JP2009194177A - Power generating body, connector and method for manufacturing the connector - Google Patents

Power generating body, connector and method for manufacturing the connector Download PDF

Info

Publication number
JP2009194177A
JP2009194177A JP2008033772A JP2008033772A JP2009194177A JP 2009194177 A JP2009194177 A JP 2009194177A JP 2008033772 A JP2008033772 A JP 2008033772A JP 2008033772 A JP2008033772 A JP 2008033772A JP 2009194177 A JP2009194177 A JP 2009194177A
Authority
JP
Japan
Prior art keywords
power generation
conductive film
power
electrode
generation body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008033772A
Other languages
Japanese (ja)
Inventor
Akira Kashiwakura
章 柏倉
Makoto Miyamoto
真 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2008033772A priority Critical patent/JP2009194177A/en
Publication of JP2009194177A publication Critical patent/JP2009194177A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connector which ensures connection strength by a plurality of power generating bodies while being connected in series. <P>SOLUTION: This connector is a connector A which connects a plurality of power generating bodies I<SB>i</SB>, I<SB>i+1</SB>, ... which generate power by light irradiation, and includes: a first power generating body I<SB>i</SB>which includes at least a rear electrode 3<SB>i</SB>, a light absorbing layer 4<SB>i</SB>and a front electrode 6<SB>i</SB>in turn on a glass substrate 1<SB>i</SB>; and a second generating body I<SB>i+1</SB>which is connected in series with the first power generating body I<SB>i</SB>, and includes at least a rear electrode 3<SB>i+1</SB>, a light absorbing layer 4<SB>i+1</SB>, and a front electrode 6<SB>i+1</SB>in turn on a glass substrate 1<SB>i+1</SB>. In the connector A, the first power generating body I<SB>i</SB>has a conductive film 20<SB>i</SB>which coats a surface on the light incident side of the glass substrate 1<SB>i</SB>, and has an exposure part 20a<SB>i</SB>in which the rear electrode 3<SB>i</SB>is not laminated on a face on the opposite side to a contact face with the first glass substrate 1<SB>i</SB>, and the exposure part 20a<SB>i</SB>of the conductive film 20<SB>i</SB>is connected with the front electrode 6<SB>i+1</SB>of the second generating body I<SB>i+1</SB>by a solder 9<SB>i</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は発電体等に関し、より詳しくは、光照射により発電する発電体等に関する。   The present invention relates to a power generator and the like, and more particularly to a power generator that generates power by light irradiation.

近年、地球温暖化防止や廃棄物量削減等、環境への関心が世界的に高まっている。特に発電は、大量の資源を消費しながら大気・水質等の各種汚染を招く可能性があるため、注目が高い。なかでも、太陽光発電は、資源が無尽蔵であり、有害な排出物を一切生じない点で大きな期待が寄せられている。
太陽光発電は、光を電気に変換する効率が未だ充分ではなく、必要な発電量を得るには、例えば、集積型構造を用いて複数の発電体を電気的に直列接続する工夫が不可欠である(特許文献1参照)。
In recent years, environmental concerns such as global warming prevention and waste reduction have been increasing worldwide. In particular, power generation is attracting attention because it may cause various pollution such as air and water quality while consuming a large amount of resources. In particular, solar power generation is highly expected in that it has inexhaustible resources and does not produce any harmful emissions.
Photovoltaic power generation is still not efficient enough to convert light into electricity, and in order to obtain the required amount of power generation, for example, it is indispensable to use an integrated structure to electrically connect multiple power generators in series. Yes (see Patent Document 1).

特公平06−009253号公報Japanese Patent Publication No. 06-009253

ところで、太陽光発電により必要な発電量を得るための集積型構造は、複雑なパターニングが必要となるため、製造プロセスの複雑化等、製造コストが高くなるという問題がある。また、例えば、結晶シリコン型太陽電池のように、裏面が電極である構造のものは、集積型構造のような複雑なパターニングが不要となるものの、新たに配線処理の工程が必要となる。さらに、配線による接続では、結合強度を充分に確保することが難しいという問題がある。   By the way, an integrated structure for obtaining a necessary power generation amount by solar power generation requires complicated patterning, and thus there is a problem that manufacturing cost becomes high, such as complicated manufacturing process. Further, for example, a structure having a back surface as an electrode like a crystalline silicon type solar cell does not require complicated patterning like an integrated structure, but requires a new wiring processing step. Further, in connection by wiring, there is a problem that it is difficult to ensure sufficient coupling strength.

本発明は、このような課題を解決するためになされたものである。即ち、本発明の目的は、複数の発電体が充分な結合強度を確保しつつ直列に接続された接続体等を提供することにある。   The present invention has been made to solve such problems. That is, an object of the present invention is to provide a connection body in which a plurality of power generators are connected in series while ensuring sufficient coupling strength.

かくして本発明によれば、光が照射されることにより発電する発電体であって、絶縁基板と、絶縁基板の光入射側の表面を被覆する導電膜と、導電膜上に積層された部分を有する裏面電極と、裏面電極上に少なくとも光吸収層及び表面電極と、を備え、絶縁基板を被覆する導電膜は、絶縁基板との接触面と反対側の面に、裏面電極が積層されない露出部を有することを特徴とする発電体が提供される。
ここで、本発明が適用される発電体において、導電膜は、さらに絶縁基板の端部及び光入射面側と反対側の表面の少なくとも一部を被覆することが好ましい。
Thus, according to the present invention, a power generator that generates power when irradiated with light, comprising: an insulating substrate; a conductive film that covers the surface of the insulating substrate on the light incident side; and a portion laminated on the conductive film. And a conductive film covering at least the back surface electrode on the back surface electrode, the exposed portion where the back surface electrode is not laminated on the surface opposite to the contact surface with the insulating substrate. There is provided a power generator characterized by comprising:
Here, in the power generator to which the present invention is applied, it is preferable that the conductive film further covers at least a part of the end portion of the insulating substrate and the surface opposite to the light incident surface side.

