JP2008098296A - Light-emitting apparatus and manufacturing method thereof - Google Patents

Light-emitting apparatus and manufacturing method thereof Download PDF

Info

Publication number
JP2008098296A
JP2008098296A JP2006276739A JP2006276739A JP2008098296A JP 2008098296 A JP2008098296 A JP 2008098296A JP 2006276739 A JP2006276739 A JP 2006276739A JP 2006276739 A JP2006276739 A JP 2006276739A JP 2008098296 A JP2008098296 A JP 2008098296A
Authority
JP
Japan
Prior art keywords
insulating substrate
light emitting
emitting device
light
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006276739A
Other languages
Japanese (ja)
Other versions
JP4846506B2 (en
Inventor
Hiroshi Kuami
寛 朽網
Tatsuo Suemasu
龍夫 末益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006276739A priority Critical patent/JP4846506B2/en
Publication of JP2008098296A publication Critical patent/JP2008098296A/en
Application granted granted Critical
Publication of JP4846506B2 publication Critical patent/JP4846506B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting apparatus excellent in heat radiation performance, light emission efficiency and dimension accuracy, and to provide a manufacturing method thereof. <P>SOLUTION: This light-emitting apparatus 10 is provided with an insulating substrate 11 having metal wiring 15 formed thereon, a light-emitting device 12 mounted to the substrate 11, a reflection plate 13 joined to the insulating substrate 11 and having a reflection surface 25 formed so as to be slanted outward to be gradually increased in width from a mounting surface 26, and a sealing resin 14 for sealing the light-emitting device 12. The insulating substrate 11 is formed of a silicon single crystal substrate or a ceramic substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発光ダイオードを発光素子として備えた発光装置およびその製造方法に関し、特に、発光素子の保護および給電を目的とする構造を改善した発光装置およびその製造方法に関する。  The present invention relates to a light-emitting device including a light-emitting diode as a light-emitting element and a method for manufacturing the light-emitting device, and more particularly to a light-emitting device having an improved structure for protecting and supplying power to the light-emitting element.

照明装置への応用が期待される窒化ガリウム(GaN)系の発光ダイオード(LED)は、電流を多く流すことによって、より明るい光を発する。しかしながら、このGaN系のLEDは、20mA以上の電流を流すと、発光に伴う温度の上昇によって、発光効率が低下することが知られている。また、LEDの温度の上昇は、LEDの寿命が短くなる原因となる。
従来、LEDを実装するために用いられているナイロン基板は、放熱性が悪いため、LEDをより高輝度にするために、放熱性に優れる基板が求められている。
このような放熱性に優れる基板としてアルミニウム基板を用いることによって、放熱性を向上した発光装置が開示されている(例えば、特許文献1参照)。しかしながら、この発光装置では、LEDの電極の少なくとも一方と配線基板とをワイヤによって接続する必要があるので、このワイヤを配線基板に囲まれていない部分に露出させるか、配線を保護するために配線保護用のカップを設けるなど、本質的には不要な部分を設ける必要があった。
Gallium nitride (GaN) -based light-emitting diodes (LEDs) that are expected to be applied to lighting devices emit brighter light by flowing a large amount of current. However, it is known that when a current of 20 mA or more flows, the GaN-based LED has a decrease in light emission efficiency due to an increase in temperature associated with light emission. Moreover, the rise in LED temperature causes the life of the LED to be shortened.
Conventionally, since a nylon substrate used for mounting an LED has poor heat dissipation, a substrate having excellent heat dissipation is required to make the LED have higher luminance.
A light-emitting device with improved heat dissipation by using an aluminum substrate as such a substrate with excellent heat dissipation has been disclosed (for example, see Patent Document 1). However, in this light emitting device, since it is necessary to connect at least one of the electrodes of the LED and the wiring board with a wire, the wire is exposed to a portion not surrounded by the wiring board or is used to protect the wiring. Essentially unnecessary parts had to be provided, such as providing a protective cup.

また、LEDを搭載する基台部をシリコンカーバイド/シリコン/アルミニウムの複合材料で形成し、放熱性を向上させた発光装置が開示されている(例えば、特許文献2参照)。
しかしながら、この発光装置では、各部品は様々な組成に調合された材料からなる上に、各部品は成形後に焼結するなどして個別に作製されるため、電極などの配線なども個別に施さなければならなかった。
In addition, a light emitting device is disclosed in which a base portion on which an LED is mounted is formed of a composite material of silicon carbide / silicon / aluminum to improve heat dissipation (see, for example, Patent Document 2).
However, in this light-emitting device, each part is made of materials prepared in various compositions, and each part is individually manufactured by sintering after molding. Therefore, wiring such as electrodes is also individually applied. I had to.

また、良好な放熱効果の得られるLEDの実装構造として、金属基板を樹脂で分断する構造が開示されている(例えば、特許文献3参照)。
しかしながら、このLEDの実装構造は、絶縁を取るために、正極と負極の間を樹脂で繋ぐ構造をなしているから、強度の点で明らかに問題があり、実用的ではなかった。
Moreover, a structure in which a metal substrate is divided by a resin is disclosed as an LED mounting structure that provides a good heat dissipation effect (see, for example, Patent Document 3).
However, this LED mounting structure has a structure in which a positive electrode and a negative electrode are connected by a resin in order to obtain insulation, so there is a clear problem in terms of strength and it is not practical.

また、異方性エッチングにより基板に形成された凹部内にLEDを実装した発光装置が開示されている(例えば、特許文献4、特許文献5参照)。
この発光装置のように、あらかじめ異方性エッチングにより凹部が形成された基板に回路を形成する場合、レジスト形成が困難であることから、印刷法により回路を形成しなければならなかった。しかしながら、印刷法により、基板上に形成された凸部に回路を形成することは容易であるが、基板に形成された凹部内に微細な回路パターンを形成することは困難であった。また、印刷法では、インクの斑などが原因となり、形成された回路の高さにばらつきが生じる。そのため、基板のLEDの実装面に形成された電極にも凹凸が生じるので、自動機により基板にLEDを実装することが困難であった。
Further, a light emitting device in which an LED is mounted in a recess formed in a substrate by anisotropic etching is disclosed (for example, see Patent Document 4 and Patent Document 5).
When a circuit is formed on a substrate in which a concave portion has been previously formed by anisotropic etching as in this light emitting device, since it is difficult to form a resist, the circuit has to be formed by a printing method. However, it is easy to form a circuit on the convex portion formed on the substrate by a printing method, but it is difficult to form a fine circuit pattern in the concave portion formed on the substrate. In the printing method, the height of the formed circuit varies due to ink spots and the like. For this reason, the electrodes formed on the LED mounting surface of the substrate are also uneven, making it difficult to mount the LED on the substrate by an automatic machine.

さらに、LEDを搭載するための搭載部を有する略平板状のセラミック基板の上面に、LEDを収容するための貫通穴を有するセラミック窓枠を積層して成る発光素子収納用パッケージが開示されている(例えば、特許文献6参照)。
しかしながら、セラミック基板を寸法精度良く製造あるいは加工することは難しく、一般的にセラミック基板は、その表面に凹凸がある。しかも、自動機により基板にLEDを実装するためには、基板の表面全体の凹凸のばらつきは100μm以下であることが必要であり、50μm以下であることが好ましいことから、自動機によるLEDの実装では、不良が発生することは避けられなかった。
特開2003−152225号公報 特開2005−136137号公報 特開2004−119981号公報 特開2001−345508号公報 特開2005−327820号公報 特開2002−232017号公報
Furthermore, a light emitting element storage package is disclosed, in which a ceramic window frame having a through hole for storing an LED is laminated on the upper surface of a substantially flat ceramic substrate having a mounting portion for mounting the LED. (For example, refer to Patent Document 6).
However, it is difficult to manufacture or process a ceramic substrate with high dimensional accuracy. Generally, a ceramic substrate has irregularities on its surface. Moreover, in order to mount LEDs on a substrate by an automatic machine, the unevenness of the entire surface of the board needs to be 100 μm or less, and preferably 50 μm or less. Then, it was inevitable that defects occurred.
JP 2003-152225 A JP 2005-136137 A JP 2004-119981 A JP 2001-345508 A JP 2005-327820 A Japanese Patent Laid-Open No. 2002-232017

本発明は、前記事情に鑑みてなされたもので、放熱性、発光効率および寸法精度に優れた発光装置およびその製造方法を提供することを目的とする。  The present invention has been made in view of the above circumstances, and an object thereof is to provide a light emitting device excellent in heat dissipation, light emission efficiency, and dimensional accuracy, and a manufacturing method thereof.

