JP2009192416A - Thermal analyzer - Google Patents

Thermal analyzer Download PDF

Info

Publication number
JP2009192416A
JP2009192416A JP2008034540A JP2008034540A JP2009192416A JP 2009192416 A JP2009192416 A JP 2009192416A JP 2008034540 A JP2008034540 A JP 2008034540A JP 2008034540 A JP2008034540 A JP 2008034540A JP 2009192416 A JP2009192416 A JP 2009192416A
Authority
JP
Japan
Prior art keywords
temperature
program
sample
hold
control period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008034540A
Other languages
Japanese (ja)
Inventor
Koji Nishino
孝二 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008034540A priority Critical patent/JP2009192416A/en
Publication of JP2009192416A publication Critical patent/JP2009192416A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal analyzer constituted so as to allow the temperature of a sample to coincide with the hold temperature in a temperature program. <P>SOLUTION: The thermal analyzer is equipped with a heating oven body 1 and an operation control part 2A equipped with a temperature difference calculating function 24 for reading and storing the temperature difference ΔT between a program temperature Tp and a sample temperature Ts, a temperature control period detecting function 25 for detecting a temperature control period and a hold temperature updating function 26 for updating the hold temperature of the temperature program by the detection signal from the temperature control period detecting function 25. The temperature control period detecting function 25 detects the temperature control period before one temperature control period wherein the program temperature Tp reaches the hold temperature, and the temperature difference ΔT at this point of time is added to an initial hold temperature Th to update the hold temperature. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、示差走査熱量計、示差熱分析装置、熱重量測定装置あるいは熱機械分析装置などの加熱炉本体の温度制御を行なって試料の分析を行う熱分析装置に関する。   The present invention relates to a thermal analysis apparatus that analyzes a sample by performing temperature control of a heating furnace body such as a differential scanning calorimeter, a differential thermal analysis apparatus, a thermogravimetric measurement apparatus, or a thermomechanical analysis apparatus.

種々の材料の熱的物性を求めたり、各種の無機・有機化合物の熱安定性を調べるために種々の熱分析装置が使用されている。これらの熱分析装置のうち、示差走査熱量計(DSC装置)は、物質のエンタルピー変化を測定する装置で、材料科学をはじめ医薬品分野などにおいて広く利用されている。この示差走査熱量計は、試料と参照試料を収容した試料セルと参照試料セルを加熱炉内の対称な位置に置き、加熱炉の温度を昇降温させたときに試料に生じた吸発熱変化に起因する温度差を測定するもので、温度差により算出された熱流量データを試料温度(または時間)をパラメータとしてプロットすることにより試料に固有のDSC曲線が得られる。   Various thermal analyzers are used to obtain the thermal properties of various materials and to investigate the thermal stability of various inorganic and organic compounds. Among these thermal analyzers, a differential scanning calorimeter (DSC device) is a device for measuring a change in enthalpy of a substance, and is widely used in the field of pharmaceuticals including material science. This differential scanning calorimeter measures the endothermic changes generated in the sample when the sample cell containing the sample and the reference sample and the reference sample cell are placed in symmetrical positions in the heating furnace and the temperature of the heating furnace is raised or lowered. The temperature difference caused by the temperature difference is measured, and the DSC curve specific to the sample is obtained by plotting the heat flow data calculated by the temperature difference with the sample temperature (or time) as a parameter.