次に、本発明によれば、光照射により発電する複数個の発電体を接続した接続体であって、第1の絶縁基板上に少なくとも第1の裏面電極、第1の光吸収層及び第1の表面電極とを順番に備える第1の発電体と、第1の発電体と直列に接続され、第2の絶縁基板上に少なくとも第2の裏面電極、第2の光吸収層及び第2の表面電極とを順番に備える第2の発電体と、を備え、第1の発電体は、第1の絶縁基板の光入射側の表面を被覆し、且つ第1の絶縁基板との接触面と反対側の面に第1の裏面電極が積層されない露出部を設けた第1の導電膜を有し、第1の導電膜の露出部と第2の発電体の第2の表面電極とが所定の導電体により接続されることを特徴とする接続体が提供される。
本発明が適用される接続体は、パターニング等の複雑な製造プロセスを要せずに製造することが可能であり、また、ワイヤ配線等による接続方法に比べ、発電体同士の接続強度を充分に確保することができる。
Next, according to the present invention, there is provided a connection body in which a plurality of power generation bodies that generate power by light irradiation are connected, and at least a first back electrode, a first light absorption layer, and a first light absorption layer are formed on a first insulating substrate. A first power generation body having a first surface electrode in order, and a first power generation body connected in series with the first power generation body, and at least a second back electrode, a second light absorption layer, and a second on the second insulating substrate A first power generation body that covers the surface of the first insulating substrate on the light incident side and that is in contact with the first insulating substrate. A first conductive film provided with an exposed portion where the first back electrode is not laminated on a surface opposite to the first surface electrode, and the exposed portion of the first conductive film and the second surface electrode of the second power generator are A connection body characterized by being connected by a predetermined conductor is provided.
The connection body to which the present invention is applied can be manufactured without requiring a complicated manufacturing process such as patterning, and the connection strength between the power generation bodies is sufficiently higher than the connection method using wire wiring or the like. Can be secured.

ここで、本発明が適用される接続体において、さらに、第1の発電体の第2の発電体側の端面の少なくとも一部を覆う第1の絶縁膜と、第1の発電体と直列に接続される第2の発電体の第1の発電体側の端面の少なくとも一部を覆う第2の絶縁膜と、を有することが好ましい。
このように、互いに接続する2個の発電体の側面を絶縁膜で覆うことにより、これらの発電体を接続する導電体等への電流漏れが防止され、光を電気に変換する効率が向上する。
また、第1の導電膜の露出部と第2の発電体の第2の表面電極とを接続する導電体が、可撓性材料により構成されることが好ましい。
Here, in the connection body to which the present invention is applied, a first insulating film that covers at least a part of the end face of the first power generation body on the second power generation body side, and the first power generation body are connected in series. And a second insulating film that covers at least a part of the end face of the second power generation body on the first power generation body side.
Thus, by covering the side surfaces of the two power generators connected to each other with the insulating film, current leakage to the conductors connecting these power generators is prevented, and the efficiency of converting light into electricity is improved. .
Moreover, it is preferable that the conductor which connects the exposed part of the first conductive film and the second surface electrode of the second power generator is made of a flexible material.

また、本発明によれば、光照射により発電する複数個の発電体を接続した接続体の製造方法であって、第1の絶縁基板上に少なくとも第1の裏面電極、第1の光吸収層及び第1の表面電極とを順番に備え、さらに、第1の絶縁基板の光入射側の表面を被覆し、且つ第1の絶縁基板との接触面と反対側の面に第1の裏面電極が積層されない露出部を設けた第1の導電膜を有する第1の発電体を形成し、第2の絶縁基板上に少なくとも第2の裏面電極、第2の光吸収層及び第2の表面電極とを順番に備える第2の発電体と、を形成し、第1の発電体が有する第1の導電膜の露出部と第2の発電体の第2の表面電極とを所定の導電体を用いて接続することにより第1の発電体と第2の発電体とを結合することを特徴とする接続体の製造方法が提供される。
ここで、本発明が適用される接続体の製造方法において、第1の発電体の第2の発電体側の端面の少なくとも一部を第1の絶縁膜により覆い、さらに、第1の発電体と直列に接続される第2の発電体の第1の発電体側の端面の少なくとも一部を第2の絶縁膜により覆うことが好ましい。
According to the present invention, there is also provided a method of manufacturing a connection body in which a plurality of power generation bodies that generate power by light irradiation are connected, wherein at least a first back electrode and a first light absorption layer are formed on a first insulating substrate. And a first surface electrode in order, further covering the light incident side surface of the first insulating substrate, and a first back electrode on the surface opposite to the contact surface with the first insulating substrate Forming a first power generation body having a first conductive film provided with an exposed portion on which no layer is laminated, and at least a second back electrode, a second light absorption layer, and a second surface electrode on a second insulating substrate A second power generation body including the exposed portion of the first conductive film included in the first power generation body and the second surface electrode of the second power generation body with a predetermined conductor. Provided is a method of manufacturing a connection body, wherein the first power generation body and the second power generation body are coupled by using the connection. That.
Here, in the connection body manufacturing method to which the present invention is applied, at least a part of the end face of the first power generation body on the second power generation body side is covered with the first insulating film, and further, It is preferable to cover at least a part of the end face of the second power generator connected in series on the first power generator side with the second insulating film.

本発明によれば、複数の発電体が充分な結合強度を確保しつつ直列に接続された接続体が得られる。   According to the present invention, it is possible to obtain a connection body in which a plurality of power generation bodies are connected in series while ensuring sufficient coupling strength.

以下、本発明の実施の形態について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することが出来る。また、使用する図面は本実施の形態を説明するためのものであり、実際の大きさを表すものではない。   Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the invention. The drawings used are for explaining the present embodiment and do not represent the actual size.

