valve 21, and a valve plate fixed to the valve shaft 26a for opening and closing the one intake passage 17 '. 26b.

【0017】上記切換弁26の弁板26bが設けられて
いない吸気通路17側の、吸気制御弁21より下流側に
は整流部材20が配設されている。この整流部材20
は、舌片状の整流板20aの下流端部に環状の保持リン
グ20bを接続固定し、この保持リング20bの外周面
に凸状の係止部20cを突設して構成されており、この
係止部20cは上記吸気弁開口4cに圧入されたバルブ
シート11dの内周面の凹部に嵌合している。
A rectifying member 20 is arranged downstream of the intake control valve 21 on the side of the intake passage 17 where the valve plate 26b of the switching valve 26 is not provided. This straightening member 20
Is configured by connecting and fixing an annular holding ring 20b to the downstream end of a tongue-shaped current plate 20a, and projecting a convex locking portion 20c on the outer peripheral surface of the holding ring 20b. The locking portion 20c is fitted in a concave portion of the inner peripheral surface of the valve seat 11d press-fitted into the intake valve opening 4c.

【0018】上記整流板20aは上記吸気通路17の略
中心線に沿って延び、かつ該吸気通路17と略同じ幅を
有している。また上記整流板20aの下流端部20eは
上記バルブシート11dの圧入端より燃焼室側に位置し
ており、かつ該下流端部20e部分はバルブステム11
bより気筒中心の点火プラグ29側に位置している。さ
らに上記整流板20aの上部には上記吸気弁11のバル
ブステム11bが挿通する挿通孔20dが形成されてい
る。
The current plate 20a extends substantially along the center line of the intake passage 17 and has the same width as the intake passage 17. The downstream end 20e of the straightening vane 20a is located closer to the combustion chamber than the press-fitting end of the valve seat 11d, and the downstream end 20e is the valve stem 11.
It is located closer to the spark plug 29 than the center of the cylinder. Further, an insertion hole 20d through which the valve stem 11b of the intake valve 11 is inserted is formed in the upper part of the straightening plate 20a.

【0019】また上記整流板20aの上流端部20fは
吸気制御弁21の全閉位置の弁部21aの上端部に当接
し、これと連続面をなすようになっており、これにより
吸気は上記吸気制御弁21の下流側においては天壁側部
分C側に偏って流れ、かつ整流板20aで整流される。
The upstream end 20f of the straightening plate 20a abuts on the upper end of the valve portion 21a of the intake control valve 21 in the fully closed position, and forms a continuous surface with the upper end portion of the valve portion 21a. On the downstream side of the intake control valve 21, the flow is biased toward the top wall side portion C side and is rectified by the rectifying plate 20a.

【0020】上記吸気制御弁21の外方突出部は制御モ
ータ30にプーリ,ケーブルを介して連結されている。
また上記切換弁26の外方突出部は切換モータ31にプ
ーリ,ケーブルを介して連結されている。上記制御モー
タ30,切換モータ31はECU23によってその回転
が制御される。
The outward protruding portion of the intake control valve 21 is connected to the control motor 30 via a pulley and a cable.
The outward protruding portion of the switching valve 26 is connected to the switching motor 31 via a pulley and a cable. The rotations of the control motor 30 and the switching motor 31 are controlled by the ECU 23.

【0021】上記ECU23は、スロットル開度センサ
24によるスロットル弁19aの開度信号a,及び回転
センサ25によるエンジン回転数信号bが入力され、上
記吸気制御弁21を、図4に示すマップに沿って制御す
るための制御信号Aを上記制御モータ30に出力し、ま
た上記切換弁26を吸入空気量が所定以下の運転域では
閉とし、上記所定量を越える運転域では開とする制御信
号Bを上記切換モータ31に出力する。
The ECU 23 receives the opening signal a of the throttle valve 19a from the throttle opening sensor 24 and the engine speed signal b from the rotation sensor 25, and controls the intake control valve 21 according to the map shown in FIG. A control signal B for outputting the control signal A to the control motor 30 and for closing the switching valve 26 in an operating range where the intake air amount is below a predetermined amount and opening it in an operating range where the intake air amount exceeds the predetermined amount. Is output to the switching motor 31.

