JP2009194982A - 電極構造を備えた可動式テンセグリティ構造体 - Google Patents

電極構造を備えた可動式テンセグリティ構造体 Download PDF

Info

Publication number
JP2009194982A
JP2009194982A JP2008031592A JP2008031592A JP2009194982A JP 2009194982 A JP2009194982 A JP 2009194982A JP 2008031592 A JP2008031592 A JP 2008031592A JP 2008031592 A JP2008031592 A JP 2008031592A JP 2009194982 A JP2009194982 A JP 2009194982A
Authority
JP
Japan
Prior art keywords
electrode structure
layer
electrode
contraction
movable tensegrity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008031592A
Other languages
English (en)
Inventor
Kazuhiro Nihei
一裕 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2008031592A priority Critical patent/JP2009194982A/ja
Publication of JP2009194982A publication Critical patent/JP2009194982A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Prostheses (AREA)

Abstract

【課題】テンセグリティ構造体に屈曲やねじれ、収縮等の動作を行わせることを可能とし、それらの動作を妨害することなく人工筋肉に有効に電力を供給することが可能な電極構造を備えた可動式テンセグリティ構造体を提供する。
【解決手段】電極構造を備えた可動式テンセグリティ構造体1は、複数の剛体部材4と、それらの端点E間を結ぶ複数のテンション材5とを組み合わせて構成され、テンション材5の全部または一部が収縮制御可能な部材で構成された可動式テンセグリティ構造体2を備え、可動式テンセグリティ構造体2は、複数の剛体部材4のうちの一定数の剛体部材4が組み合わされて形成された層Lを軸C方向に積み重ねて構成され、層Lには一定数の剛体部材4が組み合わされて軸Cの周囲に内部空間Sが形成されており、可動式テンセグリティ構造体2の外表面側と内表面側にそれぞれ各収縮制御可能な部材に通電するための筒状の電極構造3を備える。
【選択図】図14

