JP2009194271A - Wiring board and method of manufacturing the same - Google Patents

Wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP2009194271A
JP2009194271A JP2008035440A JP2008035440A JP2009194271A JP 2009194271 A JP2009194271 A JP 2009194271A JP 2008035440 A JP2008035440 A JP 2008035440A JP 2008035440 A JP2008035440 A JP 2008035440A JP 2009194271 A JP2009194271 A JP 2009194271A
Authority
JP
Japan
Prior art keywords
hole
substrate
insulating substrate
wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008035440A
Other languages
Japanese (ja)
Other versions
JP5331350B2 (en
Inventor
Masatoshi Kanamaru
昌敏 金丸
Hideaki Takemori
英昭 竹盛
Kenji Higashiyama
賢史 東山
Tatsuya Motoki
達也 本木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kyowa Engineering Co Ltd
Original Assignee
Hitachi Kyowa Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kyowa Engineering Co Ltd filed Critical Hitachi Kyowa Engineering Co Ltd
Priority to JP2008035440A priority Critical patent/JP5331350B2/en
Publication of JP2009194271A publication Critical patent/JP2009194271A/en
Application granted granted Critical
Publication of JP5331350B2 publication Critical patent/JP5331350B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a through wiring board which is excellent for mass production and is low-cost, and has an increased flexibility in arranging a wiring board on which LED devices and optical components are to be mounted. <P>SOLUTION: A conductor pattern is arranged on both opposed faces of insulating substrate. On a wiring board, part of these conductor patterns is electrically conductive by means of a conductor arranged on a through-hole penetrating the insulating substrate. The through-hole of the insulating substrate includes a first through-hole having an inner wall surface exhibiting a small change in relative angle against a substrate side of the insulating substrate, and a second through-hole which has an inner surface with a parabolic cross-section on a surface side and on an opposite side of the insulating substrate, and penetrates the substrate. The average width of the cross-section of the first through-hole is smaller than the minimum width of the second through-hole. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は絶縁基板の両面に設けられた配線パターンを金属ビアホールに設けられた貫通配線で接続した配線基板に関するものである。   The present invention relates to a wiring board in which wiring patterns provided on both surfaces of an insulating substrate are connected by through wiring provided in a metal via hole.

従来、基板の両面に設けられた配線をビアホール(スルーホール)によって電気的に導通を得る構造(例えば貫通配線構造)を備えた配線基板において、基板に直接加工して貫通孔を形成する方法は大きく二つの方式に分かれる。   Conventionally, in a wiring board having a structure (for example, a through wiring structure) in which wirings provided on both surfaces of the board are electrically connected by via holes (through holes), a method of directly processing the board to form a through hole is as follows. There are two main methods.

一方は、配線基板にマイクロブラスト工法もしくはサンドブラスト工法を用いて形成したビアホール内部に導電ペーストを充填し、加熱することで貫通配線部分を形成し、配線基板の上下面をつなぐ方法である。   One is a method of filling a via hole formed by using a microblasting method or a sandblasting method on a wiring board and forming a through wiring part by heating and connecting the upper and lower surfaces of the wiring board.

この方式では、例えば、特開2004−363212号公報(特許文献1)に示されているように、ガラス基板の両面からサンドブラスト工法によって貫通孔を形成し、導電ペーストによって貫通孔内に配線を形成している。また、加熱後に導電ペーストが抜け落ちないように、貫通孔は絶縁基板の両面で孔が互いに偏芯して形成した例も記載されている。   In this method, for example, as disclosed in Japanese Patent Application Laid-Open No. 2004-363212 (Patent Document 1), through holes are formed by sandblasting from both sides of a glass substrate, and wiring is formed in the through holes by a conductive paste. is doing. In addition, there is also described an example in which the through-holes are formed eccentrically on both sides of the insulating substrate so that the conductive paste does not fall out after heating.

もう一方は配線基板に形成したビアホールの内部を金属ペーストや金属めっき法で完全に埋め込む方式である。この方式では、例えば、特開2003−347726号公報(特許文献2)に示されている。   The other is a method in which the inside of the via hole formed in the wiring board is completely filled with a metal paste or a metal plating method. This method is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-347726 (Patent Document 2).

厚さ0.2mmから0.8mmの絶縁樹脂板にレーザー加工によって設けられた直径70から130μmのビアホールにめっき金属が埋め込まれている。   Plating metal is embedded in a via hole having a diameter of 70 to 130 μm provided by laser processing on an insulating resin plate having a thickness of 0.2 mm to 0.8 mm.

この他にストレートノズルの形成方法として、特開2000−302488号公報(特許文献3)がある。この方式は、ガラス基板にレーザー加工や超音波加工により微細孔を形成後、樹脂材料やホットメルト材料を充填した状態で基板研磨加工を行い、その後、一方の開口周縁部をマイクロブラスト加工法やエッチング加工によって開口部にテーパを形成している。   In addition, as a method for forming a straight nozzle, there is JP 2000-302488 A (Patent Document 3). In this method, after forming micropores in a glass substrate by laser processing or ultrasonic processing, substrate polishing is performed in a state in which the resin material or hot melt material is filled, and then one of the peripheral edges of the opening is microblasted. A taper is formed in the opening by etching.

特開2004−363212号公報JP 2004-363212 A 特開2003−347726号公報JP 2003-347726 A 特開2000−302488号公報JP 2000-302488 A

近年、配線基板にはLED基板をはじめとして高密度配置や高密度実装が必要とされている。配線基板の用途としては、近年注目されている大出力のLED(Light Emitting Diode)基板がある。このLED基板はLEDの放熱に対応して熱的に冷却効果を高める必要があることから基板材料にセラミックス材料を用いている。そのLED基板に高密度に配置された複数のLEDを用いて高出力の照明機器や車のヘッドライトを目指している。   In recent years, high-density arrangement and high-density mounting are required for wiring boards including LED boards. As an application of the wiring board, there is a high output LED (Light Emitting Diode) board which has been attracting attention in recent years. This LED substrate uses a ceramic material as the substrate material because it is necessary to thermally enhance the cooling effect in response to the heat radiation of the LED. It aims at high output lighting equipment and car headlights using a plurality of LEDs arranged at high density on the LED substrate.

このような配線基板に貫通孔もしくはビアホールの形成にマイクロブラスト工法やサンドブラスト工法を用いて、配線基板の上下面をつなぐ方式を採用することができる。   A method of connecting the upper and lower surfaces of the wiring board by using a microblasting method or a sandblasting method for forming a through hole or a via hole in such a wiring board can be employed.

マイクロブラスト工法やサンドブラスト工法を用いた場合、基板全体を一度に加工できることから量産性に優れているものの、高密度実装で基板にバンプや電子部品を搭載するときに、貫通孔を形成する配置ピッチが大きくなり、必然的に狭ピッチ配置には適用が困難となることが予測できる。   When micro-blasting or sand blasting is used, the entire board can be processed at a time, so it is excellent in mass productivity. However, when mounting bumps and electronic parts on a board with high-density mounting, the arrangement pitch for forming through holes Therefore, it is inevitably difficult to apply to a narrow pitch arrangement.

レーザー加工によって基板に貫通孔もしくはビアホールを形成し、貫通孔内部をめっきで埋め込む構造は、LEDの高密度配置が可能であると考えられるが、レーザー加工では個々の貫通孔を形成する加工速度は速いものの、基板には数100個単位の貫通孔を形成する可能性もあり、トータルの加工時間が増えることから、量産性に課題があると考えられる。   The structure in which through holes or via holes are formed in the substrate by laser processing and the inside of the through holes is embedded by plating is considered to be capable of high-density arrangement of LEDs, but in laser processing, the processing speed for forming individual through holes is Although it is fast, there is a possibility that hundreds of through-holes may be formed in the substrate, and the total processing time increases. Therefore, it is considered that there is a problem in mass productivity.

さらに、基板の材質に絶縁樹脂板を適用している場合には基板の熱伝導率が小さく、LED基板に適用した場合には熱的な冷却効果が期待できないことが考えられる。   Furthermore, when the insulating resin plate is applied to the material of the substrate, the thermal conductivity of the substrate is small, and when applied to the LED substrate, a thermal cooling effect cannot be expected.

本発明の目的は、貫通配線を用いて各種素子を自由な配置で高密度に搭載できる配線基板を提供することにある。   An object of the present invention is to provide a wiring board on which various elements can be mounted with high density in a free arrangement using through wiring.

上記課題を解決するために本発明の配線基板は、絶縁基板の相対する両面に導体パターンが設けられ、これらの導体パターンの一部が前記絶縁基板を貫通する貫通孔に設けられた導電体により電気的に導通する配線基板において、前記絶縁基板の貫通孔は、前記絶縁基板の基板面に対して内壁の壁面が相対角度の変化が少ない第一の貫通孔と、前記絶縁基板の表面と反対面とに断面が放物線状の内壁面を有して貫通する第二の貫通孔とを有し、前記第一の貫通孔の断面における平均幅が前記第二の貫通孔の最小幅以下である。   In order to solve the above-described problems, the wiring board of the present invention is provided with conductor patterns on opposite surfaces of an insulating substrate, and a part of these conductor patterns is provided by a conductor provided in a through-hole penetrating the insulating substrate. In the electrically conductive wiring board, the through hole of the insulating substrate is opposite to the first through hole in which the wall surface of the inner wall has a small relative angle change with respect to the substrate surface of the insulating substrate, and the surface of the insulating substrate. And a second through-hole penetrating with a parabolic inner wall surface, and an average width in a cross-section of the first through-hole is equal to or less than a minimum width of the second through-hole. .

第二の貫通孔は、絶縁基板の一方の面の開口部中心と他方の面の開口部中心とが基板面に対してずれて設けても良い。   The second through hole may be provided such that the center of the opening on one surface of the insulating substrate and the center of the opening on the other surface are shifted from the substrate surface.

絶縁基板の材料としては、アルミナ,炭化珪素,窒化アルミニウム,二酸化珪素を主成分とするガラスのいずれかの材料を用いてもよい。   As a material of the insulating substrate, any material of glass mainly containing alumina, silicon carbide, aluminum nitride, or silicon dioxide may be used.

本発明によれば、金属材料の埋め込みが容易となり安価で量産性に優れた配線基板を提供することができる。   According to the present invention, it is easy to embed a metal material, and it is possible to provide a wiring board that is inexpensive and excellent in mass productivity.

セラミックス材料を用いた基板に、レーザー加工およびマイクロブラスト加工を用いて同一基板に異なる加工方法で2種類の貫通孔を形成した後、電解めっき法を適用して貫通孔を埋め込む場合の課題について図12を用いて説明する。   Figure 2 shows the problem of embedding through-holes by applying electrolytic plating after forming two types of through-holes in a different substrate using laser processing and microblasting on a substrate made of a ceramic material. 12 will be described.

図12(a)はレーザー加工およびマイクロブラスト加工を用いて貫通孔を形成した後の断面図を示しており、レーザー加工による貫通孔9bは、レーザービームが入射する入口側寸法16bが約150μm、出口側寸法16cが約100μmとなる。   FIG. 12A shows a cross-sectional view after a through hole is formed using laser processing and microblast processing. The through hole 9b formed by laser processing has an entrance side dimension 16b on which a laser beam is incident of about 150 μm, The outlet side dimension 16c is about 100 μm.

一般的にセラミックス材料の貫通加工では、貫通孔の断面をみると、0.2mm以下の厚さの基板ではほぼ垂直に加工できる。が、それ以上の基板厚さになると貫通孔断面は斜めになる。   Generally, in the through processing of a ceramic material, when a cross section of the through hole is seen, a substrate having a thickness of 0.2 mm or less can be processed substantially vertically. However, when the substrate thickness is larger than that, the cross section of the through hole becomes oblique.

一方、マイクロブラスト加工による貫通孔入口側の寸法16aは最小でも350μmとなり、中央部のギャップは約200μmとなる。   On the other hand, the dimension 16a on the through hole entrance side by microblasting is 350 μm at the minimum, and the gap at the center is about 200 μm.

次に、図12(a)の如くレーザー加工によって設けられた貫通孔に、電解めっき法で金属膜を形成した状態を図12(b)に示す。基板1の表面にはマスク用のレジスト15が形成されている。   Next, FIG. 12B shows a state in which a metal film is formed by electrolytic plating in a through hole provided by laser processing as shown in FIG. A mask resist 15 is formed on the surface of the substrate 1.

基板1においてレーザー加工によって設けられた貫通孔9bはめっき膜6bで埋め込まれた状態で電解めっきを停止すると、マイクロブラスト加工で形成した貫通孔9aはめっき膜6aの成長が足りず、貫通孔の中央部において孔がふさがっていない状態となる。これはめっきの成長速度が一定であるためであり、マイクロブラスト加工孔は中央部のギャップが大きいために貫通孔9aを金属が十分に埋め込むことができない。   When electrolytic plating is stopped in a state in which the through hole 9b provided by laser processing in the substrate 1 is embedded with the plating film 6b, the through hole 9a formed by microblasting is insufficient in the growth of the plating film 6a. The hole is not blocked at the center. This is because the plating growth rate is constant, and the microblast hole has a large gap at the center, so that the metal cannot sufficiently fill the through hole 9a.

この孔に金属を埋め込むまで電解めっきを追加すると、レーザー加工で形成した貫通孔9bは、表面からめっき金属が大きく飛び出すことになる。そのため、電解めっき終了後の基板表面の研削または研磨加工において、大きく飛び出した金属部が基板全体に凹凸部を形成し、しかも基板の両面に凹凸部が存在することから、基準面を得ることが困難になり、研削または研磨加工が困難となり、結果的に生産性が劣る。   When electrolytic plating is added until the metal is embedded in the hole, the plated metal greatly protrudes from the surface of the through hole 9b formed by laser processing. Therefore, in grinding or polishing the surface of the substrate after completion of electrolytic plating, the metal part that protrudes greatly forms an uneven part on the entire substrate, and the uneven part exists on both sides of the substrate, so that a reference surface can be obtained. It becomes difficult and grinding or polishing becomes difficult, resulting in poor productivity.

以上のように、同一基板に直径が異なる貫通孔を配置した場合には、第一に、貫通孔に金属を埋め込むことが困難である。また、第二に、基板加工に時間がかかるようになる。   As described above, when through holes having different diameters are arranged on the same substrate, first, it is difficult to embed a metal in the through hole. Second, it takes time to process the substrate.

そこで、本発明の一実施例について図面を用いて説明する。図1に本発明の一実施例に関する配線基板の断面図を示す。基板1の表面側および裏面側には様々な配線パターン8が設けられている。基板1の両面に設けられた配線パターン8は、基板1を貫通して設けられた貫通孔9に金属材料が埋め込まれた貫通配線部11によって基板の表裏面において導通が得られている。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a wiring board according to an embodiment of the present invention. Various wiring patterns 8 are provided on the front side and the back side of the substrate 1. The wiring pattern 8 provided on both surfaces of the substrate 1 is electrically connected to the front and back surfaces of the substrate by the through wiring portion 11 in which a metal material is embedded in the through hole 9 provided through the substrate 1.

基板1には、第一の貫通孔であるレーザー加工によって設けられた狭ピッチ配置の貫通孔9bが設けられている。また、第二の貫通孔であるマイクロブラスト加工によって基板の両面に設けられた孔である貫通孔9aが設けられている。   The substrate 1 is provided with through holes 9b having a narrow pitch arranged by laser processing, which are first through holes. Moreover, the through-hole 9a which is a hole provided in both surfaces of the board | substrate by the microblast process which is a 2nd through-hole is provided.

貫通孔9bである第一の貫通孔は、例えば、レーザー加工法のように、一方の基板面から高エネルギー線を照射して絶縁基板を貫通させてできた孔である。   The first through hole, which is the through hole 9b, is a hole formed by irradiating a high energy ray from one substrate surface and penetrating the insulating substrate, for example, as in a laser processing method.

貫通孔9aである第二の貫通孔は、孔の中心軸が表裏面で異なるように設けられている。例えば、絶縁基板の表裏面からマイクロブラスト加工法のように、マスクされた基板面に対して微粒子を高速で多数当てて基板を掘り進みできた孔である。   The 2nd through-hole which is the through-hole 9a is provided so that the center axis | shaft of a hole may differ in front and back. For example, it is a hole in which a large number of fine particles are applied to the masked substrate surface at a high speed from the front and back surfaces of the insulating substrate, as in the microblasting method.

基板1では、レーザー加工によって設けられた貫通孔9bの平均寸法幅と比較して、表裏面からマイクロブラスト加工法を用いて設けられた貫通孔9aの最小幅が同等以下の寸法になっている。詳細については後述する。   In the substrate 1, the minimum width of the through hole 9 a provided by using the microblasting method from the front and rear surfaces is equal to or less than the average size width of the through hole 9 b provided by laser processing. . Details will be described later.

配線パターン8は、例えばチタンかクロム若しくはいずれかの合金を下地膜として設け、その上に金で配線を設けて、更にその上に銅,ニッケル,金のいずれかによる配線パターンが設けられた、配線パターンが幾層にも積層したいわゆる多層配線となっている。   The wiring pattern 8 is provided with, for example, titanium, chromium, or any alloy as a base film, on which a wiring is provided with gold, and further on which a wiring pattern of copper, nickel, or gold is provided. This is a so-called multilayer wiring in which wiring patterns are stacked in layers.

下地膜は基板材料と金の配線との密着性を向上させるために設けている。また、後工程で熱的な付加がかかる場合は下地膜と金との間に白金層を挟んでも良い。配線材料はここに挙げたものに限らず、同様の作用をもたらすものであれば他の金属材料を組み合わせても良い。   The base film is provided to improve the adhesion between the substrate material and the gold wiring. In the case where thermal addition is applied in a later process, a platinum layer may be sandwiched between the base film and gold. The wiring materials are not limited to those listed here, and other metal materials may be combined as long as they provide the same action.

前述の基板1の製造方法は、レーザー加工により基板1の片側の面から形成された第一の貫通孔、およびマイクロブラスト加工により基板1の両面から形成された第二の貫通孔とに対して、めっき用配線の金属膜を基板の両側から形成する。金属膜にはチタンかクロムを下地膜としてその上にニッケルおよび金の膜を形成する。   The above-described method for manufacturing the substrate 1 includes the first through-hole formed from one surface of the substrate 1 by laser processing and the second through-hole formed from both surfaces of the substrate 1 by microblasting. The metal film of the plating wiring is formed from both sides of the substrate. On the metal film, titanium or chromium is used as a base film, and nickel and gold films are formed thereon.

その後、電解銅めっきを行い、貫通孔に銅を埋め込む。このとき、加工方法の違いによる貫通孔の断面形状の違いがあっても、第二の貫通孔である貫通孔9aの断面最小幅が第一の貫通孔である貫通孔9bの断面平均幅以下であれば、両者の断面における銅膜の成長には時間差が生じないので、ほぼ同様の時間で両者の断面において銅の埋め込みが行える。   Thereafter, electrolytic copper plating is performed to embed copper in the through hole. At this time, even if there is a difference in the cross-sectional shape of the through-hole due to a difference in processing method, the minimum cross-sectional width of the through-hole 9a that is the second through-hole is equal to or less than the average cross-sectional width of the through-hole 9b that is the first through-hole. If so, there is no time difference in the growth of the copper film in both cross sections, and copper can be buried in both cross sections in substantially the same time.

そして銅のめっき膜の成長が進みめっきを止めたときに基板1の表面から成長した余分な銅があれば、その余分な銅を研削加工もしくは研磨加工により取り除く。   If there is excess copper grown from the surface of the substrate 1 when the growth of the copper plating film proceeds and the plating is stopped, the excess copper is removed by grinding or polishing.

この様にして、基板1の表面を平滑化し、基板1上に配線パターン8を形成する。この場合、めっき膜が必要でない部分にはレジストを設けて、めっき後、レジストをはく離する。   In this way, the surface of the substrate 1 is smoothed and the wiring pattern 8 is formed on the substrate 1. In this case, a resist is provided in a portion where the plating film is not required, and the resist is peeled off after plating.

以上によれば、同一基板に直径が異なる貫通孔を配置した場合に、貫通孔に金属をめっき法により金属を埋め込むときに、埋め込まれた金属の成長速度の差が殆ど無くなり、断面の大きさが異なる貫通孔に対してめっき加工により導通加工を行っても、断面の大きな貫通孔に合わせて加工時間を設定しなくてもよいので、基板加工に要する時間が短縮される。   According to the above, when through holes with different diameters are arranged on the same substrate, when the metal is embedded in the through holes by plating, there is almost no difference in the growth rate of the embedded metal, and the size of the cross section Even if conductive processing is performed on the through-holes having different diameters by plating, the processing time does not have to be set in accordance with the through-hole having a large cross section, so that the time required for substrate processing is shortened.

図2は前記と同様の製造方法で加工した本発明の他の一実施例を示す。図2の構造では貫通孔の内部は全て金属で埋められている。図1に示した基板との違いは、はじめに600μm厚さの厚い基板を準備しておき、例えば図1で説明しためっき法を用いて貫通孔に金属を完全に埋め込んだ後に、基板表面を研削加工もしくは研磨加工によって300μm厚さまで加工したものである。そして基板1表面に配線パターン8を形成することで貫通孔9が全て埋め込まれた基板構造が実現できる。   FIG. 2 shows another embodiment of the present invention processed by the same manufacturing method as described above. In the structure of FIG. 2, the inside of the through hole is entirely filled with metal. The difference from the substrate shown in FIG. 1 is that a thick substrate having a thickness of 600 μm is prepared first, and the surface of the substrate is ground after the metal is completely embedded in the through-hole using, for example, the plating method described in FIG. It is processed to a thickness of 300 μm by processing or polishing. Then, by forming the wiring pattern 8 on the surface of the substrate 1, a substrate structure in which all the through holes 9 are embedded can be realized.

本実施例で用いる基板材料は、アルミナ,炭化珪素,窒化アルミニウム,二酸化珪素を主成分とするガラスなどの材料を用いると良い。これは基板材料として長期信頼性に優れている点および耐熱性に優れている点から適用することが好ましい。また、本実施例では、基板の材料は前記に示した材料だけでなく他のセラミックス材料を適用しても良い。なお、前記ガラスは二酸化珪素を主成分としたものを挙げているが、副成分として酸化ナトリウム,酸化マグネシウム,酸化カルシウム,酸化ホウ素,酸化りんなどが混在されている材料が好ましい。   As a substrate material used in this embodiment, a material such as glass mainly containing alumina, silicon carbide, aluminum nitride, or silicon dioxide may be used. This is preferably applied from the viewpoint of excellent long-term reliability and excellent heat resistance as a substrate material. In this embodiment, the substrate material is not limited to the materials described above, and other ceramic materials may be applied. In addition, although the said glass has mentioned the thing which has silicon dioxide as a main component, the material in which sodium oxide, magnesium oxide, calcium oxide, boron oxide, phosphorus oxide, etc. are mixed as a subsidiary component is preferable.

次に、本発明の実施例において、基板1に設けるマイクロブラスト加工孔の形成方法について説明する。図3は、図1においてマイクロブラスト加工法によって設けた貫通孔9aに金属材料(貫通配線部11)を埋め込む前の断面図を示している。   Next, a method for forming a microblast hole provided in the substrate 1 in the embodiment of the present invention will be described. FIG. 3 shows a cross-sectional view before embedding a metal material (through wiring portion 11) in the through hole 9a provided by the microblast processing method in FIG.

図3に示すように基板1には、マイクロブラスト加工法により上穴2および下穴3が形成される。上穴2と下穴3とは、基板1のほぼ中央部分で孔同士がつながっている。なお、基板1への上穴2及び下穴3の形成は、基板の両面から個々に実施している。基板1の各面から同じ加工速度でそれぞれの孔が設けられているので、基板1の厚み方向でほぼ中央付近で上穴2と下穴3とが接続(貫通)する。   As shown in FIG. 3, an upper hole 2 and a lower hole 3 are formed in the substrate 1 by a microblasting method. The upper hole 2 and the lower hole 3 are connected to each other at a substantially central portion of the substrate 1. Note that the formation of the upper hole 2 and the lower hole 3 in the substrate 1 is performed individually from both sides of the substrate. Since each hole is provided from each surface of the substrate 1 at the same processing speed, the upper hole 2 and the lower hole 3 are connected (penetrated) near the center in the thickness direction of the substrate 1.

上穴2の中心軸2aと下穴3の中心軸3aは、ずれて設けている。このような構成とすることで上穴2と下穴3との貫通部分5は、中心軸が同一の場合と比較して小さな貫通部分5を有することができる。これは、厳密には異なるが、マイクロブラスト加工によって設けられた穴の断面が放物線状であるため、穴の内壁面は底の部分から基板1表面の開口部まで徐々に傾きを変える曲面である。穴の底から曲面の傾きが変化するので、上穴2と下穴3とが交わる基板1の厚み方向中央付近では、それぞれの穴が基板1面上に開口する開口部よりも貫通してできた開口部の方が狭い。   The center axis 2a of the upper hole 2 and the center axis 3a of the lower hole 3 are provided so as to be shifted. With such a configuration, the penetrating portion 5 between the upper hole 2 and the lower hole 3 can have a smaller penetrating portion 5 as compared with the case where the central axes are the same. Although this is strictly different, since the cross section of the hole provided by microblasting is parabolic, the inner wall surface of the hole is a curved surface that gradually changes its inclination from the bottom to the opening on the surface of the substrate 1. . Since the inclination of the curved surface changes from the bottom of the hole, each hole can penetrate more than the opening opening on the surface of the substrate 1 near the center in the thickness direction of the substrate 1 where the upper hole 2 and the lower hole 3 intersect. The opening is narrower.

なお、マイクロブラスト加工法は微細な粒子を高速で吹き付けて加工するものであり、基板材料の硬さによって形成される孔の形状も異なってくる。例えば、基板材料に炭化珪素を用いた場合では、基板底面と貫通孔との角度は約70゜くらいになる。また、基板材料に窒化アルミニウムを用いた場合では、基板底面と貫通孔との角度は約55゜くらいになる。   Note that the microblasting method is a method in which fine particles are sprayed at a high speed, and the shape of the hole formed varies depending on the hardness of the substrate material. For example, when silicon carbide is used as the substrate material, the angle between the bottom surface of the substrate and the through hole is about 70 °. When aluminum nitride is used as the substrate material, the angle between the bottom surface of the substrate and the through hole is about 55 °.

このように基板の材料の違いによって貫通孔の形状が異なる。これはマイクロブラスト加工法が物理的に材料を削りながら加工しているためである。高速で吹き付けた粒子が材料を削りながら、周辺部、すなわち孔の上側へ放出されるため、基板の材料によって孔の曲率は異なる。より詳細には、孔の底面部分と側面部分ではその傾斜は変化する。すなわち、基板表面に近くなるほど孔の傾斜角度はより垂直に近くなる。   As described above, the shape of the through hole differs depending on the material of the substrate. This is because the microblasting method is processing while physically cutting the material. Since the particles sprayed at high speed are discharged to the periphery, that is, the upper side of the hole while scraping the material, the curvature of the hole differs depending on the material of the substrate. More specifically, the inclination varies between the bottom surface portion and the side surface portion of the hole. That is, the closer to the substrate surface, the closer the inclination angle of the hole is to be vertical.

基板1に単純に孔を形成する加工法としては、マイクロブラスト加工法を用いると良い。これは、基板1にマスクを設けて、基板全面を一度に加工できるためである。そのためマイクロブラスト加工法は量産性に優れているといえる。   As a processing method for simply forming holes in the substrate 1, a microblast processing method may be used. This is because the entire surface of the substrate can be processed at once by providing a mask on the substrate 1. Therefore, it can be said that the microblast processing method is excellent in mass productivity.

また、基板1を貫通させてできた貫通孔への金属材料の埋め込みは、電解めっき法が良い。これは安定して金属材料を埋め込むことが可能となるためである。   Moreover, the electroplating method is good for embedding the metal material in the through hole formed by penetrating the substrate 1. This is because the metal material can be stably embedded.

マスク材料にはマイクロブラスト加工に対応できるレジストを用いる。この様なレジストを適用することで微細なパターニングを行え、孔の位置も±1μm精度で形成できる。   As the mask material, a resist that can be used for microblasting is used. By applying such a resist, fine patterning can be performed and the position of the hole can be formed with an accuracy of ± 1 μm.

基板の両面から孔を加工した場合、上下の孔の中心軸をずらすと、上穴と下穴が接触する貫通部分の形状変化について図4を用いて説明する。図4上方に平面図を、下方に断面図を示す。   When holes are processed from both sides of the substrate, the shape change of the penetrating portion where the upper hole and the lower hole are in contact with each other will be described with reference to FIG. A plan view is shown in the upper part of FIG. 4 and a sectional view is shown in the lower part.

図4(a)は基板に設けられた孔の中心軸が表裏面で同一の場合、図4(b)は基板に設けられた表裏面での孔の中心位置が距離4a(上穴半径の半分の長さ)だけずらした場合、図4(c)は基板に設けられた表裏面での孔の中心位置が距離4b(上穴半径分の長さ)だけずらした場合を示している。   4A shows a case where the center axis of the hole provided in the substrate is the same on the front and back surfaces, and FIG. 4B shows that the center position of the hole on the front and back surfaces provided on the substrate is the distance 4a (the upper hole radius 4 (c) shows a case where the center positions of the holes on the front and back surfaces provided on the substrate are shifted by a distance 4b (length corresponding to the upper hole radius).

孔の中心軸を表裏面で同一の場合に基板1の両側から加工すると、基板の中央部でほぼ円形の貫通部分5が形成される。次に(b)のように下穴をずらすと貫通部分は5aに示すように楕円形に近い形状となり、貫通部分5と比較すると面積は小さく形成される。さらに(c)のようにずらすと、貫通部分5bのように細長い楕円形に形成され、さらに貫通部分の面積および貫通部の幅は小さくなる。   When the center axis of the hole is the same on the front and back surfaces, when processing is performed from both sides of the substrate 1, a substantially circular penetrating portion 5 is formed at the center of the substrate. Next, when the pilot hole is shifted as shown in (b), the penetrating portion has a shape close to an ellipse as shown in 5a, and the area is formed smaller than that of the penetrating portion 5. Further, when shifted as shown in (c), it is formed in an elongated oval shape like the penetrating portion 5b, and the area of the penetrating portion and the width of the penetrating portion are reduced.

これは、上穴に対して下穴の中心軸を変化させることで、貫通部分が接触して貫通部が形成される位置が変化するためである。例えば、中心軸が同一の場合は孔の底面の曲率で貫通するが、下穴の位置をずらすことで、貫通部は上穴の側面の方向に移動する。   This is because by changing the central axis of the lower hole with respect to the upper hole, the position where the penetrating portion comes into contact with the upper hole changes. For example, when the central axes are the same, the hole penetrates with the curvature of the bottom surface of the hole, but the penetrating portion moves in the direction of the side surface of the upper hole by shifting the position of the pilot hole.

次に、電解めっき法で貫通孔を埋め込む場合、基板のほぼ中央付近に設けられた貫通部分の大きさの違いによって、金属材料がどのように埋め込まれるのか説明する。   Next, how the metal material is embedded according to the difference in size of the through portion provided near the center of the substrate when the through hole is embedded by the electrolytic plating method will be described.

図5に図4(a)で示した上穴と下穴の中心軸が同一の埋め込み例を、図6に図4(c)で示した上穴と下穴の中心軸がずらした場合の埋め込み例を示す。なお、両図ともに同一時間、電解めっきを行った図と仮定している。   FIG. 5 shows an example of embedding in which the center axis of the upper hole and the lower hole shown in FIG. 4A is the same, and FIG. 6C shows the case where the center axis of the upper hole and the lower hole shown in FIG. An example of embedding is shown. Both figures are assumed to have been subjected to electrolytic plating for the same time.

図5は基板1に中心軸を同一として上穴2と下穴3を形成したものにめっき金属膜6を電解めっきで成長させた断面図を示す。   FIG. 5 shows a cross-sectional view in which a plated metal film 6 is grown by electrolytic plating on a substrate 1 in which an upper hole 2 and a lower hole 3 are formed with the same central axis.

図5(a)より、貫通孔の形状に沿ってめっき配線(図示せず)が形成されている。この状態でめっき液の中に浸漬して電圧を印加すると、図5(b)および(c)に示すようにはじめは貫通孔の形状に沿うようにめっき膜が成長する。   As shown in FIG. 5A, a plated wiring (not shown) is formed along the shape of the through hole. When a voltage is applied by immersing in the plating solution in this state, the plating film grows along the shape of the through hole as shown in FIGS. 5 (b) and 5 (c).

めっき膜が成長を続けると図5(d)に示すように一番距離が近い部分(貫通孔の最小幅)が交わり、そこを基点として孔を埋め込む方向に成長する。図5(e)は基板1の表裏面に設けられた金属めっき材料の研磨加工を実施した後の図であり、上穴2および下穴の中央部分には空間7が形成されている。   When the plating film continues to grow, as shown in FIG. 5 (d), the portions with the shortest distance (minimum width of the through holes) intersect and grow in the direction of filling the holes from there as a base point. FIG. 5 (e) is a diagram after polishing the metal plating material provided on the front and back surfaces of the substrate 1, and a space 7 is formed in the central portion of the upper hole 2 and the lower hole.

図6は基板1に上穴2の中心軸に対して下穴3の中心軸をずらして形成したものにめっき金属膜6を電解めっきで成長させた断面図を示す。   FIG. 6 shows a cross-sectional view in which a plated metal film 6 is grown by electrolytic plating on the substrate 1 formed by shifting the central axis of the lower hole 3 with respect to the central axis of the upper hole 2.

図6(a)より、貫通孔の形状に沿ってめっき配線(図示せず)が形成されている。この状態でめっき液の中に浸漬して電圧を印加すると、図6(b)に示すように、はじめは貫通孔の形状に沿うようにめっき膜が成長する。   As shown in FIG. 6A, a plated wiring (not shown) is formed along the shape of the through hole. When a voltage is applied by immersing in the plating solution in this state, a plating film grows along the shape of the through hole as shown in FIG. 6B.

めっき膜が成長を続けると図6(c)および(d)に示すように一番距離が近い部分(貫通孔の最小幅)が交わり、そこを基点として孔を埋め込む方向に成長する。   When the plating film continues to grow, as shown in FIGS. 6C and 6D, the portions with the shortest distance (minimum width of the through-hole) intersect and grow in the direction of filling the hole with that as a base point.

図6(e)は基板1の表裏面に設けられた金属めっき材料の研磨加工を実施した後の図であり、上穴2および下穴3とも金属材料によって完全に埋め込まれている。   FIG. 6E is a view after the metal plating material provided on the front and back surfaces of the substrate 1 is polished. The upper hole 2 and the lower hole 3 are completely filled with the metal material.

図5と比較すると、同一時間の電解めっき処理において、上穴と下穴の相対位置をずらした方式は、孔内が速く埋め込まれることがわかる。すなわち、マイクロブラスト加工によって基板の両面から設けられた貫通孔のめっき膜の成長は、貫通孔の半径方向の成長によって孔が封止され、その後、高さ方向に成長する。そのため、基板の中央部に形成される貫通部分は狭いほど、埋め込む時間は短時間で完了する。   Compared with FIG. 5, it can be seen that, in the electroplating process for the same time, the method in which the relative positions of the upper hole and the lower hole are shifted is quickly filled in the hole. That is, in the growth of the plated film of the through hole provided from both surfaces of the substrate by microblasting, the hole is sealed by the growth of the through hole in the radial direction, and then grows in the height direction. For this reason, the narrower the penetration portion formed in the central portion of the substrate, the shorter the time for embedding.

また、基板に形成した孔に金属材料の埋め込みを行う場合、基板表面にはレジストマスクを形成して必要な部分だけに金属膜を形成する。これにより、不要な部分に膜を形成する必要がなく、後工程の研磨も容易となる。   In addition, when a metal material is embedded in a hole formed in the substrate, a resist mask is formed on the surface of the substrate and a metal film is formed only on a necessary portion. As a result, it is not necessary to form a film on unnecessary portions, and polishing in subsequent steps is facilitated.

次に同一基板にレーザー加工孔とマイクロブラスト加工孔を基板の両面から偏心させて形成したものを同時に電解めっきで埋め込む方法について図7を用いて説明する。   Next, a method of simultaneously embedding a laser processing hole and a microblast processing hole formed in the same substrate by decentering from both surfaces of the substrate by electrolytic plating will be described with reference to FIG.

基板1にはレーザー加工による貫通孔11bおよびマイクロブラスト加工による貫通孔11aが形成されているものに電解銅めっきで埋め込んだ状態を示す。貫通孔11bの断面における平均寸法幅5bと貫通孔中央に設けられた開口部の最小寸法幅5aはほぼ等しくなるように形成されている。   A state in which the substrate 1 is formed with a through hole 11b formed by laser processing and a through hole 11a formed by microblast processing is embedded by electrolytic copper plating. The average dimension width 5b in the cross section of the through hole 11b and the minimum dimension width 5a of the opening provided at the center of the through hole are formed to be substantially equal.

埋め込まれる銅金属は貫通孔の中央部でほぼ等しいことから封止されるめっき時間が等しくなる。   Since the copper metal to be embedded is substantially equal at the center of the through hole, the plating time for sealing is equal.

なお、このときの実験条件は、めっき液:日本エレクトロプレイティング・エンジニヤース株式会社のミクロファブCu500を用いて、温度:25℃,電流密度3A/dm2である。 Incidentally, the experimental conditions at this time, the plating solution: using MICROFAB Cu500 of Electroplating Engineers of Japan Ltd., Temperature: 25 ° C., a current density of 3A / dm 2.

本発明では、基板に形成した貫通孔5bは平均寸法幅としているが、これは加工する基板の板厚によって、前記でも説明したように貫通孔の形状が異なるためである。板厚が薄い場合はほぼ垂直な孔が形成される。一方、板厚が厚くなると貫通孔は入口側と出口側で異なるが板厚が500μm程度までは、その値は50μm以下であることから電解めっきのばらつきを約10%程度と考慮すると、レーザー加工による貫通孔は平均寸法幅で規定することができる。   In the present invention, the through holes 5b formed in the substrate have an average size width because the shape of the through holes differs as described above depending on the thickness of the substrate to be processed. When the plate thickness is thin, almost vertical holes are formed. On the other hand, when the plate thickness is increased, the through hole differs between the inlet side and the outlet side, but when the plate thickness is about 500 μm, the value is 50 μm or less. The through hole can be defined by an average dimension width.

それに対して基板の両面から形成したマイクロブラスト孔の中央開口部での幅は、レーザー加工による貫通孔の平均寸法幅と比較して同等かもしくはそれ以下の寸法幅を有していると良い。それは、マイクロブラスト加工によって設けられた貫通孔は埋め込まれる体積で比較すると、レーザー加工によって設けられた貫通孔よりも大きいためである。   On the other hand, the width at the central opening of the microblast hole formed from both sides of the substrate is preferably equal to or smaller than the average dimension width of the through holes formed by laser processing. This is because the through-hole provided by microblasting is larger than the through-hole provided by laser processing as compared with the volume to be embedded.

基板に開口部を形成する位置は基板の半分の厚さ部分が好ましい。これは、金属材料を埋め込む場合に基板の表裏面まで埋め込まれる速度がほぼ同一となるためである。しかし、必ずしも基板の半分の厚さ部分で上穴と下穴が貫通しなくても良い。例えば、図8(a)に示すように、マイクロブラスト加工による第二の貫通孔の開通部はからずしも中央部だけに限らない。貫通する開口(開通)部が小さいのであれば、基板1表面に開口する開口部の位置は問わない。   The position where the opening is formed in the substrate is preferably a half thickness portion of the substrate. This is because when the metal material is embedded, the speed of embedding to the front and back surfaces of the substrate is almost the same. However, the upper hole and the lower hole do not necessarily have to penetrate through the half thickness portion of the substrate. For example, as shown to Fig.8 (a), the opening part of the 2nd through-hole by a microblast process is not restricted only to a center part. If the opening (opening) part which penetrates is small, the position of the opening part opened to the board | substrate 1 surface is not ask | required.

図8(b)に示すように、図8(a)の表面側を研削もしくは研磨加工を行うことで、基板の上穴と下穴とがずれていなくても同一基板に本発明を用いてレーザー加工による貫通孔およびマイクロブラスト加工によって設けられた貫通孔を形成することが可能となる。   As shown in FIG. 8B, the present invention is applied to the same substrate by grinding or polishing the surface side of FIG. 8A even if the upper hole and the lower hole of the substrate are not displaced. It is possible to form through holes provided by laser processing and through holes provided by microblasting.

基板に形成した貫通孔の断面形状が異なっていても部分的にくびれている開口部の寸法が同様であるならば、基板表面から飛び出すめっき金属も同様の高さとなり、製造工程において研削もしくは研磨加工が容易となる。   Even if the cross-sectional shape of the through hole formed in the substrate is different, if the size of the opening partly constricted is the same, the plated metal protruding from the surface of the substrate has the same height and is ground or polished in the manufacturing process. Processing becomes easy.

図9に本発明の他の実施例を示す。レーザー加工による貫通孔およびマイクロブラスト加工によって設けられた貫通孔を形成した基板1にめっき金属で埋め込むと同時に配線パターンを形成しても良い。この方式ではマイクロブラスト加工による厚膜貫通配線10aおよびレーザー加工による厚膜貫通配線10bが形成でき、基板表面には電解めっきによる厚膜配線が形成できる。表面配線の厚さは約80μmが基板の両面に形成できた。前記基板では、空間が形成されていても、はんだやLEDの封止材料などの液漏れ防止できる用途に適用することができる。   FIG. 9 shows another embodiment of the present invention. A wiring pattern may be formed at the same time as embedding with plating metal in the substrate 1 in which the through hole provided by laser processing and the through hole provided by microblasting are formed. In this system, a thick film through wiring 10a by microblasting and a thick film through wiring 10b by laser processing can be formed, and a thick film wiring by electrolytic plating can be formed on the substrate surface. A surface wiring thickness of about 80 μm could be formed on both sides of the substrate. Even if a space is formed on the substrate, the substrate can be applied to an application capable of preventing liquid leakage such as solder or LED sealing material.

また、孔内に空間が設けられた構造では、空間が形成されることで金−錫はんだなどの熱負荷が生じる場合でも周囲の線膨張率が小さなセラミックス材料と比較して線膨張率が大きな埋め込み金属は大きく膨張しようとするが、空間が存在することによって熱応力が分散される利点もある。それにより、配線に負荷される応力も小さくなるため、埋め込み金属部と基板表面の配線部との境の部分での熱応力は小さくなる。   Further, in the structure in which a space is provided in the hole, even when a thermal load such as gold-tin solder is generated due to the formation of the space, the linear expansion coefficient is larger than that of a ceramic material having a small linear expansion coefficient. Although the embedded metal tends to expand greatly, there is an advantage that thermal stress is dispersed by the presence of the space. As a result, the stress applied to the wiring is also reduced, so that the thermal stress at the boundary between the buried metal portion and the wiring portion on the substrate surface is reduced.

マイクロブラスト加工を用いて、基板の両面に孔を加工する場合は、基板の両面にマスクを形成し、パターニングを行う。その場合、はじめに基板の片面を基準面として合わせマークとパターンを形成し、その合わせマークにパターンに合わせて、反対面の孔の位置を決定する。これに適用する露光装置は両面から合わせる装置を用いるため、その合わせ精度は数μmの範囲に入り、良好なものは±1μmの範囲に入る。   When holes are formed on both sides of the substrate using microblasting, a mask is formed on both sides of the substrate and patterning is performed. In that case, first, an alignment mark and a pattern are formed using one surface of the substrate as a reference surface, and the position of the hole on the opposite surface is determined according to the pattern on the alignment mark. Since the exposure apparatus applied to this uses an apparatus that combines from both sides, the alignment accuracy is in the range of several μm, and the good one is in the range of ± 1 μm.

一般にマイクロブラスト加工法において孔を配置する配置ピッチは、孔断面で斜面を有することから狭ピッチ配置ができない。配置ピッチは基板の厚さによって異なるが孔の直径は約350μmでは配置ピッチは500μmくらいになる。一方、レーザー加工では垂直な孔を加工することが可能であることから孔の狭ピッチ配置が可能であり、配置ピッチは100〜150μmくらいとなる。   Generally, the arrangement pitch for arranging the holes in the microblasting method cannot be arranged narrowly because it has a slope in the hole cross section. The arrangement pitch varies depending on the thickness of the substrate, but when the hole diameter is about 350 μm, the arrangement pitch is about 500 μm. On the other hand, since it is possible to process vertical holes in laser processing, it is possible to arrange holes with a narrow pitch, and the arrangement pitch is about 100 to 150 μm.

本発明の各実施例では、マイクロブラスト孔の位置をずらすことによって、レーザー加工孔も狭ピッチで配置できる。従来、マイクロブラスト加工孔だけでは実現できなかった孔配置の基板が実現できる。それにより生産性を低下させずに低コストの基板を提供できる。   In each embodiment of the present invention, the laser processing holes can be arranged at a narrow pitch by shifting the position of the microblast holes. Conventionally, it is possible to realize a substrate with a hole arrangement that cannot be realized only with microblasted holes. Thereby, a low-cost substrate can be provided without reducing productivity.

マイクロブラスト加工を用いて基板の表面および裏面に形成するパターンは円形に限らず、四角,多角形,楕円形状などを適用しても良い。さらに、パターニングにおける孔の大きさは基板の厚さによって変更しても良く、一方の孔に対して反対面の孔の中心軸がずれているかもしくは孔内面の底辺、すなわち基板との角度を有していない部分以外で接触しているのであれば、中心軸が同一の場合と比較して小さい貫通孔を形成することが可能である。   The pattern formed on the front surface and the back surface of the substrate using microblasting is not limited to a circle, and a square, a polygon, an ellipse, or the like may be applied. Further, the size of the hole in the patterning may be changed depending on the thickness of the substrate, and the center axis of the hole on the opposite surface is shifted with respect to one hole or has an angle with the bottom of the hole inner surface, that is, the substrate. If the contact is made at a portion other than the portion that is not, it is possible to form a small through hole as compared with the case where the central axes are the same.

以上のような方法を用いて形成した配線基板に素子を搭載した例を図10および図11に示す。   An example in which elements are mounted on a wiring board formed by using the above method is shown in FIGS.

図10より、基板1にはマイクロブラスト加工による貫通孔9aとレーザー加工法によって設けられた貫通孔9bが複数個形成され、貫通孔の内部は銅で埋め込まれており、基板の表裏面で貫通配線を形成している。   As shown in FIG. 10, the substrate 1 has a plurality of through-holes 9a formed by microblasting and a plurality of through-holes 9b formed by a laser processing method. Wiring is formed.

各貫通配線は基板の表面部に設けられた多層配線8aが形成され、多層配線8aにはフォトダイオード12およびレーザダイオード13が、はんだ材料やバンプを介して、搭載されている。   Each through wiring is formed with a multilayer wiring 8a provided on the surface portion of the substrate, and a photodiode 12 and a laser diode 13 are mounted on the multilayer wiring 8a via a solder material or a bump.

図11は基板1にLED素子14が搭載され、基板表面の配線8aと基板裏面の配線8bとが貫通孔9a,9bを介して、基板の表裏面で電気的につながっている。実質的には図示していないが基板1に接触してリフレクタ基板や封止材料が形成される。   In FIG. 11, the LED element 14 is mounted on the substrate 1, and the wiring 8a on the front surface of the substrate and the wiring 8b on the back surface of the substrate are electrically connected to each other on the front and back surfaces of the substrate through the through holes 9a and 9b. Although not shown, the reflector substrate and the sealing material are formed in contact with the substrate 1.

以上のように設けられた配線基板の貫通配線における抵抗値を測定した結果、0.05Ω以下であった。また、信頼性試験において、−40℃で30分保持と85℃で30分の保持を1000サイクル実施した熱サイクル試験では、抵抗値の増加が0.004Ω以下であり信頼性にも優れている。   The resistance value in the through wiring of the wiring board provided as described above was measured and found to be 0.05Ω or less. Further, in the reliability test, in the thermal cycle test in which the holding at −40 ° C. for 30 minutes and the holding at 85 ° C. for 30 minutes is performed for 1000 cycles, the increase in resistance value is 0.004Ω or less and the reliability is excellent. .

本実施例のように一枚の配線基板にレーザー加工法および前記基板の表裏面からマイクロブラスト加工法を用いて形成することで、貫通孔はレーザー加工による狭ピッチ配置が可能で、しかもマイクロブラスト加工による量産性に優れた基板を提供できる。   By forming a single wiring board using a laser processing method and a microblasting method from the front and back surfaces of the substrate as in this embodiment, the through holes can be arranged in a narrow pitch by laser processing, and the microblasting It is possible to provide a substrate excellent in mass productivity by processing.

レーザー加工法における平均寸法幅に対して基板の表裏面からマイクロブラスト加工法を用いて形成する貫通孔に形成される最小幅を同等以下の寸法とすることにより、電解銅めっきにおいて埋め込み処理を行う場合、孔を埋め込むめっき速度が同等であることから、孔の貫通部分がほぼ同時に埋め込まれる。そのため、基板表面からはみ出すめっき金属も大きく成長することがなく、後工程の研磨作業も容易に行える。   The embedding process is performed in electrolytic copper plating by setting the minimum width formed in the through hole formed by using the microblasting method from the front and back surfaces of the substrate to the average size width in the laser processing method, which is equal to or less than the same size. In this case, since the plating speed for embedding the holes is equal, the through portions of the holes are embedded almost simultaneously. Therefore, the plating metal that protrudes from the substrate surface does not grow greatly, and the polishing work in the subsequent process can be easily performed.

本実施例における貫通孔に埋め込む金属は、電解銅めっき法を用いて埋め込むことで、基板表裏面の抵抗値は低抵抗値が得られ、バルク銅材と比較しても差異がない抵抗値が得られる。   The metal embedded in the through hole in this example is embedded by using an electrolytic copper plating method, so that the resistance value of the front and back surfaces of the substrate has a low resistance value, and there is no difference even when compared with the bulk copper material. can get.

貫通孔の埋め込み方法には電解めっき法が良い。熱的な冷却基板として適用する場合は貫通孔を全て金属材料で埋め込むことが好ましいが、はんだや封止材料などの漏れを防止する目的あれば貫通孔の一部が金属材料で埋め込まれていれば良い。   Electrolytic plating is preferable as a method for filling the through hole. When applied as a thermal cooling substrate, it is preferable to embed all the through holes with a metal material. However, for the purpose of preventing leakage of solder, sealing material, etc., a part of the through holes may be embedded with a metal material. It ’s fine.

本発明の一実施例における貫通配線断面図。The penetration wiring sectional view in one example of the present invention. 本発明の他の実施例に関する貫通配線断面図。The penetration wiring sectional drawing regarding the other Example of this invention. 位置ずれにおける貫通孔の断面図。Sectional drawing of the through-hole in position shift. 位置ずれにおける貫通孔の詳細図。The detailed view of the through-hole in position shift. 従来の貫通孔めっきプロセスを説明する図。The figure explaining the conventional through-hole plating process. 本発明の一実施例における貫通孔めっきプロセスを説明する図。The figure explaining the through-hole plating process in one Example of this invention. 本発明の一実施例を説明するための詳細断面図。The detailed sectional view for explaining one example of the present invention. 本発明の他の実施例に関する断面図。Sectional drawing regarding the other Example of this invention. 本発明の他の一実施例に関する貫通配線断面図。The penetration wiring sectional view concerning other examples of the present invention. 本発明の一実施例に関する斜視図。The perspective view regarding one Example of this invention. 本発明のLED素子を搭載した実施例に関する斜視図。The perspective view regarding the Example which mounts the LED element of this invention. 従来構造に関する断面図。Sectional drawing regarding a conventional structure.

符号の説明Explanation of symbols

1 基板
2 上穴
3 下穴
4 位置ずれ長さ
5 貫通部分
6 めっき金属膜
7 空間
8 配線パターン
9 貫通孔
10 厚膜貫通配線
11 貫通配線部
12 フォトダイオード
13 レーザダイオード
14 LED素子
15 レジスト
16 寸法幅
DESCRIPTION OF SYMBOLS 1 Substrate 2 Upper hole 3 Lower hole 4 Position shift length 5 Through portion 6 Plating metal film 7 Space 8 Wiring pattern 9 Through hole 10 Thick film through wiring 11 Through wiring portion 12 Photo diode 13 Laser diode 14 LED element 15 Resist 16 Dimensions width

Claims (4)

絶縁基板の相対する両面に導体パターンが設けられ、これらの導体パターンの一部が前記絶縁基板を貫通する貫通孔に設けられた導電体により電気的に導通する配線基板において、前記絶縁基板の貫通孔は、前記絶縁基板の基板面に対して内壁の壁面が相対角度の変化が少ない第一の貫通孔と、前記絶縁基板の表面と反対面とに断面が放物線状の内壁面を有して貫通する第二の貫通孔とを有し、前記第一の貫通孔の断面における平均幅が前記第二の貫通孔の最小幅以下であることを特徴とする配線基板。   Conductor patterns are provided on both opposing surfaces of the insulating substrate, and a part of these conductor patterns is electrically connected by a conductor provided in a through-hole penetrating the insulating substrate. The hole has a first through hole in which the wall surface of the inner wall has little change in relative angle with respect to the substrate surface of the insulating substrate, and an inner wall surface having a parabolic cross section on the surface opposite to the surface of the insulating substrate. And a second through hole penetrating, wherein an average width in a cross section of the first through hole is equal to or less than a minimum width of the second through hole. 請求項1記載の配線基板において、前記第二の貫通孔は、前記絶縁基板の一方の面の開口部中心と他方の面の開口部中心とが基板面に対してずれていることを特徴とする配線基板。   2. The wiring board according to claim 1, wherein the second through hole has an opening center of one surface of the insulating substrate and an opening center of the other surface being shifted from the substrate surface. Wiring board to be used. 請求項1記載の配線基板において、前記絶縁基板は、アルミナ,炭化珪素,窒化アルミニウム,二酸化珪素のいずれか一つを主成分とするセラミックスもしくはガラス基板であることを特徴とする配線基板。   2. The wiring substrate according to claim 1, wherein the insulating substrate is a ceramic or glass substrate mainly containing any one of alumina, silicon carbide, aluminum nitride, and silicon dioxide. 請求項1記載の配線基板において、前記貫通孔に設けられた導電体は、電解銅めっき法で埋め込まれたことを特徴とする配線基板。   The wiring board according to claim 1, wherein the conductor provided in the through hole is embedded by an electrolytic copper plating method.
JP2008035440A 2008-02-18 2008-02-18 Wiring board Expired - Fee Related JP5331350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008035440A JP5331350B2 (en) 2008-02-18 2008-02-18 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008035440A JP5331350B2 (en) 2008-02-18 2008-02-18 Wiring board

Publications (2)

Publication Number Publication Date
JP2009194271A true JP2009194271A (en) 2009-08-27
JP5331350B2 JP5331350B2 (en) 2013-10-30

Family

ID=41076003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008035440A Expired - Fee Related JP5331350B2 (en) 2008-02-18 2008-02-18 Wiring board

Country Status (1)

Country Link
JP (1) JP5331350B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104819A (en) * 2010-11-09 2012-05-31 Samsung Electro-Mechanics Co Ltd Printed circuit board and filling method for via hole thereof
JP2016072449A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Conductive material filling through electrode substrate and manufacturing method of the same
CN108401363A (en) * 2017-02-07 2018-08-14 扬智科技股份有限公司 Board structure of circuit
CN109616458A (en) * 2013-11-21 2019-04-12 大日本印刷株式会社 Through electrode substrate and the semiconductor device for utilizing through electrode substrate
JP2020199748A (en) * 2019-06-13 2020-12-17 セイコーエプソン株式会社 Wiring board, manufacturing method of wiring board, inkjet head, mems device, and oscillator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722100A (en) * 1993-04-29 1995-01-24 Fujitsu Ltd Interconnector having through hole and manufacture thereof
JP2000223810A (en) * 1999-02-01 2000-08-11 Kyocera Corp Ceramic board and its manufacture
JP2003218525A (en) * 2002-01-18 2003-07-31 Fujitsu Ltd Circuit board and its manufacturing method
JP2004311919A (en) * 2003-02-21 2004-11-04 Shinko Electric Ind Co Ltd Through-hole filling method
JP2007227512A (en) * 2006-02-22 2007-09-06 Ibiden Co Ltd Printed wiring board and its manufacturing method
JP2008021739A (en) * 2006-07-11 2008-01-31 Shinko Electric Ind Co Ltd Method for manufacturing substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722100A (en) * 1993-04-29 1995-01-24 Fujitsu Ltd Interconnector having through hole and manufacture thereof
JP2000223810A (en) * 1999-02-01 2000-08-11 Kyocera Corp Ceramic board and its manufacture
JP2003218525A (en) * 2002-01-18 2003-07-31 Fujitsu Ltd Circuit board and its manufacturing method
JP2004311919A (en) * 2003-02-21 2004-11-04 Shinko Electric Ind Co Ltd Through-hole filling method
JP2007227512A (en) * 2006-02-22 2007-09-06 Ibiden Co Ltd Printed wiring board and its manufacturing method
JP2008021739A (en) * 2006-07-11 2008-01-31 Shinko Electric Ind Co Ltd Method for manufacturing substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104819A (en) * 2010-11-09 2012-05-31 Samsung Electro-Mechanics Co Ltd Printed circuit board and filling method for via hole thereof
CN109616458A (en) * 2013-11-21 2019-04-12 大日本印刷株式会社 Through electrode substrate and the semiconductor device for utilizing through electrode substrate
CN109616458B (en) * 2013-11-21 2023-06-23 大日本印刷株式会社 Through electrode substrate and semiconductor device using the same
JP2016072449A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Conductive material filling through electrode substrate and manufacturing method of the same
CN108401363A (en) * 2017-02-07 2018-08-14 扬智科技股份有限公司 Board structure of circuit
JP2020199748A (en) * 2019-06-13 2020-12-17 セイコーエプソン株式会社 Wiring board, manufacturing method of wiring board, inkjet head, mems device, and oscillator
JP7302318B2 (en) 2019-06-13 2023-07-04 セイコーエプソン株式会社 Wiring board, wiring board manufacturing method, inkjet head, MEMS device, and oscillator

Also Published As

Publication number Publication date
JP5331350B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5331350B2 (en) Wiring board
US9698563B2 (en) Flexible LED device and method of making
TWI504318B (en) Printed circuit board and method of manufacturing the same
TWI637672B (en) New termination and connection between chip and substrate
US9775237B2 (en) Wiring substrate and method for manufacturing the same
US9504165B2 (en) Method of forming conductive traces on insulated substrate
TW201626512A (en) Wiring circuit board, semiconductor device, wiring circuit board manufacturing method, and semiconductor device manufacturing method
JP6400928B2 (en) Wiring board and electronic device
JP6590179B2 (en) Method for terminating the sides of a multilayer composite electronic structure
JP2007042781A (en) Sub-mount and manufacturing method thereof
TW202226468A (en) Through electrode substrate, manufacturing method thereof and mounting substrate
JP2014207452A (en) Method for producing through-glass via
TWI676409B (en) Method for fabrication of an electronic module and electronic module
CN104584244A (en) Method for manufacturing optical device and optical device manufactured by same
EP2493272A1 (en) Device mounting structure and device mounting method
JP2008098296A (en) Light-emitting apparatus and manufacturing method thereof
TW201530825A (en) Methods of locating differently shaped or differently sized LED die in a submount
WO2011037185A1 (en) Mounting substrate, light emitting body, and method for manufacturing mounting substrate
TWI592295B (en) Glass core substrate and method for manufacturing the same
JP7170915B2 (en) Method for manufacturing high density vias
CN105023910B (en) Conductive blind via structure and method for fabricating the same
US10950463B2 (en) Manufacturing trapezoidal through-hole in component carrier material
JP2005051184A (en) Printed wiring circuit, luminaire and method for manufacturing the printed wiring circuit
TWI581697B (en) Method for manufacturing heat dissipation structure of ceramic substrate
US20140154463A1 (en) Substrate structure and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5331350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees