JP2017191019A - Temperature measurement device and temperature measurement method - Google Patents

Temperature measurement device and temperature measurement method Download PDF

Info

Publication number
JP2017191019A
JP2017191019A JP2016080805A JP2016080805A JP2017191019A JP 2017191019 A JP2017191019 A JP 2017191019A JP 2016080805 A JP2016080805 A JP 2016080805A JP 2016080805 A JP2016080805 A JP 2016080805A JP 2017191019 A JP2017191019 A JP 2017191019A
Authority
JP
Japan
Prior art keywords
temperature
heat flow
jig
measured
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016080805A
Other languages
Japanese (ja)
Other versions
JP6594250B2 (en
Inventor
剣一郎 稲垣
Kenichiro Inagaki
剣一郎 稲垣
啓仁 松井
Hirohito Matsui
啓仁 松井
啓太 齋藤
Keita Saito
啓太 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Soken Inc filed Critical Denso Corp
Priority to JP2016080805A priority Critical patent/JP6594250B2/en
Publication of JP2017191019A publication Critical patent/JP2017191019A/en
Application granted granted Critical
Publication of JP6594250B2 publication Critical patent/JP6594250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a temperature measurement device capable of quickly estimating temperature of a measured portion.SOLUTION: A temperature measurement device 1 comprises a heat flow sensor 2 for detecting a heat flow W1 between a measured portion 11 inside a measurement target object 10 and a surface 10a when measuring temperature T0 of the measured portion 11, a jig 5 provided so as to come in contact with the heat flow sensor 2 in the state of being in contact with the surface 10a of the measurement target object 10, a temperature sensor 3 for detecting temperature T2 of the heat flow sensor 2 and temperature T2 of the jig 5, a temperature application mechanism 6 for heating or cooling the jig 5, and a control unit 4 for, on the basis of the temperature T2 of the jig 5, adjusting the temperature T2 of the jig 5 by controlling the temperature application mechanism 6 so that a flow direction of the heat flow W1 becomes a direction from the measured portion 11 toward the heat flow sensor 2 and on the basis of the heat flow W1 of the measurement target object 10 and the temperature T2 of the heat flow sensor 2, calculating the temperature T0 of the measured portion 11.SELECTED DRAWING: Figure 1

Description

本発明は、測定対象物の内部に存在する被測定部の温度を計測するための温度計測装置及び温度計測方法に関する。   The present invention relates to a temperature measurement device and a temperature measurement method for measuring the temperature of a measurement target existing inside a measurement object.

測定対象物の内部に存在し、測定対象物の外部から温度を直接計測することができない被測定部について、この被測定部の温度を間接的に計測する温度計測装置が提案されている。例えば特許文献1には、一方の面を測定対象物の表面に接触させる基材と、この基材の他方の面上に設けられる熱流束センサ及び温度センサとを備える内部温度センサ(温度計測装置)について記載されている。熱流束センサは、第1測温部及び第2測温部を有し、第1測温部と第2測温部との間の温度差を検出するサーモパイルが形成されている薄膜部を含む。熱流束センサは、基材を介して流入する測定対象物からの熱を第2測温部に伝導する熱伝導性部材により、第1測温部と基材との間に空間が存在し、且つ、基材に対して平行となるように薄膜部が指示されている。温度センサは、基材の熱伝導性部材と接触している部分の温度又は薄膜部の第2測温部の温度を測定する。この内部温度センサは、熱流束センサにより計測された第1測温部と第2測温部との間の温度差と、温度センサにより計測された温度とから、所定の導出式を用いて、測定対象物の内部温度を算出することができる。   There has been proposed a temperature measurement device that indirectly measures the temperature of a measured part that exists inside the measured object and cannot directly measure the temperature from the outside of the measured object. For example, Patent Document 1 discloses an internal temperature sensor (temperature measurement device) that includes a base material whose one surface is in contact with the surface of a measurement object, and a heat flux sensor and a temperature sensor provided on the other surface of the base material. ). The heat flux sensor has a first temperature measuring unit and a second temperature measuring unit, and includes a thin film portion in which a thermopile for detecting a temperature difference between the first temperature measuring unit and the second temperature measuring unit is formed. . The heat flux sensor has a space between the first temperature measuring part and the base material by the heat conductive member that conducts heat from the measurement object flowing in through the base material to the second temperature measuring part, And the thin film part is instruct | indicated so that it may become parallel with respect to a base material. A temperature sensor measures the temperature of the part which is contacting the heat conductive member of a base material, or the temperature of the 2nd temperature measuring part of a thin film part. This internal temperature sensor uses a predetermined derivation formula from the temperature difference between the first temperature measuring unit and the second temperature measuring unit measured by the heat flux sensor and the temperature measured by the temperature sensor, The internal temperature of the measurement object can be calculated.

また、同様の技術としては、例えば特許文献2には、蒸発管の外面に密着して取り付けられる熱流束センサと、熱流束センサの外面に密着して取り付けられ熱流束センサを加熱又は冷却する温度調節装置と、蒸発管の外面から熱流束センサの外面までの間の中間温度を検出する温度センサと、を備える蒸発管の内部状態判定装置について記載されている。この装置は、温度調節装置により熱流束センサを加熱又は冷却しながら中間温度と熱流束とを記憶し、中間温度の温度変化と熱流束の変化量の関係に基づき、蒸発管内の内部状態(例えば液膜の有無)を判定する。   Further, as a similar technique, for example, in Patent Document 2, a heat flux sensor attached in close contact with the outer surface of the evaporation tube, and a temperature at which the heat flux sensor attached in close contact with the outer surface of the heat flux sensor is heated or cooled. An evaporation tube internal state determination device is described that includes an adjustment device and a temperature sensor that detects an intermediate temperature between the outer surface of the evaporation tube and the outer surface of the heat flux sensor. This device memorizes the intermediate temperature and the heat flux while heating or cooling the heat flux sensor by the temperature adjusting device, and based on the relationship between the temperature change of the intermediate temperature and the amount of change of the heat flux, the internal state (for example, The presence or absence of a liquid film is determined.

特開2015−114291号公報Japanese Patent Laying-Open No. 2015-114291 特開2015−117921号公報Japanese Patent Laying-Open No. 2015-117921

特許文献1に記載されるような従来の測定対象物の内部温度計測手法では、一般に、測定対象物に接触させた内部温度センサが熱平衡状態となっていることが、内部温度を算出するための要件となる。熱平衡状態とは、特許文献1の構成の場合、熱流束センサの薄膜部内を第2測温部から第1測温部に向かって単位時間内に流れる熱量と、熱流束センサの支持部(熱伝導性部材)に測定対象物側から単位時間内に流入する熱量とがほぼ一致し、熱流束センサの各部の温度が安定している状態である。   In the conventional method for measuring the internal temperature of an object to be measured as described in Patent Document 1, generally, the internal temperature sensor brought into contact with the object to be measured is in a thermal equilibrium state to calculate the internal temperature. It becomes a requirement. In the case of the configuration of Patent Document 1, the thermal equilibrium state refers to the amount of heat that flows in the unit time from the second temperature measuring unit to the first temperature measuring unit in the thin film portion of the heat flux sensor, and the heat flux sensor support unit (heat The amount of heat flowing into the conductive member) from the measurement object side within the unit time substantially matches, and the temperature of each part of the heat flux sensor is stable.

すなわち、従来手法では、温度計測装置内部の温度精度を上げるために、測定対象物への接触後に、ある程度の時間をかけて装置全体の温度を安定化させる必要があるため、実際に被測定部の温度を算出するまでに時間がかかるという問題がある。   In other words, in the conventional method, in order to increase the temperature accuracy inside the temperature measuring device, it is necessary to stabilize the temperature of the entire device after a certain amount of time after contacting the measurement object. There is a problem that it takes time to calculate the temperature of.

また、特許文献2に記載される内部状態判定装置でも、上述のように、蒸発管内の内部状態を判定するためには、熱流束センサの温度を意図的に変動させて、その間の熱流束の変化量を計測する必要があるため、特許文献1と同様に、内部状態を判定するまでに時間がかかるという問題がある。   Further, even in the internal state determination device described in Patent Document 2, as described above, in order to determine the internal state in the evaporation pipe, the temperature of the heat flux sensor is intentionally changed, and the heat flux between them is determined. Since it is necessary to measure the amount of change, similarly to Patent Document 1, there is a problem that it takes time to determine the internal state.

本発明はこのような課題に鑑みてなされたものであり、その目的は、迅速に被測定部の温度推定を行うことが可能な温度計測装置及び温度計測方法を提供することにある。   This invention is made | formed in view of such a subject, The objective is to provide the temperature measurement apparatus and temperature measurement method which can perform the temperature estimation of a to-be-measured part rapidly.

上記課題を解決するために、本発明に係る温度計測装置(1,1A)は、測定対象物(10)の内部に存在する被測定部(11)の温度(T0)を計測する際に、前記測定対象物の表面(10a)に接触し、前記測定対象物の前記被測定部と前記表面との間の熱流(W1)を検出する熱流検出部(2)と、前記熱流検出部の温度(T2)を検出する温度検出部(3)と、前記被測定部の前記温度を計測する際に、前記測定対象物の前記表面に接触した状態の前記熱流検出部に接触するよう設けられる治具(5)と、前記治具の温度を検出する治具温度検出部(3,7)と、前記治具を加熱又は冷却する温度調節部(6)と、前記治具温度検出部により検出される前記治具の温度に基づいて、前記熱流の流れが前記被測定部から前記熱流検出部へ向かう方向となるように、前記温度調節部を制御して前記治具の温度を調節すると共に、前記熱流検出部により検出される前記測定対象物の前記熱流と、前記温度検出部により検出される前記熱流検出部の前記温度とに基づいて、前記被測定部の前記温度を算出する制御部(4)と、を備える。   In order to solve the above problems, the temperature measuring device (1, 1A) according to the present invention measures the temperature (T0) of the part to be measured (11) existing inside the measurement object (10). A heat flow detection unit (2) that contacts the surface (10a) of the measurement object and detects a heat flow (W1) between the measurement target part and the surface of the measurement object, and a temperature of the heat flow detection unit A temperature detector (3) for detecting (T2) and a jig provided to come into contact with the heat flow detector in contact with the surface of the measurement object when measuring the temperature of the part to be measured. Detected by the tool (5), a jig temperature detecting part (3, 7) for detecting the temperature of the jig, a temperature adjusting part (6) for heating or cooling the jig, and the jig temperature detecting part Based on the temperature of the jig, the flow of the heat flow is changed from the measured part to the heat flow detection part. The temperature adjusting unit is controlled to adjust the temperature of the jig so as to be in the direction to go, and the heat flow of the measurement object detected by the heat flow detecting unit and the temperature detecting unit are detected. And a control unit (4) that calculates the temperature of the measurement target unit based on the temperature of the heat flow detection unit.

同様に、上記課題を解決するために、本発明に係る温度計測方法は、測定対象物(10)の内部に存在する被測定部(11)の温度(T0)を計測する温度計測方法であって、制御部(4)が、治具温度検出部(3,7)により検出される治具(5)の温度(T2)に基づいて、熱流検出部(2)が前記測定対象物の表面(10a)に接触し、かつ、前記治具が前記熱流検出部に接触した状態のときに、前記被測定部と前記表面との間の熱流(W1)の流れが、前記被測定部から前記熱流検出部へ向かう方向となるように、温度調節部(6)を制御して前記治具の温度を調節する調節ステップ(S102)と、前記熱流検出部が、前記測定対象物の前記表面に接触する接触ステップ(S103)と、前記治具を取り付けられた前記熱流検出部が、前記被測定部と前記表面との間の前記熱流を検出する熱流検出ステップ(S104)と、温度検出部(3)が、前記熱流検出部の温度(T2)を検出する温度検出ステップ(S105)と、制御部(4)が、前記熱流検出ステップにて前記熱流検出部により検出された前記測定対象物の前記熱流と、前記温度検出ステップにて前記温度検出部により検出された前記熱流検出部の前記温度とに基づいて、前記被測定部の前記温度を算出する温度算出ステップ(S106)と、を含む。   Similarly, in order to solve the above-mentioned problem, the temperature measurement method according to the present invention is a temperature measurement method for measuring the temperature (T0) of the part to be measured (11) existing inside the measurement object (10). Then, based on the temperature (T2) of the jig (5) detected by the jig temperature detection part (3, 7), the control part (4) causes the heat flow detection part (2) to detect the surface of the measurement object. (10a) and when the jig is in contact with the heat flow detector, the flow of the heat flow (W1) between the part to be measured and the surface is transferred from the part to be measured to the An adjustment step (S102) for adjusting the temperature of the jig by controlling the temperature adjustment unit (6) so as to be directed to the heat flow detection unit, and the heat flow detection unit on the surface of the measurement object. Contacting step (S103) for contacting, and the heat flow detecting unit to which the jig is attached A heat flow detecting step (S104) for detecting the heat flow between the measured portion and the surface, and a temperature detecting step (S105) in which the temperature detecting portion (3) detects the temperature (T2) of the heat flow detecting portion. ), And the control unit (4) detects the heat flow of the measurement object detected by the heat flow detection unit in the heat flow detection step, and the heat flow detection detected by the temperature detection unit in the temperature detection step. A temperature calculating step (S106) for calculating the temperature of the part to be measured based on the temperature of the part.