(実施の形態1:発電体I)
図1は、実施の形態1の発電体Iを説明する図である。図2は、発電体Iをスパッタリング法により形成する際に使用するマスクを説明する図である。図1に示す発電体Iは、絶縁基板としてのガラス基板1と、ガラス基板1の光Lが入射する側の表面の少なくとも一部を被覆する導電膜20と、導電膜20上に積層された部分を有する裏面電極3と、裏面電極3上に積層された光吸収層4及び透明導電膜5と、透明導電膜5上に形成された表面電極6とを備えている。
そして、絶縁基板であるガラス基板1を被覆する導電膜20は、ガラス基板1との接触面と反対側の面に、裏面電極3及び他の層が積層されない露出部20aが設けられている。
(Embodiment 1: Power generator I)
FIG. 1 is a diagram illustrating a power generator I according to the first embodiment. FIG. 2 is a diagram for explaining a mask used when the power generator I is formed by a sputtering method. A power generator I shown in FIG. 1 is laminated on a glass substrate 1 as an insulating substrate, a conductive film 20 covering at least a part of the surface of the glass substrate 1 on which light L is incident, and a conductive film 20. A back electrode 3 having a portion, a light absorption layer 4 and a transparent conductive film 5 laminated on the back electrode 3, and a surface electrode 6 formed on the transparent conductive film 5 are provided.
The conductive film 20 that covers the glass substrate 1 that is an insulating substrate is provided with an exposed portion 20a on the surface opposite to the contact surface with the glass substrate 1 where the back electrode 3 and other layers are not laminated.

本実施の形態では、ガラス基板1として、1辺138mmの正方形で厚さ0.55mmのガラス板を使用している。導電膜20は、アルミニウム(Al)を用いてガラス基板1上の光Lの入射側の全面を被覆する。裏面電極3は、モリブデン(Mo)を用いて形成されている。光吸収層4は、カルコパイライト型化合物(Cu−In−Se化合物)を用いて成膜されている。ここで、本実施の形態では、光吸収層4上に酸化亜鉛(ZnO)を用いて透明導電膜5が形成されている。また、表面電極6は、アルミニウム(Al)を使用して形成される。   In the present embodiment, a glass plate having a side of 138 mm square and a thickness of 0.55 mm is used as the glass substrate 1. The conductive film 20 covers the entire surface of the light L incident side on the glass substrate 1 using aluminum (Al). The back electrode 3 is formed using molybdenum (Mo). The light absorption layer 4 is formed using a chalcopyrite type compound (Cu—In—Se compound). Here, in the present embodiment, the transparent conductive film 5 is formed on the light absorption layer 4 using zinc oxide (ZnO). The surface electrode 6 is formed using aluminum (Al).

発電体Iの各層は、所定のスパッタリング装置を用いたスパッタリング法により、以下のように形成される。先ず、ガラス基板1の光入射側全面に、Alを用い、スパッタリング法にて膜厚400nmの導電膜20を成膜する。次に、図2(a)に示すように、ガラス基板1の表面に成膜された導電膜20の1辺を幅1.5mmのマスクMで覆い、続いて、Moを用い、スパッタリング法にて膜厚500nmの裏面電極3を膜厚500nmを成膜する。これにより、導電膜20に、裏面電極3が積層されない露出部20aが設けられる。 Each layer of the power generator I is formed as follows by a sputtering method using a predetermined sputtering apparatus. First, the conductive film 20 having a thickness of 400 nm is formed by sputtering on the entire surface of the light incident side of the glass substrate 1 using Al. Next, as shown in FIG. 2 (a), one side of the conductive film 20 formed on the surface of the glass substrate 1 is covered with a mask M1 having a width of 1.5 mm, and then using Mo, a sputtering method. The back electrode 3 having a thickness of 500 nm is formed to a thickness of 500 nm. As a result, the conductive film 20 is provided with an exposed portion 20a where the back electrode 3 is not laminated.

次に、導電膜20の1辺をマスクMで覆った状態で、裏面電極3上に、スパッタリング法により、CuSe/In/CuSe/InSeの各層を順に形成し、それぞれの膜厚が100nm/150nm/100nm/200nmとなるように成膜する。
続いて、これらの薄膜上に、ZnOを用い、スパッタリング法により、膜厚800nmの透明導電膜5を成膜し、その後、マスクMを取り外す。
次に、図2(b)に示すように、透明導電膜5上をマスクMで覆う。マスクMには、表面電極6に対応する方形部分mが4箇所くり抜かれている。透明導電膜5上をマスクMで覆った状態で、Alを用い、スパッタリング法により、膜厚500nmの表面電極6を形成し、その後、マスクMを取り外す。
Next, in a state of covering the one side of the conductive film 20 in the mask M 1, on the back electrode 3, by a sputtering method, each layer is formed of CuSe 2 / In / CuSe 2 / In 2 Se 3 in this order, respectively The film is formed so that the film thickness is 100 nm / 150 nm / 100 nm / 200 nm.
Subsequently, on these thin films, using ZnO, by sputtering, to form a transparent conductive film 5 having a film thickness of 800 nm, then remove the mask M 1.
Next, as shown in FIG. 2 (b), covering the transparent conductive film 5 in the mask M 2. The mask M 2, a square portion m 1 corresponding to the surface electrode 6 is hollowed out at four. The upper transparent conductive film 5 in a state covered with a mask M 2, with Al, by sputtering, to form a surface electrode 6 having a thickness of 500 nm, then remove the mask M 2.

最後に、ガラス基板1を所定の加熱装置により400℃で30分間加熱し、CuSe/In/CuSe/InSeの各層を溶融・結晶化させることにより光吸収層4を形成し、発電体Iを完成させる。
尚、ガラス基板1を加熱し、CuSe/In/CuSe/InSeの各層を溶融・結晶化させる処理は、後述するように、複数個の発電体Iを直列に接続した後に行ってもよい。
Finally, the glass substrate 1 is heated at 400 ° C. for 30 minutes with a predetermined heating device, and the light absorbing layer 4 is formed by melting and crystallizing each layer of CuSe 2 / In / CuSe 2 / In 2 Se 3 , Complete the power generator I.
In addition, the process which heats the glass substrate 1 and melts and crystallizes each layer of CuSe 2 / In / CuSe 2 / In 2 Se 3 is performed after connecting a plurality of power generators I in series as will be described later. May be.