【0022】そして上記ECU23は吸気制御弁21の
開度制御手段を構成している。この開度制御手段は、上
記回転センサ25からのエンジン回転数信号bが高いほ
ど吸気制御弁21の最小開度を大きくするように設定さ
れている。これにより低スロットル弁開度時において
は、整流板20aの上流端部20fと吸気制御弁21の
弁部21aとの隙間Aがエンジン回転数が高いほど大き
くなるよう吸気制御弁21の開度が制御される。
The ECU 23 constitutes an opening control means for the intake control valve 21. The opening control means is set to increase the minimum opening of the intake control valve 21 as the engine speed signal b from the rotation sensor 25 increases. As a result, when the throttle valve opening is low, the opening A of the intake control valve 21 is increased so that the gap A between the upstream end 20f of the straightening plate 20a and the valve 21a of the intake control valve 21 becomes larger as the engine speed increases. Controlled.

【0023】次に本実施例装置の作用効果について説明
する。本実施例装置では、ECU23からの制御信号A
によって制御モータ30が吸気制御弁21を開閉制御
し、またECU23からの制御信号Bによって切換モー
タ31が切換弁26を開閉制御する。
Next, the function and effect of the apparatus of this embodiment will be described. In this embodiment, the control signal A from the ECU 23
The control motor 30 controls the opening / closing of the intake control valve 21, and the control signal B from the ECU 23 controls the switching motor 31 to open / close the switching valve 26.

【0024】上記切換弁26は上記ECU23によって
開閉制御され、一方の吸気通路17´を、要求吸気量の
少ない低速・低負荷運転域,及び要求吸気量が中程度の
中速・中負荷運転域では、全閉する。これにより吸気は
他方の吸気通路17のみに偏って流れる。また要求吸気
量の多い高速・高負荷運転域では、切換弁26は吸気通
路17´を全開とする。これにより吸気は吸気通路1
7,17´の両方を通って流れる。
The switching valve 26 is controlled to be opened and closed by the ECU 23, and one of the intake passages 17 'is operated in a low speed / low load operation range in which the required intake air amount is small and in a medium speed / medium load operation region in which the required intake air amount is medium. Then, close it completely. As a result, intake air flows only in the other intake passage 17. Further, in the high speed / high load operation range where the required intake air amount is large, the switching valve 26 fully opens the intake passage 17 '. As a result, intake air is in the intake passage 1
It flows through both 7, 17 '.

【0025】また上記ECU23は、エンジン回転数信
号b及びスロットル開度信号aを読み込み、内蔵する図
4の三次元マップから吸気制御弁開度を演算し、該開度
に応じて制御モータ30を駆動する。即ち、エンジンが
アイドル回転のときは、スロットル弁開度の如何に係わ
らず吸気制御弁21は図2に示すように全閉位置に回動
しており、該吸気制御弁21の弁部21aが整流板20
aの上流端部20fに当接している。これにより吸気は
他方側の吸気通路17に集中して、しかも該通路17の
天壁側部分Cに偏って流れ、吸気量が最も少ない場合で
もタンブルが確実に発生する。この場合、図2に示すよ
うに、吸気流速は小さいので底壁側部分Dの負圧による
渦状の乱流Eはほとんど生じることはない。
Further, the ECU 23 reads the engine speed signal b and the throttle opening signal a, calculates the intake control valve opening from the built-in three-dimensional map of FIG. 4, and controls the control motor 30 according to the opening. To drive. That is, when the engine is idling, the intake control valve 21 is rotated to the fully closed position as shown in FIG. 2 regardless of the throttle valve opening, and the valve portion 21a of the intake control valve 21 is Current plate 20
It is in contact with the upstream end 20f of a. As a result, the intake air is concentrated in the intake passage 17 on the other side and is biased toward the top wall side portion C of the passage 17 to reliably generate tumble even when the intake amount is the smallest. In this case, as shown in FIG. 2, since the intake flow velocity is small, the eddy turbulent flow E due to the negative pressure in the bottom wall side portion D hardly occurs.