Description

本発明は、テンセグリティ構造体に係り、特に、人工筋肉を備えて可動式とされ、人工筋肉に電力を供給する電極構造を備えた可動式テンセグリティ構造体に関する。
近年、Kenneth Snelsonが考案し、R.Buckminstar Fullerが命名したとされるテンセグリティ構造体が種々開発されている(例えば特許文献1、2等参照)。また、テンセグリティ構造体の種々の技術分野への応用が図られている(例えば特許文献3、4等参照)。
テンセグリティ構造体は、通常、圧縮力に耐える棒状の剛体等(コンプレッション材、圧縮部材)と、引き伸ばし力に耐えるワイヤ等(テンション材、緊張部材)とを組み合わせて構成される。近年、テンション材としてワイヤ等の代わりに引き伸ばしも可能なゴムやバネ等の弾性体が用いられたものもテンセグリティ構造体と呼ばれる場合がある。
なお、本発明では、テンセグリティ構造体を構成する圧縮力に耐える剛体等を剛体部材といい、異なる剛体部材同士の端点間を引き離す力に対抗する力を付与する部材をテンション材というが、テンション材としてゴムやバネ等の弾性体を用いる場合を排除するものではない。
特許第2524202号公報 特開平9−166286号公報 特開2000−5225号公報 特開2002−132432号公報
ところで、テンセグリティ構造体は、テンション材として細い線状部材を用いることで剛体部材が宙に浮いて見えるという特徴を有するため、もともと建築分野や芸術的な分野で活用されることが多かった。しかし、軽量に構成することが可能であり、しかも、外力に対して柔軟に変形するが外力の作用がなくなると元の形状に戻るという特性を生かして、そのような特性を効果的に活用できる他の分野での応用も進められている。
しかし、本願発明者は、上記のように外力に対しては柔軟に変形するが自ら変形することはないものとされてきたテンセグリティ構造体を、自ら変形することができるように改良し、いわゆる可動式のテンセグリティ構造体とすることの研究を重ねてきた。そして、鋭意開発に努めたところ、テンション材の全部または一部を人工筋肉等の収縮制御可能な部材(人工筋肉)とすることでテンセグリティ構造体を可動式とすることが可能であることが分かった。
また、テンセグリティ構造体を可動式とすることに関して、種々の新規な知見が得られた。そして、このような自ら動作することができる可動式テンセグリティ構造体は、その構成のしかたによっては、屈曲動作や一定の軸周りのねじれ動作、一定の軸方向への収縮動作等の複雑な動きを実現できることが見出された。
このように、屈曲やねじれ、収縮等の動きが可能な可動式テンセグリティ構造体は、例えば製造ラインにおけるロボットアームや、尺取虫のごとく自ら移動する自走式ロボット、或いは人間の筋力を増強するために着用して利用する動作補助装置(強化服、パワーアシスト装置等とも呼ばれる。)等の種々の技術分野に応用することが可能であると考えられる。
しかし、可動式テンセグリティ構造体を構成するテンション材のうち人工筋肉とするテンション材の数を増加させていくと、1つ1つの人工筋肉に電力を供給する配線の数が膨大になり、可動式テンセグリティ構造体が動作する際に配線が可動式テンセグリティ構造体を構成する部材に挟まれたり絡まったりして、可動式テンセグリティ構造体の動作を妨害し、また、配線が切断されてしまう場合があることが分かった。
本発明は、上記の点を鑑みてなされたものであり、テンセグリティ構造体に屈曲やねじれ、収縮等の動作を行わせることを可能とし、それらの動作を妨害することなく人工筋肉に有効に電力を供給することが可能な電極構造を備えた可動式テンセグリティ構造体を提供することを目的とする。
前記の問題を解決するために、請求項1に記載の電極構造を備えた可動式テンセグリティ構造体は、
複数の剛体部材と、前記剛体部材同士の端点間を結ぶ複数のテンション材とを組み合わせて構成され、前記複数のテンション材の全部または一部が収縮制御可能な部材で構成された可動式テンセグリティ構造体を備え、
前記可動式テンセグリティ構造体は、前記複数の剛体部材のうちの一定数の剛体部材が組み合わされて形成された層を1本の軸方向に積み重ねて構成され、かつ、前記層には前記一定数の剛体部材が組み合わされて前記軸の周囲に内部空間が形成されており、
前記可動式テンセグリティ構造体の外表面側および前記内部空間側の内表面側に、それぞれ、前記各収縮制御可能な部材に通電するための筒状の電極構造を備えることを特徴とする。
請求項2に記載の発明は、請求項1に記載の電極構造を備えた可動式テンセグリティ構造体において、前記電極構造は、前記外表面側の電極構造に設けられた複数の配線がそれぞれ前記収縮制御可能な部材の少なくとも一方の電極に接続され、前記内表面側の電極構造に設けられた複数の配線がそれぞれ前記収縮制御可能な部材の少なくとも一方の電極に接続されていることを特徴とする。
請求項3に記載の発明は、請求項2に記載の電極構造を備えた可動式テンセグリティ構造体において、前記外表面側の電極構造の前記各配線および前記内表面側の電極構造の前記各配線には、それぞれ複数の前記収縮制御可能な部材の電極が接続されていることを特徴とする。
請求項4に記載の発明は、請求項3に記載の電極構造を備えた可動式テンセグリティ構造体において、前記外表面側の電極構造および前記内表面側の電極構造は、平行に配置された前記複数の配線をそれぞれ備え、かつ、前記外表面側の電極構造または前記内表面側の電極構造のいずれか一方の電極構造では前記複数の配線の方向が前記軸方向に略平行に配置され、他方の電極構造では前記複数の配線の方向が前記軸方向に略直交する方向に配置されていることを特徴とする。
請求項5に記載の発明は、請求項4に記載の電極構造を備えた可動式テンセグリティ構造体において、前記外表面側の電極構造または前記内表面側の電極構造のいずれか一方の電極構造における前記複数の配線に順次所定の電圧を印加し、収縮させるべき前記収縮制御可能な部材の片方の電極に前記電圧が印加されたタイミングで、他方の電極構造における当該収縮制御可能な部材のもう一方の電極に接続された前記配線に所定の電圧を印加することで、当該収縮制御可能な部材を収縮させるように構成されていることを特徴とする。
請求項6に記載の発明は、請求項1から請求項5のいずれか一項に記載の電極構造を備えた可動式テンセグリティ構造体において、前記剛体部材は、それぞれ、他の2つの剛体部材および当該他の2つの剛体部材の端点間を結ぶ前記テンション材の計3つの部材により当該剛体部材の周囲を取り巻かれないように構成されており、当該テンション材が前記収縮制御可能な部材で構成されていることを特徴とする。
請求項7に記載の発明は、請求項1から請求項6のいずれか一項に記載の電極構造を備えた可動式テンセグリティ構造体において、前記収縮制御可能な部材で構成されたテンション材は、前記軸方向に対して、前記層ごとに特有の向きに傾斜して設けられていることを特徴とする。
請求項8に記載の発明は、請求項1から請求項7のいずれか一項に記載の電極構造を備えた可動式テンセグリティ構造体において、前記収縮制御可能な部材は、高分子型の人工筋肉で構成されていることを特徴とする。
請求項9に記載の発明は、請求項1から請求項8のいずれか一項に記載の電極構造を備えた可動式テンセグリティ構造体において、前記収縮制御可能な部材を収縮させて1つの前記層の一部を前記軸方向に収縮させることで前記軸が屈曲するように構成されていることを特徴とする。
請求項10に記載の発明は、請求項1から請求項9のいずれか一項に記載の電極構造を備えた可動式テンセグリティ構造体において、前記収縮制御可能な部材を収縮させて1つの前記層の全体を前記軸方向に収縮させることで前記軸周りにねじれを生じるように構成されていることを特徴とする。
請求項11に記載の発明は、請求項1から請求項10のいずれか一項に記載の電極構造を備えた可動式テンセグリティ構造体において、前記収縮制御可能な部材を収縮させて前記層を前記軸方向に収縮させることで前記軸方向に収縮するように構成されていることを特徴とする。
請求項1に記載の発明によれば、テンセグリティ構造体を構成する剛体部材同士の端点間を結ぶ複数のテンション材の全部または一部を収縮制御可能な部材(人工筋肉)で構成したことにより、テンセグリティ構造体を可動式とすることができる。また、収縮制御可能な部材を収縮させることで、可動式テンセグリティ構造体に、屈曲動作やねじれ動作、収縮動作等を行わせることが可能となる。また、収縮制御可能な部材を、可動式テンセグリティ構造体の軸方向に対して層ごとに特有の向きに傾斜して設けたことで、可動式テンセグリティ構造体に、屈曲等の動作を的確に行わせることが可能となる。
また、層を形成する剛体部材等をより細小に構成してその数を増加させ、層の軸方向の厚さを短縮することで、肉薄の筒状に形成することが可能となる。このように可動式テンセグリティ構造体を構成する部材を細小化することで、可動式テンセグリティ構造体に、より滑らかでしなやかに屈曲やねじれ、収縮等の動作を行わせることが可能となる。
さらに、可動式テンセグリティ構造体の外表面側と内表面側に、それぞれ筒状の電極構造を設けたことで、電極構造を備えた可動式テンセグリティ構造体とし、収縮制御可能な部材に容易かつ的確に通電することが可能となる。また、電極構造を柔軟性を有する素材で構成すれば、電極構造を、可動式テンセグリティ構造体の屈曲等の動作を妨害せずに、収縮制御可能な部材に有効に電力を供給しつつ、かつ、その動作に追従して容易に変形させることが可能となる。