本発明は、金属配線が形成された絶縁基板と、該絶縁基板に実装された発光素子と、前記絶縁基板に接合され、かつ、前記発光素子を囲み、前記発光素子が実装された面から次第に幅が広がるように外側へ傾斜した反射面が形成された反射板と、前記発光素子を封止する封止樹脂とを備えた発光装置であって、前記絶縁基板はシリコン単結晶基板またはセラミックス基板からなる発光装置を提供する。  The present invention relates to an insulating substrate on which metal wiring is formed, a light emitting element mounted on the insulating substrate, and is bonded to the insulating substrate, surrounds the light emitting element, and gradually from the surface on which the light emitting element is mounted. A light emitting device comprising: a reflecting plate having a reflecting surface inclined outward so as to widen; and a sealing resin for sealing the light emitting element, wherein the insulating substrate is a silicon single crystal substrate or a ceramic substrate A light emitting device is provided.

前記絶縁基板における前記金属配線が形成された面の中心線平均粗さRaは1.0μm以下であることが好ましい。  The center line average roughness Ra of the surface of the insulating substrate on which the metal wiring is formed is preferably 1.0 μm or less.

前記絶縁基板を厚み方向に貫通し、前記絶縁基板の表面および裏面に形成された金属配線を接続する貫通配線が設けられたことが好ましい。  It is preferable that a through wiring that penetrates the insulating substrate in the thickness direction and connects metal wirings formed on the front surface and the back surface of the insulating substrate is provided.

前記絶縁基板の表面および裏面に形成された金属配線からなる1つの組に対して、これらを接続する複数の貫通配線が設けられたことが好ましい。  It is preferable that a plurality of through-wirings connecting these metal wirings formed on the front and back surfaces of the insulating substrate are provided.

前記絶縁基板の裏面に形成された金属配線の1つに対して、複数のはんだバンプが設けられたことが好ましい。  It is preferable that a plurality of solder bumps are provided for one of the metal wirings formed on the back surface of the insulating substrate.

前記絶縁基板の裏面において、前記金属配線が設けられていない部分にはんだバンプを設けたことが好ましい。  It is preferable that a solder bump is provided on a portion of the back surface of the insulating substrate where the metal wiring is not provided.

本発明は、金属配線が形成された絶縁基板と、該絶縁基板に実装された発光素子と、前記絶縁基板に接合され、かつ、前記発光素子を囲み、前記発光素子が実装された面から次第に幅が広がるように外側へ傾斜した反射面が形成された反射板と、前記発光素子を封止する封止樹脂とを備えた発光装置の製造方法であって、前記絶縁基板の一方の面に、ウエハプロセスにより多数の金属配線を形成する工程と、前記反射板に前記反射面を有する多数の貫通孔を形成する工程と、前記金属配線の前記発光素子を実装する部分が前記貫通孔の中央部に配されるように、前記絶縁基板と前記反射板とを接合する工程とを有する発光装置の製造方法を提供する。  The present invention relates to an insulating substrate on which metal wiring is formed, a light emitting element mounted on the insulating substrate, and is bonded to the insulating substrate, surrounds the light emitting element, and gradually from the surface on which the light emitting element is mounted. A method for manufacturing a light emitting device, comprising: a reflecting plate formed with a reflecting surface inclined outward so as to widen; and a sealing resin for sealing the light emitting element, on one surface of the insulating substrate A step of forming a large number of metal wirings by a wafer process, a step of forming a large number of through holes having the reflecting surface in the reflector, and a portion of the metal wirings where the light emitting element is mounted is the center of the through holes. The manufacturing method of the light-emitting device which has the process of joining the said insulating substrate and the said reflecting plate so that it may be distribute | arranged to a part is provided.

本発明の発光装置は、金属配線が形成された絶縁基板と、該絶縁基板に実装された発光素子と、前記絶縁基板に接合され、かつ、前記発光素子を囲み、前記発光素子が実装された面から次第に幅が広がるように外側へ傾斜した反射面が形成された反射板と、前記発光素子を封止する封止樹脂とを備えた発光装置であって、前記絶縁基板はシリコン単結晶基板またはセラミックス基板からなるので、窒化ガリウム系の発光素子で問題となる、発光に伴う発光素子の温度上昇を抑制することができる。また、貫通配線により、絶縁基板の両面に形成された金属配線を接続した構成とすれば、発光装置に必要とされる全ての配線を、絶縁基板内で完結することができるから、発光素子と金属配線を接続する金ワイヤを、絶縁基板と反射板の反射面からなる凹部内に収納することができる。  The light emitting device of the present invention includes an insulating substrate on which metal wiring is formed, a light emitting element mounted on the insulating substrate, a light emitting element that is bonded to the insulating substrate, surrounds the light emitting element, and the light emitting element is mounted. A light emitting device comprising: a reflecting plate having a reflecting surface inclined outward so as to gradually widen from the surface; and a sealing resin for sealing the light emitting element, wherein the insulating substrate is a silicon single crystal substrate Alternatively, since it is made of a ceramic substrate, it is possible to suppress a temperature rise of the light emitting element accompanying light emission, which is a problem in a gallium nitride based light emitting element. Moreover, if the metal wiring formed on both surfaces of the insulating substrate is connected by the through wiring, all the wiring required for the light emitting device can be completed within the insulating substrate. The gold wire connecting the metal wiring can be accommodated in a recess made of the insulating substrate and the reflecting surface of the reflecting plate.

本発明の発光装置の製造方法は、金属配線が形成された絶縁基板と、該絶縁基板に実装された発光素子と、前記絶縁基板に接合され、かつ、前記発光素子を囲み、前記発光素子が実装された面から次第に幅が広がるように外側へ傾斜した反射面が形成された反射板と、前記発光素子を封止する封止樹脂とを備えた発光装置の製造方法であって、前記絶縁基板の一方の面に、ウエハプロセスにより多数の金属配線を形成する工程と、前記反射板に前記反射面を有する多数の貫通孔を形成する工程と、前記金属配線の前記発光素子を実装する部分が前記貫通孔の中央部に配されるように、前記絶縁基板と前記反射板とを接合する工程とを有するので、1000個以上の金属配線を一括して形成し、それぞれの金属配線に発光素子を実装することにより、1枚のウエハから1000個以上の発光装置を製造することができる。ゆえに、発光装置の製造コストを低減することができる。また、1000個以上の発光素子を一工程でシリコン基板に実装できるから、発光素子の実装後、任意の個数ずつ、発光装置を切り出せるため、実装コストを低減できる。さらに、発光装置を切り出す際、必要とされる光束や形状に応じて、発光装置を縦m個×横n個(m、nは自然数)の正方形、あるいは、長方形のアレー状に切り出すことができるから、実装コストを低減できる。  A method for manufacturing a light emitting device according to the present invention includes an insulating substrate on which metal wiring is formed, a light emitting element mounted on the insulating substrate, a light emitting element that is bonded to the insulating substrate and surrounds the light emitting element. A method of manufacturing a light-emitting device, comprising: a reflecting plate having a reflecting surface inclined outward so as to gradually widen from a mounted surface; and a sealing resin for sealing the light-emitting element, wherein the insulation A step of forming a large number of metal wirings on one surface of the substrate by a wafer process, a step of forming a large number of through holes having the reflection surface in the reflecting plate, and a portion for mounting the light emitting element of the metal wirings Since the step of joining the insulating substrate and the reflecting plate is arranged so as to be arranged at the center of the through hole, 1000 or more metal wirings are formed in a lump and light is emitted to each metal wiring. In mounting the element Ri, it is possible to produce more than 1000 light-emitting device from a wafer. Therefore, the manufacturing cost of the light emitting device can be reduced. In addition, since 1000 or more light emitting elements can be mounted on the silicon substrate in one step, after the light emitting elements are mounted, an arbitrary number of light emitting devices can be cut out, so that the mounting cost can be reduced. Furthermore, when the light emitting device is cut out, the light emitting device can be cut into a square or rectangular array of m vertical × n horizontal (m and n are natural numbers) according to the required light flux and shape. Therefore, the mounting cost can be reduced.