前記加熱炉は、予め記憶されている温度プログラムに基づいて温度制御される。この温度制御は通常試料温度Tsとは異なる炉体温度Tfで行なわれるため、炉体から試料温度検出器(例えば熱電対)までの熱容量・熱抵抗によって生じる応答遅れにより、試料温度Tsは、プログラム温度Tpに対し図5に示すようにズレを生じる。このズレはプログラム温度Tpのホールド温度Th時に顕在化するので、あらかじめプログラム温度Tpに所定温度を上乗せして、目標温度に近づけるようにしている。以上の点については、示差熱分析(DTA)装置、熱重量測定(TGA)装置あるいは熱機械分析(TMA)装置等の他の熱分析装置においても同様なことがいえる。
特開平11−23505号公報
The temperature of the heating furnace is controlled based on a temperature program stored in advance. Since this temperature control is normally performed at a furnace temperature Tf different from the sample temperature Ts, the sample temperature Ts is set by the program delay due to the response delay caused by the heat capacity and thermal resistance from the furnace body to the sample temperature detector (eg, thermocouple). As shown in FIG. 5, a deviation occurs with respect to the temperature Tp. Since this deviation becomes apparent at the hold temperature Th of the program temperature Tp, a predetermined temperature is added to the program temperature Tp in advance so as to approach the target temperature. The same applies to other thermal analysis apparatuses such as a differential thermal analysis (DTA) apparatus, a thermogravimetric measurement (TGA) apparatus, or a thermomechanical analysis (TMA) apparatus.
JP 11-23505 A

従来の示差走査熱量計は上記のように構成され、あらかじめプログラム温度に所定温度を上乗せして、目標温度に近づけるようにしているが、ホールド温度のズレは、種々の条件、例えば使用する温度域、前段での加熱または冷却速度、冷却のON/OFF等によって異なった値をとるという問題がある。このために、あらゆる条件を網羅してこのズレを実測し、きめ細かに温度設定を変え対処する方法は現実的には不可能であって、しかも輻輳する要因などによって予測値から外れることも多く、結果的にホールド温度が目標値に合わない場合が多い。
本発明は上記の事情に鑑みてなされたものであって、上記のようなプログラム温度と試料温度のズレを小さくして高精度な熱分析が行える熱分析装置を提供することを目的とするものである。
The conventional differential scanning calorimeter is configured as described above, and a predetermined temperature is added to the program temperature in advance to bring it close to the target temperature. However, the hold temperature can be shifted in various conditions, for example, the temperature range to be used. There is a problem that different values are taken depending on the heating or cooling rate in the previous stage, ON / OFF of cooling, and the like. For this reason, a method of actually measuring this deviation covering all conditions, finely changing the temperature setting and dealing with it is practically impossible, and often deviates from the predicted value due to factors such as congestion, As a result, the hold temperature often does not match the target value.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermal analyzer capable of performing high-accuracy thermal analysis by reducing the deviation between the program temperature and the sample temperature as described above. It is.

上記の目的を達成するため、本発明の熱分析装置は、加熱炉内に試料を配置した状態で、加熱炉を所定の温度プログラムに基づいて制御し、この温度制御により試料に生じる熱変化を測定する熱分析装置において、試料温度を検出する試料温度検出手段と、試料温度と温度プログラムによって設定されるプログラム温度との温度差を算出する温度差算出手段と、その温度差に基づいて温度プログラムを自動修正する温度プログラム修正手段とを備えているものである。
また、本発明の熱分析装置は、プログラム温度が昇温または降温状態からホールド状態に変化する時点の1温度制御周期前のプログラム温度と試料温度との温度差を算出する1温度制御周期前温度差算出手段と、その温度差をホールド温度に加算してホールド温度を更新するホールド温度更新手段とを備えているものである。
In order to achieve the above object, the thermal analyzer of the present invention controls the heating furnace based on a predetermined temperature program in a state where the sample is arranged in the heating furnace, and the thermal change generated in the sample by this temperature control is controlled. In the thermal analyzer to be measured, sample temperature detecting means for detecting the sample temperature, temperature difference calculating means for calculating the temperature difference between the sample temperature and the program temperature set by the temperature program, and a temperature program based on the temperature difference And a temperature program correcting means for automatically correcting.
In addition, the thermal analyzer of the present invention calculates the temperature difference between the program temperature one sample before the temperature control cycle and the sample temperature at the time when the program temperature changes from the temperature increase or decrease state to the hold state. Difference calculation means and hold temperature update means for adding the temperature difference to the hold temperature and updating the hold temperature are provided.