請求項2に記載の発明によれば、外表面側の電極構造の配線を可動式テンセグリティ構造体の収縮制御可能な部材の少なくとも一方の電極に接続し、内表面側の電極構造の配線を収縮制御可能な部材の少なくとも一方の電極に接続することで、収縮制御可能な部材に有効に電力を供給して可動式テンセグリティ構造体の屈曲等の動作を的確に行わせ、かつ、その動作を妨害しないようにできるため、前記発明の効果をより的確に発揮させることが可能となる。
請求項3に記載の発明によれば、前記各発明の効果に加え、外表面側や内表面側の各電極構造の各配線に複数の収縮制御可能な部材の電極を接続することで、可動式テンセグリティ構造体の剛体部材等をより細小にしてその数を増加させた場合に膨大な数となる収縮制御可能な部材の1つ1つに配線と接続して配線が膨大な数になることを防止することができる。また、膨大な数の収縮制御可能な部材に対してより少数の本数の配線から電力を供給することが可能となり、電極構造に設ける配線の本数を減らすことが可能となる。
請求項4に記載の発明によれば、前記各発明の効果に加え、外表面側の電極構造と内表面側の電極構造とにそれぞれ設けられる複数の配線を相対的に略直交する方向に配置して、配線の交点等に位置する収縮制御可能な部材に電力を供給する等することで、各収縮制御可能な部材にそれぞれ的確に電力を供給することが可能となる。
請求項5に記載の発明によれば、外表面側の電極構造または内表面側の電極構造の一方の電極構造の複数の配線に順次所定の電圧を印加し、収縮させるべき収縮制御可能な部材の片方の電極に電圧が印加されたタイミングで他方の電極構造の配線から所定の電圧を印加することで、収縮制御可能な部材を的確に収縮させることが可能となり、前記各発明の効果が的確に発揮される。
請求項6に記載の発明によれば、前記各発明の効果に加え、剛体部材が他の2つの剛体部材とテンション材の計3つの部材でその周囲を取り巻かれないように構成した部分の当該テンション材を収縮制御可能な部材(人工筋肉)で構成することで、この剛体部材が他の2つの剛体部材の動きに対していわばてこの支点のように作用して、収縮制御可能な部材とされたテンション材が収縮する際に可動式テンセグリティ構造体の他の部分も収縮してしまうことを回避することが可能となる。
そのため、収縮制御可能な部材とされた1つのテンション材の収縮により複数の部分が収縮する場合には可動式テンセグリティ構造体の動作の制御構成が複雑になってしまうが、上記のように、収縮制御可能な部材とされた1つのテンション材を収縮させた場合にそのテンション材の部分のみが収縮するように構成すれば、電極構造を備えた可動式テンセグリティ構造体の動作を容易に制御することが可能となり、制御構成をより単純なものとすることが可能となる。
請求項7に記載の発明によれば、収縮制御可能な部材で構成されたテンション材を可動式テンセグリティ構造体の軸方向に対して傾斜して設けることで、層を軸方向に積み重ねて形成される可動式テンセグリティ構造体に、容易に屈曲動作やねじれ動作、収縮動作等を行わせることが可能となり、前記各発明が的確に発揮される。
請求項8に記載の発明によれば、収縮制御可能な部材を高分子型の人工筋肉で構成することで、高分子型の人工筋肉に通電すれば、容易に収縮を制御でき、迅速に収縮するため、前記各発明の効果が的確に発揮されるとともに、可動式テンセグリティ構造体の屈曲やねじれ、収縮等の動作をより高速に行わせることが可能となる。
請求項9、請求項10および請求項11に記載の発明によれば、収縮制御可能な部材を収縮させて1つの層の一部または全体を軸方向に収縮させて屈曲動作やねじれ動作、収縮動作等を生じさせることで、層を軸方向に積み重ねて形成される可動式テンセグリティ構造体を、容易にその軸を屈曲させ、軸周りにねじれを生じさせ、或いは軸方向に収縮させることが可能となり、前記各発明の効果が容易かつ的確に発揮されるとともに、それらの動作の制御構成をより単純なものとすることが可能となる。
以下、本発明に係る電極構造を備えた可動式テンセグリティ構造体の実施の形態について、図面を参照して説明する。
本実施形態に係る電極構造を備えた可動式テンセグリティ構造体1(以下、単に可動式テンセグリティ構造体1という。)は、後述する図14に示すように、本体部2と、電極構造3とで構成されている。
[1.可動式テンセグリティ構造体の本体部の構成]
以下、まず、可動式テンセグリティ構造体1の本体部2の構成について説明する。
可動式テンセグリティ構造体1の本体部2の最も単純な構成を図1に示す。図1に示すように、本体部2は、複数の剛体部材4と、剛体部材4同士の端点E間を結ぶ複数のテンション材5とが組み合わされて構成されている。
[1−1.剛体部材]
まず、剛体部材4の配置について説明する。各剛体部材4同士はテンション材5を介して接続されるようになっており、各剛体部材4同士が直接には接続されないようになっている。また、図1や、図1における剛体部材4のみを示した図2に示すように、本実施形態では、各剛体部材4は、長さや径が等しい棒状の部材で構成されている。
また、図1や図2における構成では、3本の剛体部材4を1つの組として1つの層Lが形成されており、各層Lが、1本の軸Cに沿う方向に積み重ねられるようにして本体部2が構成されている。各剛体部材4は、それぞれいずれか1つの層Lに属するようになっており、自らが属する層Lを越えて他の層Lに属することがない。すなわち、1つの層Lを形成する剛体部材4が他の層Lを形成する剛体部材4となることはないようになっている。
なお、部材の配置等について簡潔に記載するため、本体部2や電極構造3を含む可動式テンセグリティ構造体1の各部材等についての上下関係や水平方向の位置関係を言う場合、図1や図2、後述する図14等における上下関係や水平方向の位置関係を表すこととする。そのため、本明細書において例えばある部材が他の部材の上方に存在する旨が記載されていても、それは、本体部2の軸Cが水平方向に延在するように可動式テンセグリティ構造体1が配置されている状態では当該部材は当該他の部材に対して横方向に存在することを意味している。
互いに隣接する2層を層La、Lbとし、層La、Lbに属する剛体部材4をそれぞれ剛体部材4a、4bと表した場合の層La、Lbにおける各剛体部材4a、4bをそれぞれ図3(A)、(B)の平面図に示す。図3(A)、(B)に示すように、各層Lに属する3本の剛体部材4は、各剛体部材4がそれぞれ、他の2本の剛体部材4のうち、1本の剛体部材4に対してはその上方を、残りの1本の剛体部材4に対してはその下方を通過するように、いわばねじれた状態で組み合わされて配置されている。
また、層Laに属する3本の剛体部材4aの配置と、層Lbに属する3本の剛体部材4bの配置とは互いに鏡像の関係とされている。
すなわち、図3(A)に示す層Laでは、仮に各剛体部材4aの下側の端点E4aの位置を固定した系で考えると、上側の端点E4aを図中矢印で示す回転方向に動かした場合には各剛体部材4aはその回転方向に自由に移動するが、図中の矢印方向とは反対の回転方向に動かそうとしても、各剛体部材4aは互いにぶつかりあって移動させることができなくなる。
それに対して、図3(B)に示す層Lbでは、同様に、仮に各剛体部材4bの下側の端点E4bを固定した系で考えると、上側の端点E4bを図中矢印で示す回転方向に動かした場合には各剛体部材4bはその回転方向に自由に移動するが、図中の矢印方向とは反対の回転方向に動かそうとしても、各剛体部材4bは互いにぶつかりあって移動させることができなくなる。
このように、層Laに属する3本の剛体部材4aの配置と、層Lbに属する3本の剛体部材4bの配置とが互いに鏡像の関係とされているため、各剛体部材4a、4bが束縛されずに回転し得る方向が、層Laと層Lbとでは相対的に逆向きになっている。
これを、図1に示した可動式テンセグリティ構造体1の本体部2について示すと、図4に示すように、層Laでは、各剛体部材4aの上側の端点E4a側は図中の手前の位置で軸C周りに右向きに回転でき、下側の端点E4a側は図中の手前の位置で軸C周りに左向きに回転することができる。また、層Lbでは、逆に、各剛体部材4bの上側の端点E4b側は図中の手前の位置で軸C周りに左向きに回転でき、下側の端点E4b側は図中の手前の位置で軸C周りに右向きに回転することができる。
このように、層Laと層Lbとでは、各剛体部材4a、4bの組み合わされ方によって各剛体部材4a、4bが回転し得る方向が異なるため、層Laがねじれる方向と層Lbがねじれる方向が相対的に逆向きになっている。
[1−2.テンション材および収縮制御可能な部材]
次に、テンション材5の配置について説明する。本実施形態では、テンション材5は、上記のように配置された各剛体部材4に対して、以下の3通りの手法でそれらの端点Eを結ぶようになっている。
第一に、同一の層Lに属する3本の剛体部材4のうち、任意の2本の剛体部材4について、1本の剛体部材4の上側の端点Eと、その剛体部材4の下方を通過するもう1本の剛体部材4の下側の端点Eとを結ぶテンション材5が存在する。このように、同一の層La、Lbに属する2本の剛体部材4a、4b同士の端点E4a、E4b間を結ぶテンション材5を、以下、テンション材5a、5bという。