これらの構成により、温度検出部により検出される熱流検出部の温度を基準として、測定対象物の被測定部と表面との間の温度差と相関する熱流を考慮することにより、被測定部の温度を精度良く推定することができる。また、測定対象物や温度計測装置の温度が全体に亘り安定化しなくても被測定部の温度の算出を行えるので、熱流検出部を測定対象物に接触した後に即座に温度の推定を実施できる。さらに、熱流検出部に治具を取り付けることにより、測定対象物から熱量検出部への熱流の流れを促進できる。   With these configurations, by taking into account the heat flow that correlates with the temperature difference between the measurement target part and the surface of the measurement object, based on the temperature of the heat flow detection part detected by the temperature detection part, The temperature can be estimated with high accuracy. In addition, the temperature of the part to be measured can be calculated even if the temperature of the measurement object or the temperature measurement device is not stabilized over the whole, so that the temperature can be estimated immediately after the heat flow detection part comes into contact with the measurement object. . Furthermore, by attaching a jig to the heat flow detection unit, the flow of heat flow from the measurement object to the heat quantity detection unit can be promoted.

本発明によれば、迅速に被測定部の温度推定を行うことが可能な温度計測装置及び温度計測方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the temperature measuring apparatus and temperature measuring method which can perform the temperature estimation of a to-be-measured part rapidly can be provided.

図1は、本発明の第1実施形態に係る温度計測装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a temperature measurement device according to the first embodiment of the present invention. 図2は、第1実施形態の温度計測装置により実施される被測定部の温度計測方法を示すフローチャートである。FIG. 2 is a flowchart showing a temperature measurement method for the part to be measured, which is performed by the temperature measurement device of the first embodiment. 図3は、図2中のステップS102の治具温度制御にて実施されるサブルーチン処理を示すフローチャートである。FIG. 3 is a flowchart showing a subroutine process performed in the jig temperature control in step S102 in FIG. 図4は、第1実施形態の温度計測装置が治具温度制御を行うことによる効果を説明するための図である。FIG. 4 is a diagram for explaining the effect of the temperature measurement device according to the first embodiment performing jig temperature control. 図5は、本発明の第2実施形態に係る温度計測装置の概略構成を示す図である。FIG. 5 is a diagram showing a schematic configuration of a temperature measurement device according to the second embodiment of the present invention. 図6は、第2実施形態において、図2中のステップS102の治具温度制御にて実施されるサブルーチン処理を示すフローチャートである。FIG. 6 is a flowchart showing a subroutine process executed in the jig temperature control in step S102 in FIG. 2 in the second embodiment.

以下、添付図面を参照しながら本発明の実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.

[第1実施形態]
図1〜図4を参照して第1実施形態を説明する。まず図1を参照して、第1実施形態に係る温度計測装置1の構成について説明する。
[First Embodiment]
The first embodiment will be described with reference to FIGS. First, with reference to FIG. 1, the structure of the temperature measuring device 1 which concerns on 1st Embodiment is demonstrated.

温度計測装置1は、測定対象物10の内部に存在する被測定部11の温度T0を計測するための装置である。被測定部11は、例えば図1に示すようにその周囲を伝熱材12によって被覆される、または、筐体によって包囲される、などの測定対象物10の構造上の都合により外部から温度T0を直接計測することができない。   The temperature measuring device 1 is a device for measuring the temperature T0 of the part to be measured 11 existing inside the measurement object 10. For example, as shown in FIG. 1, the portion to be measured 11 is surrounded by a heat transfer material 12 or surrounded by a housing. Cannot be measured directly.

このような測定対象物10として、特に本実施形態では圧力センサを想定している。圧力センサは、その内部に被測定部11としての受圧部を備え、この受圧部を含む内部空間を他部品により包囲して構成される。このような圧力センサは、例えば歪ゲージ式、薄膜式などのダイアフラムゲージが挙げられる。ダイアフラムゲージは、受圧部の隔膜(ダイアフラム)に加わる圧力を、隔膜の変形量に応じた電圧値として検出することができる。   As such a measurement object 10, in particular, a pressure sensor is assumed in the present embodiment. The pressure sensor includes a pressure receiving portion as the portion to be measured 11 therein, and is configured by surrounding an internal space including the pressure receiving portion with other components. Examples of such a pressure sensor include a strain gauge type and a thin film type diaphragm gauge. The diaphragm gauge can detect the pressure applied to the diaphragm (diaphragm) of the pressure receiving portion as a voltage value corresponding to the amount of deformation of the diaphragm.

このような圧力センサは、周囲の温度環境によって隔膜の変形量が変わるため、温度に応じてセンサ出力が変わるという温度特性を有する。この温度特性は、センサの形状やサイズなどによって決まるものである。したがって、圧力センサは、予め温度特性を調べ、温度特性に応じた出力補正を設定しておくことによって(温度特性調整工程)、同一圧力に対するセンサ出力を温度特性の影響を受けずに一定にすることができる。   Such a pressure sensor has a temperature characteristic in which the amount of deformation of the diaphragm changes depending on the surrounding temperature environment, so that the sensor output changes according to the temperature. This temperature characteristic is determined by the shape and size of the sensor. Therefore, the pressure sensor checks the temperature characteristics in advance and sets the output correction according to the temperature characteristics (temperature characteristic adjustment process), thereby making the sensor output for the same pressure constant without being affected by the temperature characteristics. be able to.

第1実施形態の温度計測装置1は、このような圧力センサの温度特性調整工程に適用することができる。この工程では、圧力センサ(測定対象物10)の内部に設けられる受圧部(被測定部11)が高温や低温などの所定の温度帯となるようセンサが加温または冷却され、このときのセンサ出力に基づき、温度に基づく出力補正などの各種調整が行われる。温度計測装置1は、直接計測できない圧力センサ内部の受圧部の温度を推定することができるので、圧力センサの温度特性調整工程に温度計測装置1を適用することによって、受圧部の温度が所定の温度帯に入っているか否かを高精度に判定できる。   The temperature measuring device 1 according to the first embodiment can be applied to the temperature characteristic adjusting process of such a pressure sensor. In this step, the sensor is heated or cooled so that the pressure receiving portion (measured portion 11) provided in the pressure sensor (measurement object 10) is in a predetermined temperature zone such as high temperature or low temperature. Various adjustments such as output correction based on temperature are performed based on the output. Since the temperature measuring device 1 can estimate the temperature of the pressure receiving portion inside the pressure sensor that cannot be directly measured, by applying the temperature measuring device 1 to the temperature characteristic adjustment process of the pressure sensor, the temperature of the pressure receiving portion is predetermined. It can be determined with high accuracy whether or not the temperature zone is entered.

図1に示すように、温度計測装置1は、熱流センサ2(熱流検出部)と、温度センサ3(温度検出部、治具温度検出部)と、制御部4と、治具5と、温度印加機構6(温度調節部)と、を備える。   As shown in FIG. 1, the temperature measuring device 1 includes a heat flow sensor 2 (heat flow detection unit), a temperature sensor 3 (temperature detection unit, jig temperature detection unit), a control unit 4, a jig 5, and a temperature. And an application mechanism 6 (temperature adjusting unit).

熱流センサ2は、測定対象物10の内部に存在する被測定部11の温度T0を計測する際に、測定対象物10の表面10aに接触し、被測定部11と表面10aとの間の熱流W1を検出する。熱流センサ2が計測する熱流W1は、(1)被測定部11の温度T0が表面10aの温度T1より高温の場合には、測定対象物10の内部から表面10aへ放出される熱流であり、また、(2)測定対象物10の表面10aの温度T1が被測定部11の温度T0より高温の場合には、測定対象物10の表面10aから内部へ吸収される熱流である。熱流センサ2は、相互に対向する一対の主面2a,2bを有し、測定対象物10の熱流W1を検出する際には、一対の主面2a,2bのうち一方の主面2aが測定対象物10の表面10aに密着して取り付けられる。   The heat flow sensor 2 contacts the surface 10a of the measurement object 10 when measuring the temperature T0 of the measurement object 11 existing inside the measurement object 10, and the heat flow between the measurement object 11 and the surface 10a. W1 is detected. The heat flow W1 measured by the heat flow sensor 2 is (1) a heat flow released from the inside of the measurement object 10 to the surface 10a when the temperature T0 of the measured portion 11 is higher than the temperature T1 of the surface 10a. Further, (2) when the temperature T1 of the surface 10a of the measurement object 10 is higher than the temperature T0 of the measurement target 11, the heat flow is absorbed from the surface 10a of the measurement object 10 into the inside. The heat flow sensor 2 has a pair of main surfaces 2a and 2b opposed to each other. When detecting the heat flow W1 of the measurement object 10, one of the pair of main surfaces 2a and 2b is measured by one main surface 2a. Attached in close contact with the surface 10a of the object 10.

温度センサ3は、測定対象物10の被測定部11の温度T0を計測する際に、熱流センサ2の温度を検出する。温度センサ3は、例えば、抵抗測温体や熱電対などの温度測定系を適用することができる。温度検出部3は、熱流センサ2の一対の主面2a,2bのうち、測定対象物10と接触していない側の他方の主面2bの表面温度T2を検出する。   The temperature sensor 3 detects the temperature of the heat flow sensor 2 when measuring the temperature T0 of the part to be measured 11 of the measurement object 10. For example, a temperature measuring system such as a resistance temperature sensor or a thermocouple can be applied to the temperature sensor 3. The temperature detection unit 3 detects the surface temperature T2 of the other main surface 2b on the side not in contact with the measurement object 10 out of the pair of main surfaces 2a and 2b of the heat flow sensor 2.

なお、本実施形態では、測定対象物10の表面10aと接触する熱流センサ2の一方の主面2aの表面温度(すなわち測定対象物10の表面10aの温度T1)と、その反対側に位置する他方の主面2bの表面温度T2とは略同一となるとの前提のもとで、温度センサ3が熱流センサ2の主面2bの表面温度を検出する構成をとる。つまり、温度センサ3の温度計測位置は主面2bに限られず、主面2a、側面部、内部などの熱流センサ2の他の部位とすることもできる。また、温度センサ3は、図1の例では、熱流センサ2の主面2b上には設けられず、熱流センサ2や治具5から離間して配置されているが、他の形態でもよく、例えば熱流センサ2と治具5との間に温度センサ3を挟持する構成としてもよい。   In the present embodiment, the surface temperature of one main surface 2a of the heat flow sensor 2 in contact with the surface 10a of the measurement object 10 (that is, the temperature T1 of the surface 10a of the measurement object 10) is located on the opposite side. The temperature sensor 3 is configured to detect the surface temperature of the main surface 2b of the heat flow sensor 2 on the assumption that the surface temperature T2 of the other main surface 2b is substantially the same. That is, the temperature measurement position of the temperature sensor 3 is not limited to the main surface 2b, but may be another portion of the heat flow sensor 2 such as the main surface 2a, the side surface, and the inside. Further, in the example of FIG. 1, the temperature sensor 3 is not provided on the main surface 2b of the heat flow sensor 2 and is disposed apart from the heat flow sensor 2 and the jig 5, but may be in other forms. For example, the temperature sensor 3 may be sandwiched between the heat flow sensor 2 and the jig 5.

制御部4は、熱流センサ2により検出される測定対象物10の熱流W1と、温度センサ3により検出される熱流センサ2の温度T2とに基づいて、被測定部11の温度T0を算出する。温度T0の算出方法の詳細については図2を参照して後述する。制御部4は、熱流センサ2及び温度センサ3と電気的に接続され、熱流センサ2及び温度センサ3から熱流W1及び温度T2に関する情報を取得する。制御部4は、さらに、温度印加機構6を制御して治具5の温度を調節する。治具5の温度制御についても図2及び図3を参照して後述する。また、制御部4は、測定対象物10の被測定部11の温度T0を計測する際に、熱流センサ2を測定対象物10の表面10aに取り付けるよう熱流センサ2の位置制御を行うこともできる。   Based on the heat flow W1 of the measurement object 10 detected by the heat flow sensor 2 and the temperature T2 of the heat flow sensor 2 detected by the temperature sensor 3, the control unit 4 calculates the temperature T0 of the measured unit 11. Details of the calculation method of the temperature T0 will be described later with reference to FIG. The control unit 4 is electrically connected to the heat flow sensor 2 and the temperature sensor 3, and acquires information on the heat flow W <b> 1 and the temperature T <b> 2 from the heat flow sensor 2 and the temperature sensor 3. The controller 4 further controls the temperature application mechanism 6 to adjust the temperature of the jig 5. The temperature control of the jig 5 will also be described later with reference to FIGS. The control unit 4 can also control the position of the heat flow sensor 2 so that the heat flow sensor 2 is attached to the surface 10a of the measurement object 10 when measuring the temperature T0 of the measurement object 11 of the measurement object 10. .