本発明の熱分析装置は、過去の温度測定値に基づいてプログラム温度を予測補正するものではなく、ホールド温度到達時点よりも1制御周期前におけるリアルタイムで測定された試料温度とプログラム(目標)温度との温度差ΔTを目標ホールド温度の修正量として用いているので、使用する温度域、前段での加熱または冷却速度などの諸条件が異なっていても、常にそれに追随した修正動作が行なわれ、試料温度とプログラム温度とのズレを殆どのケースで僅少に抑えることができる。   The thermal analysis apparatus of the present invention does not predict and correct the program temperature based on the past temperature measurement value, but the sample temperature and the program (target) temperature measured in real time one control cycle before the hold temperature reaching point. Is used as the correction amount of the target hold temperature, so that even if various conditions such as the temperature range to be used and the heating or cooling rate in the previous stage are different, a correction operation that always follows it is performed. The deviation between the sample temperature and the program temperature can be suppressed to a minimum in most cases.

本発明による熱分析装置の実施例を図面を参照しながらに説明する。図1に示す熱分析装置は示差走査熱量計で、試料を加熱するための加熱炉本体1と加熱炉本体1の炉体温度Tfを制御し、試料Sと参照試料Rとの温度差(DSC信号)を測定してその吸発熱量を算出する演算制御系2とを備えている。加熱炉本体1は炉体1aの周囲にヒータ3を巻回し、その内部には試料Sと参照試料Rを収容するアルミニウム製の試料セル4と参照試料セル5とが中心位置を挿んで互いに対称となる位置関係で載置される熱電対材料合金(例えばコンスタンタン)製のプレート6が設置されている。   Embodiments of a thermal analyzer according to the present invention will be described with reference to the drawings. The thermal analyzer shown in FIG. 1 is a differential scanning calorimeter that controls the furnace body temperature Tf of the heating furnace body 1 and the heating furnace body 1 for heating the sample, and the temperature difference (DSC) between the sample S and the reference sample R. And an arithmetic control system 2 for measuring the signal) and calculating the amount of absorbed and generated heat. The heating furnace body 1 has a heater 3 wound around a furnace body 1a, and an aluminum sample cell 4 containing a sample S and a reference sample R and a reference sample cell 5 are inserted in the center and symmetrical with each other. A plate 6 made of a thermocouple material alloy (e.g., Constantan) placed in a positional relationship is installed.

プレート6の試料セル4と参照試料セル5直下にはそれぞれ必要温度域に対応できる熱電対(例えばクロメル・アルメル線)7と8が配置されており、この熱電対7の出力信号から試料温度Ts、熱電対7、8のクロメル線7a、8a間から試料Sと参照試料Rとの温度差を測定することができ、その温度差に基づいて試料Sに生じた物理的・化学的変化に随伴するエンタルピー変化を求めることができる。   Thermocouples (for example, chromel and alumel wires) 7 and 8 that can correspond to the required temperature range are arranged immediately below the sample cell 4 and the reference sample cell 5 of the plate 6, respectively, and the sample temperature Ts is obtained from the output signal of the thermocouple 7. The temperature difference between the sample S and the reference sample R can be measured from between the chromel wires 7a and 8a of the thermocouples 7 and 8, and accompanying the physical and chemical changes generated in the sample S based on the temperature difference. Enthalpy change can be obtained.