【0026】またスロットル弁開度がa1〜a4(例え
ば10度以下)の場合において、エンジン回転数がb1
〜b4に上昇すると、吸気制御弁21はc1〜c4に段
階的に開き、これにより吸気制御弁21の弁部21aと
整流板20a上流端部20fとの隙間Aが段階的に大き
くなる。そのため吸気はそのほとんどが天壁側部分Cに
偏って流れるとともに、その一部が上記隙間から底壁側
部分Dに流入することとなる。そして上記各エンジン回
転数において、スロトッル弁開度がさらに増大すると吸
気制御弁21は全開位置に回動する。
When the throttle valve opening is a1 to a4 (for example, 10 degrees or less), the engine speed is b1.
When rising to ~ b4, the intake control valve 21 gradually opens to c1 to c4, whereby the gap A between the valve portion 21a of the intake control valve 21 and the upstream end 20f of the flow straightening plate 20a gradually increases. Therefore, most of the intake air flows in a biased manner to the top wall side portion C, and a part of the intake air flows into the bottom wall side portion D from the gap. Then, at each of the engine speeds, when the throttle valve opening further increases, the intake control valve 21 rotates to the fully open position.

【0027】ここでエンジン回転数が低い状態では上記
隙間Aが狭いことから吸気はその略全量が天壁側部分C
を流れ、それだけ流速が速くなり、タンブルを発生し易
い。またこの場合、流量が少ないことから上述の負圧は
発生しにくく、従って流れが乱れることもない。一方、
エンジン回転数が高くなると、吸気制御弁21の最小開
度が大きくなって上記隙間Aが広くなり、それだけ底壁
側部分Dに流れる吸気量が増大して負圧の発生を抑制
し、タンブルが確実に発生する。またこの場合、吸気制
御弁21の最小開度が大きい分だけ、吸気制御弁21に
よる吸気抵抗を軽減できる。
Since the gap A is narrow when the engine speed is low, almost all of the intake air is in the top wall side portion C.
Flow, the flow velocity becomes faster, and tumble is likely to occur. Further, in this case, since the flow rate is small, the above-mentioned negative pressure is unlikely to be generated, and therefore the flow is not disturbed. on the other hand,
As the engine speed increases, the minimum opening of the intake control valve 21 increases and the gap A widens, and the amount of intake air flowing to the bottom wall side portion D increases accordingly, which suppresses the generation of negative pressure and reduces the tumble. It certainly occurs. Further, in this case, the intake resistance by the intake control valve 21 can be reduced as much as the minimum opening degree of the intake control valve 21 is large.

【0028】ここで、図4に一点鎖線で示すように、吸
気制御弁21は最小開度から全開に達するまで徐々に大
きくなるように直線状,あるいは円弧状の制御曲線F
1,F2に沿って制御してもよい。また、吸気制御弁2
1の最小開度はエンジン回転数に応じて徐々に連続的に
大きくなるように曲線F3に沿って制御してもよい。さ
らにまた、エンジンパワーをそれほど必要としない常用
領域では、直線F4で示すように吸気制御弁21の最小
開度をc2からc1に下げてもよい。このようにした場
合は、燃焼性の向上を図ることができ、また吸気騒音を
低減できる。
Here, as indicated by the alternate long and short dash line in FIG. 4, the intake control valve 21 has a linear or arcuate control curve F that gradually increases from the minimum opening to full opening.
You may control along 1 and F2. In addition, the intake control valve 2
The minimum opening degree of 1 may be controlled along the curve F3 so as to gradually and continuously increase according to the engine speed. Furthermore, in the normal region where the engine power is not so required, the minimum opening degree of the intake control valve 21 may be lowered from c2 to c1 as indicated by the straight line F4. In this case, combustibility can be improved and intake noise can be reduced.