第二に、1つの層Lに属する剛体部材4の端点Eと、当該層Lに隣接する層Lにさらに隣接する層Lに属する剛体部材4の端点Eとの間を結ぶテンション材5が存在する。すなわち、例えば、1つの層Laに属する剛体部材4aの端点E4aと、層Lbを介して隣接する層Laに属する剛体部材4aの端点E4aとの間がテンション材5で結ばれている。このようなテンション材5を、以下、テンション材5cという。
また、層Lbに属する剛体部材4bの端点E4bと、層Laを介して隣接する層Lbに属する剛体部材4bの端点E2bとの間を結ぶテンション材5を、以下、テンション材5dという。
第三に、隣接する2つの層La、Lbの境界部分に存し、これらの2つの層La、Lbにそれぞれ属する剛体部材4a、4b同士の端点E4a、E4b間を結ぶテンション材5が存在する。このようなテンション材5を、以下、テンション材5eという。
本実施形態では、上記の3種類のテンション材5のうち、いわば上下の剛体部材4の端点E間を結ぶテンション材5a、5bおよびテンション材5c、5dの2種類のテンション材5が収縮制御可能な部材で構成されている。本発明では、このように、テンション材5の全部または一部を収縮制御可能な部材で構成することにより、テンセグリティ構造体が可動式とされている。
収縮制御可能な部材としては、本実施形態では、通電により容易に収縮を制御することが可能で、迅速に収縮する導電性プラスチックを用いた高分子型の人工筋肉が用いられている。また、本実施形態では、人工筋肉は、2つ電極を有しており、一方の電極にプラス、他方の電極にマイナスの電圧を加えると収縮し、逆に電圧を加えると収縮が解けるようになっている。
なお、以下、収縮制御可能な部材を人工筋肉と略称し、上記のように収縮制御可能な部材で構成されるテンション材5a、5bやテンション材5c、5dを人工筋肉5a、5bや人工筋肉5c、5dという場合がある。また、この他にも、収縮制御可能な部材として、例えば、空気圧型やMcKibben型等の空気式人工筋肉や、バイオメタル等を用いたメタル式人工筋肉、形状記憶合金等を用いた人工筋肉等を用いることも可能である。
また、例えばテンション材5a、5bの組のみ、またはテンション材5c、5dの組のみを人工筋肉で構成することも可能であるが、上記の2組のうち少なくとも1組は人工筋肉で構成される。また、テンション材5eを人工筋肉で構成してもよい。さらに、人工筋肉を用いないテンション材5は、例えばワイヤを用いて構成することが可能であり、また、前述した従来技術で述べたようにゴムやバネ等の弾性体としてもよい。
なお、例えば同一の層Laに属する2本の剛体部材4aの端点E4a間を結ぶ人工筋肉5aを収縮させた場合には、当該層Laの人工筋肉5a部分がいわば潰れるように収縮する。しかし、例えば1つの層Laに属する剛体部材4aの端点E4aと、層Lbを介して隣接する層Laに属する剛体部材4aの端点E4aとの間を結ぶ人工筋肉5cを収縮させた場合には、2つの層La、Laに挟まれた層Lbの人工筋肉5c部分が潰れるように収縮する。
ところで、前述したように、本実施形態では、層Laに属する3本の剛体部材4aの配置と層Lbに属する3本の剛体部材4bの配置とが互いに鏡像とされているため、各層Lに属する3本の剛体部材4の組み合わせ方によって、図4に示したように各層Lで各剛体部材4の上側の端点E側と下側の端点E側の軸C周りに回転し得る方向が決まる。そして、層Laと層Lbとではねじれる方向が相対的に逆向きになっている。
そのため、上記の人工筋肉5a、5dや人工筋肉5b、5cが各層Lに収縮力を及ぼす際に、各層Lが図4に示したねじれ方向にねじれ得るように、人工筋肉5a、5dや人工筋肉5b、5cは、可動式テンセグリティ構造体1の本体部2の軸Cに対してそれぞれ傾斜して設けられている。
また、前述したように、層Laと層Lbとではねじれる方向が相対的に逆向きになっているため、層Laを収縮させる人工筋肉5a、5dと、層Lbを収縮させる人工筋肉5b、5cとでは、軸Cに対する傾斜の向きが逆になるように構成されている。
[1−3.剛体部材と人工筋肉との関係]
次に、剛体部材4と人工筋肉(テンション材)5との関係について説明する。なお、下記の図5(A)、(B)は図1における層La内の3本の剛体部材4aと人工筋肉5aとを示す正面図であり、図6(A)、(B)は図5(A)、(B)の変形例を示す正面図である。
各層Lを形成する3本の剛体部材4を図2や図3(A)、(B)に示したように組み合わせた際に、例えば層Laを形成する剛体部材4aにおいて、図6(A)に示すように、2本の剛体部材4aと、それらの端点E4aを結ぶ人工筋肉5fの計3本の部材で形成される三角形の内部を、もう1本の別の剛体部材4aが通過するように構成したとする。より正確に言えば、層Laを形成する3本の剛体部材4aのうち、1本の剛体部材4aが、他の2本の剛体部材4aとそれらの端点E4a間を結ぶ人工筋肉5fの計3本の部材でその周囲を少なくとも1周取り巻かれる構成であるとする。
この場合、人工筋肉5fを収縮させると、他の2本の剛体部材4aの端点E4a間の間隔が狭まり、剛体部材4aを他の2本の剛体部材4aが挟みつける形になる。すると、剛体部材4aが他の2本の剛体部材4aの動きに対していわばてこの支点のように作用するため、図6(B)に示すように、2本の剛体部材4aの人工筋肉5fで結ばれた側の端点E4a間だけでなく、その反対側の端点E4a間の間隔も収縮する。すなわち、図6(A)のような構成の場合、人工筋肉5fの収縮に連動して2本の剛体部材4aの両側の端点E2a間の間隔が収縮するようになる。
一方、図5(A)に示す本実施形態のように、例えば層Laを形成する剛体部材4aにおいて、2本の剛体部材4aと、それらの端点E4aを結ぶ人工筋肉5fの計3本の部材で形成される三角形の外側を、もう1本の別の剛体部材4aが通過するような構成であるとする。より正確に言えば、層Laを形成する3本の剛体部材4aのうち、1本の剛体部材4aが、他の2本の剛体部材4aとそれらの端点E4a間を結ぶ人工筋肉5fの計3本の部材によりその周囲を取り巻かれない構成であるとする。
この場合、人工筋肉5aを収縮させると、他の2本の剛体部材4aの端点E4a間の間隔が狭まっても、剛体部材4aを他の2本の剛体部材4aが挟みつけることはなく、寧ろ他の2本の剛体部材4aは剛体部材4aから遠ざかり、図5(B)に示すように、2本の剛体部材4aの人工筋肉5aで結ばれた側の端点E4a間の間隔だけが収縮する。すなわち、本実施形態のような構成の場合、人工筋肉5aの収縮により、2本の剛体部材4aの一方側の端点E4a間の間隔だけが収縮し、反対側の端点E4a間の間隔は維持される。
本実施形態では、このように、剛体部材4の人工筋肉5で結ばれていない端点E間の間隔が人工筋肉5の収縮に連動して収縮しないように、図5(A)の構成が採用されている。なお、図1に示すように、層Laにおいて、1本の剛体部材4aが、2本の剛体部材4aと2本のテンション材5eと1本の人工筋肉5cの計5本の部材でその周囲を取り巻かれている。
この場合、人工筋肉5cが収縮すると、2本の剛体部材4aは各テンション材5eが人工筋肉5cの収縮に引き摺られることで剛体部材4aを挟みつける方向に多少動くが、剛体部材4aがこれら2本の剛体部材4aの動きに対しててこの支点のように作用するまでには至らず、反対側の人工筋肉5a側は事実上収縮しない。
このように、図6(A)に示したように1本の剛体部材4を他の2本の剛体部材4とそれらの端点E間を結ぶ人工筋肉5の計3本の部材でその周囲を取り巻く構成としない限り、人工筋肉5の収縮に連動して2本の剛体部材4の両側の端点E間の間隔が収縮することはない。
[2.可動式テンセグリティ構造体の本体部の動作]
ここで、上記の可動式テンセグリティ構造体1の本体部2の動作について説明する。
[2−1.可動式テンセグリティ構造体の本体部の屈曲動作]
前述した図5(A)に示したように、上記の可動式テンセグリティ構造体1の本体部2の各層Lでは、層Lを形成する3本の剛体部材4のうち、1本の剛体部材4(4a)が他の2本の剛体部材4とそれらの端点E間を結ぶ人工筋肉5の計3本の部材によりその周囲を取り巻かれないように構成されている。
そのため、図1に示した本体部2において、層Laの例えば図中最左端側に示された人工筋肉5aを収縮させても、当該層Laの図中右側の部分がそれに連動して収縮することはない。そのため、人工筋肉5aの収縮により、層Laの一部、すなわちこの場合は層Laの図中左側の部分が軸C方向に収縮し、本体部2の軸Cを屈曲させることができる。
例えば、図1における当該層Laより下側の部分を動かないように固定すれば、本体部2の軸Cは、当該層Laより下側の部分に対して当該層Laから上の部分が左側に屈曲し、可動式テンセグリティ構造体1が当該層Laの部分で屈曲する。このようにして、例えば人工筋肉5を収縮させて1つの層Lの一部を軸C方向に収縮させることで、本体部2の軸Cを屈曲させることが可能となる。
上記の場合、層Laの人工筋肉5aのみを収縮させてもよいが、人工筋肉5aだけでなく、当該人工筋肉5aの近傍にある当該層La中の人工筋肉5d等も適度に収縮させれば、図7に示すように、可動式テンセグリティ構造体1の軸Cをより安定して屈曲させることができる。
また、当該層Laの当該人工筋肉5a等をさらに収縮させたり、当該層Laの上方または下方の単数または複数の層La、Lbの同一箇所、すなわち図7の例では層Lの図中最左端側の人工筋肉5等を屈曲させることで、可動式テンセグリティ構造体1の本体部2の軸Cを同一方向にさらに大きく屈曲させることができる。