図2は演算制御系2の構成を示すブロック図、図3は演算制御系2の機能によって得られるプログラム温度Tp、炉体温度Tfおよび試料温度Ts、Ts´の特性を示す応答曲線図である。図1〜3を参照しながら演算制御系2が有する各機能の関連動作を以下に説明する。加熱炉本体1のヒータ3付近には炉体1aの内壁温度を検出する熱電対9が埋設され、その出力信号と前記熱電対7、8の出力信号は、それぞれ演算制御系2の炉体温度変換器10、試料温度変換器11および温度差変換器12によりA/D変換され、マイクロコンピュータを主体とする演算制御部2Aに入力される。   FIG. 2 is a block diagram showing the configuration of the arithmetic control system 2, and FIG. 3 is a response curve diagram showing the characteristics of the program temperature Tp, furnace temperature Tf, and sample temperatures Ts, Ts' obtained by the functions of the arithmetic control system 2. . The related operation of each function of the arithmetic control system 2 will be described below with reference to FIGS. A thermocouple 9 for detecting the inner wall temperature of the furnace body 1a is embedded in the vicinity of the heater 3 of the heating furnace body 1, and the output signal and the output signals of the thermocouples 7 and 8 are respectively the furnace body temperature of the arithmetic control system 2. A / D conversion is performed by the converter 10, the sample temperature converter 11, and the temperature difference converter 12, and the result is input to the arithmetic control unit 2 </ b> A mainly composed of a microcomputer.

測定開始ボタン(図示省略)を押して測定を開始すると、演算制御部2Aにスタート信号Xが入力されて温度プログラム21が起動し、図3に示すように温度プログラムに応じて設定されるプログラム温度Tpは所定速度で上昇する。このプログラム温度Tpは、熱電対9の出力信号を炉体温度変換器10によりディジタル信号に変換された炉体温度Tfと偏差検出機能22によって引き算され、その偏差はPID演算機能23によりPID動作が付加され、さらに例えば交流電源を使用する場合点弧角変換器13により点弧角に変換される。この点弧角は、一定周期τ毎にその値を更新してヒータ3に供給される電流のデューティを変化させ、加熱炉本体1は温度制御される。   When measurement is started by pressing a measurement start button (not shown), a start signal X is input to the arithmetic control unit 2A and the temperature program 21 is activated, and a program temperature Tp set according to the temperature program as shown in FIG. Rises at a predetermined speed. This program temperature Tp is subtracted by the furnace body temperature Tf obtained by converting the output signal of the thermocouple 9 into a digital signal by the furnace body temperature converter 10 and the deviation detection function 22, and the deviation is PID operation by the PID calculation function 23. In addition, for example, when an AC power supply is used, it is converted into a firing angle by a firing angle converter 13. This firing angle is updated at every constant period τ to change the duty of the current supplied to the heater 3, and the temperature of the heating furnace body 1 is controlled.

上記の温度制御により図3に示すように炉体温度Tfは、プログラム温度Tpに追従して上昇する。また、熱電対7の出力信号を試料温度変換器11によりディジタル信号に変換した試料温度Tsは、炉体1aから試料セル4までの間に生じる熱抵抗・熱容量による熱損失によってプログラム温度Tpより低い温度で追従する。   With the above temperature control, the furnace body temperature Tf rises following the program temperature Tp as shown in FIG. Further, the sample temperature Ts obtained by converting the output signal of the thermocouple 7 into a digital signal by the sample temperature converter 11 is lower than the program temperature Tp due to heat loss caused by the thermal resistance and heat capacity generated from the furnace body 1a to the sample cell 4. Follow with temperature.