以下、本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.

(1)第一の実施形態
図1は、本発明の発光装置の第一の実施形態を示す概略断面図である。
図1中、符号10は発光装置、11は絶縁基板、12は発光素子、13は反射板、14は封止樹脂、15は金属配線、16は金ワイヤ、17は絶縁膜、18は金属酸化膜、19は絶縁樹脂、20は貫通孔封止樹脂、21は貫通孔、22は貫通配線、23ははんだバンプ、24は接着剤、25は反射面、26は実装面、27は凹部、28は金属配線、29は接合部をそれぞれ示している。
この実施形態の発光装置10は、金属配線15が形成された絶縁基板11と、絶縁基板11に実装された発光素子12と、絶縁基板11上に接着剤24により接着され、かつ、発光素子12が実装された面(以下、「実装面26」と称する。)から次第に幅が広がるように外側へ傾斜した反射面25が形成された反射板13と、発光素子12を封止する封止樹脂14とから概略構成されている。
(1) First Embodiment FIG. 1 is a schematic cross-sectional view showing a first embodiment of the light emitting device of the present invention.
In FIG. 1, 10 is a light emitting device, 11 is an insulating substrate, 12 is a light emitting element, 13 is a reflector, 14 is a sealing resin, 15 is a metal wiring, 16 is a gold wire, 17 is an insulating film, and 18 is a metal oxide. Membrane, 19 is insulating resin, 20 is a through hole sealing resin, 21 is a through hole, 22 is a through wiring, 23 is a solder bump, 24 is an adhesive, 25 is a reflective surface, 26 is a mounting surface, 27 is a recess, 28 Indicates a metal wiring, and 29 indicates a joint.
In the light emitting device 10 of this embodiment, the insulating substrate 11 on which the metal wiring 15 is formed, the light emitting element 12 mounted on the insulating substrate 11, and the insulating substrate 11 are bonded by the adhesive 24, and the light emitting element 12 is used. And a sealing resin that seals the light-emitting element 12 and a reflecting plate 13 having a reflecting surface 25 inclined outward so that the width gradually increases from a surface on which the light emitting element is mounted (hereinafter referred to as “mounting surface 26”). 14.

発光素子12は、絶縁基板11の実装面26と、反射板13の反射面25とから形成される凹部27内に配されている。さらに、発光素子12は、凹部27内の金属配線15A上に配され、ダイボンドを介して金属配線15Aと電気的に接続され、金ワイヤ16により凹部27内の金属配線15Bと電気的に接続されている。そして、発光素子12が配された凹部27内に充填された封止樹脂14により、発光素子12が封止されている。  The light emitting element 12 is disposed in a recess 27 formed by the mounting surface 26 of the insulating substrate 11 and the reflecting surface 25 of the reflecting plate 13. Further, the light emitting element 12 is disposed on the metal wiring 15A in the recess 27, and is electrically connected to the metal wiring 15A through a die bond, and is electrically connected to the metal wiring 15B in the recess 27 by the gold wire 16. ing. The light emitting element 12 is sealed with the sealing resin 14 filled in the recess 27 in which the light emitting element 12 is disposed.

絶縁基板11には、その厚み方向に貫通する貫通孔21が形成されている。また、絶縁基板11の両面および貫通孔21の内面には、絶縁基板11の両面(一方の面11aおよび他方の面11b)から貫通孔21の内面に連続する絶縁膜17が設けられている。
また、絶縁基板11の一方の面(表面)11aに絶縁膜17を介して金属配線15が形成され、絶縁基板11の他方の面(裏面)11bに絶縁膜17を介して金属配線28が形成されている。さらに、貫通孔21内には絶縁膜17を介して、絶縁基板11を厚み方向に貫通し、絶縁基板11の一方の面11aに形成された金属配線15と、他方の面11bに形成された金属配線28とを電気的に接続する貫通配線22が設けられている。
A through hole 21 is formed in the insulating substrate 11 so as to penetrate in the thickness direction. Further, on both surfaces of the insulating substrate 11 and the inner surface of the through hole 21, an insulating film 17 that is continuous from the both surfaces (one surface 11 a and the other surface 11 b) of the insulating substrate 11 to the inner surface of the through hole 21 is provided.
Further, the metal wiring 15 is formed on one surface (front surface) 11 a of the insulating substrate 11 via the insulating film 17, and the metal wiring 28 is formed on the other surface (back surface) 11 b of the insulating substrate 11 via the insulating film 17. Has been. Furthermore, the insulating substrate 11 is penetrated in the thickness direction through the insulating film 17 in the through hole 21, and the metal wiring 15 formed on one surface 11 a of the insulating substrate 11 and the other surface 11 b are formed. A through wiring 22 that electrically connects the metal wiring 28 is provided.

また、貫通孔21には、貫通配線22の中心線部分の空隙を埋めるために、貫通孔封止樹脂20が充填されている。
絶縁基板11の他方の面11b側に形成された金属配線28は、はんだバンプ23を設けるための接合部29を除いて、絶縁樹脂19に覆われている。
Further, the through hole 21 is filled with a through hole sealing resin 20 in order to fill a gap in the center line portion of the through wiring 22.
The metal wiring 28 formed on the other surface 11 b side of the insulating substrate 11 is covered with the insulating resin 19 except for the joint portions 29 for providing the solder bumps 23.

反射板13には、絶縁基板11と接合する側の面(以下、「接合面」と称する。)13a、この接合面13aとは反対の面13b、および、反射面25に、金属酸化膜18が形成されている。  The reflection plate 13 has a metal oxide film 18 on the surface (hereinafter referred to as a “bonding surface”) 13 a bonded to the insulating substrate 11, a surface 13 b opposite to the bonding surface 13 a, and the reflection surface 25. Is formed.

また、絶縁基板11における金属配線15,28が形成された面、すなわち、一方の面11aおよび他方の面11bの中心線平均粗さRaは1.0μm以下であることが好ましい。
絶縁基板11の一方の面11aおよび他方の面11bの中心線平均粗さRaが1.0μmを超えると、ウエハプロセスにより、絶縁基板11の一方の面11aおよび他方の面11bに、所定の厚みおよび形状の金属配線15,28を形成することができない。
Further, the surface of the insulating substrate 11 on which the metal wirings 15 and 28 are formed, that is, the center line average roughness Ra of the one surface 11a and the other surface 11b is preferably 1.0 μm or less.
When the center line average roughness Ra of one surface 11a and the other surface 11b of the insulating substrate 11 exceeds 1.0 μm, a predetermined thickness is applied to the one surface 11a and the other surface 11b of the insulating substrate 11 by a wafer process. And the metal wiring 15 and 28 of a shape cannot be formed.

さらに、絶縁基板11の他方の面11bに形成された金属配線28の1つに対して、2つのはんだバンプ23が設けられている。このはんだバンプ23は、金属配線28の接合部29に設けられている。  Further, two solder bumps 23 are provided for one of the metal wirings 28 formed on the other surface 11 b of the insulating substrate 11. The solder bumps 23 are provided at the joints 29 of the metal wiring 28.