前述したように、人工筋肉5は、各層Lの各剛体部材4の上側の端点E側と下側の端点E側の軸C周りに回転し得る方向に収縮力が及ぶように可動式テンセグリティ構造体1の軸Cに対してそれぞれ傾斜して設けられている。
そのため、上記のように人工筋肉5aを収縮させると、当該層Laの人工筋肉5aの部分、すなわち図7の例では当該層Laの図中最左端側の部分で、人工筋肉5aが結び付けられた上側の端点E4aや下側の端点E4aが図4に示した方向に若干ねじれを生じる。そして、本体部2が当該層Laの部分で軸C周りに僅かにねじれを生じる場合があり、本体部2の屈曲動作を、複数の層Lの人工筋肉5を収縮させて生じさせた場合、屈曲と同時に軸C周りにねじれを生じる場合がある。
このようなねじれは、例えば屈曲を生じさせる層Lの数を層Laと層Lbとで同数になるように選択する等して、層La、Lbで逆方向に生じるねじれを相殺することで、解消することができる。そして、このようにすれば、可動式テンセグリティ構造体1の本体部2に屈曲のみを生じさせることが可能となる。
[2−2.可動式テンセグリティ構造体の本体部の収縮動作]
また、層Laでは人工筋肉5a、5dを全部または一部を適宜収縮させると、図8に示すように、人工筋肉5a、5dの収縮により層Laの上側と下側との間隔を狭めるように収縮力が働く。このように、層Laでは人工筋肉5a、5dを、層Lbでは人工筋肉5b、5cをそれぞれ全部または一部を適宜収縮させることで、本体部2の軸Cを屈曲させることなく各層Lを軸C方向に収縮させることができる。
そして、例えば、図8において、収縮させる層Laより下側の部分を動かないように固定すれば、本体部2は、当該層Laより上側の部分全体が軸C方向に下がる。そのため、本体部2の一部または全部を軸C方向に収縮させることが可能となる。
その際、上記のように、人工筋肉5が本体部2の軸Cに対してそれぞれ傾斜して設けられているため、各層Lごとに特有のねじれ方向にねじれが生じる。しかし、例えば収縮を生じさせる層Lの数を層Laと層Lbとで同数になるように選択する等して層La、Lbで逆方向に生じるねじれを相殺することでねじれを解消することができ、軸C方向の収縮動作のみを生じさせることが可能となる。
また、上記のようにして一旦収縮させた本体部2を、各層Lの人工筋肉5の収縮を解除しまたは緩めて各層Lを軸C方向に伸長させることで、軸C方向に伸長させることも可能となる。
[2−3.可動式テンセグリティ構造体の本体部のねじれ動作]
また、上記のように、層Laでは人工筋肉5a、5dをすべて収縮させると、図8に示したように、人工筋肉5は可動式テンセグリティ構造体1の本体部2の軸Cに対してそれぞれ傾斜して設けられているため、人工筋肉5a、5dの収縮力により、本体部2の軸Cを屈曲させることなく、図4に示したねじれ方向に層Laをねじれさせることができる。
例えば、図8において、収縮させる層Laより下側の部分を動かないように固定すれば、本体部2は、当該層Laより上側の部分全体が軸C周りにねじれる。そのため、本体部2の一部または全部を軸C方向に収縮させることが可能となる。これは、層Lbについても同様であるが、人工筋肉5b、5cの傾斜の向きが層Laの場合と逆であるため、層Laとは逆方向のねじれを生じる。
そして、層Laのみを複数選択し、或いは層Lbのみを複数選択して、各層Lの人工筋肉5を収縮させて各層Lごとにねじれを生じさせることで、本体部2を、その軸C周りに、各層Lに特有のねじれ方向に大きくねじれさせることが可能となる。
なお、このねじれ動作においては、層Laの人工筋肉5a、5dや、層Lbの人工筋肉5b、5cをそれぞれすべて収縮させるため、前述したように、必然的に収縮動作を伴う。しかし、例えば、予め各層Lの人工筋肉5をある程度収縮させておき、ねじれ動作を生じさせる層Lの収縮の度合に応じて、ねじれ動作を生じさせる層L以外の層Lを同時に伸長させることで、本体部2を、必要な箇所でねじれ動作を生じさせつつ、全体的には収縮しないようにすることが可能となる。
[2−4.可動式テンセグリティ構造体の本体部の他の動作]
詳しい説明を省略するが、上記の屈曲動作やねじれ動作、収縮・伸長動作を組み合わせれば、可動式テンセグリティ構造体1の本体部2により複雑な動作をさせることが可能となる。
例えば、上記の屈曲動作や収縮(伸長)動作では、例えば屈曲や収縮(伸長)を生じさせる層Lの数を層Laと層Lbとで同数になるように選択する等して、同時にねじれ動作が生じないようにする場合を示したが、屈曲や収縮(伸長)の際に、各層Lごとのねじれを相殺させないように層La、Lbの数や場所を選択して、屈曲動作や収縮(伸長)動作とねじれ動作とを同時に生じさせることも可能である。また、本体部2を、屈曲させつつ収縮(伸長)させるようにその動作を制御することも可能である。
[3.層に属する剛体部材の本数を増加させた場合の構成等]
また、電極構造3の説明に移る前に、上記の可動式テンセグリティ構造体1の本体部2の層Lに属する剛体部材4の本数をさらに増加させた場合の可動式テンセグリティ構造体1の本体部2の構成等について説明する。
前記図3(A)に人工筋肉5をあわせて記載すると、図9に示す平面図のように表される。この基本的な構成を維持したまま、層Lに属する剛体部材4の本数を4本、6本と増やし、人工筋肉5をあわせて記載すると、本体部2は、図10および図11のように表すことができる。
なお、各層Lにおいては、そのねじれ方向が図4に示したように決まっている。そのため、図9に示した剛体部材4が3本の場合と同様に、図10、図11に示した剛体部材4が4本、6本の場合においても、人工筋肉5の軸Cに対する傾斜が図9の場合と同じ傾斜の向きになるように剛体部材4の端点E間が結ばれるようになっている。
図9〜図11に示したように、層Lに属する剛体部材4の本数を増加させていくと、各層Lに属する一定数の剛体部材4によって本体部2の軸Cの周囲に形成される内部空間Sが拡大していくことが分かる。そして、このような層Lが軸Cに沿う方向に積み重ねられるようにして形成される可動式テンセグリティ構造体1の本体部2は、層Lの内部空間Sが拡大していくと筒状になっていくことが理解される。
また、層Lを形成する剛体部材4等をより細小に構成してその数をさらに増加させ、層Lの軸C方向の厚さを短縮していくと、可動式テンセグリティ構造体1の本体部2は、図12(A)の正面図に示すように、肉薄の円筒形状になる。
しかし、その際も、図12(A)に円Aで示す部分の拡大図である図12(B)に示されるように、本体部2は、上記の基本的な構成に従って各層La、Lbが交互に積み重ねられ、剛体部材4a、4b、人工筋肉5a、5b、5c、5d、およびテンション材5eが組み合わされて構成される。
なお、図9〜図11では本体部2の軸C周囲の内部空間Sが正多角形状に形成される場合を示し、図12(A)、(B)では本体部2が円筒形状に形成される場合を示したが、必ずしもこのように形成される必要はない。例えば図12(A)の本体部2を、断面が楕円形状やその他の形状の筒状に形成することも可能である。
[4.電極構造]
図示を省略するが、可動式テンセグリティ構造体1の本体部2の各層Lの各人工筋肉5に通電するために、各人工筋肉5の2つの電極と電線とを電気的に接続するように構成することが可能である。この場合、人工筋肉5ごとに2本の電線が必要となる。また、電線が可動式テンセグリティ構造体1の本体部2の屈曲等の動作の妨げにならないように、例えば棒状の剛体部材4の内部に電線を通したり、図9〜図11等に示した軸C周囲の内部空間S内で電線を束ねたりして外部の電源装置や制御装置とつなぐように構成することが可能である。
しかし、図12に示した可動式テンセグリティ構造体1の本体部2のように、人工筋肉5の数が非常に多くなると、上記のような電線を用いる形態では電線の本数が非常に多くなってしまう。
そこで、本実施形態では、電極構造3として、図13に示すような2つの筒状の電極構造3a、3bを用いるようになっており、可動式テンセグリティ構造体1は、図14(A)に示すように、2つの筒状の電極構造3a、3bをそれぞれ本体部2の外表面側と内部空間S側の内表面側とにそれぞれ設けて構成されるようになっている。このように構成することで、本体部2の人工筋肉5に通電するように構成すれば、本体部2の全人工筋肉5に通電することが可能となる。
なお、図13や図14(A)では、図12(A)、(B)に示した円筒形状に形成された本体部2に適用するために、電極構造3a、3bも円筒形状に形成される場合が示されているが、電極構造3a、3bは、本体部2が円筒形状以外の場合には、本体部2の外表面と内表面の形状にあわせた形状に構成することも可能であり、必ずしも円筒形状に形成されるとは限らない。
また、電極構造3は、図12(A)、(B)に示したような人工筋肉5の本数が非常に多い場合に限定されず、図1や図9〜図11等に示したような比較的数が少ない人工筋肉5に通電する場合にも用いることができる。
本実施形態では、電極構造3は、図15の展開図に示すように、本体部2の外表面側の電極構造3aと内表面側の電極構造3bでは、布やプラスチックフィルム等の柔軟性を有する素材上に複数の配線6a、6bがそれぞれ平行に配置されている。複数の配線6a、6bは、それぞれ一方の端部が電極構造3a、3bの端部7a、7bでそれぞれ束ねられて、図示しない外部の電源装置や制御装置とつながれるようになっている。