前記試料温度Tsとプログラム温度Tpとの温度差ΔTは温度差算出機能24により一定周期毎に算出され、前値を更新して記憶される。また、温度制御周期検知機能25により、プログラム温度Tpがホールド温度Thに到達する時間t0より1温度制御周期τ前の時間t1に到達したことを検知してホールド温度更新機能26に検知信号を送信し、ホールド値Thを(1)式で示すTh´に更新する。
Th´=Th+ΔT (1)
これにより、プログラム温度Tpは図3に示すように、ホールド温度Th´に到達するまでさらに一定速度で上昇を続け、その結果炉体温度Tf・試料温度Tsとも昇温を継続し(それぞれTf´・Ts´)、Ts´が実際にホールドする温度は本来の目標ホールド温度Thに近接する。また、熱電対7と8のクロメル線7a、8a間の出力信号は温度差変換器12により温度差に変換され、さらに吸発熱量換算機能27により吸発熱流量(DSC信号)に換算され試料Sの分析が行われる。
The temperature difference ΔT between the sample temperature Ts and the program temperature Tp is calculated by the temperature difference calculation function 24 at regular intervals, and the previous value is updated and stored. Further, the temperature control cycle detection function 25 detects that the program temperature Tp has reached a time t1 one temperature control cycle τ before the time t0 when it reaches the hold temperature Th, and transmits a detection signal to the hold temperature update function 26. Then, the hold value Th is updated to Th ′ shown by the equation (1).
Th ′ = Th + ΔT (1)
As a result, as shown in FIG. 3, the program temperature Tp continues to rise at a constant rate until it reaches the hold temperature Th ′, and as a result, both the furnace temperature Tf and the sample temperature Ts continue to rise (each Tf ′ Ts ′) and the temperature actually held by Ts ′ are close to the original target hold temperature Th. Further, the output signal between the chromel wires 7a and 8a of the thermocouples 7 and 8 is converted into a temperature difference by the temperature difference converter 12, and further converted into an absorbed and exothermic flow rate (DSC signal) by the absorbed and exothermic amount conversion function 27. Analysis is performed.

図4は演算制御部2Aの温度制御の手順を示すフローチャートである。温度プログラムをスタートさせ、ヒータ3への通電を開始すると(ST1)、温度プラグラムに基づき温度制御が行なわれる(ST2)。温度プログラムが昇温状態からホールド状態に移行する時点より1サンプリング周期前に到達すると(ST3)、プログラム温度Tpと試料温度Tsとの温度差ΔT(=Tp−Ts)の測定・演算が行なわれ(ST4)、プログラムホールド温度ThがTh´(=Th+ΔT)に書き換えられる(ST5)。これによりプログラム温度TpがTh´に達するまで所定速度での昇温温度制御が継続される(ST6)。プログラム温度TpがTh´に達するとホールド温度制御に切り換えられ(ST7)、所定温度でのホールド時間が終了する(ST8)。さらに、次段の温度プログラムが実行されるかをチェックし(ST9)、される場合は次の温度プログラムを繰り返し実行し、されない場合は終了する(ST10)。   FIG. 4 is a flowchart showing the temperature control procedure of the arithmetic control unit 2A. When the temperature program is started and energization of the heater 3 is started (ST1), temperature control is performed based on the temperature program (ST2). When the temperature program reaches one sampling period before the transition from the temperature rising state to the hold state (ST3), the temperature difference ΔT (= Tp−Ts) between the program temperature Tp and the sample temperature Ts is measured and calculated. (ST4), the program hold temperature Th is rewritten to Th ′ (= Th + ΔT) (ST5). Thus, the temperature rising temperature control at a predetermined speed is continued until the program temperature Tp reaches Th ′ (ST6). When the program temperature Tp reaches Th ′, the control is switched to the hold temperature control (ST7), and the hold time at the predetermined temperature ends (ST8). Further, it is checked whether or not the next temperature program is executed (ST9). If yes, the next temperature program is repeatedly executed. If not, the process is terminated (ST10).

上記実施例は、示差走査熱量計について説明したものであるが、温度プログラムにより炉体温度を加熱する他の熱分析装置も同様に温度制御が行なわれる。また、温度プログラムは、昇温状態からホールド状態に移行するものとして説明されているが、降温状態からホールド状態に移行する場合についても同様に温度制御が行なわれる。さらに、上記実施例に限定されるものではなく、例えば炉体温度変換器10、試料温度変換器11、温度差変換器12への入力をマルチプレクサで切り替えて1台のA/D変換器で順次A/D変換を行なわせるようにしてもよい。   In the above embodiment, the differential scanning calorimeter has been described. However, temperature control is similarly performed for other thermal analysis apparatuses that heat the furnace body temperature by a temperature program. Although the temperature program is described as shifting from the temperature rising state to the hold state, temperature control is performed in the same manner when the temperature falling state is shifted to the hold state. Further, the present invention is not limited to the above embodiment. For example, the input to the furnace temperature converter 10, the sample temperature converter 11, and the temperature difference converter 12 is switched by a multiplexer, and then one A / D converter sequentially. A / D conversion may be performed.