絶縁基板11としては、熱伝導率が高い材質からなるものが用いられ、例えば、ウエハプロセスで用いられるシリコン単結晶基板、酸化アルミニウム(アルミナ)、窒化アルミニウムなどからなるセラミックス基板などが挙げられる。これらの基板の中でも、発光装置10の製造において、半導体プロセスを適用できることから、シリコン単結晶基板が好ましい。
発光素子12としては、例えば、窒化ガリウム(GaN)系の発光ダイードなどが用いられる。
The insulating substrate 11 is made of a material having high thermal conductivity. Examples thereof include a silicon single crystal substrate used in a wafer process, a ceramic substrate made of aluminum oxide (alumina), aluminum nitride, and the like. Among these substrates, a silicon single crystal substrate is preferable because a semiconductor process can be applied in manufacturing the light emitting device 10.
As the light emitting element 12, for example, a gallium nitride (GaN) light emitting diode is used.

反射板13としては、可視光に対して高い反射率を有するアルミニウム(Al)、ニッケル(Ni)、銀(Ag)、スズ(Sn)、白金(Pt)、パラジウム(Pd)などの金属からなる基板が用いられる。
封止樹脂14としては、熱硬化性の透明樹脂が用いられ、このような透明樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂が挙げられる。この封止樹脂14には、発光素子12から発せられた光の少なくとも一部を吸収して発光する顔料または蛍光体などの蛍光物質が添加されていてもよい。
The reflection plate 13 is made of a metal such as aluminum (Al), nickel (Ni), silver (Ag), tin (Sn), platinum (Pt), palladium (Pd) having a high reflectance with respect to visible light. A substrate is used.
As the sealing resin 14, a thermosetting transparent resin is used, and examples of such a transparent resin include a silicone resin and an epoxy resin. The sealing resin 14 may be added with a fluorescent material such as a pigment or a phosphor that emits light by absorbing at least a part of the light emitted from the light emitting element 12.

金属配線15をなす金属としては、酸およびアルカリに対する耐性があり、かつ、可視光に対して高い反射率を有するアルミニウム(Al)、ニッケル(Ni)、銀(Ag)、スズ(Sn)、白金(Pt)、パラジウム(Pd)などの金属からなるものが用いられる。金属配線15の反射率が高いと、発光素子12から絶縁基板11側に漏れる光が金属配線15により反射され、発光装置10の輝度を高めることができる。  As the metal forming the metal wiring 15, aluminum (Al), nickel (Ni), silver (Ag), tin (Sn), platinum having resistance to acids and alkalis and having high reflectivity to visible light What consists of metals, such as (Pt) and palladium (Pd), is used. When the reflectance of the metal wiring 15 is high, light leaking from the light emitting element 12 toward the insulating substrate 11 is reflected by the metal wiring 15, and the luminance of the light emitting device 10 can be increased.

絶縁膜17としては、絶縁基板11を熱酸化することにより、絶縁基板11の表面に形成される二酸化ケイ素(SiO)からなる膜や、プラズマCVDにより、絶縁基板11の表面に形成される窒化ケイ素(Si)からなる膜が挙げられる。
なお、絶縁基板11がセラミックス基板からなる場合、絶縁膜17は設けなくてもよい。
As the insulating film 17, a film made of silicon dioxide (SiO 2 ) formed on the surface of the insulating substrate 11 by thermally oxidizing the insulating substrate 11, or nitridation formed on the surface of the insulating substrate 11 by plasma CVD. A film made of silicon (Si 3 N 4 ) may be mentioned.
When the insulating substrate 11 is made of a ceramic substrate, the insulating film 17 may not be provided.

金属酸化膜18としては、プラズマCVD法などにより、反射板13の表面に形成される二酸化ケイ素(SiO)、二酸化チタン(TiO)、酸化アルミニウム(Al)などの金属酸化物の群から選択された1種からなる膜が挙げられる。反射板13の表面に金属酸化膜18を設けることにより、反射板13はウエハプロセスで用いられる酸およびアルカリに対する耐性が向上する。金属酸化膜18を形成する金属酸化物の中でも、ウエハプロセスとの親和性に優れることから、二酸化ケイ素(SiO)が好ましい。 As the metal oxide film 18, a metal oxide such as silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), aluminum oxide (Al 2 O 3 ) or the like formed on the surface of the reflector 13 by a plasma CVD method or the like. A film made of one selected from the group can be mentioned. By providing the metal oxide film 18 on the surface of the reflecting plate 13, the reflecting plate 13 has improved resistance to acids and alkalis used in the wafer process. Among the metal oxides forming the metal oxide film 18, silicon dioxide (SiO 2 ) is preferable because of its excellent affinity with the wafer process.

絶縁樹脂19としては、一般的なソルダレジストが用いられる。金属配線28における接合部29を除く部分を、絶縁樹脂19で覆うことにより、接合部29以外の部分に、はんだバンプ23が付かないようにする。
貫通孔封止樹脂20は、ソルダレジストを真空チャンバ内で形成した後、大気開放することにより、貫通孔21内に樹脂層を形成する方法が用いられる。この貫通孔封止樹脂20は、貫通孔21内に貫通配線22を形成した後、貫通配線22の中心線部分に空隙が存在する場合、強度の低下を防止するなどの目的で、貫通配線22の空隙内に充填される。
As the insulating resin 19, a general solder resist is used. By covering the portion of the metal wiring 28 excluding the joint portion 29 with the insulating resin 19, the solder bump 23 is not attached to the portion other than the joint portion 29.
The through-hole sealing resin 20 is formed by forming a resin layer in the through-hole 21 by forming a solder resist in a vacuum chamber and then releasing it to the atmosphere. The through-hole sealing resin 20 is formed for the purpose of preventing the strength from being lowered when a void exists in the center line portion of the through-wire 22 after the through-wire 22 is formed in the through-hole 21. Are filled in the voids.

接着剤24としては、感光性接着剤が用いられ、貼り合わせる基板の開口部分を露光、現像することにより取り除く。
金属配線28は、高い反射率を必要としないので、貫通孔21内にメッキで形成することが容易な銅が用いられる。
As the adhesive 24, a photosensitive adhesive is used, and is removed by exposing and developing the opening portion of the substrate to be bonded.
Since the metal wiring 28 does not require a high reflectance, copper which is easy to form in the through hole 21 by plating is used.

この実施形態の発光装置10は、絶縁基板11と反射基板13とは別体からなり、絶縁基板11は、熱伝導率が高い(放熱性が高い)シリコン単結晶基板またはセラミックス基板からなるから、特に窒化ガリウム系の発光素子で問題となる、発光に伴う発光素子12の温度上昇を抑制することができる。また、絶縁基板11と反射基板13が接着剤24を介して接合されているので、より発光素子12の温度上昇を抑制する効果に優れる。
また、貫通配線22により、絶縁基板11の一方の面11aに形成された金属配線15と、他方の面11bに形成された金属配線28とが接続されているので、発光装置10に必要とされる全ての配線を、絶縁基板11内で完結することができるから、金ワイヤ16を凹部27内に収納することができる。さらに、貫通配線22は、絶縁基板11の外面に配されていないから、1枚のウエハに一括して製造された多数の発光装置10から、その1つを切り出す際、貫通配線22に切断機の刃が当たらないため、貫通配線22に不要な力が加わるのを防止することができる。したがって、発光装置10の製造工程において、製品の不良が発生せず、歩留まりが向上する。
さらに、絶縁基板11の他方の面11bに形成された金属配線28の1つに対して、2つのはんだバンプ23が設けられているので、少なくとも1つのはんだバンプ23が通電していれば、発光素子12に電力を供給することができる。したがって、発光装置10を他の装置に実装する場合に、接続不良を防止することができる。
The light-emitting device 10 of this embodiment is formed of a separate body from the insulating substrate 11 and the reflective substrate 13, and the insulating substrate 11 is formed of a silicon single crystal substrate or a ceramic substrate having high thermal conductivity (high heat dissipation). In particular, an increase in temperature of the light-emitting element 12 due to light emission, which is a problem in a gallium nitride-based light-emitting element, can be suppressed. Moreover, since the insulating substrate 11 and the reflective substrate 13 are bonded via the adhesive 24, the effect of suppressing the temperature rise of the light emitting element 12 is further excellent.
Further, since the metal wiring 15 formed on the one surface 11a of the insulating substrate 11 and the metal wiring 28 formed on the other surface 11b are connected by the through wiring 22, it is necessary for the light emitting device 10. Since all the wirings can be completed in the insulating substrate 11, the gold wire 16 can be accommodated in the recess 27. Furthermore, since the through wiring 22 is not arranged on the outer surface of the insulating substrate 11, when one of the light emitting devices 10 manufactured in a batch on one wafer is cut out, the through wiring 22 is cut into a cutting machine. Therefore, unnecessary force can be prevented from being applied to the through wiring 22. Therefore, in the manufacturing process of the light emitting device 10, no product defect occurs and the yield is improved.
Furthermore, since two solder bumps 23 are provided for one of the metal wirings 28 formed on the other surface 11b of the insulating substrate 11, light emission occurs if at least one solder bump 23 is energized. Power can be supplied to the element 12. Therefore, when the light emitting device 10 is mounted on another device, connection failure can be prevented.