(接続体A)
次に、発電体Iを用いた接続体Aについて説明する。
図3は、複数の発電体Iを直列に接続した接続体Aを説明する図である。図1に示した発電体Iと同じ構成については同じ符号を使用し、その説明を省略する。
図3に示すように、接続体Aは、ガラス基板1上に導電膜20、裏面電極3、光吸収層4、透明導電膜5及び表面電極6を順番に備える複数個の発電体(I,Ii+1,Ii+2,…)が、それぞれ導電体である半田9i−1,9,9i+1,…により接続された構造を有している。尚、iは、1以上の整数である。
(Connector A)
Next, the connection body A using the power generation body I will be described.
FIG. 3 is a diagram illustrating a connection body A in which a plurality of power generation bodies I are connected in series. About the same structure as the electric power generation body I shown in FIG. 1, the same code | symbol is used and the description is abbreviate | omitted.
As shown in FIG. 3, the connection body A includes a plurality of conductive films 20 i , a back electrode 3 i , a light absorption layer 4 i , a transparent conductive film 5 i, and a front electrode 6 i in order on a glass substrate 1. The power generators (I i , I i + 1 , I i + 2 ,...) Are connected by solders 9 i−1 , 9 i , 9 i + 1 ,. Note that i is an integer of 1 or more.

ここで、隣接する2個の発電体(I,Ii+1)は、第1の発電体(I)の導電膜20に設けた露出部20aを有する側の側面と、第2の発電体(Ii+1)の表面電極6i+1を設けた側の側面と、が接触するように並べられている。そして、第1の発電体(I)における露出部20aの裏面電極3等が積層されない領域と第2の発電体(Ii+1)の表面電極6i+1を設けた側の側面とで形成される空間部分を埋め、且つ第2の発電体(Ii+1)の表面電極6i+1を覆うように半田9を流し込む。その結果、第1の発電体(I)における導電膜20に設けられた露出部20aと第2の発電体(Ii+1)の表面電極6i+1とが、導電体である半田9により結合し、2個の発電体(I,Ii+1)が電気的に直列に接続される。
尚、半田9は、通常、Pb−Sn系合金及びこれに少量のビスマス(Bi)等の低溶融性金属を含む合金系の軟ロウである。
Here, two adjacent power generators (I i , I i + 1 ) include a side surface on the side having the exposed portion 20 a i provided on the conductive film 20 i of the first power generator (I i ), The power generators (I i + 1 ) are arranged so as to be in contact with the side surface on which the surface electrode 6 i + 1 is provided. Then, formed in the surface electrode 6 i + 1 a provided with side side of the back electrode 3 i like are not laminated area and the second power generator of the exposed portion 20a i (I i + 1) in the first power generating element (I i) The solder 9 i is poured so as to fill the space portion to be covered and to cover the surface electrode 6 i + 1 of the second power generation body (I i + 1 ). As a result, the first power generating element (I i) and the surface electrode 6 i + 1 of the exposed portion provided on the conductive film 20 i 20a i and second generators (I i + 1) in is a conductor solder 9 i The two power generators (I i , I i + 1 ) are electrically connected in series.
The solder 9 is usually a Pb—Sn alloy and an alloy soft solder containing a small amount of a low melting metal such as bismuth (Bi).

本実施の形態では、隣接する2個の発電体(I,Ii+1)の互いに接触する面側の端面は、それぞれ絶縁膜によって覆われている。これにより、ガラス基板1に比べて膜厚が極めて薄い各層からの僅かな電流漏れを防ぐことができる。
即ち、図3に示すように、接続体Aにおいて、第1の発電体(I)の第2の発電体(Ii+1)側の端面には、ガラス基板1及び導電膜20が形成された部分を覆う第1の絶縁膜10aと、裏面電極3と光吸収層4及び透明導電膜5が形成された部分を覆う第1の絶縁膜10bとがそれぞれ形成されている。また、第2の発電体(Ii+1)の第1の発電体(I)側の端面には、表面電極6i+1を除く他の全ての層の端面を覆う第2の絶縁膜11i+1が形成されている。
In the present embodiment, the end faces on the surface side of the two adjacent power generators (I i , I i + 1 ) that are in contact with each other are each covered with an insulating film. Thereby, slight current leakage from each layer having a very thin film thickness as compared with the glass substrate 1 i can be prevented.
That is, as shown in FIG. 3, in the connection body A, the glass substrate 1 i and the conductive film 20 i are formed on the end face of the first power generation body (I i ) on the second power generation body (I i + 1 ) side. A first insulating film 10a i covering the formed portion, and a first insulating film 10b i covering the portion where the back electrode 3 i , the light absorption layer 4 i, and the transparent conductive film 5 i are formed, respectively. Yes. Further, the second insulating film 11 i + 1 covering the end faces of all the layers other than the surface electrode 6 i + 1 is formed on the end face of the second power generating body (I i + 1 ) on the first power generating body (I i ) side. Is formed.

(接続体B)
図4は、複数の発電体Iを直列に接続した接続体の他の実施の形態を説明する図である。図1及び図3に示した発電体I及び接続体Aと同じ構成については同じ符号を使用し、その説明を省略する。図4に示す接続体Bは、それぞれガラス基板1上に導電膜20、裏面電極3、光吸収層4、透明導電膜5及び表面電極6を順番に備える複数個の発電体(I,Ii+1,Ii+2,…)が、導電体12,12i+1,12i+2,…及び半田13i−1,13,13i+1,…により接続された構造を有している。
(Connector B)
FIG. 4 is a diagram for explaining another embodiment of a connection body in which a plurality of power generation bodies I are connected in series. The same components as those of the power generator I and the connector A shown in FIGS. 1 and 3 are denoted by the same reference numerals, and the description thereof is omitted. Connector B shown in FIG. 4, the conductive film 20 i on a glass substrate 1 i, respectively, the back electrode 3 i, the light-absorbing layer 4 i, a plurality of power generation comprising in sequence a transparent conductive film 5 i and the surface electrode 6 i The bodies (I i , I i + 1 , I i + 2 ,...) Have a structure in which the conductors 12 i , 12 i + 1 , 12 i + 2 ,... And the solders 13 i−1 , 13 i , 13 i + 1 ,. Yes.