示差熱分析装置、示差走査熱量計、熱重量測定装置あるいは熱機械分析装置などの熱分析装置に用いられる。   It is used in a thermal analyzer such as a differential thermal analyzer, a differential scanning calorimeter, a thermogravimetric analyzer, or a thermomechanical analyzer.

本発明の実施例による示差走査熱量計の概略構成図である。It is a schematic block diagram of the differential scanning calorimeter by the Example of this invention. 本発明の実施例に係る演算制御系2の構成図である。It is a block diagram of the arithmetic control system 2 which concerns on the Example of this invention. 実施例による示差走査熱量計の各種温度特性図である。It is a various temperature characteristic figure of the differential scanning calorimeter by an Example. 実施例に係る温度制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of the temperature control which concerns on an Example. 従来の示差走査熱量計の各種温度特性図である。It is various temperature characteristic diagrams of a conventional differential scanning calorimeter.

符号の説明Explanation of symbols

1 加熱炉本体
1a 炉体
2 演算制御系
2A 演算制御部
3 ヒータ
4 試料セル
5 参照試料セル
6 プレート
7 熱電対
7a クロメル線
8 熱電対
8a クロメル線
9 熱電対
10 炉体温度変換器
11 試料温度変換器
12 温度差変換器
13 点弧角変換器
21 温度プログラム
22 偏差検出機能
23 PID演算機能
24 温度差算出機能
25 温度制御周期検知機能
26 ホールド温度更新機能
27 吸発熱量換算機能
R 参照試料
S 試料
X スタート信号
DESCRIPTION OF SYMBOLS 1 Heating furnace main body 1a Furnace body 2 Operation control system 2A Operation control part 3 Heater 4 Sample cell 5 Reference sample cell 6 Plate 7 Thermocouple 7a Chromel wire 8 Thermocouple 8a Chromel wire 9 Thermocouple 10 Furnace temperature converter 11 Sample temperature Converter 12 Temperature difference converter 13 Firing angle converter 21 Temperature program 22 Deviation detection function 23 PID calculation function 24 Temperature difference calculation function 25 Temperature control cycle detection function 26 Hold temperature update function 27 Absorption / heat generation amount conversion function R Reference sample S Sample X Start signal

Claims (2)

加熱炉内に試料を配置した状態で、加熱炉を所定の温度プログラムに基づいて制御し、この温度制御により試料に生じる熱変化を測定する熱分析装置において、試料温度を検出する試料温度検出手段と、試料温度と温度プログラムによって設定されるプログラム温度との温度差を算出する温度差算出手段と、その温度差に基づいて温度プログラムを自動修正する温度プログラム修正手段とを備えていることを特徴とする熱分析装置。   Sample temperature detection means for detecting the sample temperature in a thermal analyzer that controls the heating furnace based on a predetermined temperature program in a state where the sample is arranged in the heating furnace, and measures the thermal change generated in the sample by this temperature control. And a temperature difference calculating means for calculating a temperature difference between the sample temperature and a program temperature set by the temperature program, and a temperature program correcting means for automatically correcting the temperature program based on the temperature difference. A thermal analyzer. プログラム温度が昇温または降温状態からホールド状態に変化する時点の1温度制御周期前のプログラム温度と試料温度との温度差を算出する1温度制御周期前温度差算出手段と、その温度差をホールド温度に加算してホールド温度を更新するホールド温度更新手段を備えていることを特徴とする請求項1記載の熱分析装置。   Temperature difference calculation means before one temperature control period for calculating the temperature difference between the program temperature and the sample temperature before one temperature control period when the program temperature changes from the temperature rising or falling state to the hold state, and hold the temperature difference 2. The thermal analyzer according to claim 1, further comprising hold temperature update means for updating the hold temperature by adding to the temperature.
JP2008034540A 2008-02-15 2008-02-15 Thermal analyzer Pending JP2009192416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008034540A JP2009192416A (en) 2008-02-15 2008-02-15 Thermal analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008034540A JP2009192416A (en) 2008-02-15 2008-02-15 Thermal analyzer