なお、この実施形態では、絶縁基板11の他方の面11bに形成された金属配線28の1つに対して、2つのはんだバンプ23が設けられた発光装置10を例示したが、本発明の発光装置はこれに限定されない。本発明の発光装置にあっては、絶縁基板の裏面に形成された金属配線の1つに対して、少なくとも1つのはんだバンプが設けられていればよい。また、本発明の発光装置にあっては、絶縁基板の裏面に形成された金属配線の1つに対して、3つ以上のはんだバンプが設けられていてもよい。  In this embodiment, the light emitting device 10 in which two solder bumps 23 are provided for one of the metal wirings 28 formed on the other surface 11b of the insulating substrate 11 is illustrated. The apparatus is not limited to this. In the light emitting device of the present invention, it is only necessary that at least one solder bump is provided for one of the metal wirings formed on the back surface of the insulating substrate. In the light emitting device of the present invention, three or more solder bumps may be provided for one of the metal wirings formed on the back surface of the insulating substrate.

次に、図1〜図3を参照して、この実施形態の発光装置の製造方法を説明する。
絶縁基板11として、例えば、シリコン単結晶基板を用いた場合、この絶縁基板11を熱酸化して、絶縁基板11の一方の面11aに二酸化ケイ素からなる絶縁膜17を形成する。
なお、絶縁基板11としては、一方の面11aおよび他方の面11bの中心線平均粗さRaが1.0μm以下のものを用いる。
次いで、図2に示すように、絶縁基板11の絶縁膜17上に所定の配置で等間隔に、多数の金属配線15を形成する。なお、金属配線15は、絶縁基板11に実装される1つの発光素子12に対応するように、間隔を置いて対向するように配された金属配線15Aと金属配線15Bが1つのブロックをなしている。金属配線15を形成する方法としては、メッキ法、真空蒸着法、所望のパターンに加工した銅箔を絶縁基板11の絶縁膜17に貼り合わせる方法、絶縁基板11の絶縁膜17上に銅ペーストや銀ペーストを印刷して加熱硬化させる方法など、一般的にウエハプロセスに使用される方法が用いられる。
次いで、金属配線15の一部を、絶縁基板11の他方の面11bから露出するように、反応性イオンエッチング(Reactive Ion Etching、RIE)などのドライエッチングによって、絶縁基板11の他方の面11bから金属配線15に至る貫通孔21を形成する。
Next, with reference to FIGS. 1-3, the manufacturing method of the light-emitting device of this embodiment is demonstrated.
For example, when a silicon single crystal substrate is used as the insulating substrate 11, the insulating substrate 11 is thermally oxidized to form an insulating film 17 made of silicon dioxide on one surface 11 a of the insulating substrate 11.
In addition, as the insulating substrate 11, one having a center line average roughness Ra of 1.0 μm or less on one surface 11 a and the other surface 11 b is used.
Next, as shown in FIG. 2, a large number of metal wirings 15 are formed on the insulating film 17 of the insulating substrate 11 at a predetermined arrangement and at equal intervals. In addition, the metal wiring 15A and the metal wiring 15B arranged so as to be opposed to each other with a gap so as to correspond to one light emitting element 12 mounted on the insulating substrate 11 form one block. Yes. The metal wiring 15 can be formed by plating, vacuum vapor deposition, a method of bonding a copper foil processed into a desired pattern to the insulating film 17 of the insulating substrate 11, a copper paste or the like on the insulating film 17 of the insulating substrate 11. A method generally used in a wafer process, such as a method of printing a silver paste and heat-curing it, is used.
Next, a part of the metal wiring 15 is exposed from the other surface 11b of the insulating substrate 11 by dry etching such as reactive ion etching (RIE) so as to be exposed from the other surface 11b of the insulating substrate 11. A through hole 21 reaching the metal wiring 15 is formed.

また、上述の工程とは別に、反射板13にプレスなどの機械加工法により、所定の配置で等間隔に、図3に示すような所定の角度θをなす斜面25を有し、反射板13の厚み方向に貫通する貫通孔30を多数形成する。あるいは、ダイカスト法により、図3に示すような所定の角度θをなす斜面25を有する貫通孔30が、所定の配置で等間隔に多数設けられた反射板13を形成する。
なお、図3に示す反射板13の斜面25と、反射板13の接合面13aとのなす角度θは、上述の絶縁基板11の実装面26と、反射板13の反射面25とのなす角度θと同一である。
次いで、プラズマCVD法などにより、反射板13の表面に金属酸化膜18を形成する。
In addition to the above-described steps, the reflector 13 has inclined surfaces 25 having a predetermined angle θ as shown in FIG. A large number of through holes 30 penetrating in the thickness direction are formed. Alternatively, the reflector 13 in which a large number of through holes 30 having inclined surfaces 25 having a predetermined angle θ as shown in FIG. 3 are provided at regular intervals by a die casting method is formed.
3 is an angle θ formed between the mounting surface 26 of the insulating substrate 11 and the reflection surface 25 of the reflection plate 13. The angle θ between the inclined surface 25 of the reflection plate 13 and the bonding surface 13a of the reflection plate 13 illustrated in FIG. It is the same as θ.
Next, a metal oxide film 18 is formed on the surface of the reflecting plate 13 by plasma CVD or the like.

次いで、接着剤24により、この反射板13の接合面13aと、金属配線15が形成された絶縁基板11の一方の面11aとを接合する。
このとき、金属配線15の発光素子12を実装する部分が反射板13の貫通孔30の中央部に配されるようにするとともに、反射板13の貫通孔30と、絶縁基板11の金属配線15との組み合わせが最大数となるようにする。
Next, the bonding surface 13a of the reflecting plate 13 and one surface 11a of the insulating substrate 11 on which the metal wiring 15 is formed are bonded by an adhesive 24.
At this time, the portion of the metal wiring 15 on which the light emitting element 12 is mounted is arranged in the center of the through hole 30 of the reflecting plate 13, and the through hole 30 of the reflecting plate 13 and the metal wiring 15 of the insulating substrate 11 are arranged. To the maximum number of combinations.

次いで、反射板13と一体化した絶縁基板11を、所定の厚みとなるように研磨する。このとき、絶縁基板11を、その他方の面11b側から研磨する。  Next, the insulating substrate 11 integrated with the reflecting plate 13 is polished so as to have a predetermined thickness. At this time, the insulating substrate 11 is polished from the other surface 11b side.

絶縁基板11の研磨を終了した後、プラズマCVDにより、絶縁基板11の他方の面11bおよび貫通孔21の内面に、二酸化ケイ素などからなる絶縁膜17を形成する。
次いで、エッチングにより、貫通孔21内の金属配線15の表面に形成された絶縁膜を除去し、貫通孔21内に金属配線15の一部を露出させる。
After the polishing of the insulating substrate 11, the insulating film 17 made of silicon dioxide or the like is formed on the other surface 11b of the insulating substrate 11 and the inner surface of the through hole 21 by plasma CVD.
Next, the insulating film formed on the surface of the metal wiring 15 in the through hole 21 is removed by etching, and a part of the metal wiring 15 is exposed in the through hole 21.