また、本体部2の外表面側の電極構造3aでは複数の配線3aの方向が本体部2の軸C方向に略直交する方向に配置されており、また、本体部2の内表面側の電極構造3bでは複数の配線3bの方向が軸C方向に略平行に配置されるようになっている。
本実施形態では、図14(A)に示したように2つの筒状の電極構造3a、3bが本体部2の外表面側と内表面側とにそれぞれ配置されると、図14(B)に示すように、本体部2の軸C方向に略直交する方向に延在するテンション材5eに沿って、電極構造3aの配線6aが2本ずつ配置されるようになっている。すなわち、図1等に示したように、一列に連なって当該方向に本体部2を1周する複数のテンション材5eの一列につき、2本の配線6aが配置されるようになっている。
また、本体部2の軸C方向に延在する人工筋肉5a、5dや人工筋肉5b、5cに沿って、電極構造3bの配線6bが2本ずつ配置されるようになっている。すなわち、本体部2を略垂直方向に一列に連なる複数の人工筋肉5a、5d或いは人工筋肉5b、5cの一列につき、2本の配線6bが配置されるようになっている。
さらに、上記の2本の配線6aには、一方の配線6aにプラスの電圧、他方の配線6aにマイナスの電圧が供給されるようになっており、2本の配線6bにおいても、一方の配線6bにプラスの電圧、他方の配線6bにマイナスの電圧が供給されるようになっている。なお、以下、プラスの電圧またはマイナスの電圧を供給する配線を配線6a(+)、6a(−)等と表す。
図14(B)に示すように、人工筋肉5a等は、その図中上側の電極が電極構造3aの配線6a(+)および配線6a(−)に電線8を介して電気的に接続されており、図中下側の電極が電極構造3bの配線6b(+)および配線6b(−)に電線8を介して電気的に接続されている。すなわち、1本の配線6a(+)、6a(−)には複数の人工筋肉5a等の上側の電極が電気的に接続されており、1本の配線6b(+)、6b(−)には複数の人工筋肉5a等の下側の電極が電気的に接続されている。
前述したように、人工筋肉5a等は、一方の電極にプラス、他方の電極にマイナスの電圧を加えると収縮し、逆に電圧を加えると収縮が解けるようになっている。そのため、例えば、人工筋肉5a等の上側の電極に配線6a(+)からプラスの電圧、下側の電極に配線6b(−)からマイナスの電圧を加えて人工筋肉5a等を収縮させ、人工筋肉5a等の上側の電極に配線6a(−)からマイナスの電圧、下側の電極に配線6b(+)からプラスの電圧を加えて人工筋肉5a等の収縮を解くようにして、人工筋肉5a等の収縮を制御することができるようになっている。
このようにして、本実施形態の可動式テンセグリティ構造体1は、本体部2の人工筋肉5a、5b、5c、5dに外表面側の電極構造3aの各配線6a(+)、6a(−)および内表面側の電極構造3bの各配線6b(+)、6b(−)からプラスやマイナスの電圧が印加されて、人工筋肉5a等の収縮や収縮の解除が行われることで、上記の屈曲動作やねじれ動作、収縮(伸長)動作が行われるようになっている。
なお、本実施形態では、上記のように人工筋肉5aと配線6a、6bとを電気的に接続させた構成において、例えば、外表面側の電極構造3aの配線6a(+)または配線6a(―)に順次所定の電圧を印加していく。すなわち、電圧を印加する配線を順次変えながら所定の電圧を配線ごとに印加する。
そして、収縮させるべき或いは収縮を解除すべき人工筋肉5a等の上側の電極に配線6a(+)または配線6a(−)から所定の電圧が印加されたタイミングで、内表面側の電極構造3bの配線6b(+)または配線6b(−)から人工筋肉5a等の下側の電極に所定の電圧を印加する。
このようにして、人工筋肉5a等を特定した状態で所定の電圧を加えて人工筋肉5a等を収縮させ、或いは収縮を解除することで、可動式テンセグリティ構造体1に所定の屈曲動作やねじれ動作、収縮(伸長)動作を的確に行わせることが可能となる。また、印加する電圧を昇降させ、或いは電圧を印加する回数を増減することで、人工筋肉5a等の収縮やその解除の度合を強くしたり弱くしたりすることが可能となり、上記の動作をより的確に行わせることが可能となる。
[5.その他の構成]
人工筋肉5a等に所定の電圧を供給するための電源装置や制御装置等については、公知の装置を用いることが可能である。また、制御装置は、例えばコンピュータに対するプログラミングによって制御を行うことが可能であり、その他、直接手動ですなわちスイッチのオン、オフ等によって人工筋肉に電力を入力するように構成することも可能である。
[6.可動式テンセグリティ構造体の効果]
以上のように、本実施形態に係る電極構造を備えた可動式テンセグリティ構造体1によれば、本体部2を構成する剛体部材4同士の端点E間を結ぶ複数のテンション材5の全部または一部を収縮制御可能な部材(人工筋肉5a等)で構成したことにより本体部2を可動式とし、テンセグリティ構造体を可動式とすることができる。また、人工筋肉5a等を収縮させることで、本体部2に、屈曲動作やねじれ動作、収縮動作等を行わせることが可能となる。
また、人工筋肉5a等を、本体部2の軸C方向に対して層Lごとに特有の向きに傾斜して設けたことで、本体部2に、屈曲動作やねじれ動作、収縮動作等を的確に行わせることが可能となる。また、層Lを形成する剛体部材4等をより細小に構成してその数を増加させ、層Lの軸C方向の厚さを短縮することで、肉薄の筒状に形成することが可能となる。このように可動式テンセグリティ構造体1の本体部2を構成する部材を細小化することで、可動式テンセグリティ構造体1の本体部2に、より滑らかでしなやかに屈曲やねじれ、収縮等の動作を行わせることが可能となる。
さらに、可動式テンセグリティ構造体の本体部2の外表面側と内表面側に、それぞれ筒状の電極構造3a、3bを設けたことで、人工筋肉5a等に容易かつ的確に通電することが可能となる。また、電極構造3a、3bを柔軟性を有する素材で構成すれば、電極構造3を、可動式テンセグリティ構造体1の本体部2の屈曲等の動作を妨害せずに、人工筋肉5a等に有効に電力を供給しつつ、かつ、その動作に追従して容易に変形させることが可能となる。
このように、肉薄の筒状に形成された可動式テンセグリティ構造体1の本体部2の外表面側と内表面側に、本体部2の屈曲等の動作に追従して容易に変形する筒状の電極構造3a、3bを備えるように構成したことで、可動式テンセグリティ構造体1の内部空間Sに人体等を挿入するようにして人間等が可動式テンセグリティ構造体1を着用する形とすることで、可動式テンセグリティ構造体1を、人間の筋力を増強するために着用する動作補助装置(強化服、パワーアシスト装置等)として用いることが可能となる。
なお、本実施形態に係る電極構造を備えた可動式テンセグリティ構造体1を動作補助装置として用いる際、図12(A)、(B)に示した本体部2の層Lを形成する剛体部材4等を極細小に構成して、可動式テンセグリティ構造体1をサポータ状或いはストッキング状に形成すれば、剛体部材4等が例えば人体に刺さる等して人体を刺激することもなく、サポータやストッキングを着用する時のように滑らかな感触で可動式テンセグリティ構造体1(動作補助装置)を着用することが可能となる。また、このようにサポータ等のように着用した状態で可動式テンセグリティ構造体1を作動させることで、上記の効果が実現されて、着用者の身体に屈曲等の動作を生じさせたり、着用者の動作を補助、補強することが可能となる。
また、本実施形態では、剛体部材4を長さや径が等しい棒状の部材で構成する場合について説明したが、本発明の効果を奏し得るものであれば、剛体部材4の長さや径、形状等は必ずしもすべての剛体部材4で同一でなくてもよい。テンション材や人工筋肉についても同様である。
本実施形態に係る可動式テンセグリティ構造体の本体部の構成を示す正面図である。 図1の本体部の剛体部材のみを示した図である。 (A)層Laに属する剛体部材の平面図であり、(B)層Lbに属する剛体部材の平面図である。 図1の本体部の各層のねじれ方向を示す図である。 (A)図1の本体部の剛体部材と人工筋肉とを示す正面図であり、(B)(A)の人工筋肉を収縮させた状態を説明する図である。 (A)図5(A)の変形例を示す正面図であり、(B)(A)の人工筋肉を収縮させた状態を説明する図である。 屈曲させた本体部を示す正面図である。 本体部の層の人工筋肉に収縮力が働く状態を説明する図である。 図1の本体部における剛体部材、人工筋肉、軸および内部空間を説明する平面図である。 剛体部材の本数を4本とした場合の内部空間等を説明する平面図である。 剛体部材の本数を6本とした場合の内部空間等を説明する平面図である。 (A)円筒形状とされた本体部の構成を示す正面図であり、(B)(A)の円Aで示される部分の拡大図である。 2つの筒状の電極構造とされた電極構造を示す正面図である。 (A)本実施形態に係る電極構造を備えた可動式テンセグリティ構造体の構成を示す図であり、(B)電極構造の配線と本体部の人工筋肉との接続を説明する拡大図である。 電極構造を形成する2つの筒状の各電極構造の展開図である。
符号の説明
1 電極構造を備えた可動式テンセグリティ構造体
2 可動式テンセグリティ構造体(本体部)
3、3a、3b 電極構造
4、4a、4b 剛体部材
5、5a、5b、5c、5d、5e テンション材
5、5a、5b、5c、5d 収縮制御可能な部材(人工筋肉)
6a、6b 配線
C 軸
E、E4a、E4b 端点
L、La、Lb 層
S 内部空間