ここで、図4に示すように、導電体12は、第1の発電体(I)の表面電極6及び表面電極6を設けた側の側面と、さらに、ガラス基板1の光入射面側と反対側の表面の一部とを連続的に覆うように形成されている。そして、第1の発電体(I)の導電膜20に設けた露出部20aの裏面電極3等が積層されない領域と、隣接する第2の発電体(Ii+1)の側面に形成した導電体12i+1のガラス基板1i+1の下表面の一部を覆う部分とを重ねる。さらに、半田13にて、第1の発電体(I)の導電膜20に設けた露出部20aと第2の発電体(Ii+1)の側面に形成した導電体12i+1とを結合させることにより、隣接する2個の発電体(I,Ii+1)は、電気的に直列に接続される。
本実施の形態では、導電体12は、ガラス基板1上に表面電極6を形成した後に、Alを用い、スパッタリング法により、膜厚800nmになるように成膜し、表面電極6及び表面電極6を設けた側の側面とガラス基板1の下表面の一部とを連続的に被覆することにより形成される。
Here, as shown in FIG. 4, the conductor 12 i includes the surface electrode 6 i of the first power generation body (I i ) and the side surface on which the surface electrode 6 i is provided, and the glass substrate 1 i . It is formed so as to continuously cover a part of the surface opposite to the light incident surface side. Then, a region in which the back electrode 3 i like are not stacked in the exposed portion 20a i provided on the conductive film 20 i of the first power generation element (I i), formed on the side surface of the second generator bodies adjacent (I i + 1) The portion of the lower surface of the glass substrate 1 i + 1 of the conductor 12 i + 1 is overlapped. Furthermore, with the solder 13 i , the exposed portion 20 a i provided on the conductive film 20 i of the first power generation body (I i ) and the conductor 12 i + 1 formed on the side surface of the second power generation body (I i + 1 ) By coupling, two adjacent power generators (I i , I i + 1 ) are electrically connected in series.
In the present embodiment, after the surface electrode 6 i is formed on the glass substrate 1 i , the conductor 12 i is formed by Al using a sputtering method so as to have a film thickness of 800 nm, and the surface electrode 6 i is formed. In addition, it is formed by continuously covering the side surface on which the surface electrode 6 i is provided and a part of the lower surface of the glass substrate 1 i .

また、本実施の形態では、第1の発電体(I)は、隣接する発電体を電気的に接続する導電体12,12i+1とそれぞれ接触する端面が絶縁膜によって覆われている。
即ち、図4に示すように、第1の発電体(I)において、表面電極6を設けた側の側面は、絶縁膜14によって覆われ導電体12と電気的に絶縁されている。また、隣接する第2の発電体(Ii+1)側は、裏面電極3と光吸収層4及び透明導電膜5が形成された部分の端面が絶縁膜15によって覆われ、導電体12i+1の下部と電気的に絶縁されている。
Further, in the present embodiment, the first power generation body (I i ) is covered with an insulating film at the end face that contacts the conductors 12 i and 12 i + 1 that electrically connect the adjacent power generation bodies.
Namely, as illustrated in FIG 4, the first power generating body in (I i), a side of the side provided with the surface electrode 6 i may be conductors 12 i and electrically insulated is covered by the insulating film 14 i Yes. The adjacent second power generation body (I i + 1 ) side is covered with an insulating film 15 i at the end surface where the back electrode 3 i , the light absorption layer 4 i, and the transparent conductive film 5 i are formed. It is electrically insulated from the lower part of 12 i + 1 .

(実施の形態2:発電体II)
図5は、実施の形態2の発電体IIを説明する図である。図1に示した発電体Iと同じ構成については同じ符号を使用し、その説明を省略する。図5に示す発電体IIは、ガラス基板1と、ガラス基板1の表面を被覆する導電膜21と、裏面電極3、光吸収層4及び透明導電膜5と、表面電極6とを備えている。
そして、本実施の形態では、ガラス基板1の表面を被覆する導電膜21は、ガラス基板1との接触面と反対側の面に、裏面電極3及び他の層が積層されない部分として、ガラス基板1の端部を被覆する露出部21aと、ガラス基板1の光入射面側と反対側の表面の少なくとも一部を被覆する露出部21bとが形成されている。
(Embodiment 2: Power generator II)
FIG. 5 is a diagram for explaining the power generation body II of the second embodiment. About the same structure as the electric power generation body I shown in FIG. 1, the same code | symbol is used and the description is abbreviate | omitted. 5 includes a glass substrate 1, a conductive film 21 that covers the surface of the glass substrate 1, a back electrode 3, a light absorption layer 4, a transparent conductive film 5, and a surface electrode 6. .
And in this Embodiment, the electrically conductive film 21 which coat | covers the surface of the glass substrate 1 is a glass substrate as a part in which the back surface electrode 3 and another layer are not laminated | stacked on the surface on the opposite side to a contact surface with the glass substrate 1. An exposed portion 21 a that covers one end portion of the glass substrate 1 and an exposed portion 21 b that covers at least a part of the surface of the glass substrate 1 opposite to the light incident surface side are formed.

(接続体C)
次に、発電体IIを用いた接続体について説明する。
図6は、複数の発電体IIを直列に接続した接続体Cを説明する図である。図5に示した発電体IIと同じ構成については同じ符号を使用し、その説明を省略する。
図6に示す接続体Cは、ガラス基板1上に導電膜21、裏面電極3、光吸収層4、透明導電膜5及び表面電極6を順番に備える複数個の発電体(II,IIi+1,IIi+2,…)が、それぞれ半田16i−1,16,16i+1,…により接続された構造を有している。
(Connector C)
Next, a connection body using the power generation body II will be described.
FIG. 6 is a diagram illustrating a connection body C in which a plurality of power generation bodies II are connected in series. About the same structure as the electric power generation body II shown in FIG. 5, the same code | symbol is used and the description is abbreviate | omitted.
Connector C shown in FIG. 6, a conductive film 21 on the glass substrate 1 i i, the back electrode 3 i, a plurality of power generating body comprising the light absorbing layer 4 i, the transparent conductive film 5 i and the surface electrode 6 i in order (II i , II i + 1 , II i + 2 ,...) Are connected by solders 16 i−1 , 16 i , 16 i + 1 ,.