【0029】このように本実施例によれば、吸気制御弁
21の最小開度をアイドル回転のときは全閉とし、エン
ジン回転数が高いほど大きく設定したので、吸入空気量
の増加に応じて整流板と吸気制御弁との隙間Aが広くな
り、ここから吸気の一部が底壁側部分Dに流入すること
となり、これにより吸気の乱流Eを防止しながらタンブ
ルを確実に発生させることができ、燃焼性をさらに向上
でき、燃費の改善を図ることができる。
As described above, according to this embodiment, the minimum opening degree of the intake control valve 21 is fully closed at the time of idle rotation, and is set larger as the engine speed is higher. The gap A between the straightening vane and the intake control valve becomes wider, and a part of the intake air flows into the bottom wall side portion D from here, thereby reliably generating the tumble while preventing the turbulent flow E of the intake air. Therefore, the combustibility can be further improved, and the fuel consumption can be improved.

【0030】なお、上記実施例では、全閉時における吸
気制御弁21の弁部21aを整流板20aの上流端部2
0fに当接させた場合を例にとって説明したが、本発明
では、図5に示すように、全閉時における弁部21aと
整流板20aとの間に予め隙間tを設けてもよい。この
ようにした場合も吸気制御弁21の最低開度をエンジン
回転数に応じて設定することにより、上記実施例と略同
様の効果が得られる。
In the above embodiment, the valve portion 21a of the intake control valve 21 when the valve is fully closed is replaced by the upstream end portion 2 of the straightening plate 20a.
Although the case of abutting against 0f has been described as an example, in the present invention, as shown in FIG. 5, a gap t may be provided in advance between the valve portion 21a and the current plate 20a when fully closed. Also in this case, by setting the minimum opening degree of the intake control valve 21 in accordance with the engine speed, substantially the same effect as the above embodiment can be obtained.

【0031】また本発明は、整流部材を設けない場合に
も適用可能であり、この場合は、低スロットル開度、高
エンジン回転数時における吸気抵抗の増大を回避でき
る。
The present invention can also be applied to the case where no rectifying member is provided. In this case, it is possible to avoid an increase in intake resistance at low throttle opening and high engine speed.

【0032】[0032]

【発明の効果】以上のように本発明に係るエンジンの吸
気制御装置によれば、低スロットル弁開度において吸気
制御弁の最小開度をエンジンの回転数が高いほど大きく
し、またこのようにすることにより、吸気制御弁と整流
部材との隙間から底壁側に流入する吸気量を制御するよ
うにしたので、吸入抵抗の増大を回避でき、また吸気の
乱れを防止しでき、タンブルを確実に発生させることが
できる効果がある。
As described above, according to the intake control system for an engine of the present invention, the minimum opening of the intake control valve is increased as the engine speed becomes higher at a low throttle valve opening. By doing so, the amount of intake air that flows into the bottom wall side through the gap between the intake control valve and the rectifying member is controlled, so it is possible to avoid an increase in intake resistance, prevent turbulence of intake air, and ensure tumble. There is an effect that can be generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による吸気制御装置を備えた
エンジンの断面側面部分図である。
FIG. 1 is a partial sectional side view of an engine including an intake control device according to an embodiment of the present invention.

【図2】上記実施例の吸気制御弁,整流部材部分の拡大
図である。
FIG. 2 is an enlarged view of an intake control valve and a rectifying member portion of the above embodiment.

【図3】上記実施例の吸気通路の断面平面図である。FIG. 3 is a cross-sectional plan view of the intake passage of the above embodiment.

【図4】上記実施例におけるエンジン回転数−スロット
ル弁開度−吸気制御弁開度の関係を示すマップ図であ
る。
FIG. 4 is a map diagram showing a relationship of engine speed-throttle valve opening-intake control valve opening in the above embodiment.

【図5】上記実施例の変形例の吸気制御弁,整流部材部
分の拡大図である。
FIG. 5 is an enlarged view of an intake control valve and a rectifying member portion of a modified example of the above embodiment.