Claims (11)

  1. 複数の剛体部材と、前記剛体部材同士の端点間を結ぶ複数のテンション材とを組み合わせて構成され、前記複数のテンション材の全部または一部が収縮制御可能な部材で構成された可動式テンセグリティ構造体を備え、
    前記可動式テンセグリティ構造体は、前記複数の剛体部材のうちの一定数の剛体部材が組み合わされて形成された層を1本の軸方向に積み重ねて構成され、かつ、前記層には前記一定数の剛体部材が組み合わされて前記軸の周囲に内部空間が形成されており、
    前記可動式テンセグリティ構造体の外表面側および前記内部空間側の内表面側に、それぞれ、前記各収縮制御可能な部材に通電するための筒状の電極構造を備えることを特徴とする電極構造を備えた可動式テンセグリティ構造体。
  2. 前記電極構造は、前記外表面側の電極構造に設けられた複数の配線がそれぞれ前記収縮制御可能な部材の少なくとも一方の電極に接続され、前記内表面側の電極構造に設けられた複数の配線がそれぞれ前記収縮制御可能な部材の少なくとも一方の電極に接続されていることを特徴とする請求項1に記載の電極構造を備えた可動式テンセグリティ構造体。
  3. 前記外表面側の電極構造の前記各配線および前記内表面側の電極構造の前記各配線には、それぞれ複数の前記収縮制御可能な部材の電極が接続されていることを特徴とする請求項2に記載の電極構造を備えた可動式テンセグリティ構造体。
  4. 前記外表面側の電極構造および前記内表面側の電極構造は、平行に配置された前記複数の配線をそれぞれ備え、かつ、前記外表面側の電極構造または前記内表面側の電極構造のいずれか一方の電極構造では前記複数の配線の方向が前記軸方向に略平行に配置され、他方の電極構造では前記複数の配線の方向が前記軸方向に略直交する方向に配置されていることを特徴とする請求項3に記載の電極構造を備えた可動式テンセグリティ構造体。
  5. 前記外表面側の電極構造または前記内表面側の電極構造のいずれか一方の電極構造における前記複数の配線に順次所定の電圧を印加し、収縮させるべき前記収縮制御可能な部材の片方の電極に前記電圧が印加されたタイミングで、他方の電極構造における当該収縮制御可能な部材のもう一方の電極に接続された前記配線に所定の電圧を印加することで、当該収縮制御可能な部材を収縮させるように構成されていることを特徴とする請求項4に記載の電極構造を備えた可動式テンセグリティ構造体。
  6. 前記剛体部材は、それぞれ、他の2つの剛体部材および当該他の2つの剛体部材の端点間を結ぶ前記テンション材の計3つの部材により当該剛体部材の周囲を取り巻かれないように構成されており、当該テンション材が前記収縮制御可能な部材で構成されていることを特徴とする請求項1から請求項5のいずれか一項に記載の電極構造を備えた可動式テンセグリティ構造体。
  7. 前記収縮制御可能な部材で構成されたテンション材は、前記軸方向に対して、前記層ごとに特有の向きに傾斜して設けられていることを特徴とする請求項1から請求項6のいずれか一項に記載の電極構造を備えた可動式テンセグリティ構造体。
  8. 前記収縮制御可能な部材は、高分子型の人工筋肉で構成されていることを特徴とする請求項1から請求項7のいずれか一項に記載の電極構造を備えた可動式テンセグリティ構造体。
  9. 前記収縮制御可能な部材を収縮させて1つの前記層の一部を前記軸方向に収縮させることで前記軸が屈曲するように構成されていることを特徴とする請求項1から請求項8のいずれか一項に記載の電極構造を備えた可動式テンセグリティ構造体。
  10. 前記収縮制御可能な部材を収縮させて1つの前記層の全体を前記軸方向に収縮させることで前記軸周りにねじれを生じるように構成されていることを特徴とする請求項1から請求項9のいずれか一項に記載の電極構造を備えた可動式テンセグリティ構造体。
  11. 前記収縮制御可能な部材を収縮させて前記層を前記軸方向に収縮させることで前記軸方向に収縮するように構成されていることを特徴とする請求項1から請求項10のいずれか一項に記載の電極構造を備えた可動式テンセグリティ構造体。
JP2008031592A 2008-02-13 2008-02-13 電極構造を備えた可動式テンセグリティ構造体 Withdrawn JP2009194982A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031592A JP2009194982A (ja) 2008-02-13 2008-02-13 電極構造を備えた可動式テンセグリティ構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031592A JP2009194982A (ja) 2008-02-13 2008-02-13 電極構造を備えた可動式テンセグリティ構造体