ここで、図6に示すように、隣接する2個の発電体(II,IIi+1)は、第1の発電体(II)における表面電極6と、第2の発電体(IIi+1)におけるガラス基板1i+1の光入射面側と反対側の表面の一部を被覆する露出部21bi+1とが重ねられている。そして、半田16にて、第1の発電体(II)の表面電極6と第2の発電体(IIi+1)の導電膜21i+1に設けた露出部21bi+1とを結合させることにより、隣接する2個の発電体(II,IIi+1)は、電気的に直列に接続される。 Here, as shown in FIG. 6, two adjacent power generators (II i , II i + 1 ) include a surface electrode 6 i in the first power generator (II i ) and a second power generator (II i + 1). The exposed portion 21b i + 1 which covers a part of the surface opposite to the light incident surface side of the glass substrate 1 i + 1 in FIG. Then, the surface electrode 6 i of the first power generation body (II i ) and the exposed portion 21 b i + 1 provided on the conductive film 21 i + 1 of the second power generation body (II i + 1 ) are joined by the solder 16 i . Two adjacent power generators (II i , II i + 1 ) are electrically connected in series.

(接続体D)
図7は、複数の発電体IIを直列に接続した接続体の他の実施の形態を説明する図である。図5及び図6に示した発電体II及び接続体Cと同じ構成については同じ符号を使用し、その説明を省略する。図7(a)に示す接続体Dは、それぞれガラス基板1上に導電膜21、裏面電極3、光吸収層4、透明導電膜5及び表面電極6を順番に備える複数個の発電体(II,IIi+1,…)が、導電体17i−1,17,…及び半田18ai−1,18b,18a,18bi+1,…により接続された構造を有している。
(Connector D)
FIG. 7 is a diagram for explaining another embodiment of a connection body in which a plurality of power generation bodies II are connected in series. About the same structure as the electric power generation body II and the connection body C shown in FIG.5 and FIG.6, the same code | symbol is used and the description is abbreviate | omitted. The connection body D shown in FIG. 7A includes a plurality of conductive films 21 i , a back electrode 3 i , a light absorption layer 4 i , a transparent conductive film 5 i, and a front electrode 6 i in order on a glass substrate 1 i. Has a structure in which a plurality of power generators (II i , II i + 1 ,...) Are connected by conductors 17 i−1 , 17 i ,... And solders 18 a i−1 , 18 b i , 18 a i , 18 b i + 1 ,. is doing.

図7(a)に示すように、導電体17は、第1の発電体(II)の表面電極6及び表面電極6を設けた側の側面と、さらに、表面電極6を設けた側の側面に隣接する第2の発電体(IIi+1)の導電膜21i+1の露出部21bi+1とを連続的に覆うように形成されている。そして、半田18aにて第1の発電体(II)の表面電極6と導電体17とを結合し、半田18bi+1にて導電体17と第2の発電体(IIi+1)の露出部21bi+1とを結合することにより、隣接する2個の発電体(II,IIi+1)は、電気的に直列に接続される。 As shown in FIG. 7A, the conductor 17 i includes a surface of the first power generation body (II i ) on the side where the surface electrode 6 i and the surface electrode 6 i are provided, and a surface electrode 6 i . It is formed so as to continuously cover the exposed portion 21b i + 1 of the conductive film 21 i + 1 of the second power generation body (II i + 1 ) adjacent to the side surface on the provided side. Then, the first power generating body by soldering 18a i (II i) combining the surface electrode 6 i and the conductor 17 i of at solder 18b i + 1 conductors 17 i and second generators (II i + 1) The two adjacent power generation bodies (II i , II i + 1 ) are electrically connected in series by coupling the exposed portions 21b i + 1 of the two.

また、本実施の形態では、隣接する2個の発電体を電気的に接続する導電体17と接触する第1の発電体(II)の端面は、絶縁膜によって覆われている。
即ち、図7(a)に示すように、第1の発電体(II)において、表面電極6を設けた側の側面は、絶縁膜19aによって覆われている。また、表面電極6を設けた側とは反対側の側面であって、裏面電極3、光吸収層4及び透明導電膜5が形成された部分の端面は絶縁膜19bによって覆われている。
Further, in this embodiment, the end face of the first power generating element in contact with the conductor 17 i for electrically connecting the adjacent two generators (II i) is covered with an insulating film.
That is, as shown in FIG. 7A, in the first power generator (II i ), the side surface on the side where the surface electrode 6 i is provided is covered with the insulating film 19 a i . Further, the side surface opposite to the side on which the front surface electrode 6 i is provided, and the end surface of the portion where the back surface electrode 3 i , the light absorption layer 4 i and the transparent conductive film 5 i are formed is covered with an insulating film 19 b i . It has been broken.

本実施の形態では、第1の発電体(II)の表面電極6と第2の発電体(IIi+1)の露出部21bi+1とを結合し、隣接する2個の発電体(II,IIi+1)を電気的に直列に接続する導電体17は、可撓性材料によって構成されている。
ここで、可撓性材料としては、導電性を有し、外力に対して柔軟に変形し、外力を取り除くと元の形状に戻れるような性質を有する持つ材料であれば特に限定されず、例えば、テープ利用自動ボンディング(TAB:Tape Automated Bonding)やTCP(Tape Carrier Package)に使われているような導線を封入したテープ等が挙げられる。
導電体17が、可撓性材料によって構成されていることにより、例えば、図7(b)に示すように、接続体Dに外力が負荷された場合でも、発電体同士がフレキシブルに動き、互いの位置関係を柔軟に調整することが可能となる。これによって、発電体同士の接続部分に負荷される応力や、負荷された応力に基づく歪が低減され、接続強度が増大する。
In this embodiment, an exposed portion 21b i + 1 of the first power generation surface electrode 6 i and the second power generating body (II i) (II i + 1) attached, adjacent two generators (II i , II i + 1) conductors 17 are electrically connected in series i is composed of a flexible material.
Here, the flexible material is not particularly limited as long as it is a material that has conductivity, deforms softly with respect to external force, and has a property of returning to its original shape when the external force is removed. Examples of the tape include a tape encapsulating a conductive wire used for tape automated bonding (TAB) and TCP (Tape Carrier Package).
Since the conductor 17 i is made of a flexible material, for example, as shown in FIG. 7B, even when an external force is applied to the connection body D, the power generation bodies move flexibly, The mutual positional relationship can be flexibly adjusted. As a result, the stress applied to the connecting portion between the power generators and the strain based on the applied stress are reduced, and the connection strength is increased.