【符号の説明】[Explanation of symbols]

1 エンジン 17 吸気通路 17d 底壁 17f 天壁 20 整流部材 21 吸気制御弁 ECU 制御弁開度制御手段 1 engine 17 intake passage 17d bottom wall 17f ceiling wall 20 rectifying member 21 intake control valve ECU control valve opening degree control means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 吸気通路の底壁に回動可能に配設され、
該吸気通路の底壁側部分を絞り込むことにより吸入空気
を吸気通路の天壁側に偏らせて流す吸気制御弁と、低ス
ロットル弁開度時においてエンジン回転数が高いほど上
記吸気制御弁の最小開度を大きく制御する開度制御手段
を設けたことを特徴とするエンジンの吸気制御装置。
1. A rotatably disposed on the bottom wall of the intake passage,
An intake control valve that narrows the bottom wall side portion of the intake passage to flow the intake air toward the top wall side of the intake passage, and the minimum of the intake control valve as the engine speed increases at low throttle valve opening. An intake control device for an engine, comprising an opening control means for largely controlling the opening.
【請求項2】 請求項1において、上記吸気通路の吸気
制御弁より下流側に吸気を天壁側流れと底壁側流れとに
整流する整流部材を配設し、上記開度制御手段が、低ス
ロットル弁開度時においてエンジン回転数が高いほど上
記整流部材と上記吸気制御弁との隙間が大きくなるよう
に上記吸気制御弁の最小開度を大きく制御することを特
徴とするエンジンの吸気制御装置。
2. A rectifying member for rectifying the intake air into a flow on the top wall side and a flow on the bottom wall side is arranged downstream of the intake control valve in the intake passage, and the opening control means comprises: An intake control of an engine, wherein the minimum opening of the intake control valve is controlled to be large so that the clearance between the rectifying member and the intake control valve increases as the engine speed increases at a low throttle valve opening. apparatus.
JP4346033A 1992-12-25 1992-12-25 Intake air control device for engine Withdrawn JPH06193452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4346033A JPH06193452A (en) 1992-12-25 1992-12-25 Intake air control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4346033A JPH06193452A (en) 1992-12-25 1992-12-25 Intake air control device for engine

Publications (1)

Publication Number Publication Date
JPH06193452A true JPH06193452A (en) 1994-07-12

Family

ID=18380684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4346033A Withdrawn JPH06193452A (en) 1992-12-25 1992-12-25 Intake air control device for engine

Country Status (1)

Country Link
JP (1) JPH06193452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256779A (en) * 2004-03-12 2005-09-22 Aisin Seiki Co Ltd Variable intake device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256779A (en) * 2004-03-12 2005-09-22 Aisin Seiki Co Ltd Variable intake device

Similar Documents

Publication Publication Date Title
US7270109B2 (en) Internal combustion engine
JPH06193452A (en) Intake air control device for engine
JP3445294B2 (en) Engine intake control device
JP2663723B2 (en) Intake device for double intake valve type internal combustion engine
JPH0415938Y2 (en)
JP3222228B2 (en) Engine intake control device
JP3318359B2 (en) Engine intake control device
JP3258056B2 (en) Engine intake control device
JP3320775B2 (en) Engine intake control device
JPH06101486A (en) Intake air control device for engine
JP3318367B2 (en) Engine intake control device
JPH06173696A (en) Intake control device for engine
JP3329405B2 (en) Intake control structure for two-valve engine
JP3318357B2 (en) Engine intake control device
JP3012039B2 (en) Engine intake control device
JP3500701B2 (en) Engine intake system
JPH0650154A (en) Intake air control device of engine
JP3318358B2 (en) Engine intake control device
JP3012040B2 (en) Engine intake control device
JP3264749B2 (en) Intake control structure for two-valve engine
JP3248587B2 (en) Engine intake control device
JP3639048B2 (en) In-cylinder fuel injection engine
TWI241377B (en) Air intake control device of a two valve engine
JP3328848B2 (en) Engine intake system
JP3320777B2 (en) Engine intake control device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307