次いで、メッキ法などにより、絶縁基板11の他方の面11bに金属配線28を形成するとともに、貫通孔21内に貫通配線22を形成する。
貫通配線22を形成した後、貫通配線22の中心線部分に空隙が存在する場合、貫通配線22の空隙内に、貫通孔封止樹脂20を充填する。
次いで、金属配線28における接合部29を除く部分を、一般的なソルダレジストなどの絶縁樹脂19によって覆う。
次いで、金属配線28の接合部29に、はんだバンプ23を形成する。
Next, the metal wiring 28 is formed on the other surface 11 b of the insulating substrate 11 by plating or the like, and the through wiring 22 is formed in the through hole 21.
After the through wiring 22 is formed, if there is a gap in the center line portion of the through wiring 22, the through hole sealing resin 20 is filled into the gap of the through wiring 22.
Next, a portion of the metal wiring 28 excluding the joint portion 29 is covered with an insulating resin 19 such as a general solder resist.
Next, solder bumps 23 are formed on the joints 29 of the metal wiring 28.

次いで、絶縁基板11の実装面26と、反射板13の反射面25とから形成される凹部27内に、発光素子12を実装する。このとき、ダイボンドにより絶縁基板11の実装面26に形成された金属配線15A上に発光素子12を固定して、発光素子12の電極と、金属配線15Bとを、金ワイヤ16によるワイヤボンディングによって電気的に接続する。
次いで、発光素子12が実装された凹部27内に、封止樹脂14を充填した後、この封止樹脂14を硬化させる。
最後に、絶縁基板11、反射板13、発光素子12、封止樹脂14などからなる構造物を、所定の大きさや形状に切り出すことにより、図1に示すような構造の発光装置10を得る。
Next, the light emitting element 12 is mounted in a recess 27 formed by the mounting surface 26 of the insulating substrate 11 and the reflecting surface 25 of the reflecting plate 13. At this time, the light emitting element 12 is fixed on the metal wiring 15A formed on the mounting surface 26 of the insulating substrate 11 by die bonding, and the electrode of the light emitting element 12 and the metal wiring 15B are electrically bonded by the gold wire 16 by wire bonding. Connect.
Next, after the sealing resin 14 is filled into the recess 27 in which the light emitting element 12 is mounted, the sealing resin 14 is cured.
Finally, a structure made of the insulating substrate 11, the reflector 13, the light emitting element 12, the sealing resin 14 and the like is cut into a predetermined size and shape to obtain the light emitting device 10 having the structure shown in FIG.

この実施形態の発光装置の製造方法によれば、ウエハプロセスにより多数の金属配線15が形成された絶縁基板11と、反射面25を有する貫通孔30が多数形成された反射板13とを接合し、絶縁基板11の実装面26と、反射板13の反射面25とから構成される凹部27内に発光素子12を実装するので、多数の発光装置10を一括して製造することができる。したがって、例えば、絶縁基板11として、8インチウエハを使用した場合、金属配線15の大きさによって異なるものの、1000個から10000個(ブロック)程度の金属配線15を一括して形成し、それぞれの金属配線15に発光素子12を実装することにより、1枚のウエハから1000個から10000個程度の発光装置10を製造することができる。ゆえに、この実施形態の発光装置の製造方法によれば、発光装置の製造コストを低減することができる。  According to the method of manufacturing a light emitting device of this embodiment, the insulating substrate 11 on which a large number of metal wirings 15 are formed by a wafer process and the reflection plate 13 on which a large number of through holes 30 having reflection surfaces 25 are formed are bonded. Since the light emitting element 12 is mounted in the recess 27 constituted by the mounting surface 26 of the insulating substrate 11 and the reflecting surface 25 of the reflecting plate 13, a large number of light emitting devices 10 can be manufactured in a lump. Therefore, for example, when an 8-inch wafer is used as the insulating substrate 11, about 1000 to 10000 (block) metal wirings 15 are collectively formed depending on the size of the metal wiring 15. By mounting the light emitting elements 12 on the wiring 15, about 1000 to 10,000 light emitting devices 10 can be manufactured from one wafer. Therefore, according to the manufacturing method of the light emitting device of this embodiment, the manufacturing cost of the light emitting device can be reduced.

また、1000個以上の発光素子12を一工程で絶縁基板11に実装できる上に、貫通配線22を介して金属配線15と電気的に接続する金属配線28を、絶縁基板11の他方の面11bに形成していることから、発光素子12の実装後、必要とされる光束や形状に応じて、発光装置10を縦m個×横n個(m、nは自然数)の正方形、あるいは、長方形のアレー状に切り出すことができるから、実装コストを低減できる。
また、エッチングにより絶縁基板11に貫通孔21を形成し、メッキ法により貫通孔21内に貫通配線22を形成するので、従来用いられていた銅配線の取り出し部分に加えられていた機械的な曲げの力が加えられないから、貫通配線22の曲がり部分に発生する応力に起因する絶縁基板11の割れや欠けなどの損傷を防止することができる。
さらに、絶縁基板11としては、一方の面11aおよび他方の面11bの中心線平均粗さRaが1.0μm以下のものを用いるので、所定の厚みおよび形状の金属配線15,28を形成することができるから、この実施形態の発光装置の製造方法は、自動機による発光素子12の実装が可能であり、量産に適している。
In addition, 1000 or more light emitting elements 12 can be mounted on the insulating substrate 11 in one step, and the metal wiring 28 electrically connected to the metal wiring 15 via the through wiring 22 is connected to the other surface 11b of the insulating substrate 11. Therefore, after the light emitting element 12 is mounted, the light emitting device 10 is arranged in a square of m × n (m and n are natural numbers) square or rectangular according to the required light flux and shape. Therefore, the mounting cost can be reduced.
Further, since the through hole 21 is formed in the insulating substrate 11 by etching and the through wiring 22 is formed in the through hole 21 by the plating method, the mechanical bending applied to the conventionally used copper wiring extraction portion is performed. Therefore, it is possible to prevent damage such as cracking or chipping of the insulating substrate 11 due to the stress generated at the bent portion of the through wiring 22.
Further, as the insulating substrate 11, one having a center line average roughness Ra of 1.0 μm or less on one surface 11 a and the other surface 11 b is used, so that metal wirings 15 and 28 having a predetermined thickness and shape are formed. Therefore, the light emitting device manufacturing method of this embodiment can mount the light emitting element 12 by an automatic machine and is suitable for mass production.

(2)第二の実施形態
図4は、本発明の発光装置の第二の実施形態を示す概略断面図である。
図4において、図1に示した発光装置10と同一の構成要素には同一符号を付して、その説明を省略する。
この実施形態の発光装置40が、上述の発光装置10と異なる点は、貫通孔21内に貫通配線22のみが形成されている点である。
(2) Second Embodiment FIG. 4 is a schematic sectional view showing a second embodiment of the light emitting device of the present invention.
In FIG. 4, the same components as those of the light emitting device 10 shown in FIG.
The light emitting device 40 of this embodiment is different from the above light emitting device 10 in that only the through wiring 22 is formed in the through hole 21.

(3)第三の実施形態
図5は、本発明の発光装置の第三の実施形態を示す概略断面図である。
図5において、図1に示した発光装置10と同一の構成要素には同一符号を付して、その説明を省略する。
この実施形態の発光装置50が、上述の発光装置10と異なる点は、金属配線15Aと金属配線28とが2つの貫通配線22A,22Bを介して電気的に接続され、金属配線15Bと金属配線28とが2つの貫通配線22C,22Dを介して電気的に接続されている点、並びに、絶縁基板11の他方の面11bにおいて、金属配線28が設けられていない部分に、応力緩和用のはんだバンプ51を設けた点である。
(3) Third Embodiment FIG. 5 is a schematic cross-sectional view showing a third embodiment of the light emitting device of the present invention.
In FIG. 5, the same components as those of the light emitting device 10 shown in FIG.
The light emitting device 50 of this embodiment is different from the above light emitting device 10 in that the metal wiring 15A and the metal wiring 28 are electrically connected via the two through wirings 22A and 22B, and the metal wiring 15B and the metal wiring are connected. 28 is electrically connected to each other through two through wirings 22C and 22D, and a portion on the other surface 11b of the insulating substrate 11 where the metal wiring 28 is not provided is used for stress relaxation soldering. The bump 51 is provided.