以上、本発明の実施の形態について具体的に説明したが、本発明はこれに限定されるものではない。例えば、光吸収層の材料としてはCu−In−Se化合物に限るものではなく、シリコン系材料や有機系材料等が適宜選択される。また、絶縁基板としてはガラス基板に限るものではなく、例えば、ポリイミドのような高分子材料等が適宜選択される。
各層の成膜手段としてはスパッタリング法に限るものではなく、蒸着法やめっき等が適宜選択される。発電体同士を接続する導電体及び導電性接着剤としては半田に限るものではなく、例えば、インジウム(In)等の導電性材料が適宜選択され、さらに、超音波振動等による溶着等の手法を採用することができる。
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to this. For example, the material of the light absorption layer is not limited to a Cu—In—Se compound, and a silicon-based material, an organic material, or the like is appropriately selected. The insulating substrate is not limited to a glass substrate, and for example, a polymer material such as polyimide is appropriately selected.
The film forming means for each layer is not limited to the sputtering method, and an evaporation method, plating, or the like is appropriately selected. The conductor and the conductive adhesive for connecting the power generators are not limited to solder. For example, a conductive material such as indium (In) is appropriately selected, and a technique such as welding by ultrasonic vibration is used. Can be adopted.

実施の形態1の発電体Iを説明する図である。It is a figure explaining the electric power generation body I of Embodiment 1. FIG. 発電体Iをスパッタリング法により形成する際に使用するマスクを説明する図である。It is a figure explaining the mask used when forming the electric power generation body I by sputtering method. 複数の発電体Iを直列に接続した接続体を説明する図である。It is a figure explaining the connection body which connected the several electric power generation body I in series. 複数の発電体Iを直列に接続した接続体の他の実施の形態を説明する図である。It is a figure explaining other embodiment of the connection body which connected the several electric power generation body I in series. 実施の形態2の発電体IIを説明する図である。It is a figure explaining the electric power generation body II of Embodiment 2. FIG. 複数の発電体IIを直列に接続した接続体を説明する図である。It is a figure explaining the connection body which connected the several electric power generation body II in series. 複数の発電体IIを直列に接続した接続体の他の実施の形態を説明する図である。It is a figure explaining other embodiment of the connection body which connected the several electric power generation body II in series.

符号の説明Explanation of symbols

1…ガラス基板、20,21…導電膜、3…裏面電極、4…光吸収層、5…透明導電膜、6…表面電極、20a,21a,21b…露出部、9,13,16,18a,18b…半田、12,17…導電体、10a,10b…第1の絶縁膜、11…第2の絶縁膜、14,15,19a,19b…絶縁膜 1 ... glass substrate, 20, 21 ... conductive film, 3 ... back electrode, 4 ... light absorbing layer, 5 ... transparent conductive film, 6 ... surface electrode, 20a, 21a, 21b ... exposed portion, 9 i, 13 i, 16 i , 18 a i , 18 b i ... solder, 12 i , 17 i ... conductor, 10 a i , 10 b i ... first insulating film, 11 i ... second insulating film, 14 i , 15 i , 19 a i , 19 b i ... Insulating film

Claims (7)