制御部4は、物理的には、CPU(Central Processing Unit)、RAM(Random Access Memory)及びROM(Read Only Memory)などを有するコンピュータである。図2及び図3を参照して後述する制御部4の各機能の全部または一部は、ROMに保持されるアプリケーションプログラムをRAMにロードしてCPUで実行することによって、RAMやROMにおけるデータの読み出し及び書き込みを行うことで実現される。   The control unit 4 is physically a computer having a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. All or a part of each function of the control unit 4 to be described later with reference to FIGS. 2 and 3 is executed by loading an application program held in the ROM into the RAM and executing it by the CPU. This is realized by reading and writing.

治具5は、被測定部11の温度T0を計測する際に、測定対象物10の表面10aに接触した状態の熱流センサ2に接触するよう設けられる。治具5は、測定対象物10の表面10aと測定対象物10の内部の被測定部11との間の熱抵抗、図1の例では伝熱材12の熱抵抗値Cに対して相対的に低い熱抵抗を有する材質(例えば金属)で形成される。治具5は、被測定部11の温度T0を計測する際に、熱流センサ2の一対の主面2a,2bのうち、測定対象物10と接触していない側の他方の主面2bと密着して取り付けられる。   The jig 5 is provided so as to come into contact with the heat flow sensor 2 in contact with the surface 10a of the measurement object 10 when measuring the temperature T0 of the part to be measured 11. The jig 5 is relative to the thermal resistance between the surface 10a of the measurement object 10 and the measured part 11 inside the measurement object 10, which is relative to the thermal resistance value C of the heat transfer material 12 in the example of FIG. And a material having a low thermal resistance (for example, metal). The jig 5 is in close contact with the other main surface 2b of the pair of main surfaces 2a and 2b of the heat flow sensor 2 on the side not in contact with the measurement object 10 when measuring the temperature T0 of the measured portion 11. Can be attached.

なお、第1実施形態では、熱流センサ2の温度を検出するための温度センサ3は、上述のとおり熱流センサ2の主面2bの表面温度T2を計測するよう設置されている。このため、温度センサ3は、同じく主面2bと密着して取り付けられる治具5の先端部の温度も同時に計測するよう兼用することができる。したがって、第1実施形態では、温度センサ3は、治具5の温度を検出する「治具温度検出部」としても機能する。つまり、温度センサ3により検出される温度T2は、熱流センサ2の温度だけでなく、治具5の温度としても取り扱われる。   In the first embodiment, the temperature sensor 3 for detecting the temperature of the heat flow sensor 2 is installed to measure the surface temperature T2 of the main surface 2b of the heat flow sensor 2 as described above. For this reason, the temperature sensor 3 can also be used so as to simultaneously measure the temperature of the tip portion of the jig 5 that is attached in close contact with the main surface 2b. Therefore, in the first embodiment, the temperature sensor 3 also functions as a “jig temperature detector” that detects the temperature of the jig 5. That is, the temperature T2 detected by the temperature sensor 3 is handled not only as the temperature of the heat flow sensor 2 but also as the temperature of the jig 5.

温度印加機構6は、治具5を加熱又は冷却する装置である。温度印加機構6は、制御部4から出力される制御指令に基づいて治具5を加熱又は冷却する動作を行い、これにより治具5の温度を適宜調整することができる。   The temperature application mechanism 6 is a device that heats or cools the jig 5. The temperature application mechanism 6 performs an operation of heating or cooling the jig 5 based on a control command output from the control unit 4, and thereby the temperature of the jig 5 can be adjusted as appropriate.

次に、図2及び図3を参照して、温度計測装置1が行う被測定部11の温度推定手法について説明する。図2に示すフローチャートの処理が、第1実施形態に係る温度計測方法に相当する。なお、図2のフローチャートは、上述の圧力センサ(測定対象物10)の温度特性調整工程に温度計測装置1を適用する場合の、圧力センサ内部の受圧部(被測定部11)の温度を推定する手順を、温度計測方法の一例として例示するものである。図2に示す処理は、制御部4によって例えば所定周期ごとに実行される。   Next, with reference to FIG.2 and FIG.3, the temperature estimation method of the to-be-measured part 11 which the temperature measurement apparatus 1 performs is demonstrated. The process of the flowchart shown in FIG. 2 corresponds to the temperature measurement method according to the first embodiment. The flow chart of FIG. 2 estimates the temperature of the pressure receiving part (measured part 11) inside the pressure sensor when the temperature measuring device 1 is applied to the temperature characteristic adjusting process of the pressure sensor (measurement object 10) described above. The procedure to perform is illustrated as an example of the temperature measurement method. The process shown in FIG. 2 is executed by the control unit 4 at predetermined intervals, for example.

ステップS101では、測定対象物10が所定温度帯に調整される。上述のように、圧力センサの温度特性調整工程では、圧力センサの内部に設けられる受圧部が高温や低温などの所定の温度帯となるようセンサが加温または冷却され、このときのセンサ出力に基づき、温度に基づく出力補正などの各種調整が行われる。本ステップでは、このうちの任意の1つの温度帯となるように測定対象物10の温度が調整される。本ステップの処理は、測定対象物10を室温より高温に調整する場合には、例えば、内部温度が所定の温度帯に維持されている炉の中に測定対象物10を投入し、所定時間経過後に炉から取り出すことによって実施することができる。また、測定対象物10を室温より低温に調整する場合には、例えば冷却装置に測定対象物10を投入することによって実施することができる。ステップS101の処理が完了すると、ステップS102に進む。   In step S101, the measuring object 10 is adjusted to a predetermined temperature range. As described above, in the temperature characteristic adjustment process of the pressure sensor, the sensor is heated or cooled so that the pressure receiving portion provided in the pressure sensor is in a predetermined temperature zone such as a high temperature or a low temperature. Based on this, various adjustments such as output correction based on temperature are performed. In this step, the temperature of the measuring object 10 is adjusted so as to be any one of these temperature zones. In the process of this step, when the measurement object 10 is adjusted to a temperature higher than room temperature, for example, the measurement object 10 is put into a furnace whose internal temperature is maintained in a predetermined temperature range, and a predetermined time has elapsed. This can be done later by removing it from the furnace. Moreover, when adjusting the measuring object 10 below room temperature, it can implement, for example by throwing the measuring object 10 into a cooling device. When the process of step S101 is completed, the process proceeds to step S102.

ステップS102(調節ステップ)では、治具5の温度を制御する「治具温度制御」が実施される。「治具温度制御」の具体的な処理は、図3に示すサブルーチン処理におけるステップS201〜S203である。   In step S102 (adjustment step), “jig temperature control” for controlling the temperature of the jig 5 is performed. Specific processing of “jig temperature control” is steps S201 to S203 in the subroutine processing shown in FIG.

ステップS201では、温度センサ3により治具5の温度T2が計測される。上述のとおり、第1実施形態では、温度センサ3により計測される熱流センサ2の主面2bの表面温度T2を、この主面2bに接触する治具5の温度としても取り扱う。ステップS201の処理が完了するとステップS202に進む。   In step S <b> 201, the temperature T <b> 2 of the jig 5 is measured by the temperature sensor 3. As described above, in the first embodiment, the surface temperature T2 of the main surface 2b of the heat flow sensor 2 measured by the temperature sensor 3 is also handled as the temperature of the jig 5 in contact with the main surface 2b. When the process of step S201 is completed, the process proceeds to step S202.

ステップS202では、治具5の温度T2が設定範囲内か否かが判定される。この設定範囲は、ステップS101における「測定対象物10の所定温度帯」に応じて設定される。より詳細には、治具5の温度T2の設定範囲は、測定対象物10の被測定部11と表面10aとの間の熱流の流れが、図1に矢印で示すように、被測定部11から熱流センサ2を介して治具5へ向かう方向となるように、測定対象物10の所定温度帯に応じて設定される。具体的には、測定対象物10の温度が所定温度帯にある場合に、治具5の温度T2が測定対象物10の温度より常に低温となるように設定される。例えば、測定対象物10の所定温度帯が135±5℃の場合には、治具5の温度の設定範囲を120±5℃とすれば、この条件を満たすことができる。   In step S202, it is determined whether or not the temperature T2 of the jig 5 is within a set range. This setting range is set according to “a predetermined temperature zone of the measurement object 10” in step S101. More specifically, the setting range of the temperature T2 of the jig 5 is such that the flow of heat flow between the measured portion 11 of the measurement object 10 and the surface 10a is as shown by the arrow in FIG. Is set according to a predetermined temperature zone of the measuring object 10 so as to be directed to the jig 5 via the heat flow sensor 2. Specifically, the temperature T2 of the jig 5 is set to be always lower than the temperature of the measurement object 10 when the temperature of the measurement object 10 is in a predetermined temperature range. For example, when the predetermined temperature zone of the measurement object 10 is 135 ± 5 ° C., this condition can be satisfied if the temperature setting range of the jig 5 is 120 ± 5 ° C.

さらに言えば、治具5の温度T2の設定範囲は、治具5と接触する熱流センサ2の温度T2と、測定対象物10及び被測定部11の温度T0との間の温度差ΔTが所定範囲に入るように設定されるのが好ましい。例えば、上記の温度設定の例の場合、温度差ΔTは5〜25℃の範囲となるので、測定対象物10の所定温度帯が上記以外のものに変わった場合でも、この温度差ΔTの範囲に収まるように治具5の温度T2の設定範囲を設定すればよい。ステップS202の判定の結果、治具5の温度T2が設定範囲内である場合(ステップS202のYES)にはメインフローに戻る。一方、治具5の温度T2が設定範囲から外れている場合(ステップS202のNO)にはステップS203に進む。   Further, the setting range of the temperature T2 of the jig 5 is such that the temperature difference ΔT between the temperature T2 of the heat flow sensor 2 in contact with the jig 5 and the temperature T0 of the measurement object 10 and the measured part 11 is predetermined. It is preferably set to fall within the range. For example, in the case of the above temperature setting example, the temperature difference ΔT is in the range of 5 to 25 ° C. Therefore, even when the predetermined temperature zone of the measurement object 10 is changed to other than the above, the range of this temperature difference ΔT. The setting range of the temperature T2 of the jig 5 may be set so as to fall within the range. As a result of the determination in step S202, when the temperature T2 of the jig 5 is within the set range (YES in step S202), the process returns to the main flow. On the other hand, when the temperature T2 of the jig 5 is out of the set range (NO in step S202), the process proceeds to step S203.

ステップS203では、温度印加機構6により治具5の温度が制御される。具体的には、ステップS201にて計測された治具5の温度T2が設定範囲より低い場合には、温度印加機構6が治具5を加熱することにより治具5の温度T2を上昇させる。一方、治具5の温度T2が設定範囲より高い場合には、温度印加機構6が治具5を冷却することにより治具5の温度T2を下降させる。ステップS203の処理が完了するとステップS201に戻る。   In step S <b> 203, the temperature of the jig 5 is controlled by the temperature application mechanism 6. Specifically, when the temperature T2 of the jig 5 measured in step S201 is lower than the set range, the temperature application mechanism 6 heats the jig 5 to increase the temperature T2 of the jig 5. On the other hand, when the temperature T2 of the jig 5 is higher than the set range, the temperature application mechanism 6 cools the jig 5 to lower the temperature T2 of the jig 5. When the process of step S203 is completed, the process returns to step S201.

すなわち、図3に示すサブルーチンの処理は、治具5の温度T2が設定範囲内に収まるまで繰り返し実行される。   That is, the processing of the subroutine shown in FIG. 3 is repeatedly executed until the temperature T2 of the jig 5 falls within the set range.

図2に戻り、ステップS103(接触ステップ)では、ステップS101にて所定温度帯に調整された測定対象物10の表面10aに、熱流センサ2と治具5が取り付けられる。本ステップの処理は、制御部4が熱流センサ2を測定対象物10に取り付ける位置制御を行うことにより実施することができるし、または、作業者が手動または機器操作によって取り付けることもできる。ステップS103の処理が完了するとステップS104に進む。   Returning to FIG. 2, in step S <b> 103 (contact step), the heat flow sensor 2 and the jig 5 are attached to the surface 10 a of the measurement object 10 adjusted to a predetermined temperature range in step S <b> 101. The processing in this step can be performed by the control unit 4 performing position control for attaching the heat flow sensor 2 to the measurement object 10, or can be attached manually or by an operator by an operator. When the process of step S103 is completed, the process proceeds to step S104.

ステップS104(熱流検出ステップ)では、ステップS103にて測定対象物10に取り付けられた熱流センサ2により、測定対象物10の内部の被測定部11と、測定対象物10の表面10aとの間の熱流W1が計測される。熱流センサは、計測した熱流W1の情報を制御部4に出力する。ステップS104の処理が完了するとステップS105に進む。   In step S104 (heat flow detection step), the heat flow sensor 2 attached to the measurement target object 10 in step S103 is used to measure the measured portion 11 inside the measurement target object 10 and the surface 10a of the measurement target object 10. The heat flow W1 is measured. The heat flow sensor outputs information on the measured heat flow W <b> 1 to the control unit 4. When the process of step S104 is completed, the process proceeds to step S105.

