JP2006284156A - Firing furnace - Google Patents

Firing furnace Download PDF

Info

Publication number
JP2006284156A
JP2006284156A JP2005108813A JP2005108813A JP2006284156A JP 2006284156 A JP2006284156 A JP 2006284156A JP 2005108813 A JP2005108813 A JP 2005108813A JP 2005108813 A JP2005108813 A JP 2005108813A JP 2006284156 A JP2006284156 A JP 2006284156A
Authority
JP
Japan
Prior art keywords
temperature
furnace
firing
correction table
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005108813A
Other languages
Japanese (ja)
Inventor
Masahiro Inami
昌洋 稲見
Takayuki Kawada
孝行 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005108813A priority Critical patent/JP2006284156A/en
Publication of JP2006284156A publication Critical patent/JP2006284156A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a firing furnace for performing accurate temperature control. <P>SOLUTION: A temperature difference between a temperature in the furnace measured by an in-furnace temperature measuring thermocouple 103 and the temperature of a treated object measured by a treated object measuring thermocouple 104 is found for every preset temperature band or for every preset time interval to create a correction table. Next time or later, when firing a treated object 105 which has the same quality, size or amount of charge into the furnace 102, the created correction table is used for correcting the temperature in the furnace measured by the in-furnace temperature measuring thermocouple 103 and controlling the temperature of the treated object 105 when fired in accordance with the corrected temperature in the furnace. Thus, the temperature of the treated object subjected to microwave heating is accurately controlled in accordance with the temperature in the furnace. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、陶磁器材料やファインセラミックス材料などで形成された被処理体を焼成して焼成体を製造する焼成炉に関する。   The present invention relates to a firing furnace for producing a fired body by firing an object to be processed formed of a ceramic material or a fine ceramic material.

従来、陶磁器材料やファインセラミックス材料などで形成された被処理体を焼成する焼成炉においては、被処理体の温度を高精度で測定する測定手段として放射温度計が用いられている(例えば、特許文献1参照)。この放射温度計は、焼成炉の外部からの計測が可能であり、高温炉における温度計測に好適である。しかし、このような放射温度計は被処理体からの放射エネルギーを検知して温度を測定するものであり、検知した放射エネルギーの値を温度値に変換するために多種の装置を必要とするため極めて高価なものである。そこで、安価な温度測定手段として、高温にも対応できるような熱電対が一般的に使用されている。特に、高温に加熱される高温炉内の温度を測定するための熱電対は、高温環境下及び炉内雰囲気による汚染などから保護することを目的とした保護管付きの熱電対(例えば、特許文献2参照)が使用されている。   Conventionally, in a firing furnace for firing an object to be processed formed of a ceramic material or a fine ceramic material, a radiation thermometer has been used as a measuring means for measuring the temperature of the object to be processed with high accuracy (for example, a patent Reference 1). This radiation thermometer can be measured from the outside of the firing furnace, and is suitable for temperature measurement in a high temperature furnace. However, such a radiation thermometer measures the temperature by detecting the radiant energy from the object to be processed, and requires various devices to convert the detected radiant energy value into a temperature value. It is extremely expensive. Therefore, thermocouples that can cope with high temperatures are generally used as inexpensive temperature measuring means. In particular, a thermocouple for measuring the temperature in a high-temperature furnace heated to a high temperature is a thermocouple with a protective tube for the purpose of protecting it from contamination in a high-temperature environment and in the furnace atmosphere (for example, Patent Documents). 2) is used.

また、被処理体を焼成するための熱源としては、上記特許文献1では直線筒状のダブルエンド型ランプを使用しており、上記特許文献2では加熱ヒータを使用している。また、被処理体の温度制御においては、いずれも炉内の雰囲気温度(以後、炉内温度と言う)に基づいて行っている。炉内の被処理体をランプや加熱ヒータで加熱する場合、炉内温度が略均一に且つ徐々に上昇するので、炉内温度の温度勾配と被処理体温度の温度勾配が略同じになり、被処理体温度を炉内温度と見做すことができる。このことから、従来の焼成炉では、炉内温度を基に被処理体の温度制御を行っている。   Moreover, as a heat source for baking a to-be-processed object, the said patent document 1 uses the straight cylindrical double end type lamp | ramp, and the said patent document 2 uses the heater. Further, the temperature control of the object to be processed is performed based on the atmospheric temperature in the furnace (hereinafter referred to as the furnace temperature). When the object to be processed in the furnace is heated by a lamp or a heater, the temperature in the furnace rises substantially uniformly and gradually, so that the temperature gradient of the temperature in the furnace and the temperature gradient of the object to be processed are substantially the same, The object temperature can be regarded as the furnace temperature. For this reason, in the conventional firing furnace, the temperature of the object to be processed is controlled based on the furnace temperature.

特開2001−308024号公報JP 2001-308024 A 特開平8−261844号公報JP-A-8-261844

ところで、ランプや加熱ヒータによる加熱では焼成に時間がかかるため、最近ではマイクロ波が用いられるようになってきている。しかしながら、マイクロ波による加熱では被処理体温度が炉内温度より先に上昇するので、被処理体温度と炉内温度とがかけ離れたものになり、炉内温度を基にした被処理体の温度制御では正確さを欠く場合がある。   By the way, since heating with a lamp or a heater takes time to fire, microwaves have recently been used. However, since the temperature of the object to be processed rises before the temperature in the furnace in the heating by the microwave, the temperature of the object to be processed and the temperature in the furnace are far apart, and the temperature of the object to be processed based on the temperature in the furnace Control may lack accuracy.

本発明は、上記事情に鑑みてなされたものであって、炉内温度にて正確に被処理体の温度制御を行うことができる焼成炉を提供することを目的とする。   This invention is made | formed in view of the said situation, Comprising: It aims at providing the baking furnace which can perform the temperature control of a to-be-processed object correctly with the furnace temperature.

上記目的は下記構成により達成される。
(1) 炉内温度を測定する第1の温度測定手段と、炉内の被処理体の温度を測定する第2の温度測定手段と、前記被処理体の焼成時に前記第1の温度測定手段にて測定された炉内温度と前記第2の温度測定手段により測定された被処理体温度の所定温度幅ごと又は所定時間幅ごとの温度差を求めて補正テーブルを生成する補正テーブル生成手段と、前記補正テーブル生成手段で生成された補正テーブルを記憶する記憶手段と、前記第1の温度測定手段にて測定された炉内温度を前記記憶手段に記憶されている補正テーブルで補正する補正手段と、前記補正手段にて補正された炉内温度で前記被処理体の焼成における温度制御を行う制御手段と、を備える。
The above object is achieved by the following configuration.
(1) First temperature measuring means for measuring the temperature in the furnace, second temperature measuring means for measuring the temperature of the object to be processed in the furnace, and the first temperature measuring means at the time of firing the object to be processed A correction table generating means for generating a correction table by obtaining a temperature difference for each predetermined temperature width or for each predetermined time width between the in-furnace temperature measured in step 1 and the object temperature measured by the second temperature measuring means; Storage means for storing the correction table generated by the correction table generation means, and correction means for correcting the in-furnace temperature measured by the first temperature measurement means with the correction table stored in the storage means And control means for performing temperature control in firing of the object to be processed at the furnace temperature corrected by the correction means.

(2) 上記(1)に記載の焼成炉において、前記補正手段にて補正された炉内温度を表示する表示手段を備える。 (2) The firing furnace according to (1), further including display means for displaying the furnace temperature corrected by the correction means.

(3) 上記(1)又は(2)に記載の焼成炉において、前記記憶手段は、前記被処理体の材質や大きさ、炉内に投入する量に応じて前記補正テーブル生成手段にて生成された複数の補正テーブルを記憶し、前記補正手段は、焼成する前記被処理体の材質や大きさ、炉内に投入する量に応じて選択した補正テーブルを前記記憶手段から読み出し、読み出した補正テーブルで前記第1の温度測定手段にて測定された炉内温度を補正する。 (3) In the firing furnace described in the above (1) or (2), the storage means is generated by the correction table generation means according to the material and size of the object to be processed and the amount to be charged in the furnace. A plurality of correction tables, and the correction means reads from the storage means a correction table selected according to the material and size of the object to be fired and the amount to be charged into the furnace, and reads the read correction table. The furnace temperature measured by the first temperature measuring means is corrected by the table.

(4) 上記(1)から(3)のいずれかに記載の焼成炉において、前記補正テーブル生成手段で生成された補正テーブルを出力する出力手段を備える。 (4) The firing furnace according to any one of (1) to (3), further including an output unit that outputs the correction table generated by the correction table generation unit.

(5) 上記(4)に記載の焼成炉において、補正された炉内温度を受信する受信手段を備え、前記制御手段は、受信した炉内温度で前記被処理体の焼成における温度制御を行う。 (5) The firing furnace according to (4), further including receiving means for receiving the corrected furnace temperature, wherein the control means performs temperature control in firing the object to be processed at the received furnace temperature. .

(6) 被処理体の焼成における温度制御を炉内温度に基づいて行う焼成炉であって、前記被処理体の温度を測定する温度測定手段と、前記温度測定手段で測定された被処理体温度を加味した炉内温度で前記被処理体の焼成における温度制御を行う制御手段と、を備える。 (6) A firing furnace in which temperature control in firing of the object to be treated is performed based on the temperature in the furnace, the temperature measuring means for measuring the temperature of the object to be treated, and the object to be treated measured by the temperature measuring means Control means for performing temperature control in firing of the object to be processed at a furnace temperature in consideration of temperature.

(7) 上記(1)から(6)のいずれかに記載の焼成炉において、マイクロ波を使用して前記被処理体を焼成する。 (7) In the firing furnace according to any one of (1) to (6), the object to be processed is fired using a microwave.

上記(1)に記載の焼成炉では、炉内温度と被処理体温度の所定温度幅ごと又は所定時間幅ごとの温度差を求めて補正テーブルを生成しておき、生成した補正テーブルを用いて炉内温度を補正し、補正した炉内温度で被処理体の焼成における温度制御を行う。これにより、正確に温度制御を行うことができる。   In the firing furnace described in (1) above, a correction table is generated by obtaining a temperature difference for each predetermined temperature width or for each predetermined time width between the furnace temperature and the temperature of the object to be processed, and the generated correction table is used. The temperature in the furnace is corrected, and temperature control in firing the object to be processed is performed at the corrected furnace temperature. Thereby, temperature control can be performed accurately.

上記(2)に記載の焼成炉では、補正した炉内温度を表示するので、焼成時の被処理体の温度を確認することができる。   In the firing furnace described in (2) above, the corrected furnace temperature is displayed, so that the temperature of the object to be processed during firing can be confirmed.

上記(3)に記載の焼成炉では、被処理体の材質や大きさ、炉内に投入する量に応じた複数の補正テーブルを記憶しておくので、被処理体の焼成時にその被処理体に適合する補正テーブルがあれば、その補正テーブルで炉内温度を補正することで、被処理体の焼成時の温度制御を正確に行うことができる。   In the firing furnace described in (3) above, since a plurality of correction tables corresponding to the material and size of the object to be processed and the amount to be charged in the furnace are stored, the object to be processed is fired when the object to be processed is fired. If there is a correction table suitable for the above, the temperature control during firing of the object to be processed can be accurately performed by correcting the furnace temperature with the correction table.

上記(4)に記載の焼成炉では、補正テーブル生成手段で生成した補正テーブルを出力することにより、補正テーブルを受信したコンピュータ等で補正テーブルの表示、保存、編集が可能となる。   In the firing furnace described in (4) above, by outputting the correction table generated by the correction table generating means, the correction table can be displayed, stored and edited by a computer or the like that has received the correction table.

上記(5)に記載の焼成炉では、炉内温度と被処理体温度とに基づいて補正された炉内温度を受信し、受信した炉内温度で被処理体の焼成における温度制御を行うことができる。   In the firing furnace described in the above (5), the furnace temperature corrected based on the furnace temperature and the temperature of the object to be processed is received, and the temperature control in the firing of the object to be processed is performed at the received furnace temperature. Can do.

上記(6)に記載の焼成炉によれば、被処理体温度を加味した炉内温度で被処理体の焼成における温度制御を行うので、正確に温度制御を行うことができる。   According to the firing furnace described in (6) above, the temperature control in firing the object to be treated is performed at the furnace temperature in consideration of the temperature of the object to be treated, so that the temperature control can be accurately performed.

上記(7)に記載の焼成炉では、マイクロ波を使用して被処理体を焼成し、正確に被処理体の温度制御を行うことができるので、短時間で一定の品質に焼き上げることができる。   In the baking furnace described in (7) above, the object to be processed is baked using microwaves, and the temperature of the object to be processed can be accurately controlled, so that it can be baked to a certain quality in a short time. .

以下、本発明を実施するための好適な実施の形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係る焼成炉の炉部分の構成を示す図である。また、図2は、本実施の形態に係る焼成炉の電気的構成を示すブロック図である。本実施の形態の焼成炉は、マイクロ波を利用して被処理体の焼成を行うものであり、図1に示す断熱材101で囲まれた炉内102の雰囲気温度(炉内温度)を測定するための炉内温度測定用熱電対103と、被処理体105の近傍に配置または接触させて被処理体105の温度(被処理体温度)を測定するための被処理体測定用熱電対104と、図2に示す制御部201と、表示部202と、パワー出力部203とを備えている。炉内温度測定用熱電対103及び被処理体測定用熱電対104はともに保護管付きの熱電対であるが、本実施の形態では炉内温度測定用熱電対103として保護管直径15mmのものを用いており、被処理体測定用熱電対104として保護管直径1.6mmのものを用いている。   FIG. 1 is a diagram showing a configuration of a furnace part of a firing furnace according to an embodiment of the present invention. FIG. 2 is a block diagram showing an electrical configuration of the firing furnace according to the present embodiment. The firing furnace of this embodiment performs firing of an object to be processed using microwaves, and measures the atmospheric temperature (furnace temperature) in the furnace 102 surrounded by the heat insulating material 101 shown in FIG. An in-furnace temperature measuring thermocouple 103 for measuring the temperature of the object 105 to be processed (temperature of the object to be processed) disposed or in contact with the object 105 to be processed. And a control unit 201, a display unit 202, and a power output unit 203 shown in FIG. Both the thermocouple 103 for measuring the temperature in the furnace and the thermocouple 104 for measuring the object to be processed are thermocouples with a protective tube, but in this embodiment, the thermocouple 103 for measuring the temperature in the furnace has a diameter of 15 mm as the protective tube. A protective tube diameter of 1.6 mm is used as the measurement target thermocouple 104.

図2において、制御部201は、被処理体温度を測定できるように補正した炉内温度に基づいてパワー出力部203に出力調整を行い、被処理体105の温度制御を行う。この際、補正した炉内温度を表示部202に表示する。被処理体105の表示部202における温度表示は炉内温度の補正値を得るときのみ行われる。前述したようにマイクロ波を利用して被処理体105を焼成する場合に、炉内温度を基に温度制御を行ったのでは正確さを欠くことになるので、本実施の形態では被処理体温度を用いて炉内温度を補正し、補正した炉内温度で被処理体105の温度制御を行うようにしている。また、炉内温度の補正値を求めるときのみ被処理体温度を測定するようにすることで、被処理体測定用熱電対104の使用頻度を少なくでき、長期使用が可能となる。また、炉内温度の補正値を求めるとき以外は必要としないことから、取り外しできるようにしている。   In FIG. 2, the control unit 201 adjusts the output of the power output unit 203 based on the furnace temperature corrected so that the temperature of the object to be processed can be measured, and controls the temperature of the object 105 to be processed. At this time, the corrected furnace temperature is displayed on the display unit 202. The temperature display on the display unit 202 of the workpiece 105 is performed only when the correction value of the furnace temperature is obtained. As described above, in the case where the object to be processed 105 is baked using microwaves, the temperature control based on the furnace temperature is inaccurate. The temperature in the furnace is corrected using the temperature, and the temperature control of the workpiece 105 is performed at the corrected temperature in the furnace. In addition, by measuring the temperature of the object to be processed only when obtaining the correction value of the furnace temperature, the use frequency of the thermocouple 104 for measuring the object to be processed can be reduced, and long-term use becomes possible. Moreover, since it is not necessary except when calculating | requiring the correction value of the furnace temperature, it can be removed.

パワー出力部203は、マイクロ波を発生するマグネトロン(図示略)を駆動するものであり、制御部201からの制御出力に基づく大きさのマイクロ波を発生させる。制御部201は、図2に示すように熱電対入力回路2011と、記憶装置2012と、出力制御回路2013と、表示回路2014と、I/F(インタフェース)回路2015と、操作部2016と、マイクロコンピュータ2017とを備えている。熱電対入力回路2011は、炉内温度測定用熱電対103及び被処理体測定用熱電対104夫々の冷接点補償を行い、また熱電対出力信号を増幅してマイクロコンピュータ2017に入力する。   The power output unit 203 drives a magnetron (not shown) that generates a microwave, and generates a microwave having a magnitude based on a control output from the control unit 201. As shown in FIG. 2, the control unit 201 includes a thermocouple input circuit 2011, a storage device 2012, an output control circuit 2013, a display circuit 2014, an I / F (interface) circuit 2015, an operation unit 2016, a micro And a computer 2017. The thermocouple input circuit 2011 performs cold junction compensation for each of the in-furnace temperature measuring thermocouple 103 and the workpiece measuring thermocouple 104, and amplifies the thermocouple output signal and inputs the amplified signal to the microcomputer 2017.

記憶装置2012は、炉内温度を補正するための補正テーブルを記憶する。補正テーブルは、炉内温度と被処理体温度の所定温度幅ごと又は所定時間幅ごとの温度差で構成される。例えば、所定温度幅ごとの場合、10℃〜20℃:補正値H1、21℃〜30℃:補正値H2、31℃〜40℃:補正値H3、41℃〜50℃:補正値H4、51℃〜60℃:補正値H5、61℃〜70℃:補正値H4…というような構造となる。なお、これは一例であり、温度勾配が所定範囲内に入る温度幅で分けるようにすれば良い。   The storage device 2012 stores a correction table for correcting the furnace temperature. The correction table is configured by a temperature difference for each predetermined temperature width or for each predetermined time width between the furnace temperature and the temperature of the object to be processed. For example, for each predetermined temperature range, 10 ° C. to 20 ° C .: correction value H1, 21 ° C. to 30 ° C .: correction value H2, 31 ° C. to 40 ° C .: correction value H3, 41 ° C. to 50 ° C .: correction value H4, 51 C. to 60.degree. C .: correction value H5, 61.degree. C. to 70.degree. C .: correction value H4, and so on. This is an example, and the temperature gradient may be divided by the temperature range that falls within a predetermined range.

補正テーブルは、後に詳しく説明するように、被処理体105の初回焼成時に炉内温度測定用熱電対103と被処理体測定用熱電対104夫々の熱電対出力信号からマイクロコンピュータ2017によって生成されて次回以降の焼成時に使用される。補正テーブルの値は、被処理体105の材質や大きさ、炉内に投入する量に応じて異なるので、それぞれの場合に応じた補正テーブルを作成することで適切な温度制御が可能となる。   As will be described in detail later, the correction table is generated by the microcomputer 2017 from the thermocouple output signals of the in-furnace temperature measuring thermocouple 103 and the to-be-processed object measuring thermocouple 104 at the first firing of the to-be-processed object 105. Used at the next and subsequent firings. Since the value of the correction table varies depending on the material and size of the workpiece 105 and the amount to be charged into the furnace, appropriate temperature control can be performed by creating a correction table corresponding to each case.

記憶装置2012としては、書換可能なROM(Read Only Memory)、RAM(Random Access Memory)等の半導体メモリの他、ハードディスク、光磁気ディスク、光ディスク等の記憶装置の使用も可能である。さらに、焼成炉自体が記憶装置2012を持つのではなく、外部のパーソナルコンピュータを利用することも可能である。本実施の形態に係る焼成炉は、外部のパーソナルコンピュータ205に接続可能なインタフェース回路2015を備えており、このインタフェース回路2015にて外部のパーソナルコンピュータ205を接続することで上述した補正テーブルをパーソナルコンピュータ205側で保存することが可能となる。また、補正テーブルをパーソナルコンピュータ205側でモニタ上に表示したり、編集したりすることも可能である。すなわち、パーソナルコンピュータ205を使用して補正テーブルの表示、保存、編集を行うことができる。なお、補正テーブルの編集は焼成炉側で行うこともできるが、ユーザインタフェースが強化されている点でパーソナルコンピュータ205側が操作容易な分有利であると言える。   As the storage device 2012, it is possible to use a storage device such as a hard disk, a magneto-optical disk, or an optical disk in addition to a rewritable semiconductor memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory). Furthermore, the firing furnace itself does not have the storage device 2012, but an external personal computer can be used. The firing furnace according to the present embodiment includes an interface circuit 2015 that can be connected to an external personal computer 205. By connecting the external personal computer 205 with this interface circuit 2015, the above-described correction table is stored in the personal computer. It is possible to save on the 205 side. Further, the correction table can be displayed on the monitor or edited on the personal computer 205 side. That is, the personal computer 205 can be used to display, save, and edit the correction table. Although the correction table can be edited on the baking furnace side, it can be said that the personal computer 205 side is advantageous in that it is easy to operate because the user interface is enhanced.

出力制御回路2013は、マイクロコンピュータ2017から入力された補正済みの炉内温度に基づく温度調整データに従ってパワー出力部203を制御する。表示回路2014は、補正済みの炉内温度を被処理体温度として表示部202に表示する。また、炉内温度を補正するときには被処理体温度を表示部202に表示する。インタフェース回路2015は、コンピュータと通信するためのものであり、上述したようにマイクロコンピュータ2017と外部のパーソナルコンピュータ205とを接続する。なお、マイクロコンピュータ2017と外部のパーソナルコンピュータ205との接続にはインタフェースケーブル206が使用される。   The output control circuit 2013 controls the power output unit 203 according to temperature adjustment data based on the corrected furnace temperature input from the microcomputer 2017. The display circuit 2014 displays the corrected furnace temperature on the display unit 202 as the object temperature. When the furnace temperature is corrected, the temperature of the object to be processed is displayed on the display unit 202. The interface circuit 2015 is for communicating with a computer, and connects the microcomputer 2017 and the external personal computer 205 as described above. An interface cable 206 is used for connection between the microcomputer 2017 and the external personal computer 205.

操作部2016は、電源のオンオフ、補正テーブルの選択及び設定等に使用されるものであり、ユーザはこの操作部2016にて電源のオン、オフ、補正テーブルの選択等各種操作を行う。マイクロコンピュータ2017は、図示せぬROM等のプログラムメモリに書き込まれたプログラムに従って被処理体105の温度制御を行う。この場合、マイクロコンピュータ2017で使用されるプログラムには炉内温度を補正するための補正テーブルを生成するプログラム(補正テーブル生成プログラム)が含まれている。   The operation unit 2016 is used for power on / off, correction table selection and setting, and the user performs various operations such as power on / off and correction table selection using the operation unit 2016. The microcomputer 2017 controls the temperature of the workpiece 105 according to a program written in a program memory such as a ROM (not shown). In this case, the program used in the microcomputer 2017 includes a program (correction table generation program) for generating a correction table for correcting the furnace temperature.

マイクロコンピュータ2017は、新規の被処理体105を焼成するときに、補正テーブル生成プログラムに従って炉内102と被処理体105夫々の温度測定を行い、測定した炉内温度と被処理体温度の所定温度幅ごと又は所定時間幅ごとの温度差を求めて補正テーブルを生成する。補正テーブルの値は、被処理体105の材質や大きさ、炉内102への投入量に応じた値となるので、補正テーブル生成プログラムを実行するごとに異なった値の補正テーブルが生成される。但し、被処理体105の材質や大きさ、炉内102への投入量が同一であれば、略同じ値になることは言うまでもない。マイクロコンピュータ2017は、生成した補正テーブルを記憶装置2012に記憶させる。このときユーザが操作部2016を操作して被処理体105の材質や大きさ、炉内102への投入量を示す情報を入力することで、該情報を含む補正テーブルが記憶装置2012に記憶される。補正テーブルに被処理体105の材質や大きさ、炉内102への投入量を示す情報を付加することで、後の焼成時に適合するものがあればそれを使用することができるので、新たに補正テーブルを生成するための焼成工程を省くことができる。なお、被処理体105の材質や大きさ、炉内102への投入量を示す情報を付加する操作は勿論パーソナルコンピュータ205からでも可能である。   When firing the new object 105, the microcomputer 2017 measures the temperatures of the furnace 102 and the object 105 according to the correction table generation program, and the measured furnace temperature and the predetermined temperature of the object temperature. A correction table is generated by obtaining a temperature difference for each width or for each predetermined time width. Since the value of the correction table is a value corresponding to the material and size of the workpiece 105 and the amount to be charged into the furnace 102, a correction table having a different value is generated each time the correction table generation program is executed. . However, it goes without saying that if the material and size of the object to be processed 105 and the amount charged into the furnace 102 are the same, the values will be substantially the same. The microcomputer 2017 stores the generated correction table in the storage device 2012. At this time, when the user operates the operation unit 2016 and inputs information indicating the material and size of the workpiece 105 and the amount to be charged into the furnace 102, a correction table including the information is stored in the storage device 2012. The By adding information indicating the material and size of the object 105 to be processed and the amount to be charged into the furnace 102 to the correction table, it can be used if there is something suitable for subsequent firing. The baking process for generating the correction table can be omitted. Note that the operation of adding information indicating the material and size of the workpiece 105 and the amount charged into the furnace 102 can be performed from the personal computer 205 as well.

マイクロコンピュータ2017は、被処理体105の焼成を行う場合、被処理体105の材質や大きさ、炉内102への投入量を指定するユーザ操作があると、記憶装置2012に記憶されている最適な補正テーブルを読み出し、それを用いて炉内温度測定用熱電対103の測定値即ち炉内温度に対して補正を行い、補正を行った炉内温度に基づいて温度制御値を生成し、それを出力制御回路2013に入力する。出力制御回路2013はマイクロコンピュータ2017からの温度制御値に従ってパワー出力部203を制御する。パーソナルコンピュータ205は、焼成炉と通信可能な通信機能と、通信機能を介して受信した焼成炉からの補正テーブルを記憶する記憶機能と、記憶機能にて記憶された補正テーブルをモニタ上に表示する表示機能と、モニタ上に表示された補正テーブルを編集し、編集した補正テーブルを通信機能を介して焼成炉へ送信する編集機能とを備えている。これらの機能はプログラムの形で記憶されている。   When the microcomputer 2017 performs the baking of the workpiece 105, if there is a user operation for designating the material and size of the workpiece 105 and the amount to be charged into the furnace 102, the optimum is stored in the storage device 2012. A correction table is read out, and the measured value of the thermocouple 103 for measuring the furnace temperature, that is, the furnace temperature is corrected using the correction table, and a temperature control value is generated based on the corrected furnace temperature. Is input to the output control circuit 2013. The output control circuit 2013 controls the power output unit 203 according to the temperature control value from the microcomputer 2017. The personal computer 205 displays on the monitor a communication function capable of communicating with the firing furnace, a storage function for storing a correction table from the firing furnace received via the communication function, and a correction table stored in the storage function. A display function and an editing function for editing the correction table displayed on the monitor and transmitting the edited correction table to the baking furnace via the communication function are provided. These functions are stored in the form of programs.

なお、被処理体測定用熱電対104、熱電対入力回路2011及びマイクロコンピュータ2017は温度測定手段又は第2の温度測定手段を構成する。また、炉内温度測定用熱電対103、熱電対入力回路2011及びマイクロコンピュータ2017は第1の温度測定手段を構成する。また、マイクロコンピュータ2017は制御手段、補正テーブル生成手段及び補正手段に対応する。また、記憶装置2012は記憶手段に対応する。また、表示回路2014と表示部202は表示手段を構成する。また、インタフェース回路2015は出力手段及び受信手段に対応する。   Note that the workpiece measuring thermocouple 104, the thermocouple input circuit 2011, and the microcomputer 2017 constitute temperature measuring means or second temperature measuring means. The thermocouple 103 for measuring the furnace temperature, the thermocouple input circuit 2011, and the microcomputer 2017 constitute a first temperature measuring means. The microcomputer 2017 corresponds to a control unit, a correction table generation unit, and a correction unit. The storage device 2012 corresponds to storage means. The display circuit 2014 and the display unit 202 constitute display means. The interface circuit 2015 corresponds to output means and reception means.

次に、上述した構成を有する本実施の形態に係る焼成炉の動作について説明する。
適合する補正値が無い新規の被処理体105を焼成する場合、ユーザは操作部2016から新規の被処理体であることを入力する。この入力により、マイクロコンピュータ2017は炉内温度を補正するための補正テーブルを生成するプログラムに従って焼成を開始し、炉内温度と被処理体温度の所定温度幅ごと又は所定時間幅ごとの温度差を求めて補正テーブルを生成する。そして、生成した補正テーブルを記憶装置2012に記憶させる。
Next, the operation of the firing furnace according to the present embodiment having the above-described configuration will be described.
When baking a new object 105 having no matching correction value, the user inputs a new object to be processed from the operation unit 2016. With this input, the microcomputer 2017 starts firing in accordance with a program that generates a correction table for correcting the furnace temperature, and calculates the temperature difference between the furnace temperature and the temperature of the object to be processed for each predetermined temperature width or for each predetermined time width. Obtain a correction table. Then, the generated correction table is stored in the storage device 2012.

一方、記憶装置2012に適合する補正テーブルが記憶されている被処理体105を焼成する場合、ユーザはその被処理体105に適合する補正テーブルを選択する。ユーザによって補正テーブルが選択されると、マイクロコンピュータ2017は当該補正テーブルを記憶装置2012から読み出す。そして、読み出した補正テーブルに従って炉内温度測定用熱電対103にて測定された炉内温度を補正し、補正した炉内温度に基づいてパワー出力部203の制御を行う。また同時に炉内温度を被処理体温度として表示部202に表示する。補正した炉内温度は略被処理体温度であるので正確な温度制御が可能となる。   On the other hand, when baking the target object 105 in which a correction table suitable for the storage device 2012 is stored, the user selects a correction table suitable for the target object 105. When the correction table is selected by the user, the microcomputer 2017 reads the correction table from the storage device 2012. Then, the furnace temperature measured by the furnace temperature measuring thermocouple 103 is corrected according to the read correction table, and the power output unit 203 is controlled based on the corrected furnace temperature. At the same time, the furnace temperature is displayed on the display unit 202 as the temperature of the object to be processed. Since the corrected in-furnace temperature is substantially the temperature of the workpiece, accurate temperature control is possible.

このように本実施の形態に係る焼成炉では、炉内温度測定用熱電対103にて測定した炉内温度と被処理体測定用熱電対104で測定した被処理体温度の所定温度幅ごと又は所定時間幅ごとの温度差を求めて補正テーブルを生成し、次回以降で材質や大きさ、炉内102への投入量が同じ被処理体105の焼成時には、生成済みの補正テーブルを使用して炉内温度測定用熱電対103にて測定した炉内温度を補正し、補正した炉内温度に基づいて被処理体105の焼成時における温度制御を行う。この構成によれば、マイクロ波による加熱を行っても、被処理体の温度を加味した炉内温度にて正確に被処理体の温度制御を行うことができる。また、炉内温度の補正値を求めるときだけ被処理体測定用熱電対104を使用するので、もともと耐久性の良くない熱電対の消耗を抑えることができ、被処理体測定用熱電対104については長期使用が可能となり、メンテナンスにかかるコストを低く抑えることができる。   As described above, in the firing furnace according to the present embodiment, the furnace temperature measured by the in-furnace temperature measuring thermocouple 103 and the object temperature measured by the object measuring thermocouple 104 for each predetermined temperature range or A correction table is generated by obtaining a temperature difference for each predetermined time width, and when the workpiece 105 having the same material, size, and input amount into the furnace 102 is fired next time, the generated correction table is used. The temperature in the furnace measured by the thermocouple 103 for measuring the furnace temperature is corrected, and temperature control during firing of the workpiece 105 is performed based on the corrected furnace temperature. According to this structure, even if it heats with a microwave, the temperature control of a to-be-processed object can be accurately performed with the furnace temperature which considered the temperature of the to-be-processed object. In addition, since the object measurement thermocouple 104 is used only when the correction value of the furnace temperature is obtained, it is possible to suppress the consumption of the thermocouple which is originally not durable, and the object measurement thermocouple 104 Can be used for a long time, and maintenance costs can be kept low.

なお、上記実施の形態では、熱電対を使用して炉内温度と被処理体温度を測定するようにしたが、高価にはなるが、放射温度計を使用して炉内温度と被処理体温度を測定するようにしても構わない。   In the above embodiment, the temperature inside the furnace and the temperature of the object to be processed are measured using a thermocouple. However, although it is expensive, the temperature inside the furnace and the object to be processed are measured using a radiation thermometer. You may make it measure temperature.

本発明は、正確に温度制御を行うことができるという効果を有し、陶磁器材料やファインセラミックス材料などで形成された被処理体を焼成して焼成体を製造する焼成炉等に有用である。   INDUSTRIAL APPLICABILITY The present invention has an effect that the temperature can be accurately controlled, and is useful for a firing furnace or the like that manufactures a fired body by firing an object to be processed formed of a ceramic material or a fine ceramic material.

本発明の一実施の形態に係る焼成炉の炉部分の構成を示す図The figure which shows the structure of the furnace part of the baking furnace which concerns on one embodiment of this invention 図1の焼成炉の電気的構成を示すブロック図Block diagram showing the electrical configuration of the firing furnace of FIG.

符号の説明Explanation of symbols

102 炉内
103 炉内温度測定用熱電対
104 被処理体測定用熱電対
105 被処理体
201 制御部
202 表示部
203 パワー出力部
205 パーソナルコンピュータ
206 インタフェースケーブル
2011 熱電対入力回路
2012 記憶装置
2013 出力制御回路
2014 表示回路
2015 インタフェース回路
2016 操作部
2017 マイクロコンピュータ
102 In-furnace 103 In-furnace temperature measurement thermocouple 104 To-be-processed object measurement thermocouple 105 To-be-processed object 201 Control part 202 Display part 203 Power output part 205 Personal computer 206 Interface cable 2011 Thermocouple input circuit 2012 Storage device 2013 Output control Circuit 2014 Display circuit 2015 Interface circuit 2016 Operation unit 2017 Microcomputer

Claims (7)

炉内温度を測定する第1の温度測定手段と、
炉内の被処理体の温度を測定する第2の温度測定手段と、
前記被処理体の焼成時に前記第1の温度測定手段にて測定された炉内温度と前記第2の温度測定手段により測定された被処理体温度の所定温度幅ごと又は所定時間幅ごとの温度差を求めて補正テーブルを生成する補正テーブル生成手段と、
前記補正テーブル生成手段で生成された補正テーブルを記憶する記憶手段と、
前記第1の温度測定手段にて測定された炉内温度を前記記憶手段に記憶されている補正テーブルで補正する補正手段と、
前記補正手段にて補正された炉内温度で前記被処理体の焼成における温度制御を行う制御手段と、
を備える焼成炉。
First temperature measuring means for measuring the temperature in the furnace;
Second temperature measuring means for measuring the temperature of the object to be processed in the furnace;
The temperature in the furnace measured by the first temperature measuring means and the temperature of the object temperature measured by the second temperature measuring means at the time of firing the object to be processed, or the temperature for every predetermined time width. Correction table generation means for generating a correction table by obtaining the difference;
Storage means for storing the correction table generated by the correction table generating means;
Correction means for correcting the furnace temperature measured by the first temperature measurement means with a correction table stored in the storage means;
Control means for performing temperature control in firing of the object to be processed at the furnace temperature corrected by the correction means;
A firing furnace comprising:
前記補正手段にて補正された炉内温度を表示する表示手段を備える請求項1に記載の焼成炉。   The firing furnace according to claim 1, further comprising display means for displaying the furnace temperature corrected by the correction means. 前記記憶手段は、前記被処理体の材質や大きさ、炉内に投入する量に応じて前記補正テーブル生成手段にて生成された複数の補正テーブルを記憶し、
前記補正手段は、焼成する前記被処理体の材質や大きさ、炉内に投入する量に応じて選択した補正テーブルを前記記憶手段から読み出し、読み出した補正テーブルで前記第1の温度測定手段にて測定された炉内温度を補正する請求項1又は2に記載の焼成炉。
The storage means stores a plurality of correction tables generated by the correction table generation means according to the material and size of the object to be processed, and the amount to be charged into the furnace,
The correction means reads from the storage means a correction table selected according to the material and size of the object to be fired and the amount to be put into the furnace, and uses the read correction table as the first temperature measurement means. The firing furnace according to claim 1, wherein the furnace temperature measured by the correction is corrected.
前記補正テーブル生成手段で生成された補正テーブルを出力する出力手段を備える請求項1から3のいずれかに記載の焼成炉。   The firing furnace according to any one of claims 1 to 3, further comprising an output unit that outputs the correction table generated by the correction table generation unit. 前記炉内温度と前記被処理体温度とに基づいて補正された炉内温度を受信する受信手段を備え、
前記制御手段は、受信した炉内温度で前記被処理体の焼成における温度制御を行う請求項4に記載の焼成炉。
Receiving means for receiving the furnace temperature corrected based on the furnace temperature and the object temperature,
The firing furnace according to claim 4, wherein the control means performs temperature control in firing the object to be processed at the received furnace temperature.
被処理体の焼成における温度制御を炉内温度に基づいて行う焼成炉であって、
前記被処理体の温度を測定する温度測定手段と、
前記温度測定手段で測定された被処理体温度を加味した炉内温度で前記被処理体の焼成における温度制御を行う制御手段と、
を備える焼成炉。
A firing furnace that performs temperature control in firing of an object to be processed based on the temperature in the furnace,
Temperature measuring means for measuring the temperature of the object to be processed;
Control means for performing temperature control in firing of the object to be processed at a furnace temperature in consideration of the object temperature measured by the temperature measuring means;
A firing furnace comprising:
マイクロ波を使用して前記被処理体を焼成する請求項1ないし6のいずれか一項に記載の焼成炉。   The firing furnace according to any one of claims 1 to 6, wherein the object to be treated is fired using a microwave.
JP2005108813A 2005-04-05 2005-04-05 Firing furnace Withdrawn JP2006284156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005108813A JP2006284156A (en) 2005-04-05 2005-04-05 Firing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005108813A JP2006284156A (en) 2005-04-05 2005-04-05 Firing furnace

Publications (1)

Publication Number Publication Date
JP2006284156A true JP2006284156A (en) 2006-10-19

Family

ID=37406268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005108813A Withdrawn JP2006284156A (en) 2005-04-05 2005-04-05 Firing furnace

Country Status (1)

Country Link
JP (1) JP2006284156A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113873A (en) * 2005-10-21 2007-05-10 Takasago Ind Co Ltd Microwave heating furnace
JP2007139272A (en) * 2005-11-16 2007-06-07 Takasago Ind Co Ltd Continuous type microwave heating furnace
JP2013047598A (en) * 2011-07-27 2013-03-07 Chugai Ro Co Ltd Furnace for heat-treating workpiece
CN102997700A (en) * 2012-11-09 2013-03-27 江苏熙友磁电科技有限公司 Heat-preservation furnace with power-off safety control device
JP2013098417A (en) * 2011-11-02 2013-05-20 Omron Corp Heating furnace, control system, control program and control method therefor
CN105403062A (en) * 2015-12-04 2016-03-16 西南铝业(集团)有限责任公司 Heating temperature control system for heating furnace
JP2016217631A (en) * 2015-05-21 2016-12-22 株式会社神戸製鋼所 Temperature compensation method for hot isotropic pressure device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113873A (en) * 2005-10-21 2007-05-10 Takasago Ind Co Ltd Microwave heating furnace
JP2007139272A (en) * 2005-11-16 2007-06-07 Takasago Ind Co Ltd Continuous type microwave heating furnace
JP2013047598A (en) * 2011-07-27 2013-03-07 Chugai Ro Co Ltd Furnace for heat-treating workpiece
JP2013098417A (en) * 2011-11-02 2013-05-20 Omron Corp Heating furnace, control system, control program and control method therefor
WO2014017176A1 (en) * 2012-07-26 2014-01-30 中外炉工業株式会社 Furnace for thermal processing of workpieces
US9696090B2 (en) 2012-07-26 2017-07-04 Chugai Ro Co., Ltd. Thermal processing furnace for workpieces
CN102997700A (en) * 2012-11-09 2013-03-27 江苏熙友磁电科技有限公司 Heat-preservation furnace with power-off safety control device
JP2016217631A (en) * 2015-05-21 2016-12-22 株式会社神戸製鋼所 Temperature compensation method for hot isotropic pressure device
CN105403062A (en) * 2015-12-04 2016-03-16 西南铝业(集团)有限责任公司 Heating temperature control system for heating furnace

Similar Documents

Publication Publication Date Title
JP2006284156A (en) Firing furnace
JP2010025452A (en) Method and device for densifying ceramics
JP2001077041A (en) Temperature calibrating method for thermal process device
CN101086485A (en) Thermal analyzer
JP3096743B2 (en) Lamp annealing furnace temperature controller
JP2017090351A (en) Radiation thermometer
CN102560681B (en) Temperature measuring equipment and diffusion furnace
JP6401350B2 (en) Calibration method of temperature adjustment during thermal analysis of sample
JP2006284155A (en) Microwave firing furnace
Failleau et al. Miniature Fixed-Point Cell Approaches for In\, Situ I n S itu Monitoring of Thermocouple Stability
JP2009192416A (en) Thermal analyzer
JP2005315491A (en) Kiln
Seifert et al. Precise temperature calibration for laser heat treatment
US4440510A (en) Pyrometric gas temperature measurement system
JP5761705B2 (en) Gas circulation type variable temperature oven for temperature standard
Raj et al. Temperature measurements in a laboratory scale furnace for manufacturing of silicon carbide through Acheson process
US20180328631A1 (en) Thermal control apparatus using thermal model and temperature-inference mechanism
US9851263B2 (en) Portable heating chamber system for pyrometric proficiency testing
KR102599974B1 (en) Measurement method of infrared thermometer with improved measurement reliability
JPH07243917A (en) Calibrating method for thermocouple
BAROT et al. Energy Efficient and Sustainable Design and Development of Muffle Furnace for Melting Alloys
CN209151393U (en) A kind of burning heater furnace
JP2006046717A (en) Heating furnace
JPS62266385A (en) Temperature controller for lamp annealing furnace
JP2006155169A (en) Temperature control method, temperature controller and heat treatment system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091109