光が照射されることにより発電する発電体であって、
絶縁基板と、
前記絶縁基板の光入射側の表面を被覆する導電膜と、
前記導電膜上に積層された部分を有する裏面電極と、
前記裏面電極上に少なくとも光吸収層及び表面電極と、を備え、
前記絶縁基板を被覆する前記導電膜は、当該絶縁基板との接触面と反対側の面に、前記裏面電極が積層されない露出部を有する
ことを特徴とする発電体。
A power generator that generates power when irradiated with light,
An insulating substrate;
A conductive film covering the light incident side surface of the insulating substrate;
A back electrode having a portion laminated on the conductive film;
At least a light absorption layer and a surface electrode are provided on the back electrode,
The power generation body, wherein the conductive film covering the insulating substrate has an exposed portion where the back electrode is not laminated on a surface opposite to a contact surface with the insulating substrate.
前記絶縁基板を被覆する前記導電膜は、さらに当該絶縁基板の端部及び前記光入射面側と反対側の表面の少なくとも一部を被覆することを特徴とする請求項1に記載の発電体。   2. The power generator according to claim 1, wherein the conductive film covering the insulating substrate further covers at least a part of an end portion of the insulating substrate and a surface opposite to the light incident surface side. 光照射により発電する複数個の発電体を接続した接続体であって、
第1の絶縁基板上に少なくとも第1の裏面電極、第1の光吸収層及び第1の表面電極とを順番に備える第1の発電体と、
前記第1の発電体と直列に接続され、第2の絶縁基板上に少なくとも第2の裏面電極、第2の光吸収層及び第2の表面電極とを順番に備える第2の発電体と、を備え、
前記第1の発電体は、前記第1の絶縁基板の光入射側の表面を被覆し、且つ当該第1の絶縁基板との接触面と反対側の面に前記第1の裏面電極が積層されない露出部を設けた第1の導電膜を有し、
前記第1の導電膜の前記露出部と前記第2の発電体の前記第2の表面電極とが所定の導電体により接続される
ことを特徴とする接続体。
A connection body in which a plurality of power generation bodies that generate power by light irradiation are connected,
A first power generation body comprising at least a first back electrode, a first light absorption layer, and a first front electrode in order on a first insulating substrate;
A second power generation body connected in series with the first power generation body, and comprising at least a second back electrode, a second light absorption layer, and a second surface electrode in order on a second insulating substrate; With
The first power generating body covers the light incident side surface of the first insulating substrate, and the first back electrode is not laminated on the surface opposite to the contact surface with the first insulating substrate. A first conductive film provided with an exposed portion;
The connection body, wherein the exposed portion of the first conductive film and the second surface electrode of the second power generation body are connected by a predetermined conductor.
さらに、前記第1の発電体の前記第2の発電体側の端面の少なくとも一部を覆う第1の絶縁膜と、
前記第1の発電体と直列に接続される前記第2の発電体の当該第1の発電体側の端面の少なくとも一部を覆う第2の絶縁膜と、を有する
ことを特徴とする請求項3に記載の接続体。
A first insulating film covering at least a part of an end face of the first power generator on the second power generator side;
4. A second insulating film that covers at least a part of an end surface of the second power generation body on the first power generation body side of the second power generation body connected in series with the first power generation body. Connected body described in 1.
前記第1の導電膜の前記露出部と前記第2の発電体の前記第2の表面電極とを接続する前記導電体が、可撓性材料により構成されることを特徴とする請求項3に記載の接続体。   4. The conductor that connects the exposed portion of the first conductive film and the second surface electrode of the second power generator is made of a flexible material. The connection body described. 光照射により発電する複数個の発電体を接続した接続体の製造方法であって、
第1の絶縁基板上に少なくとも第1の裏面電極、第1の光吸収層及び第1の表面電極とを順番に備え、さらに、当該第1の絶縁基板の光入射側の表面を被覆し、且つ当該第1の絶縁基板との接触面と反対側の面に当該第1の裏面電極が積層されない露出部を設けた第1の導電膜を有する第1の発電体を形成し、
第2の絶縁基板上に少なくとも第2の裏面電極、第2の光吸収層及び第2の表面電極とを順番に備える第2の発電体と、を形成し、
前記第1の発電体が有する前記第1の導電膜の前記露出部と前記第2の発電体の前記第2の表面電極とを所定の導電体を用いて接続することにより当該第1の発電体と当該第2の発電体とを結合する
ことを特徴とする接続体の製造方法。
A method of manufacturing a connection body in which a plurality of power generation bodies that generate power by light irradiation are connected,
On the first insulating substrate, at least a first back electrode, a first light absorption layer, and a first surface electrode are provided in order, and further, a light incident side surface of the first insulating substrate is covered, And forming a first power generator having a first conductive film provided with an exposed portion on which the first back electrode is not laminated on the surface opposite to the contact surface with the first insulating substrate;
Forming a second power generation body including at least a second back electrode, a second light absorption layer, and a second front electrode in order on the second insulating substrate;
The first power generation is performed by connecting the exposed portion of the first conductive film of the first power generation body and the second surface electrode of the second power generation body using a predetermined conductor. A method of manufacturing a connection body, comprising: connecting a body and the second power generation body.
前記第1の発電体の前記第2の発電体側の端面の少なくとも一部を第1の絶縁膜により覆い、さらに、当該第1の発電体と直列に接続される当該第2の発電体の当該第1の発電体側の端面の少なくとも一部を第2の絶縁膜により覆うことを特徴とする請求項6に記載の接続体の製造方法。   Covering at least a part of the end face of the first power generation body on the second power generation body side with a first insulating film, and further, the second power generation body connected in series with the first power generation body The method for manufacturing a connection body according to claim 6, wherein at least part of the end face on the first power generation body side is covered with a second insulating film.
JP2008033772A 2008-02-14 2008-02-14 Power generating body, connector and method for manufacturing the connector Withdrawn JP2009194177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008033772A JP2009194177A (en) 2008-02-14 2008-02-14 Power generating body, connector and method for manufacturing the connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008033772A JP2009194177A (en) 2008-02-14 2008-02-14 Power generating body, connector and method for manufacturing the connector

Publications (1)

Publication Number Publication Date
JP2009194177A true JP2009194177A (en) 2009-08-27

Family

ID=41075932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008033772A Withdrawn JP2009194177A (en) 2008-02-14 2008-02-14 Power generating body, connector and method for manufacturing the connector

Country Status (1)

Country Link
JP (1) JP2009194177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515422A (en) * 2009-01-19 2012-07-05 ティーモ テクノロジー カンパニー リミテッド Series / parallel mixed dye-sensitized solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515422A (en) * 2009-01-19 2012-07-05 ティーモ テクノロジー カンパニー リミテッド Series / parallel mixed dye-sensitized solar cell module

Similar Documents

Publication Publication Date Title
US9385254B2 (en) Integrated thin film solar cell interconnection
US9419171B2 (en) Two-part screen printing for solar collection grid
US9362433B2 (en) Photovoltaic interconnect systems, devices, and methods
JP2012533905A (en) Monolithic module assembly using back contact solar cells and metal ribbon
JP3751539B2 (en) Thin film solar cell and manufacturing method thereof
JP2011523228A (en) Selective removal and contact of thin film solar cells
JP2004247402A (en) Solar cell module and its manufacturing method
EP2706580A2 (en) Photoelectric device module and manufacturing method thereof
JPS6146993B2 (en)
CN103390672B (en) A kind of integrated thin-film solar battery component and preparation method thereof
US20100147356A1 (en) Thin film solar cell string
KR101550927B1 (en) Solar cell and method of fabircating the same
JP2011060857A (en) Concentrated photovoltaic solar power generation module and method of manufacturing the same
JP2007201291A (en) Solar battery module and method of reproducing same
JP2009194177A (en) Power generating body, connector and method for manufacturing the connector
JP2014192481A (en) Metal foil lamination body for solar cell, solar cell module, and manufacturing method of metal foil lamination body for solar cell
JP2014175520A (en) Solar battery module and manufacturing method for the same
JP5450277B2 (en) Member joining method
WO2021241425A1 (en) Solar cell and method for producing solar cell
EP4307393A1 (en) Method for manufacturing a solar cell module and solar cell module
JP2008135573A (en) Solar battery element, solar-battery module and its manufacturing method
JP2001036104A (en) Solar battery module
JPH0745848A (en) Photovoltaic device and manufacture thereof
JP5342151B2 (en) Solar cell module
JP4372793B2 (en) Solar cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510