ステップS105(温度検出ステップ)では、温度センサ3により、熱流センサ2の主面2bの表面温度T2が計測される。温度センサ3は、予め熱流センサ2に取り付けられていてもよいし、ステップS103にて熱流センサ2が測定対象物10に取り付けられた後に熱流センサ2に取り付けられてもよい。温度センサ3は、計測した表面温度T2の情報を制御部4に出力する。ステップS105の処理が完了するとステップS106に進む。   In step S105 (temperature detection step), the surface temperature T2 of the main surface 2b of the heat flow sensor 2 is measured by the temperature sensor 3. The temperature sensor 3 may be attached to the heat flow sensor 2 in advance, or may be attached to the heat flow sensor 2 after the heat flow sensor 2 is attached to the measurement object 10 in step S103. The temperature sensor 3 outputs information on the measured surface temperature T2 to the control unit 4. When the process of step S105 is completed, the process proceeds to step S106.

ステップS106(温度算出ステップ)では、制御部4により、ステップS104,S105にて取得された熱流W1及び表面温度T2を用いて、被測定部11の温度T0が算出される。制御部4は、熱流センサ2により検出される測定対象物10の熱流値W1に、測定対象物10の表面10aと測定対象物10の内部の被測定部11との間の熱抵抗値Cを乗算し、さらに、温度センサ3により検出される熱流センサ2の温度値T2を加算することにより、測定対象物10の内部に設けられる被測定部11の温度T0を算出する。具体的には、制御部4は下記の(1)式を用いて被測定部11の温度T0を算出することができる。
T0=T2+C×W1 ・・・(1)
In step S106 (temperature calculation step), the control unit 4 calculates the temperature T0 of the measured portion 11 using the heat flow W1 and the surface temperature T2 acquired in steps S104 and S105. The control unit 4 adds the thermal resistance value C between the surface 10a of the measurement object 10 and the measured part 11 inside the measurement object 10 to the heat flow value W1 of the measurement object 10 detected by the heat flow sensor 2. Multiplying and further adding the temperature value T2 of the heat flow sensor 2 detected by the temperature sensor 3, thereby calculating the temperature T0 of the part to be measured 11 provided inside the measuring object 10. Specifically, the control unit 4 can calculate the temperature T0 of the measured portion 11 using the following equation (1).
T0 = T2 + C × W1 (1)

ここで熱抵抗値Cは、測定対象物10の表面10aに取り付けられた状態の熱流センサ2と、測定対象物10の内部の被測定部11との間に介在する領域の構成に依存して決まる固定値である。図1に示す本実施形態の構成では、熱抵抗値Cは、熱流センサ2と被測定部11との間の領域を占めている伝熱材12の材質等によって決まる。また、熱流値W1は、図1に矢印で示すように、測定対象物10の内部から表面10aに向かって流れる場合を正の値とし、図1とは反対に測定対象物10の表面10aから内部側に向かって流れる場合を負の値とする。制御部4は、算出した被測定部11の温度T0を出力する。ステップS106の処理が完了すると本制御フローを終了する。   Here, the thermal resistance value C depends on the configuration of the region interposed between the heat flow sensor 2 attached to the surface 10 a of the measurement object 10 and the measured part 11 inside the measurement object 10. It is a fixed value that is determined. In the configuration of the present embodiment shown in FIG. 1, the thermal resistance value C is determined by the material of the heat transfer material 12 occupying the region between the heat flow sensor 2 and the measured part 11. Further, the heat flow value W1 is a positive value when flowing from the inside of the measurement object 10 toward the surface 10a as indicated by an arrow in FIG. 1, and from the surface 10a of the measurement object 10 opposite to FIG. The case of flowing toward the inner side is a negative value. The control unit 4 outputs the calculated temperature T0 of the measured part 11. When the process of step S106 is completed, the control flow ends.

次に、第1実施形態に係る温度計測装置1及び温度計測方法の効果について説明する。   Next, the effects of the temperature measurement device 1 and the temperature measurement method according to the first embodiment will be described.

第1実施形態の温度計測装置1は、測定対象物10の内部に存在する被測定部11の温度T0を計測する際に、測定対象物10の表面10aに接触し、被測定部11と表面10aとの間の熱流W1を検出する熱流センサ2と、被測定部11の温度T0を計測する際に、測定対象物10の表面10aに接触した状態の熱流センサ2に接触するよう設けられる治具5と、熱流センサ2の温度T2を検出すると共に治具5の温度T2を検出する温度センサ3と、治具5を加熱又は冷却する温度印加機構6と、温度センサ3により検出される治具5の温度T2に基づいて、熱流W1の流れが被測定部11から熱流センサ2へ向かう方向となるように、温度印加機構6を制御して治具5の温度T2を調節すると共に、熱流センサ2により検出される測定対象物10の熱流W1と、温度センサ3により検出される熱流センサ2の温度T2とに基づいて、被測定部11の温度T0を算出する制御部4と、を備える。   The temperature measuring device 1 according to the first embodiment contacts the surface 10a of the measurement target 10 when measuring the temperature T0 of the measurement target 11 existing inside the measurement target 10, and the measurement target 11 and the surface The heat flow sensor 2 that detects the heat flow W1 between the measurement object 10 and the heat flow sensor 2 that is in contact with the surface 10a of the measurement object 10 when measuring the temperature T0 of the measurement target 11 is provided. A temperature sensor 3 that detects the temperature T2 of the jig 5, the temperature T2 of the jig 5, and a temperature application mechanism 6 that heats or cools the jig 5, and a temperature sensor 3 that detects the temperature T2. Based on the temperature T 2 of the tool 5, the temperature application mechanism 6 is controlled to adjust the temperature T 2 of the jig 5 so that the flow of the heat flow W 1 is directed from the measured portion 11 to the heat flow sensor 2. Measurement detected by sensor 2 Comprising a heat flow W1 elephant product 10, on the basis of the temperature T2 of the heat flow sensor 2 detected by the temperature sensor 3, a control unit 4 for calculating the temperature T0 of the measurement unit 11, a.

同様に、第1実施形態に係る温度計測方法は、測定対象物10の内部に存在する被測定部11の温度T0を計測する温度計測方法であって、温度計測装置1の制御部4が、温度センサ3により検出される治具5の温度T2に基づいて、熱流センサ2が測定対象物10の表面10aに接触し、かつ、治具5が熱流センサ2に接触した状態のときに、被測定部11と表面10aとの間の熱流W1の流れが、被測定部11から熱流センサ2へ向かう方向となるように、温度印加機構6を制御して治具5の温度T2を調節するステップS102(調節ステップ)と、温度計測装置1の熱流センサ2が、測定対象物10の表面10aに接触するステップS103(接触ステップ)と、治具5を取り付けられた熱流センサ2が、被測定部11と表面10aとの間の熱流W1を検出するステップS104(熱流検出ステップ)と、温度計測装置1の温度センサ3が、熱流センサ2の温度T2を検出するステップS105(温度検出ステップ)と、制御部4が、ステップS104(熱流検出ステップ)にて熱流センサ2により検出された測定対象物10の熱流W1と、ステップS105(温度検出ステップ)にて温度センサ3により検出された熱流センサ2の温度T2とに基づいて、被測定部11の温度T0を算出するステップS106(温度算出ステップ)と、を含む。   Similarly, the temperature measurement method according to the first embodiment is a temperature measurement method for measuring the temperature T0 of the measurement target 11 existing inside the measurement object 10, and the control unit 4 of the temperature measurement device 1 Based on the temperature T2 of the jig 5 detected by the temperature sensor 3, when the heat flow sensor 2 is in contact with the surface 10a of the measurement object 10 and the jig 5 is in contact with the heat flow sensor 2, A step of adjusting the temperature T2 of the jig 5 by controlling the temperature application mechanism 6 so that the flow of the heat flow W1 between the measurement unit 11 and the surface 10a is in the direction from the measured unit 11 to the heat flow sensor 2. S102 (adjustment step), step S103 (contact step) in which the heat flow sensor 2 of the temperature measuring device 1 contacts the surface 10a of the measurement object 10, and the heat flow sensor 2 to which the jig 5 is attached include 11 and surface 10a Step S104 for detecting the heat flow W1 (heat flow detection step), step S105 for detecting the temperature T2 of the heat flow sensor 2 by the temperature sensor 3 of the temperature measuring device 1 (temperature detection step), Based on the heat flow W1 of the measurement object 10 detected by the heat flow sensor 2 in step S104 (heat flow detection step) and the temperature T2 of the heat flow sensor 2 detected by the temperature sensor 3 in step S105 (temperature detection step). Step S106 (temperature calculation step) for calculating the temperature T0 of the measured part 11 is included.

熱流センサ2により検出される熱流W1は、測定対象物10の内部にある被測定部11の温度T0と、測定対象物10の表面10aの温度T1との温度差と相関する。両者の温度差が大きいほど熱流W1は増加し、温度差が小さいほど熱流W1は減少する傾向にある。測定対象物10の表面10aの温度T1は、温度センサ3により検出される熱流センサ2の温度T2と略同一である。したがって、熱流センサ2の温度T2を基準として、測定対象物10の被測定部11と表面10aとの間の温度差と相関する熱流W1を考慮することにより、被測定部11の温度T0を精度良く推定することができる。また、被測定部11の温度T0の推定に用いる熱流W1は、被測定部11の温度T0と、測定対象物10の表面10aの温度T1との相対的な偏差に基づくパラメータであるので、被測定部11の温度T0が定常状態であることを要しない。したがって、制御部4は、被測定部11の実際の温度T0が逐次変動する環境下においても、熱流W1と温度T2に基づき、その瞬間の温度T0を精度良く算出することができる。これにより、測定対象物10や温度計測装置1の温度が全体に亘り安定化しなくても被測定部11の温度T0の算出を行えるので、熱流センサ2を測定対象物10に接触した後に即座に温度T0の推定を実施できる。以上より、第1実施形態に係る温度計測装置1及び温度計測方法は、測定対象物10への接触後に迅速に被測定部11の温度推定を行うことができる。   The heat flow W <b> 1 detected by the heat flow sensor 2 correlates with a temperature difference between the temperature T <b> 0 of the part to be measured 11 inside the measurement object 10 and the temperature T <b> 1 of the surface 10 a of the measurement object 10. The heat flow W1 tends to increase as the temperature difference between the two increases, and the heat flow W1 tends to decrease as the temperature difference decreases. The temperature T1 of the surface 10a of the measurement object 10 is substantially the same as the temperature T2 of the heat flow sensor 2 detected by the temperature sensor 3. Therefore, the temperature T0 of the measured part 11 is accurately determined by considering the heat flow W1 that correlates with the temperature difference between the measured part 11 of the measurement object 10 and the surface 10a with the temperature T2 of the heat flow sensor 2 as a reference. It can be estimated well. Further, the heat flow W1 used for the estimation of the temperature T0 of the measured part 11 is a parameter based on the relative deviation between the temperature T0 of the measured part 11 and the temperature T1 of the surface 10a of the measurement object 10. It is not necessary that the temperature T0 of the measurement unit 11 is in a steady state. Therefore, the control unit 4 can accurately calculate the instantaneous temperature T0 based on the heat flow W1 and the temperature T2 even in an environment in which the actual temperature T0 of the measured unit 11 varies sequentially. As a result, the temperature T0 of the part to be measured 11 can be calculated without the temperature of the measuring object 10 or the temperature measuring device 1 being stabilized over the whole, so immediately after the heat flow sensor 2 is brought into contact with the measuring object 10. The temperature T0 can be estimated. As described above, the temperature measurement device 1 and the temperature measurement method according to the first embodiment can quickly estimate the temperature of the measured part 11 after contacting the measurement object 10.

また、熱流センサ2に治具5を取り付けることにより、測定対象物10から熱流センサ2への熱流W1の流れを促進できる。特に、被測定部11の温度T0が表面10aの温度T1より高温であり、測定対象物10の内部から表面10aへ放出される熱流W1が発生する場合には、治具5の熱抵抗が伝熱材12の熱抵抗Cより小さいため、被測定部11と表面10aとの間で発生している熱流を治具5に進入するように集約させることができる。これにより、測定対象物10の内部から熱流センサ2に向かう熱量が大きくなり、S/N比を大きくすることができる。この結果、さらに高精度な被測定部11の温度T0の計測が可能となる。   Further, by attaching the jig 5 to the heat flow sensor 2, the flow of the heat flow W1 from the measurement object 10 to the heat flow sensor 2 can be promoted. In particular, when the temperature T0 of the part to be measured 11 is higher than the temperature T1 of the surface 10a and the heat flow W1 released from the inside of the measurement object 10 to the surface 10a is generated, the thermal resistance of the jig 5 is transmitted. Since it is smaller than the thermal resistance C of the heat material 12, the heat flow generated between the measured portion 11 and the surface 10 a can be concentrated so as to enter the jig 5. Thereby, the heat quantity which goes to the heat flow sensor 2 from the inside of the measuring object 10 becomes large, and S / N ratio can be enlarged. As a result, the temperature T0 of the measured part 11 can be measured with higher accuracy.

ここで、特許文献1に記載されるような従来の測定対象物の内部温度計測手法(以下「従来手法」という)に対する本実施形態の手法の利点についてさらに説明する。上述のとおり、従来手法では、温度計測装置内部の温度精度を上げるために、測定対象物への接触後に、ある程度の時間をかけて装置全体の温度を安定化させる必要があるため、実際に被測定部の温度を算出するまでに時間がかかるという問題があった。この問題は、従来は重要なものではなかった。従来手法の主な測定対象は、人体などの生体の深部体温であり、被測定部の温度が一定であることが前提だったため、上記のように装置温度が安定化するまで待ってから計測を開始したとしても、装置が算出する内部温度への影響は少なかったからである。   Here, the advantage of the method of the present embodiment over the conventional method for measuring the internal temperature of an object to be measured as described in Patent Document 1 (hereinafter referred to as “conventional method”) will be further described. As described above, in the conventional method, in order to increase the temperature accuracy inside the temperature measurement device, it is necessary to stabilize the temperature of the entire device after a certain amount of time after contact with the measurement object. There is a problem that it takes time to calculate the temperature of the measurement unit. This problem has not been important in the past. The main measurement target of the conventional method is the deep body temperature of a living body such as a human body, and it was assumed that the temperature of the part to be measured was constant, so wait until the device temperature stabilizes as described above before measuring. This is because even if started, the influence on the internal temperature calculated by the apparatus was small.

ここで、従来手法の測定対象を拡張すべく、本実施形態で例示したように、圧力センサの温度特性調整工程において温度計測装置を適用することを考える。この工程では、圧力センサの内部に設けられる受圧部が高温や低温などの所定の温度帯となるようセンサが加温または冷却され、このときのセンサ出力に基づき、温度に基づく出力補正などの各種調整が行われる。つまり、測定対象物や被測定部の温度が不安定な状態で、被測定部の温度推定を行う必要がある。   Here, in order to expand the measurement object of the conventional method, it is considered that a temperature measuring device is applied in the temperature characteristic adjustment process of the pressure sensor as exemplified in the present embodiment. In this process, the sensor is heated or cooled so that the pressure receiving portion provided inside the pressure sensor is in a predetermined temperature zone such as high temperature or low temperature, and various corrections such as output correction based on temperature are performed based on the sensor output at this time. Adjustments are made. That is, it is necessary to estimate the temperature of the measurement target in a state where the temperature of the measurement object or the measurement target is unstable.

このような適用の場面では、測定対象物(圧力センサ)の加温や冷却が完了した後に、被測定部(受圧部)の実際の温度が所定の温度帯から外れる前までに、温度計測装置を測定対象物に接触させた後にできるだけ早く被測定部の温度推定を行うことが望ましい。しかしながら、従来手法では、上述のとおり装置を測定対象物へ接触した後にある程度の待ち時間が必要であるため、充分な精度で被測定部の温度推定ができない場合が起こり得る。   In such an application situation, after the heating or cooling of the measuring object (pressure sensor) is completed, the temperature measuring device is used before the actual temperature of the measured part (pressure receiving part) deviates from a predetermined temperature range. It is desirable to estimate the temperature of the part to be measured as soon as possible after contacting the object to be measured. However, in the conventional method, as described above, a certain waiting time is required after the apparatus is brought into contact with the object to be measured. Therefore, there is a possibility that the temperature of the measurement target cannot be estimated with sufficient accuracy.

これに対して、本実施形態の手法は、本実施形態で例示した圧力センサの温度特性調整工程のように、被測定部11の実際の温度T0が逐次変動する環境下においても、熱流W1と温度T2に基づき、その瞬間の温度T0を精度良く算出することができる。つまり、測定対象物10や温度計測装置1の温度が全体に亘り安定化しなくても被測定部11の温度T0の算出を行うことができるので、従来手法に対して内部温度を計測する測定対象物の対象を拡張できるという利点がある。   On the other hand, the method of the present embodiment is similar to the heat flow W1 even in an environment where the actual temperature T0 of the measured part 11 varies sequentially as in the temperature characteristic adjustment process of the pressure sensor exemplified in the present embodiment. Based on the temperature T2, the instantaneous temperature T0 can be accurately calculated. That is, since the temperature T0 of the measured part 11 can be calculated without the temperature of the measuring object 10 or the temperature measuring device 1 being stabilized over the whole, the measuring object for measuring the internal temperature with respect to the conventional method. There is an advantage that the object can be expanded.

また、第2実施形態の温度計測装置1では、被測定部11の温度T0を計測する前に、測定対象物10及び被測定部11の温度T0が所定温度帯に入るよう調整される。制御部4は、治具5と接触する熱流センサ2の温度T2と、測定対象物10及び被測定部11の温度T0との間の温度差ΔTが所定範囲に入るように、温度印加機構6を制御して治具5の温度を調節する。   Moreover, in the temperature measuring apparatus 1 of 2nd Embodiment, before measuring temperature T0 of the to-be-measured part 11, the temperature T0 of the measuring object 10 and the to-be-measured part 11 is adjusted so that it may enter into a predetermined temperature range. The control unit 4 includes a temperature application mechanism 6 so that the temperature difference ΔT between the temperature T2 of the heat flow sensor 2 in contact with the jig 5 and the temperature T0 of the measurement object 10 and the measured part 11 falls within a predetermined range. To adjust the temperature of the jig 5.

この構成により、測定対象物10の温度や、外気温との温度差によらず、常に安定した条件下で被測定部11の温度推定を行うことが可能となり、被測定部11の温度推定を高精度に行うことができる。   With this configuration, it becomes possible to estimate the temperature of the measured part 11 under stable conditions regardless of the temperature of the measurement object 10 and the temperature difference from the outside air temperature. It can be performed with high accuracy.

ここで、図4を参照して、第1実施形態において被測定部11の温度T0と熱流センサ2の温度T2との温度差ΔT(以下では「内外温度差」とも表記する)を均一化させることの利点についてさらに説明する。図4の横軸は、設備可能時間(H(時間))を表し、図4の縦軸は、被測定部11及び熱流センサ2の温度を表す。図4中の太線のグラフAは、第1実施形態の温度計測装置1を適用したときの熱流センサ2の温度推移を示し、細線のグラフBは、比較例としての治具5及び温度印加機構6を備えない構成を適用したときの熱流センサ2の温度推移を示す。比較例の場合、熱流センサ2の主面2bは治具5と接触しておらず、外部に露出した状態となっている。   Here, with reference to FIG. 4, in the first embodiment, the temperature difference ΔT (hereinafter also referred to as “internal / external temperature difference”) between the temperature T0 of the measured portion 11 and the temperature T2 of the heat flow sensor 2 is made uniform. The advantages of this will be further described. The horizontal axis in FIG. 4 represents the available equipment time (H (hours)), and the vertical axis in FIG. 4 represents the temperatures of the measured part 11 and the heat flow sensor 2. A thick line graph A in FIG. 4 shows a temperature transition of the heat flow sensor 2 when the temperature measuring device 1 of the first embodiment is applied, and a thin line graph B shows a jig 5 and a temperature application mechanism as a comparative example. 6 shows a temperature transition of the heat flow sensor 2 when a configuration without 6 is applied. In the case of the comparative example, the main surface 2b of the heat flow sensor 2 is not in contact with the jig 5 and is exposed to the outside.

図4に示す例は、量産設備などで繰り返し製造物の温度測定を行うような環境を想定している。横軸に示すC1は設備稼働開始時、C2は量産設備の昼休憩などによる設備停止時、C3は設備異常による停止時、C4は量産設備の稼働終了時を示す。また、図4に示す例は、上述した圧力センサの温度特性調整工程のように、測定対象物10及び被測定部11が室温RTに対して高い温度T0に調整されたときの温度推定を想定している。   The example shown in FIG. 4 assumes an environment where the temperature of a product is repeatedly measured in a mass production facility or the like. C1 shown on the horizontal axis indicates when the facility starts operating, C2 indicates when the mass production facility is stopped due to a lunch break, C3 indicates when the facility is stopped due to an abnormality, and C4 indicates when the mass production facility is finished operating. The example shown in FIG. 4 assumes temperature estimation when the measurement object 10 and the measured part 11 are adjusted to a temperature T0 that is higher than the room temperature RT, as in the temperature characteristic adjustment process of the pressure sensor described above. doing.

まず本実施形態の比較例として、治具5及び温度印加機構6を備えない構成、すなわち治具5の温度制御を行わない構成について考える。この構成では、図4のグラフBに示すように、量産設備などで繰り返し温度測定を行うと、熱流センサ2のうち測定対象物10に当たらない側(主面2bなど)が、測定対象物10から流入する熱量により加熱もしくは冷却されてしまい、測定する毎に環境が異なってしまう。例えば、毎日の生産開始当初における熱流センサ2の温度は室温RTであると考えられる。しかし、何度も高温T0の測定対象物10に接触させて測定を繰り返すことで、図4の区間C1〜C2に示すように、熱流センサ2自体も熱を帯び、熱流センサ2の温度も徐々に測定対象物10の温度T0に近い状態になる。そのため、生産開始当初と繰り返し生産中では、測定対象物10の内外の温度差ΔTBが大きく異なることになり、熱流センサ2で測定する熱流量W1の絶対値も大きく異なることとなる。同様の現象が、図4に区間C2として示す生産中の休憩時間や、区間C3として示す設備の異常停止による不稼働時間の発生によっても起こることとなる。 First, as a comparative example of the present embodiment, a configuration in which the jig 5 and the temperature application mechanism 6 are not provided, that is, a configuration in which the temperature control of the jig 5 is not performed will be considered. In this configuration, as shown in the graph B of FIG. 4, when the temperature measurement is repeatedly performed in a mass production facility or the like, the side of the heat flow sensor 2 that does not contact the measurement object 10 (the main surface 2b or the like) It is heated or cooled by the amount of heat flowing in from, and the environment changes each time it is measured. For example, the temperature of the heat flow sensor 2 at the beginning of daily production is considered to be room temperature RT. However, by repeating the measurement while contacting the measurement object 10 having the high temperature T0 many times, the heat flow sensor 2 itself is heated and the temperature of the heat flow sensor 2 gradually increases as shown in the sections C1 to C2 in FIG. The state becomes close to the temperature T0 of the measurement object 10. Therefore, the temperature difference ΔT B between the inside and outside of the measurement object 10 is greatly different between the beginning of production and the repeated production, and the absolute value of the heat flow rate W1 measured by the heat flow sensor 2 is also greatly different. A similar phenomenon occurs due to a break time during production shown as a section C2 in FIG. 4 and a non-operation time due to an abnormal stop of equipment shown as a section C3.

ここで、温度計測装置1の測定系(例えば熱流センサ2の起電圧を測定するデータロガー等)に於ける電圧の測定分解能及び精度は、測定レンジによって異なる傾向がある。例えば、測定レンジが0.4V以下では測定精度は±0.4mVであり、測定レンジが4V以下では測定精度は±4.0mVとなる。また、測定対象物10の内外温度差ΔTの大きさと熱流W1との相関は、僅かながら直線性から外れているとの知見も実験により得られている。このため、図4のグラフBのように、測定対象物10の内外温度差ΔTの大きさが測定毎に異なると、測定対象物10の内部温度T0の測定精度に影響がでるという問題が存在する。   Here, the measurement resolution and accuracy of the voltage in the measurement system of the temperature measuring device 1 (for example, a data logger that measures the electromotive voltage of the heat flow sensor 2) tend to vary depending on the measurement range. For example, when the measurement range is 0.4 V or less, the measurement accuracy is ± 0.4 mV, and when the measurement range is 4 V or less, the measurement accuracy is ± 4.0 mV. Moreover, the knowledge that the correlation between the magnitude of the temperature difference ΔT of the measurement object 10 and the heat flow W1 slightly deviates from linearity has also been experimentally obtained. For this reason, as shown in the graph B of FIG. 4, there is a problem that the measurement accuracy of the internal temperature T <b> 0 of the measurement object 10 is affected if the magnitude of the internal / external temperature difference ΔT of the measurement object 10 varies for each measurement. To do.

このような問題に対して、第1実施形態の温度計測装置1では、図1に示すように、熱流センサ2の主面のうち測定対象物10に当たらない側の温度T2を、温度印加機構6によって常に一定にする構成を追加している。これにより、図4にグラフAで示すように、量産開始時C1と終了時C4、もしくは区間C2、C3などの途中停止前後においても、熱流センサ2の温度を略一定に保持できる。なお、図4中の二点鎖線はグラフAで示す本実施形態による熱流センサ2の温度推移の平均値である。したがって、第1実施形態の温度計測装置1を適用する場合、設備稼働時間の時間経過や非稼働時間発生などの要因に依存せず、測定対象物10の内外の温度差ΔTAを測定毎に略同一に保持することができ、同一条件下で温度計測を行うことが可能となる。 With respect to such a problem, in the temperature measuring apparatus 1 of the first embodiment, as shown in FIG. 1, the temperature T2 on the side of the main surface of the heat flow sensor 2 that does not hit the measuring object 10 is used as the temperature application mechanism. 6 adds a configuration that is always constant. Thereby, as shown by the graph A in FIG. 4, the temperature of the heat flow sensor 2 can be kept substantially constant before and after the mass production start C1 and the end C4, or even before and after the midway stop such as the sections C2 and C3. 4 is an average value of the temperature transition of the heat flow sensor 2 according to this embodiment shown by the graph A. Therefore, when the temperature measuring device 1 of the first embodiment is applied, the temperature difference ΔT A between the inside and outside of the measurement object 10 is measured for each measurement without depending on factors such as the elapsed time of equipment operation time and occurrence of non-operation time. It can be kept substantially the same, and temperature measurement can be performed under the same conditions.

このように第1実施形態の温度計測装置1では、同じ条件下で測定を可能にできるため、より高精度な内部温度T0の測定が可能になる。熱流センサ2の保持温度T2や保持温度の制御精度に関しては、求める測定対象物10の内部温度の絶対値や、求める温度測定精度などにより異なるが、例えば内部温度T0が135℃±5℃程度である場合、熱流W1の方向を常にあわせることも考慮して(被測定部11から熱流センサ2に向かう方向に維持)、熱流センサ2の保持温度T2を120℃±5℃程度に設定することで、内外温度差ΔTの値を+25〜+5℃以内にすることが出来、熱流W1の方向と温度差ΔTの絶対値を常に近い状態で測定できる。なお、更に高精度を求める場合、この保持温度T2のバラツキを小さくするよう、例えば保持温度T2や内部温度T0の測定レンジを小さくするなど、制御部4の温度制御フィードバック機構を高精度化すれば対応可能である。   Thus, in the temperature measuring device 1 of the first embodiment, measurement can be performed under the same conditions, so that the internal temperature T0 can be measured with higher accuracy. The holding temperature T2 of the heat flow sensor 2 and the control accuracy of the holding temperature vary depending on the absolute value of the internal temperature of the measurement object 10 to be obtained and the temperature measurement accuracy to be obtained. For example, the internal temperature T0 is about 135 ° C. ± 5 ° C. In some cases, considering that the direction of the heat flow W1 is always adjusted (maintained in the direction from the measured portion 11 toward the heat flow sensor 2), the holding temperature T2 of the heat flow sensor 2 is set to about 120 ° C. ± 5 ° C. The value of the internal / external temperature difference ΔT can be kept within +25 to + 5 ° C., and the direction of the heat flow W1 and the absolute value of the temperature difference ΔT can always be measured. If higher accuracy is required, the temperature control feedback mechanism of the control unit 4 can be made more accurate, for example, by reducing the measurement range of the holding temperature T2 or the internal temperature T0 so as to reduce the variation in the holding temperature T2. It is possible.

このように、第1実施形態の温度計測装置1は、治具5の温度を設定範囲内に制御することによって熱流センサ2の温度T2を一定に保持する点に特徴がある。測定対象物10の所定温度帯が同一である限りは、熱流センサ2の温度T2を変動させる必要がないため、測定対象物10への接触後に迅速に被測定部11の温度推定を行うことができる。これに対して、特許文献2などに記載される従来の内部状態判定手法では、蒸発管内の内部状態を判定するためには、熱流束センサの温度を意図的に変動させて、その間の熱流束の変化量を計測する必要があるため、動作開始後に内部状態を判定するまでに時間がかかる。この点において、第1実施形態の温度計測装置1は特許文献2に対して有利である。   Thus, the temperature measuring device 1 of the first embodiment is characterized in that the temperature T2 of the heat flow sensor 2 is kept constant by controlling the temperature of the jig 5 within the set range. As long as the predetermined temperature zone of the measuring object 10 is the same, it is not necessary to change the temperature T2 of the heat flow sensor 2, and therefore, the temperature of the measured part 11 can be quickly estimated after contacting the measuring object 10. it can. On the other hand, in the conventional internal state determination method described in Patent Document 2 or the like, in order to determine the internal state in the evaporation pipe, the temperature of the heat flux sensor is intentionally changed and the heat flux therebetween is determined. Since it is necessary to measure the amount of change, it takes time to determine the internal state after the operation starts. In this respect, the temperature measuring device 1 according to the first embodiment is advantageous with respect to Patent Document 2.

また、特許文献2の手法では、設備稼働時間が長くなるにつれて熱流束センサの温度が被測定部の温度に近づいた状況であっても、熱流束センサの温度を温度調節装置によって意図的に変動させるため、温度調節装置によって付与される熱量は常に略一定のものが必要である。一方、本実施形態の温度計測装置1では、設備稼働時間が長くなるにつれて熱流センサ2の温度T2が被測定部11の温度T0に近づいた状況では、熱流センサ2の温度T2をT0に近い所定範囲に入るように制御すればよいので、必要な温度上昇量が少なくなり、温度印加機構6によって与えられる熱量を少なくできる。   Further, in the method of Patent Document 2, even when the temperature of the heat flux sensor approaches the temperature of the part to be measured as the equipment operation time becomes longer, the temperature of the heat flux sensor is intentionally changed by the temperature control device. Therefore, the amount of heat applied by the temperature control device must always be approximately constant. On the other hand, in the temperature measuring device 1 of the present embodiment, in a situation where the temperature T2 of the heat flow sensor 2 approaches the temperature T0 of the part to be measured 11 as the equipment operation time becomes longer, the temperature T2 of the heat flow sensor 2 is a predetermined value close to T0. Since it is sufficient to control so as to fall within the range, the required amount of temperature rise is reduced, and the amount of heat given by the temperature application mechanism 6 can be reduced.

また、第1実施形態の温度計測装置1において、制御部4は、熱流センサ2により検出される測定対象物10の熱流値W1に、測定対象物10の表面10aと測定対象物10の内部の被測定部11との間の熱抵抗値Cを乗算し、さらに、温度センサ3により検出される熱流センサ2の温度値T2を加算することにより、測定対象物10の内部に設けられる被測定部11の温度T0を算出する。より詳細には、制御部4は、(1)式を用いて、熱流値W1及び温度値T2に基づき被測定部11の温度T0を算出する。   Further, in the temperature measurement device 1 of the first embodiment, the control unit 4 uses the surface 10 a of the measurement object 10 and the inside of the measurement object 10 to the heat flow value W1 of the measurement object 10 detected by the heat flow sensor 2. Multiplying the thermal resistance value C between the measured part 11 and further adding the temperature value T2 of the heat flow sensor 2 detected by the temperature sensor 3, thereby providing a measured part provided inside the measurement object 10. 11 temperature T0 is calculated. In more detail, the control part 4 calculates temperature T0 of the to-be-measured part 11 based on the heat flow value W1 and the temperature value T2 using (1) Formula.

この構成により、熱流値W1が正の値の場合、すなわち、測定対象物10の内部から表面10aへ放出される熱流が生じる場合には、被測定部11の温度T0が表面10aの温度T1より高温となるよう、熱流センサ2の温度値T2に熱流値W1に応じた値が加算される。また、熱流値W1が負の値の場合、すなわち、測定対象物10の表面10aから内部へ吸収される熱流が生じる場合には、測定対象物10の表面10aの温度T1が被測定部11の温度T0より高温となるよう、熱流センサ2の温度値T2から熱流値W1に応じた値が減算される。これにより、測定対象物10の熱流値W1及び熱流センサ2の温度値T2に基づき、被測定部11の温度T0を精度良く推定できる。   With this configuration, when the heat flow value W1 is a positive value, that is, when a heat flow released from the inside of the measurement object 10 to the surface 10a is generated, the temperature T0 of the measured portion 11 is higher than the temperature T1 of the surface 10a. A value corresponding to the heat flow value W1 is added to the temperature value T2 of the heat flow sensor 2 so that the temperature becomes high. Further, when the heat flow value W1 is a negative value, that is, when a heat flow absorbed from the surface 10a of the measurement target 10 is generated, the temperature T1 of the surface 10a of the measurement target 10 is A value corresponding to the heat flow value W1 is subtracted from the temperature value T2 of the heat flow sensor 2 so as to be higher than the temperature T0. Thereby, based on the heat flow value W1 of the measuring object 10 and the temperature value T2 of the heat flow sensor 2, the temperature T0 of the measured part 11 can be accurately estimated.

また、第1実施形態の温度計測装置1において、熱流センサ2は、相互に対向する一対の主面2a,2bを有し、測定対象物10の熱流W1を検出する際には、一対の主面2a,2bのうち一方の主面2aが測定対象物10の表面10aに密着して取り付けられる。温度センサ3は、熱流センサ2の一対の主面2a,2bのうち他方の主面2bの表面温度T2を検出する。この構成により、熱流センサ2及び温度センサ3が、熱流値W1及び表面温度T2をそれぞれ好適に検出することができる。   Further, in the temperature measurement device 1 of the first embodiment, the heat flow sensor 2 has a pair of main surfaces 2a and 2b facing each other. When detecting the heat flow W1 of the measurement object 10, the heat flow sensor 2 has a pair of main surfaces 2a and 2b. One main surface 2a of the surfaces 2a and 2b is attached in close contact with the surface 10a of the measurement object 10. The temperature sensor 3 detects the surface temperature T2 of the other main surface 2b of the pair of main surfaces 2a and 2b of the heat flow sensor 2. With this configuration, the heat flow sensor 2 and the temperature sensor 3 can suitably detect the heat flow value W1 and the surface temperature T2, respectively.

また、第1実施形態の温度計測装置1において、温度センサ3は、熱流センサ2の温度T2を検出すると共に、熱流センサ2に接触した状態の治具5の温度T2を検出可能であるため、温度センサ3が、治具5の温度を検出する治具温度検出部としても用いられる。この構成により、治具5の温度を計測するために別のセンサを設置する必要がなくなり、装置の小型化や簡易化を図ることができる。   In the temperature measuring device 1 of the first embodiment, the temperature sensor 3 can detect the temperature T2 of the heat flow sensor 2 and can detect the temperature T2 of the jig 5 in contact with the heat flow sensor 2. The temperature sensor 3 is also used as a jig temperature detection unit that detects the temperature of the jig 5. With this configuration, it is not necessary to install another sensor to measure the temperature of the jig 5, and the apparatus can be reduced in size and simplified.

また、第1実施形態の温度計測装置1において、測定対象物10が、圧力センサであり、被測定部11が、圧力センサの内部に設けられる受圧部であるのが好ましい。   Moreover, in the temperature measuring apparatus 1 of 1st Embodiment, it is preferable that the measuring object 10 is a pressure sensor, and the to-be-measured part 11 is a pressure receiving part provided in the inside of a pressure sensor.

上述のとおり、圧力センサの受圧部の温度を計測する処理は、圧力センサの温度特性調整工程において実施される。この工程では、測定対象物10が所定温度帯に調整され、被測定部11が所定の温度帯に入っている短期間に被測定部11の温度T0を推定する必要がある。上述のように、温度計測装置1は、被測定部11の実際の温度T0が逐次変動する環境下においても被測定部11の温度T0を精度よく算出できるので、測定対象物10を圧力センサとする場合に特に有効と考えられる。   As described above, the process of measuring the temperature of the pressure receiving part of the pressure sensor is performed in the temperature characteristic adjustment process of the pressure sensor. In this step, it is necessary to estimate the temperature T0 of the measured part 11 in a short time when the measurement object 10 is adjusted to the predetermined temperature range and the measured part 11 is in the predetermined temperature range. As described above, the temperature measuring apparatus 1 can accurately calculate the temperature T0 of the measured part 11 even in an environment in which the actual temperature T0 of the measured part 11 sequentially varies. This is considered particularly effective.

[第2実施形態]
図5及び図6を参照して第2実施形態を説明する。図5に示すように、第2実施形態に係る温度計測装置1Aは、温度センサ3に対して相対的に温度印加機構6側の治具5の温度T3を計測する第2温度センサ7(第2温度検出部)を備える点、及び、制御部4が、温度センサ3により検出される治具5の温度T2(第1温度)及び第2温度センサ7により検出される治具5の温度T3(第2温度)に基づいて温度印加機構6を制御して治具5の温度を調節する点、で第1実施形態の温度計測装置1と異なる。
[Second Embodiment]
A second embodiment will be described with reference to FIGS. As shown in FIG. 5, the temperature measuring apparatus 1 </ b> A according to the second embodiment measures the temperature T <b> 3 of the jig 5 on the temperature applying mechanism 6 side relative to the temperature sensor 3. 2 temperature detection unit), and the control unit 4 detects the temperature T2 (first temperature) of the jig 5 detected by the temperature sensor 3 and the temperature T3 of the jig 5 detected by the second temperature sensor 7. It differs from the temperature measuring apparatus 1 of 1st Embodiment by the point which controls the temperature application mechanism 6 based on (2nd temperature), and adjusts the temperature of the jig | tool 5. FIG.

温度センサ3が治具5の先端部の温度を計測する構成であるため、第2温度センサ7は治具5の任意の箇所に設置することができる。ただし、第2温度センサ7の設置位置は、温度センサ3からできる限り離れた位置、すなわち温度印加機構6にできるだけ近接した位置であることが好ましい。なお、以下の説明では、治具5のうち温度印加機構6に近い側を、温度印加機構6から印加される熱流の上流側、治具5のうち熱流センサ2に近い側を、温度印加機構6から印加される熱流の下流側として、第2温度センサ7により検出される治具5の温度T3を「上流側温度T3」、温度センサ3により検出される治具5の温度T2を「下流側温度T2」とも表記する。   Since the temperature sensor 3 is configured to measure the temperature of the tip portion of the jig 5, the second temperature sensor 7 can be installed at an arbitrary position of the jig 5. However, the installation position of the second temperature sensor 7 is preferably a position as far as possible from the temperature sensor 3, that is, a position as close as possible to the temperature application mechanism 6. In the following description, the side of the jig 5 close to the temperature application mechanism 6 is the upstream side of the heat flow applied from the temperature application mechanism 6, and the side of the jig 5 close to the heat flow sensor 2 is the temperature application mechanism. 6, the temperature T3 of the jig 5 detected by the second temperature sensor 7 is “upstream temperature T3”, and the temperature T2 of the jig 5 detected by the temperature sensor 3 is “downstream”. Also referred to as “side temperature T2”.

第2実施形態では、温度センサ3と、第2温度センサ7とが、治具5の温度を検出する「治具温度検出部」として機能する。すなわち、温度センサ3により検出される治具5の温度T2と、第2温度センサ7により検出される治具5の温度T3との両方を考慮して、温度印加機構6を用いる治具5の温度の制御を行う。   In the second embodiment, the temperature sensor 3 and the second temperature sensor 7 function as a “jig temperature detector” that detects the temperature of the jig 5. That is, in consideration of both the temperature T2 of the jig 5 detected by the temperature sensor 3 and the temperature T3 of the jig 5 detected by the second temperature sensor 7, the jig 5 using the temperature applying mechanism 6 is used. Control the temperature.

第2実施形態の温度計測装置1Aは、基本的には第1実施形態と同様に図2のフローチャートに従って被測定部11の温度推定を行うが、ステップS102の「治具温度制御」の内容が第1実施形態とは異なる。第2実施形態における「治具温度制御」の具体的な処理は、図6に示すサブルーチン処理におけるステップS301〜S307である。   The temperature measuring device 1A of the second embodiment basically estimates the temperature of the part to be measured 11 according to the flowchart of FIG. 2 as in the first embodiment, but the content of the “jig temperature control” in step S102 is Different from the first embodiment. Specific processing of “jig temperature control” in the second embodiment is steps S301 to S307 in the subroutine processing shown in FIG.

ステップS301では、第2温度センサ7により治具5の上流側温度T3が計測される。ステップS301の処理が完了するとステップS302に進む。   In step S <b> 301, the upstream temperature T <b> 3 of the jig 5 is measured by the second temperature sensor 7. When the process of step S301 is completed, the process proceeds to step S302.

ステップS302では、治具5の上流側温度T3が設定範囲内か否かが判定される。この設定範囲は、第1実施形態と同様に、ステップS101における「測定対象物10の所定温度帯」に応じて設定される。ステップS302の判定の結果、治具5の上流側温度T3が設定範囲内である場合(ステップS302のYES)にはステップS304に進む。一方、治具5の上流側温度T3が設定範囲から外れている場合(ステップS302のNO)にはステップS303に進む。   In step S302, it is determined whether or not the upstream temperature T3 of the jig 5 is within a set range. This setting range is set according to the “predetermined temperature zone of the measurement object 10” in step S101, as in the first embodiment. As a result of the determination in step S302, if the upstream temperature T3 of the jig 5 is within the set range (YES in step S302), the process proceeds to step S304. On the other hand, if the upstream temperature T3 of the jig 5 is out of the set range (NO in step S302), the process proceeds to step S303.

ステップS303では、温度印加機構6により治具5の上流側温度T3が制御される。具体的には、ステップS301にて計測された治具5の上流側温度T3が設定範囲より低い場合には、温度印加機構6が治具5を加熱することにより治具5の上流側温度T3を上昇させる。一方、治具5の上流側温度T3が設定範囲より高い場合には、温度印加機構6が治具5を冷却することにより治具5の上流側温度T3を下降させる。ステップS303の処理が完了するとステップS301に戻る。   In step S303, the temperature application mechanism 6 controls the upstream temperature T3 of the jig 5. Specifically, when the upstream temperature T3 of the jig 5 measured in step S301 is lower than the set range, the temperature application mechanism 6 heats the jig 5 so that the upstream temperature T3 of the jig 5 is heated. To raise. On the other hand, when the upstream temperature T3 of the jig 5 is higher than the set range, the temperature application mechanism 6 cools the jig 5 to lower the upstream temperature T3 of the jig 5. When the process of step S303 is completed, the process returns to step S301.

ステップS304では、温度センサ3により治具5の下流側温度T2が計測される。ステップS304の処理が完了するとステップS305に進む。   In step S304, the temperature sensor 3 measures the downstream temperature T2 of the jig 5. When the process of step S304 is completed, the process proceeds to step S305.

ステップS305では、治具5の下流側温度T2が設定範囲内か否かが判定される。この設定範囲は、例えば上流側温度T3の設定範囲より低温域とすることができる。ステップS305の判定の結果、治具5の下流側温度T2が設定範囲内である場合(ステップS305のYES)にはステップS307に進む。一方、治具5の下流側温度T2が設定範囲から外れている場合(ステップS305のNO)にはステップS306に進む。   In step S305, it is determined whether or not the downstream temperature T2 of the jig 5 is within a set range. This set range can be set to a lower temperature range than the set range of the upstream temperature T3, for example. As a result of the determination in step S305, if the downstream temperature T2 of the jig 5 is within the set range (YES in step S305), the process proceeds to step S307. On the other hand, when the downstream temperature T2 of the jig 5 is out of the set range (NO in step S305), the process proceeds to step S306.

ステップS306では、温度印加機構6により治具5の下流側温度T2が制御される。具体的には、ステップS304にて計測された治具5の下流側温度T2が設定範囲より低い場合には、温度印加機構6が治具5を加熱することにより治具5の下流側温度T2を上昇させる。一方、治具5の下流側温度T2が設定範囲より高い場合には、温度印加機構6が治具5を冷却することにより治具5の下流側温度T2を下降させる。ステップS306の処理が完了するとステップS304に戻る。   In step S306, the temperature application mechanism 6 controls the downstream temperature T2 of the jig 5. Specifically, when the downstream temperature T2 of the jig 5 measured in step S304 is lower than the set range, the temperature application mechanism 6 heats the jig 5 to cause the downstream temperature T2 of the jig 5 to be heated. To raise. On the other hand, when the downstream temperature T2 of the jig 5 is higher than the set range, the temperature application mechanism 6 cools the jig 5 to lower the downstream temperature T2 of the jig 5. When the process of step S306 is completed, the process returns to step S304.

ステップS307では、下流側温度T2の制御が実施されたか否かが判定される。すなわち、今回の制御フローにおいて、上流側温度T3が設定範囲に入るように制御された後に、下流側温度T2が設定範囲から外れており、ステップS306の下流側温度T2の制御が実施されたか否かが判定される。下流側温度T2の制御が実施されなかった場合(ステップS307のNO)にはメインフローに戻る。一方、下流側温度T2の制御が実施された場合(ステップS307のYES)には、ステップS301に戻り、上流側温度T3が設定範囲に引き続き入っているかが再度確認され、必要に応じて上流側温度T3の制御が行われる。   In step S307, it is determined whether or not the control of the downstream temperature T2 is performed. That is, in the current control flow, after the upstream temperature T3 is controlled to be within the set range, the downstream temperature T2 is out of the set range, and whether or not the downstream temperature T2 is controlled in step S306. Is determined. If the control of the downstream temperature T2 is not performed (NO in step S307), the process returns to the main flow. On the other hand, if the control of the downstream temperature T2 is performed (YES in step S307), the process returns to step S301, and it is confirmed again whether the upstream temperature T3 is still within the set range, and if necessary, the upstream side The temperature T3 is controlled.

すなわち、図6に示すサブルーチンの処理は、治具5の上流側温度T3及び下流側温度T2が共に設定範囲内に収まるまで繰り返し実行される。   That is, the processing of the subroutine shown in FIG. 6 is repeatedly executed until both the upstream temperature T3 and the downstream temperature T2 of the jig 5 are within the set range.

このように、第2実施形態でも、第1実施形態と同様に、治具5の温度を検出する治具温度検出部として機能する温度センサ3及び第2温度センサ7を備え、制御部4が、治具温度検出部により検出された治具5の温度に基づいて温度印加機構6を制御して治具5の温度を調節する、という共通の特徴を備えるので、第1実施形態と同様の作用及び効果を奏することができる。   Thus, similarly to the first embodiment, the second embodiment includes the temperature sensor 3 and the second temperature sensor 7 that function as a jig temperature detection unit that detects the temperature of the jig 5, and the control unit 4 includes Since the common feature of adjusting the temperature of the jig 5 by controlling the temperature application mechanism 6 based on the temperature of the jig 5 detected by the jig temperature detector is the same as that of the first embodiment. Actions and effects can be achieved.

さらに、治具温度検出部として複数の温度センサを用いて、治具5の複数の箇所の温度が設定範囲に収まるように温度制御を行うため、治具5の全体に亘って温度を所望のものにすることが可能となり、治具5の温度制御をより高精度に行うことができる。   Furthermore, since temperature control is performed using a plurality of temperature sensors as the jig temperature detection unit so that the temperatures at a plurality of locations of the jig 5 are within the set range, the temperature is controlled over the entire jig 5. Thus, the temperature of the jig 5 can be controlled with higher accuracy.

なお、第2実施形態では、温度センサ3及び第2温度センサ7の両方を治具温度検出部として用いる構成を例示したが、温度センサを用いずに、治具5の任意の位置に設置される第2温度センサ7のみを治具温度検出部として用いる構成としてもよい。この場合、第1実施形態において図3を参照して説明した治具温度制御において、入力情報として用いた「温度センサ3により計測される治具5の温度T2」を「第2温度センサ7により計測される治具5の温度T3」に置き換えることにより、治具温度制御を実施することができる。   In the second embodiment, the configuration in which both the temperature sensor 3 and the second temperature sensor 7 are used as the jig temperature detection unit is illustrated. However, the temperature sensor is not used, and the jig 5 is installed at an arbitrary position. Only the second temperature sensor 7 may be used as a jig temperature detection unit. In this case, in the jig temperature control described with reference to FIG. 3 in the first embodiment, the “temperature T2 of the jig 5 measured by the temperature sensor 3” used as the input information is changed to “by the second temperature sensor 7”. By replacing the measured temperature with the temperature T3 of the jig 5 ", the jig temperature control can be performed.

以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、前述した各具体例が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。   The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. In other words, those specific examples that have been appropriately modified by those skilled in the art are also included in the scope of the present invention as long as they have the characteristics of the present invention. For example, the elements included in each of the specific examples described above and their arrangement, materials, conditions, shapes, sizes, and the like are not limited to those illustrated, and can be changed as appropriate. Moreover, each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present invention as long as it includes the features of the present invention.

1,1A:温度計測装置
2:熱流センサ(熱流検出部)
3:温度センサ(温度検出部、治具温度検出部)
4:制御部
5:治具
6:温度印加機構(温度調節部)
7:第2温度センサ(治具温度検出部)
10:測定対象物
11:被測定部
T0:被測定部の温度
T2:熱流センサの温度、治具の温度、治具の下流側温度(第1温度)
T3:治具の上流側温度(第2温度)
W1:測定対象物の被測定部と表面との間の熱流
C:熱抵抗値
S102:調節ステップ
S103:接触ステップ
S104:熱流検出ステップ
S105:温度検出ステップ
S106:温度算出ステップ
1, 1A: Temperature measuring device 2: Heat flow sensor (heat flow detector)
3: Temperature sensor (temperature detector, jig temperature detector)
4: Control unit 5: Jig 6: Temperature application mechanism (temperature adjustment unit)
7: Second temperature sensor (jig temperature detector)
10: measurement object 11: measured part T0: measured part temperature T2: heat flow sensor temperature, jig temperature, jig downstream temperature (first temperature)
T3: Temperature upstream of the jig (second temperature)
W1: Heat flow between the measured portion of the measurement object and the surface C: Thermal resistance value S102: Adjustment step S103: Contact step S104: Heat flow detection step S105: Temperature detection step S106: Temperature calculation step

Claims (8)

測定対象物(10)の内部に存在する被測定部(11)の温度(T0)を計測する際に、前記測定対象物の表面(10a)に接触し、前記測定対象物の前記被測定部と前記表面との間の熱流(W1)を検出する熱流検出部(2)と、
前記熱流検出部の温度(T2)を検出する温度検出部(3)と、
前記被測定部の前記温度を計測する際に、前記測定対象物の前記表面に接触した状態の前記熱流検出部に接触するよう設けられる治具(5)と、
前記治具の温度を検出する治具温度検出部(3,7)と、
前記治具を加熱又は冷却する温度調節部(6)と、
前記治具温度検出部により検出される前記治具の温度に基づいて、前記熱流の流れが前記被測定部から前記熱流検出部へ向かう方向となるように、前記温度調節部を制御して前記治具の温度を調節すると共に、前記熱流検出部により検出される前記測定対象物の前記熱流と、前記温度検出部により検出される前記熱流検出部の前記温度とに基づいて、前記被測定部の前記温度を算出する制御部(4)と、
を備える温度計測装置(1,1A)。
When measuring the temperature (T0) of the measurement target (11) existing inside the measurement target (10), the measurement target of the measurement target comes into contact with the surface (10a) of the measurement target. And a heat flow detector (2) for detecting a heat flow (W1) between the surface and the surface,
A temperature detector (3) for detecting the temperature (T2) of the heat flow detector;
A jig (5) provided to come into contact with the heat flow detection part in contact with the surface of the measurement object when measuring the temperature of the part to be measured;
A jig temperature detector (3, 7) for detecting the temperature of the jig;
A temperature adjusting unit (6) for heating or cooling the jig;
Based on the temperature of the jig detected by the jig temperature detecting unit, the temperature adjusting unit is controlled so that the flow of the heat flow is in a direction from the measured part to the heat flow detecting unit. Adjusting the temperature of the jig, and based on the heat flow of the measurement object detected by the heat flow detection unit and the temperature of the heat flow detection unit detected by the temperature detection unit, A control unit (4) for calculating the temperature of
A temperature measuring device (1, 1A).
前記被測定部の前記温度を計測する前に、前記測定対象物及び前記被測定部の温度が所定温度帯に入るよう調整され、
前記制御部は、前記治具と接触する前記熱流検出部の温度と、前記測定対象物及び前記被測定部の温度との間の温度差(ΔT)が所定範囲に入るように、前記温度調節部を制御して前記治具の温度を調節する、
請求項1に記載の温度計測装置。
Before measuring the temperature of the part to be measured, the temperature of the object to be measured and the part to be measured are adjusted to enter a predetermined temperature range,
The control unit adjusts the temperature so that a temperature difference (ΔT) between the temperature of the heat flow detection unit in contact with the jig and the temperature of the measurement object and the measurement target part falls within a predetermined range. Control the temperature of the jig by controlling the part,
The temperature measuring device according to claim 1.
前記制御部は、前記熱流検出部により検出される前記測定対象物の前記熱流(W1)に、前記測定対象物の前記表面と前記測定対象物の内部の前記被測定部との間の熱抵抗(C)を乗算し、さらに、前記温度検出部により検出される前記熱流検出部の前記温度(T2)を加算することにより、前記測定対象物の内部に設けられる前記被測定部の前記温度(T0)を算出する、
請求項1または2に記載の温度計測装置。
The control unit has a thermal resistance between the surface of the measurement object and the measured part inside the measurement object in the heat flow (W1) of the measurement object detected by the heat flow detection unit. (C), and further, by adding the temperature (T2) of the heat flow detection unit detected by the temperature detection unit, the temperature (T2) of the measurement target provided inside the measurement object ( T0) is calculated.
The temperature measuring device according to claim 1 or 2.
前記熱流検出部は、相互に対向する一対の主面(2a,2b)を有し、前記測定対象物の前記熱流を検出する際には、前記一対の主面のうち一方の主面(2a)が前記測定対象物の前記表面に密着して取り付けられ、
前記温度検出部は、前記熱流検出部の前記一対の主面のうち他方の主面(2b)の表面温度(T2)を検出する、
請求項1〜3のいずれか1項に記載の温度計測装置。
The heat flow detector has a pair of main surfaces (2a, 2b) facing each other, and when detecting the heat flow of the measurement object, one main surface (2a) of the pair of main surfaces. ) Is attached in close contact with the surface of the measurement object,
The temperature detection unit detects a surface temperature (T2) of the other main surface (2b) of the pair of main surfaces of the heat flow detection unit;
The temperature measuring device according to any one of claims 1 to 3.
前記治具温度検出部は、前記熱流検出部の温度(T2)を検出すると共に、前記熱流検出部に接触した状態の前記治具の温度を検出可能な前記温度検出部であり、
前記制御部は、前記温度検出部により検出される前記治具の温度に基づいて、前記熱流の流れが前記被測定部から前記熱流検出部へ向かう方向となるように、前記温度調節部を制御して前記治具の温度を調節する、
請求項4に記載の温度計測装置(1)。
The jig temperature detection unit is the temperature detection unit capable of detecting the temperature (T2) of the heat flow detection unit and detecting the temperature of the jig in contact with the heat flow detection unit,
The control unit controls the temperature adjusting unit based on the temperature of the jig detected by the temperature detecting unit so that the flow of the heat flow is directed from the measured unit to the heat flow detecting unit. And adjust the temperature of the jig,
The temperature measuring device (1) according to claim 4.
前記治具温度検出部は、前記温度検出部と、前記温度検出部に対して相対的に前記温度調整部側の前記治具の温度を計測する第2温度検出部(7)と、を含み、
前記制御部は、前記温度検出部により検出される前記治具の第1温度(T2)及び前記第2温度検出部により検出される前記治具の第2温度(T3)に基づいて、前記熱流の流れが前記被測定部から前記熱流検出部へ向かう方向となるように、前記温度調節部を制御して前記治具の温度を調節する、
請求項5に記載の温度計測装置(1A)。
The jig temperature detection unit includes the temperature detection unit and a second temperature detection unit (7) that measures the temperature of the jig on the temperature adjustment unit side relative to the temperature detection unit. ,
The control unit is configured to control the heat flow based on a first temperature (T2) of the jig detected by the temperature detection unit and a second temperature (T3) of the jig detected by the second temperature detection unit. The temperature of the jig is adjusted by controlling the temperature adjusting unit so that the flow of the gas flows in the direction from the measured part to the heat flow detecting unit.
The temperature measuring device (1A) according to claim 5.
前記測定対象物が、圧力センサであり、
前記被測定部が、前記圧力センサの内部に設けられる受圧部である、
請求項1〜6のいずれか1項に記載の温度計測装置(1,1A)。
The measurement object is a pressure sensor;
The measured portion is a pressure receiving portion provided inside the pressure sensor.
The temperature measuring device (1, 1A) according to any one of claims 1 to 6.
測定対象物(10)の内部に存在する被測定部(11)の温度(T0)を計測する温度計測方法であって、
制御部(4)が、治具温度検出部(3,7)により検出される治具(5)の温度(T2)に基づいて、熱流検出部(2)が前記測定対象物の表面(10a)に接触し、かつ、前記治具が前記熱流検出部に接触した状態のときに、前記被測定部と前記表面との間の熱流(W1)の流れが、前記被測定部から前記熱流検出部へ向かう方向となるように、温度調節部(6)を制御して前記治具の温度を調節する調節ステップ(S102)と、
前記熱流検出部が、前記測定対象物の前記表面に接触する接触ステップ(S103)と、
前記治具を取り付けられた前記熱流検出部が、前記被測定部と前記表面との間の前記熱流を検出する熱流検出ステップ(S104)と、
温度検出部(3)が、前記熱流検出部の温度(T2)を検出する温度検出ステップ(S105)と、
制御部(4)が、前記熱流検出ステップにて前記熱流検出部により検出された前記測定対象物の前記熱流と、前記温度検出ステップにて前記温度検出部により検出された前記熱流検出部の前記温度とに基づいて、前記被測定部の前記温度を算出する温度算出ステップ(S106)と、
を含む温度計測方法。
A temperature measurement method for measuring a temperature (T0) of a part to be measured (11) existing inside a measurement object (10),
Based on the temperature (T2) of the jig (5) detected by the jig temperature detection part (3, 7), the control part (4) causes the heat flow detection part (2) to detect the surface (10a) of the measurement object. ) And the jig is in contact with the heat flow detection unit, the flow of the heat flow (W1) between the measured part and the surface is detected from the measured part. An adjusting step (S102) for controlling the temperature adjusting unit (6) to adjust the temperature of the jig so as to be directed toward the unit,
A contact step (S103) in which the heat flow detector comes into contact with the surface of the measurement object;
A heat flow detecting step (S104) in which the heat flow detecting unit to which the jig is attached detects the heat flow between the portion to be measured and the surface;
A temperature detection step (S105) in which the temperature detection unit (3) detects the temperature (T2) of the heat flow detection unit;
The control unit (4) is configured to detect the heat flow of the measurement object detected by the heat flow detection unit in the heat flow detection step, and the heat flow detection unit detected by the temperature detection unit in the temperature detection step. A temperature calculating step (S106) for calculating the temperature of the part to be measured based on the temperature;
Temperature measurement method including
JP2016080805A 2016-04-14 2016-04-14 Temperature measuring device and temperature measuring method Active JP6594250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016080805A JP6594250B2 (en) 2016-04-14 2016-04-14 Temperature measuring device and temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016080805A JP6594250B2 (en) 2016-04-14 2016-04-14 Temperature measuring device and temperature measuring method

Publications (2)

Publication Number Publication Date
JP2017191019A true JP2017191019A (en) 2017-10-19
JP6594250B2 JP6594250B2 (en) 2019-10-23

Family

ID=60085928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016080805A Active JP6594250B2 (en) 2016-04-14 2016-04-14 Temperature measuring device and temperature measuring method

Country Status (1)

Country Link
JP (1) JP6594250B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138464A (en) * 2018-02-13 2019-08-22 Ntn株式会社 Bearing device and spindle device
WO2020090520A1 (en) * 2018-10-31 2020-05-07 Ntn株式会社 Bearing device
WO2020189188A1 (en) * 2019-03-19 2020-09-24 Ntn株式会社 Lubricating oil supply unit and bearing device
CN113613815A (en) * 2019-03-19 2021-11-05 Ntn株式会社 Lubricating oil supply unit and bearing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170775A (en) * 2000-12-01 2002-06-14 Tokyo Electron Ltd Method and device for measuring temperature for semiconductor treating device and method and device for treating semiconductor
JP2014149158A (en) * 2013-01-31 2014-08-21 Mitsubishi Electric Corp Device and method for controlling heating of test piece to be heated
JP2015117921A (en) * 2013-12-20 2015-06-25 株式会社Ihi Evaporation tube internal state determination apparatus and evaporation tube internal state determination method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170775A (en) * 2000-12-01 2002-06-14 Tokyo Electron Ltd Method and device for measuring temperature for semiconductor treating device and method and device for treating semiconductor
JP2014149158A (en) * 2013-01-31 2014-08-21 Mitsubishi Electric Corp Device and method for controlling heating of test piece to be heated
JP2015117921A (en) * 2013-12-20 2015-06-25 株式会社Ihi Evaporation tube internal state determination apparatus and evaporation tube internal state determination method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138464A (en) * 2018-02-13 2019-08-22 Ntn株式会社 Bearing device and spindle device
JP7362239B2 (en) 2018-02-13 2023-10-17 Ntn株式会社 Bearing devices and spindle devices
WO2020090520A1 (en) * 2018-10-31 2020-05-07 Ntn株式会社 Bearing device
WO2020189188A1 (en) * 2019-03-19 2020-09-24 Ntn株式会社 Lubricating oil supply unit and bearing device
CN113613815A (en) * 2019-03-19 2021-11-05 Ntn株式会社 Lubricating oil supply unit and bearing device
JP7411347B2 (en) 2019-03-19 2024-01-11 Ntn株式会社 Lubricating oil supply unit and bearing device

Also Published As

Publication number Publication date
JP6594250B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6594250B2 (en) Temperature measuring device and temperature measuring method
JP5177140B2 (en) Multi-mode control algorithm
KR101467944B1 (en) Method and apparatus for measuring the temperature of a gas in a mass flow controller
JP4831487B2 (en) Differential scanning calorimeter
EP0962763A1 (en) Differential scanning calorimeter
US11173671B2 (en) Electric heating device
JPWO2016042589A1 (en) Control device
JP2014178669A (en) Image forming apparatus
JP2017181239A (en) Temperature measurement device and temperature measurement method
EP3388805A1 (en) Abnormal temperature detecting circuit
JP2004037139A (en) Temperature measuring system and temperature regulator
JP6300203B2 (en) Gas detector
JP5328303B2 (en) Optical element manufacturing apparatus and manufacturing method thereof
JP6624303B2 (en) Temperature measuring device, temperature controller and short circuit judgment program
JP7147124B2 (en) Temperature controller and temperature control method
JP6299876B2 (en) Surface temperature sensor calibration device
JPWO2019201603A5 (en)
WO2021260834A1 (en) Temperature measurement device, method, and program
KR102599974B1 (en) Measurement method of infrared thermometer with improved measurement reliability
JP5178263B2 (en) Thermal flow meter and its initial adjustment method and initial adjustment device
JP2020193934A (en) Thermal conductivity measuring device and thermal conductivity measuring system
JP6414750B2 (en) Electronic device, control method and control program for electronic device
JP2005055378A (en) Temperature detector, temperature detecting method, and temperature detecting program
JP6012413B2 (en) Contact thermometer
JPWO2023162054A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190924

R150 Certificate of patent or registration of utility model

Ref document number: 6594250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250