Publications (1)

Publication Number Publication Date
JP2009194982A true JP2009194982A (ja) 2009-08-27

Family

ID=41076501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031592A Withdrawn JP2009194982A (ja) 2008-02-13 2008-02-13 電極構造を備えた可動式テンセグリティ構造体

Country Status (1)

Country Link
JP (1) JP2009194982A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189468A (ja) * 2008-02-13 2009-08-27 Konica Minolta Holdings Inc 動作補助装置
CN108082318A (zh) * 2018-01-03 2018-05-29 北京科技大学 一种六杆三十索的柔性张拉整体机器人
JP2018525239A (ja) * 2015-07-17 2018-09-06 エクソ・バイオニクス,インコーポレーテッド ヒト外骨格のための汎用テンセグリティ関節
KR20210065646A (ko) * 2019-11-27 2021-06-04 울산과학기술원 텐서그리티 구조 복합재 및 이의 제조방법
CN112936322A (zh) * 2021-01-27 2021-06-11 山东大学 一种基于张拉整体结构的多指机械手爪、机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771274A (en) * 1972-05-30 1973-11-13 Gen Dynamics Corp Expandable retractable structure
JPH0539518U (ja) * 1991-06-27 1993-05-28 株式会社飯倉総合研究所 身体装着型腕筋力用補装具
US5642590A (en) * 1995-10-31 1997-07-01 Dynamic Systems Research, Inc. Deployable tendon-controlled structure
JP2002070156A (ja) * 2000-09-04 2002-03-08 Ohbayashi Corp 可変形状トラス構造体の形状制御方法
JP2003250842A (ja) * 2001-12-28 2003-09-09 Matsushita Electric Works Ltd 人体運動補助装置及び該人体運動補助装置に用いるアクチュエータを具備したマッサージ機及び該人体運動補助装置に用いるアクチュエータを具備した血圧計
JP2007029113A (ja) * 2005-07-22 2007-02-08 Toyota Motor Corp 補助装置
JP2007319187A (ja) * 2006-05-30 2007-12-13 Toyota Motor Corp 動作補助装置及びその制御方法
JP2009189468A (ja) * 2008-02-13 2009-08-27 Konica Minolta Holdings Inc 動作補助装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771274A (en) * 1972-05-30 1973-11-13 Gen Dynamics Corp Expandable retractable structure
JPH0539518U (ja) * 1991-06-27 1993-05-28 株式会社飯倉総合研究所 身体装着型腕筋力用補装具
US5642590A (en) * 1995-10-31 1997-07-01 Dynamic Systems Research, Inc. Deployable tendon-controlled structure
JP2002070156A (ja) * 2000-09-04 2002-03-08 Ohbayashi Corp 可変形状トラス構造体の形状制御方法
JP2003250842A (ja) * 2001-12-28 2003-09-09 Matsushita Electric Works Ltd 人体運動補助装置及び該人体運動補助装置に用いるアクチュエータを具備したマッサージ機及び該人体運動補助装置に用いるアクチュエータを具備した血圧計
JP2007029113A (ja) * 2005-07-22 2007-02-08 Toyota Motor Corp 補助装置
JP2007319187A (ja) * 2006-05-30 2007-12-13 Toyota Motor Corp 動作補助装置及びその制御方法
JP2009189468A (ja) * 2008-02-13 2009-08-27 Konica Minolta Holdings Inc 動作補助装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189468A (ja) * 2008-02-13 2009-08-27 Konica Minolta Holdings Inc 動作補助装置
JP2018525239A (ja) * 2015-07-17 2018-09-06 エクソ・バイオニクス,インコーポレーテッド ヒト外骨格のための汎用テンセグリティ関節
CN108082318A (zh) * 2018-01-03 2018-05-29 北京科技大学 一种六杆三十索的柔性张拉整体机器人
CN108082318B (zh) * 2018-01-03 2023-11-14 北京科技大学 一种六杆三十索的柔性张拉整体机器人
KR20210065646A (ko) * 2019-11-27 2021-06-04 울산과학기술원 텐서그리티 구조 복합재 및 이의 제조방법
KR102297347B1 (ko) * 2019-11-27 2021-09-01 울산과학기술원 텐서그리티 구조 복합재 및 이의 제조방법
CN112936322A (zh) * 2021-01-27 2021-06-11 山东大学 一种基于张拉整体结构的多指机械手爪、机器人

Similar Documents

Publication Publication Date Title
JP5299291B2 (ja) 可動式テンセグリティ構造体
JP3709723B2 (ja) アクチュエータ
JP6653557B2 (ja) 誘電エラストマー動作装置
JP2009194982A (ja) 電極構造を備えた可動式テンセグリティ構造体
KR101096321B1 (ko) 자벌레 로봇
JP2017220658A (ja) 発電体、発電装置およびセンサ
US20150343649A1 (en) Tentacle mechanism
JP2006123149A (ja) 関節駆動機構およびロボットハンド
US20210186637A1 (en) Bending structure and flexible tube for medical manipulator
US11576740B2 (en) Bending structure and flexible tube for medical manipulator
KR101369515B1 (ko) 가변 강성 구조체
JP5772221B2 (ja) 電歪アクチュエータおよびその使用方法
US11746760B2 (en) Artificial muscle tentacles
JPWO2018030250A1 (ja) アクチュエータ、アクチュエータモジュール、内視鏡、内視鏡モジュールおよび制御方法
JP5298555B2 (ja) テンセグリティ構造体および動作補助装置
JP2011036657A (ja) 内視鏡器具及びその製造方法
JP2007170210A (ja) アクチュエータおよびアクチュエータ屈曲駆動機構
JP2008510078A (ja) ファイバ又はフィラメント
CN113977593B (zh) 一种机器蛙人及仿人机械臂与无极弯扭用驱动机构
JP2006203982A (ja) 高分子アクチュエータおよび多関節ハンドロボット
JP2007296612A (ja) 電磁式アクチュエータ及び電磁式アクチュエータ装置
JP2018143720A (ja) 多節環状弾性体
JP6941037B2 (ja) ロボットの膝構造
Ma et al. Review of flexible actuators based on intelligent materials
JP4960320B2 (ja) アクチュエータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120807

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120918