Publications (1)

Publication Number Publication Date
JP2009192416A true JP2009192416A (en) 2009-08-27

Family

ID=41074557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034540A Pending JP2009192416A (en) 2008-02-15 2008-02-15 Thermal analyzer

Country Status (1)

Country Link
JP (1) JP2009192416A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527312A (en) * 2016-01-04 2016-04-27 中国科学院过程工程研究所 Method for analyzing melting characteristics of biomass ash
JP2020060522A (en) * 2018-10-12 2020-04-16 株式会社島津製作所 Thermal analyzer
CN111474205A (en) * 2020-05-08 2020-07-31 杭州盘古自动化系统有限公司 System and method for detecting heat flow and temperature sensor for thermal analysis
JP2021081316A (en) * 2019-11-20 2021-05-27 株式会社リガク Heat analyzer and method for controlling electric furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527312A (en) * 2016-01-04 2016-04-27 中国科学院过程工程研究所 Method for analyzing melting characteristics of biomass ash
CN105527312B (en) * 2016-01-04 2019-04-23 中国科学院过程工程研究所 A kind of analysis method for biomass ash melting characteristic
JP2020060522A (en) * 2018-10-12 2020-04-16 株式会社島津製作所 Thermal analyzer
JP2021081316A (en) * 2019-11-20 2021-05-27 株式会社リガク Heat analyzer and method for controlling electric furnace
JP7265772B2 (en) 2019-11-20 2023-04-27 株式会社リガク Thermal analysis equipment and electric furnace control method
CN111474205A (en) * 2020-05-08 2020-07-31 杭州盘古自动化系统有限公司 System and method for detecting heat flow and temperature sensor for thermal analysis

Similar Documents

Publication Publication Date Title
CN107389723B (en) A kind of judgement of adiabatic reaction starting point and temperature method for tracing based on difference variation
JP2010181408A (en) Thermo-analytical instrument
JP2009192416A (en) Thermal analyzer
JP2010002412A5 (en)
KR20160124033A (en) Arrangement and method for measuring and controlling the heating temperature in a semiconductor gas sensor
RU2014113235A (en) METHOD AND SYSTEM OF MANAGEMENT OF THE PROCESS OF MELTING AND REFINING OF METAL
US20080000402A1 (en) Thermal analyzer
JP5176536B2 (en) Reliability test method for furnace and control thermocouple
JP2003077837A (en) Semiconductor-manufacturing system
JP2006284156A (en) Firing furnace
JP3096743B2 (en) Lamp annealing furnace temperature controller
JP2017191019A (en) Temperature measurement device and temperature measurement method
JP2006329869A (en) Temperature estimating device, temperature control device, temperature estimating method, temperature control method, temperature estimating program, and temperature control program
JP2005274415A (en) Thermal analysis apparatus and its water vapor generating apparatus
JP2009254104A (en) Conductor monitor for power receiving and distributing equipment
JP5203025B2 (en) Heating device and hydrogen analyzer using the same
JPS6119935B2 (en)
JP6401350B2 (en) Calibration method of temperature adjustment during thermal analysis of sample
JP2016018294A (en) PID controller and data collection method
JP2004037139A (en) Temperature measuring system and temperature regulator
JP2013020471A (en) Temperature controller and temperature control method
JPH1123505A (en) Thermal analysis device
JP6555429B2 (en) Temperature measuring device, temperature indicator and temperature controller
JP2949314B2 (en) Calorimeter and method
JP5320314B2 (en) Gas detector