この実施形態の発光装置50は、金属配線15Aと金属配線28とが2つの貫通配線22A,22Bを介して電気的に接続されているので、2つの貫通配線22A,22Bのうちの一方が断線しても、発光素子12に電力を供給することができるから、歩留まりが向上する。
また、絶縁基板11の他方の面11bにおいて、金属配線28が設けられていない部分に、電力の供給に関係ない応力緩和用のはんだバンプ51を設けたので、1つのはんだバンプ23に対して加えられる、発光素子12の発光による絶縁基板11と発光装置10の熱膨張によって生じる応力の大きさを緩和することができる。
In the light emitting device 50 of this embodiment, since the metal wiring 15A and the metal wiring 28 are electrically connected via the two through wirings 22A and 22B, one of the two through wirings 22A and 22B is disconnected. Even so, since the power can be supplied to the light emitting element 12, the yield is improved.
Further, since the stress relief solder bumps 51 that are not related to the supply of power are provided on the other surface 11b of the insulating substrate 11 where the metal wiring 28 is not provided, In addition, the magnitude of stress caused by thermal expansion of the insulating substrate 11 and the light emitting device 10 due to light emission of the light emitting element 12 can be reduced.

なお、この実施形態では、金属配線15Aと金属配線28とを電気的に接続するために、2つの貫通配線22A,22Bが設けられ、かつ、金属配線15Bと金属配線28とを電気的に接続するために、2つの貫通配線22C,22Dが設けられた発光装置50を例示したが、本発明の発光装置はこれに限定されない。本発明の発光装置にあっては、絶縁基板の表面に形成された金属配線と、裏面に形成された金属配線とからなる1つの組を電気的に接続するために、3つ以上の貫通配線を設けてもよい。  In this embodiment, in order to electrically connect the metal wiring 15A and the metal wiring 28, two through wirings 22A and 22B are provided, and the metal wiring 15B and the metal wiring 28 are electrically connected. For this purpose, the light emitting device 50 provided with the two through wirings 22C and 22D is illustrated, but the light emitting device of the present invention is not limited to this. In the light emitting device of the present invention, in order to electrically connect one set of the metal wiring formed on the surface of the insulating substrate and the metal wiring formed on the back surface, three or more through wirings May be provided.

(4)第四の実施形態
図6は、本発明の発光装置の第四の実施形態を示す概略断面図である。
図6において、図1に示した発光装置10および図5に示した発光装置50と同一の構成要素には同一符号を付して、その説明を省略する。
この実施形態の発光装置60が、上述の発光装置50と異なる点は、貫通孔21内に貫通配線22A,22B,22C,22Dのみが形成されている点である。
(4) Fourth Embodiment FIG. 6 is a schematic cross-sectional view showing a fourth embodiment of the light emitting device of the present invention.
In FIG. 6, the same components as those of the light-emitting device 10 shown in FIG. 1 and the light-emitting device 50 shown in FIG.
The light emitting device 60 of this embodiment is different from the light emitting device 50 described above in that only through wirings 22A, 22B, 22C, and 22D are formed in the through hole 21.

本発明の発光装置の第一の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 1st embodiment of the light-emitting device of this invention. 本発明の発光装置の製造方法の一実施形態を示す概略図であり、(a)は平面図、(b)は(a)のYで示す領域を拡大した図である。It is the schematic which shows one Embodiment of the manufacturing method of the light-emitting device of this invention, (a) is a top view, (b) is the figure which expanded the area | region shown by Y of (a). 本発明の発光装置の製造方法の一実施形態を示す概略図であり、(a)は平面図、(b)は(a)のZで示す領域を拡大した図である。It is the schematic which shows one Embodiment of the manufacturing method of the light-emitting device of this invention, (a) is a top view, (b) is the figure which expanded the area | region shown by Z of (a). 本発明の発光装置の第二の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 2nd embodiment of the light-emitting device of this invention. 本発明の発光装置の第三の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 3rd embodiment of the light-emitting device of this invention. 本発明の発光装置の第四の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 4th embodiment of the light-emitting device of this invention.

符号の説明Explanation of symbols

10,40,50,60・・・発光装置、11・・・絶縁基板、12・・・発光素子、13・・・反射板、14・・・封止樹脂、15・・・金属配線、16・・・金ワイヤ、17・・・絶縁膜、18・・・金属酸化膜、19・・・絶縁樹脂、20・・・貫通孔封止樹脂、21・・・貫通孔、22・・・貫通配線、23,51・・・はんだバンプ、24・・・接着剤、25・・・反射面、26・・・実装面、27・・・凹部、28・・・金属配線、29・・・接合部、30・・・貫通孔。 DESCRIPTION OF SYMBOLS 10, 40, 50, 60 ... Light-emitting device, 11 ... Insulating substrate, 12 ... Light-emitting element, 13 ... Reflecting plate, 14 ... Sealing resin, 15 ... Metal wiring, 16 ... Gold wire, 17 ... Insulating film, 18 ... Metal oxide film, 19 ... Insulating resin, 20 ... Through-hole sealing resin, 21 ... Through-hole, 22 ... Through Wiring, 23, 51 ... solder bumps, 24 ... adhesive, 25 ... reflective surface, 26 ... mounting surface, 27 ... recess, 28 ... metal wiring, 29 ... bonding Part, 30 ... through-hole.

Claims (7)

金属配線が形成された絶縁基板と、該絶縁基板に実装された発光素子と、前記絶縁基板に接合され、かつ、前記発光素子を囲み、前記発光素子が実装された面から次第に幅が広がるように外側へ傾斜した反射面が形成された反射板と、前記発光素子を封止する封止樹脂とを備えた発光装置であって、
前記絶縁基板はシリコン単結晶基板またはセラミックス基板からなることを特徴とする発光装置。
Insulating substrate on which metal wiring is formed, a light emitting element mounted on the insulating substrate, and joined to the insulating substrate, surrounds the light emitting element, and gradually increases in width from the surface on which the light emitting element is mounted. A light-emitting device comprising: a reflecting plate formed with a reflecting surface inclined outward; and a sealing resin for sealing the light-emitting element,
The light-emitting device, wherein the insulating substrate is made of a silicon single crystal substrate or a ceramic substrate.
前記絶縁基板における前記金属配線が形成された面の中心線平均粗さRaは1.0μm以下であることを特徴とする請求項1に記載の発光装置。  2. The light emitting device according to claim 1, wherein a center line average roughness Ra of a surface of the insulating substrate on which the metal wiring is formed is 1.0 μm or less. 前記絶縁基板を厚み方向に貫通し、前記絶縁基板の表面および裏面に形成された金属配線を接続する貫通配線が設けられたことを特徴とする請求項1または2に記載の発光装置。  3. The light emitting device according to claim 1, wherein a through wiring that penetrates the insulating substrate in a thickness direction and connects metal wiring formed on a front surface and a back surface of the insulating substrate is provided. 前記絶縁基板の表面および裏面に形成された金属配線からなる1つの組に対して、これらを接続する複数の貫通配線が設けられたことを特徴とする請求項3に記載の発光装置。  The light-emitting device according to claim 3, wherein a plurality of through-wirings connecting the metal wirings formed on the front and back surfaces of the insulating substrate are provided. 前記絶縁基板の裏面に形成された金属配線の1つに対して、複数のはんだバンプが設けられたことを特徴とする請求項1ないし4のいずれか1項に記載の発光装置。  5. The light emitting device according to claim 1, wherein a plurality of solder bumps are provided for one of the metal wirings formed on the back surface of the insulating substrate. 前記絶縁基板の裏面において、前記金属配線が設けられていない部分にはんだバンプを設けたことを特徴とする請求項1ないし5のいずれか1項に記載の発光装置。  6. The light emitting device according to claim 1, wherein a solder bump is provided on a portion of the back surface of the insulating substrate where the metal wiring is not provided. 金属配線が形成された絶縁基板と、該絶縁基板に実装された発光素子と、前記絶縁基板に接合され、かつ、前記発光素子を囲み、前記発光素子が実装された面から次第に幅が広がるように外側へ傾斜した反射面が形成された反射板と、前記発光素子を封止する封止樹脂とを備えた発光装置の製造方法であって、
前記絶縁基板の一方の面に、ウエハプロセスにより多数の金属配線を形成する工程と、前記反射板に前記反射面を有する多数の貫通孔を形成する工程と、前記金属配線の前記発光素子を実装する部分が前記貫通孔の中央部に配されるように、前記絶縁基板と前記反射板とを接合する工程とを有することを特徴とする発光装置の製造方法。

Insulating substrate on which metal wiring is formed, a light emitting element mounted on the insulating substrate, and joined to the insulating substrate, surrounds the light emitting element, and gradually increases in width from the surface on which the light emitting element is mounted. A manufacturing method of a light emitting device comprising: a reflecting plate formed with a reflecting surface inclined outward; and a sealing resin for sealing the light emitting element,
Mounting a plurality of metal wirings on one surface of the insulating substrate by a wafer process; forming a plurality of through-holes having the reflecting surface in the reflector; and mounting the light emitting elements of the metal wirings And a step of bonding the insulating substrate and the reflection plate so that a portion to be arranged is arranged at a central portion of the through hole.

JP2006276739A 2006-10-10 2006-10-10 Light emitting device and manufacturing method thereof Expired - Fee Related JP4846506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276739A JP4846506B2 (en) 2006-10-10 2006-10-10 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276739A JP4846506B2 (en) 2006-10-10 2006-10-10 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008098296A true JP2008098296A (en) 2008-04-24
JP4846506B2 JP4846506B2 (en) 2011-12-28

Family

ID=39380849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276739A Expired - Fee Related JP4846506B2 (en) 2006-10-10 2006-10-10 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4846506B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010437A (en) * 2008-06-27 2010-01-14 Stanley Electric Co Ltd Optical semiconductor device
WO2011059070A1 (en) * 2009-11-13 2011-05-19 旭硝子株式会社 Substrate for light-emitting elements and light-emitting device
JP2012009723A (en) * 2010-06-28 2012-01-12 Nichia Chem Ind Ltd Optical semiconductor device and method of manufacturing the same
JP2012508971A (en) * 2008-11-14 2012-04-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting device and method for manufacturing the device
JP2012089816A (en) * 2010-10-19 2012-05-10 Unistars Corp Package substrate and method of manufacturing the same
CN103098243A (en) * 2010-03-10 2013-05-08 美光科技公司 Light emitting diode wafer-level package with self-aligning features
JPWO2016185675A1 (en) * 2015-05-15 2018-02-08 パナソニックIpマネジメント株式会社 Interposer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209210A (en) * 1997-01-20 1998-08-07 Sharp Corp Semiconductor device, its manufacture, and its inspection method
JP2000315766A (en) * 1999-04-28 2000-11-14 Nippon Telegr & Teleph Corp <Ntt> High speed signal processor
JP2005191065A (en) * 2003-12-24 2005-07-14 Sumitomo Metal Electronics Devices Inc Package for housing light-emitting element and its manufacturing method
JP2006128511A (en) * 2004-10-29 2006-05-18 Ngk Spark Plug Co Ltd Ceramic substrate for light emitting element
JP2006186297A (en) * 2004-12-03 2006-07-13 Toshiba Corp Semiconductor light emitting device and its manufacturing method
JP2007284333A (en) * 2006-03-20 2007-11-01 Sumitomo Metal Electronics Devices Inc High reflection white ceramics, reflector, substrate for mounting semiconductor light emitting element and package for housing semiconductor light emitting element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209210A (en) * 1997-01-20 1998-08-07 Sharp Corp Semiconductor device, its manufacture, and its inspection method
JP2000315766A (en) * 1999-04-28 2000-11-14 Nippon Telegr & Teleph Corp <Ntt> High speed signal processor
JP2005191065A (en) * 2003-12-24 2005-07-14 Sumitomo Metal Electronics Devices Inc Package for housing light-emitting element and its manufacturing method
JP2006128511A (en) * 2004-10-29 2006-05-18 Ngk Spark Plug Co Ltd Ceramic substrate for light emitting element
JP2006186297A (en) * 2004-12-03 2006-07-13 Toshiba Corp Semiconductor light emitting device and its manufacturing method
JP2007284333A (en) * 2006-03-20 2007-11-01 Sumitomo Metal Electronics Devices Inc High reflection white ceramics, reflector, substrate for mounting semiconductor light emitting element and package for housing semiconductor light emitting element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010437A (en) * 2008-06-27 2010-01-14 Stanley Electric Co Ltd Optical semiconductor device
JP2012508971A (en) * 2008-11-14 2012-04-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting device and method for manufacturing the device
WO2011059070A1 (en) * 2009-11-13 2011-05-19 旭硝子株式会社 Substrate for light-emitting elements and light-emitting device
CN102640310A (en) * 2009-11-13 2012-08-15 旭硝子株式会社 Substrate for light-emitting elements and light-emitting device
JP5644771B2 (en) * 2009-11-13 2014-12-24 旭硝子株式会社 Light emitting element substrate and light emitting device
CN103098243A (en) * 2010-03-10 2013-05-08 美光科技公司 Light emitting diode wafer-level package with self-aligning features
JP2013522877A (en) * 2010-03-10 2013-06-13 マイクロン テクノロジー, インク. Light emitting diode wafer level package with self-aligned features
US8878205B2 (en) 2010-03-10 2014-11-04 Micron Technology, Inc. Light emitting diode wafer-level package with self-aligning features
JP2012009723A (en) * 2010-06-28 2012-01-12 Nichia Chem Ind Ltd Optical semiconductor device and method of manufacturing the same
JP2012089816A (en) * 2010-10-19 2012-05-10 Unistars Corp Package substrate and method of manufacturing the same
JPWO2016185675A1 (en) * 2015-05-15 2018-02-08 パナソニックIpマネジメント株式会社 Interposer
US10062820B2 (en) 2015-05-15 2018-08-28 Panasonic Intellectual Property Management Co., Ltd. Interposer

Also Published As

Publication number Publication date
JP4846506B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
US7491980B2 (en) Semiconductor light-emitting device mounting member, light-emitting diode constituting member using same, and light-emitting diode using same
KR100593937B1 (en) Led package using si substrate and fabricating method thereof
US9847463B2 (en) Method of manufacturing light emitting device including metal patterns and cut-out section
JP4325412B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP5275642B2 (en) Light emitting device and manufacturing method thereof
JP4846506B2 (en) Light emitting device and manufacturing method thereof
JP2005197633A (en) High-power light-emitting-diode package and method of manufacturing the same
JP3872490B2 (en) Light emitting element storage package, light emitting device, and lighting device
JP2006093697A (en) High luminance light-emitting diode provided with protection function against electrostatic discharge impact
JP2008071955A (en) Light-emitting device
US20150280093A1 (en) Light emitting device, method for manufacturing same, and body having light emitting device mounted thereon
US10937937B2 (en) Optical semiconductor element
JP3685633B2 (en) Chip-type light emitting device and manufacturing method thereof
JP2005123657A (en) Chip-type light emitting device and its manufacturing method
JP4846505B2 (en) Light emitting device and manufacturing method thereof
JP2012165016A (en) Light-emitting device
JP2008060330A (en) Element mounting circuit-board, and luminescent device using same
JP2006279080A (en) Fixing method for light emitting element wafer
JP6361374B2 (en) Light emitting device and manufacturing method thereof
JP2006128457A (en) Light-emitting element and device thereof
JP2019216250A (en) Semiconductor light-emitting device
JP2023010799A (en) Light-emitting module and manufacturing method therefor
JP2008263246A (en) Light-emitting device
JP6369580B2 (en) Support and light emitting device using the same
JP2007306035A (en) Method for manufacturing luminous element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees