JP2009192349A - 生体サンプル分析方法 - Google Patents

生体サンプル分析方法 Download PDF

Info

Publication number
JP2009192349A
JP2009192349A JP2008032873A JP2008032873A JP2009192349A JP 2009192349 A JP2009192349 A JP 2009192349A JP 2008032873 A JP2008032873 A JP 2008032873A JP 2008032873 A JP2008032873 A JP 2008032873A JP 2009192349 A JP2009192349 A JP 2009192349A
Authority
JP
Japan
Prior art keywords
nucleic acid
analysis method
solution
biological sample
sample analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008032873A
Other languages
English (en)
Inventor
Jinpei Tabata
仁平 田畑
Junichi Hori
淳一 堀
Takaaki Murayama
隆亮 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008032873A priority Critical patent/JP2009192349A/ja
Publication of JP2009192349A publication Critical patent/JP2009192349A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】検体サンプルに結合した電気化学発光物質を効率よく発光させ、高感度に検体サンプルを検出することのできる生体サンプル分析方法を提供する。
【解決手段】電気化学発光物質が修飾されたプローブと検体サンプルとからなる結合体を測定電極上に配し、1〜100nmの粒径を持つ金コロイドを電解液中への添加濃度が波長520nmの光学的濃度で0.1〜0.5になるようにジチオール化合物とともに電解液を測定電極に滴下した後に測定電極に電圧を印加して結合体の発光を測定することにより高感度に検体サンプルを検出する。
【選択図】なし

Description

本発明は、検体サンプルを検出するための生体サンプル分析方法に関し、電気化学発光物質が電気化学発光を行う際に金コロイドとジチオール化合物を添加することで電気化学発光物質を効率よく発光させ、高感度に検体サンプルを検出する技術に関する。
従来、目的遺伝子を検出する手法として吸光法や蛍光法や用いられてきたが、近年の微量サンプルでも高感度に検出したいという要望の中で、電気化学反応中に発光反応を有する電気化学発光反応を利用した測定が用いられてきている。この電気化学発光反応を用いた遺伝子検出方法は、吸光法や蛍光法を行う際には必要になる励起光源が不要なことからバックグラウンド光が低減でき、高感度な測定が可能である。
電気化学発光反応は電極に電位を与えることで生じた電極界面の溶液の電位勾配中において起こる。この反応場は電気2重層と呼ばれ、電気2重層内では溶液内のイオンが電極への吸着と拡散を繰り返しており、この中で酸化や還元反応に係る電子のやりとりが行われる。電気化学発光物質はこれらの酸化や還元反応の途中で励起され、この励起状態から基底状態に戻る際に発光反応を起こす。
電気化学反応を用いて目的遺伝子を検出する方法は以下の通りである。目的遺伝子と相補な配列を有する第一のプローブ核酸と、電気化学発光物質を標識した第二のプローブ核酸をそれぞれ目的遺伝子にハイブリダイゼーション反応を起こさせることで選択的に目的遺伝子をプローブ核酸に捕捉させる。第1のプローブ核酸には磁気ビーズが結合できるように末端に磁気ビーズへの結合物質を修飾しておく。磁気ビーズをB/F(Bound/Free)分離とよばれる洗浄を行うことで、非目的遺伝子や余分な物質等の非目的試料を除去した後、電気化学発光物質を発光させる。この発光量を測定することで、目的遺伝子を検出することができる。(例えば特許文献1参照)。
特開2002−34561号公報
微量なサンプルを測定する場合は、サンプルに捕捉された電気化学発光物質を効率よく発光させることが重要である。しかしながら、電気2重層の厚みは電位勾配が生じている領域であるために電極表面から2〜3nmと薄く、この電気2重層の厚みにより電気化学発光反応が制限されている。このため、多数の電気化学発光物質を有するサンプルでは電気化学発光物質が電気2重層外に留まってしまい、効率よく発光できないという課題を有していた。
本発明は、前記従来の課題を解決するもので、電気2重層の領域を改善して発光に関与し得る電気化学発光物質を増やすことで検出感度を高めることのできる生体サンプル分析方法を提供することを目的とする。
前記従来の課題を解決するために、本発明の生体サンプル分析方法は、電気化学発光物質が修飾されたプローブと検体サンプルとからなる結合体を測定電極上に配し、金コロイドとジチオール化合物を含む電解液を前記測定電極に滴下した後に前記測定電極に電圧を印加して前記結合体の発光を測定することを特徴としたものである。
本発明の生体サンプル分析方法によれば、電解液中の電気2重層の領域を広げることにより電気化学発光物質を効率よく発光させることができ、これにより高感度に検体サンプルを検出することができる。
以下に、本発明の生体サンプル分析方法の実施の形態を詳細に説明する。
(実施の形態1)
まず、検体から遺伝子サンプルを抽出する前処理を行う。痰、血液、糞便、精液、唾液、培養細胞、組織細胞、その他遺伝子を有する検体から超音波、振とうなどの物理手段、核酸抽出溶液を用いる化学的手段を用いて必要試料を抽出する。
試料中の細胞の破壊は、常法により行うことができ、例えば、振とう、超音波等の物理的作用を外部から加えて行うことができる。また、核酸抽出溶液(例えば、SDS、Triton−X、Tween−20等の界面活性剤、又はサポニン、EDTA、プロテア−ゼ等を含む溶液等)を用いて、細胞から核酸を遊離させることもできる。
抽出された長鎖の2本鎖核酸は制限酵素、あるいは超音波などの物理的手段によって任意の長さに切断される。切断された2本鎖核酸は熱処理、あるいはアルカリ変性により1本鎖核酸に分離される。これらの工程により遺伝子サンプルを得る。遺伝子サンプルは、電気泳動による分離等で精製した核酸断片でもよい。
目的遺伝子を捕捉するための第一のプローブ核酸は、検出すべき遺伝子配列に対して相補的な塩基配列を有する1本鎖のプローブ核酸であり、生物試料から抽出した核酸を制限酵素で切断し、電気泳動による分離等で精製した核酸、あるいは化学合成で得られた1本鎖の核酸を用いることができる。生物試料から抽出した核酸の場合には、熱処理あるいはアルカリ処理によって、1本鎖の核酸に解離させておくことが好ましい。
このようにして得られた第一のプローブ核酸を磁気ビーズの表面に固定する。固定化方法としては、公知の方法が用いられる。例えば、磁気ビーズの表面に予めストレプトアビジンをコーティングしておき、ビオチンを標識した第一のプローブ核酸と反応させることでアビジンービオチン結合を行う方法がある。また、マイクロアレイで用いられる公知の結合方法(例えばシランカップリング法)を用いることができる。
本発明で用いる磁気ビーズは特に限定されるものではなく、使用可能な磁気ビーズとしては、例えば酸化鉄系ビーズが挙げられる。磁気ビーズを収集するための磁力源は永久磁石であろうと、電磁石であろうと磁力で吸引される位置に配置される。より好適には強磁場を生じる永久磁石が好ましい。
上記で得られた、プローブ核酸が固定された磁気ビーズを、目的遺伝子を含む溶液に接触させることにより、プローブ核酸と相補的な配列を有する目的遺伝子がハイブリダイゼーション反応を起こし、2本鎖核酸が形成されるが、ハイブリダイズさせる方法は公知の方法を使用すれば良いので説明を省略する。
目的遺伝子に相補な配列を有する第二のプローブ核酸には予め電気化学発光物質を修飾させておく。電気化学発光物質を第二のプローブ核酸に結合させる方法は末端に修飾させる方法や核酸の任意の箇所に化学的に結合させる方法がある。あるいは第二のプローブ核酸を用いずに直接目的遺伝子に結合させる方法や、挿入性の電気化学発光物質を用いて目的遺伝子と第一のプローブ核酸とが形成した2本鎖核酸に選択的に挿入させることも適応可能である。
電気化学発光物質は電気化学発光活性を有する物質であり、電気化学発光的に検出可能な物質であれば限定されるものではない。例えば、金属錯体を挙げることができ、特に、中心金属がルテニウムである錯体は良好な電気化学発光特性を有する。このような良好な電気化学発光特性を有する物質としては、例えば、ルテニウムビピリジン錯体、ルテニウムフェナントロリン錯体、オスニウムビピリジン錯体、オスニウムフェナントロリン錯体等を挙げることができる。
このようにして得られた測定すべき目的遺伝子と、目的遺伝子の一部と結合する第一のプローブ核酸を持つ磁気ビーズと、目的遺伝子の他の一部と結合する第二のプローブ核酸を持つ電気化学発光物質とが互いに結合してプローブ複合体を形成させる。
磁気ビーズに捕捉されなかった非目的試料や未反応物質はB/F分離により洗浄される。B/F分離は磁気ビーズを用いた場合、外部磁場により磁気ビーズを溶液内に保持することで余分な溶液を除去する。このB/F分離によって、磁気ビーズに固定された目的遺伝子および目的遺伝子に結合した電気化学発光物質を選択的に得ることができる。外部磁場は前述の方法で与えられる。
B/F分離は液体を保持するマイクロウェル等の容器内で行われ、特に、洗浄工程が容易な流路中で行うことも可能である。流路はフローセルやキャピラリー管、マイクロ流路等が適応可能である。
このようにして得られた電気化学発光物質を電極の作用極上に滴下し、電解液中で電圧を印加することで発光させる。電解液は還元剤であるトリエチルアミンと緩衝液であるリン酸バッファーからなる。還元剤はトリエチルアミンの他にトリプロピルアミンやシュウ酸等が適応可能である。この電解液に金コロイドが添加される。金コロイドの粒径は1〜100nmが選択され、電解液中への添加は波長520nmの光学的濃度で0.1〜0.5が好ましい。
さらに電解液にはジチオール化合物が添加される。ジチオール化合物としては、1,2−Ethanedithiol、1,4−Butanedithiol、1,6−Hexanedithiol等が適応可能である。金とチオール基はそれぞれ金チオール反応により結合し、ジチオール化合物は両末端にチオール基を有する化合物であることから金コロイド同士がジチオール化合物を介して互いに結合する。これにより金コロイドが凝集及び密集し電子の授受を行うことで電極界面にできた電気2重層が拡張され、その結果電気化学発光物質の反応場が増加し、より多くの発光信号が得られる。電気化学発光物質の量に応じた発光信号は光電子増倍管等の光検出器を用いて計測が可能である。
次に、本発明における生体サンプル分析方法の具体的な実施例を説明する。検出の流れは、工程(1)〜(4)からなる。それぞれの工程は、(1)磁気ビーズへのプローブ核酸の固定、(2)電気化学発光物質が修飾された検出用プローブ核酸の作製、(3)ハイブリダイゼーション反応、(4)電気化学発光測定からなる。各工程の詳細については以下に示す。
(1)磁気ビーズへのプローブ核酸の固定
目的核酸を捕捉するプローブ核酸の担体として、磁気ビーズ(BangsLaboratories社製;CM01N/5896、平均粒径0.35μm)を用いた。この磁気ビーズはビーズ表面にストレプトアビジンがコーティングされている。プローブ核酸には、AATTTGTTAT GGGTTCCCGG GAAATAATCAの配列を有する5’末端にビオチン基を修飾した30塩基のオリゴデオキシヌクレオチド(配列表1)を使用した。該プローブ核酸を10mMのPBS(pH7.4のリン酸ナトリウム緩衝液)に溶解させ、10μMに調製した。
まず、磁気ビーズを1mg採取し、TTLバッファー(終濃度:100mM Tris−HCl(pH8.0)、 0.1% Tween20、 1M LiCl)で洗浄後、20μLのTTLバッファーに置換した。その後、100nMのプローブ核酸を5μL添加し、室温で15分穏やかに振とうした。
溶液を除去し、残留した磁気ビーズを0.15MのNaOHで洗浄後、TTバッファー(250mM Tris−HCl(pH8.0)、0.1% Tween20)で洗浄した。
洗浄後、TTEバッファー(250mM Tris−HCl(pH8.0)、0.1% Tween20、20mM Na2EDTA(pH8.0))に溶液を置換し、80℃で10分間インキュベートすることにより、不安定なアビジンービオチン結合を除去した。これにより、磁気ビーズ表面にプローブ核酸が固定された磁気ビーズAを得た。
(2)電気化学発光物質が修飾された検出用プローブ核酸の作製
検出用プローブ核酸には、TGCTTACAAT CCTGATGTTT TCATTCAATTの配列を有する、5’末端にアミノ基を修飾した30塩基のオリゴデオキシヌクレオチド(配列表2)を使用した。
前記検出用プローブ核酸に用いる電気化学発光物質は、以下のようにして得る。
まず、テトラヒドロフラン(以下THF)60.0mLに溶解させた4,4’−ジメチル−2,2’ビピリジン2.50g(13.5mmol)溶液を窒素雰囲気の容器に注入した後、リチウムジイソプロピルアミド2M溶液16.9mL(27.0mmol)を滴下し、冷却しながら30分撹拌させた。一方、同様に窒素気流中で乾燥させた容器に、1,3−ジブロモプロパン4.2mL(41.1mmol)とTHF10mLとを加え、冷却しながら撹拌させた。この容器に、先程の反応液を30分かけて滴下させ、2.5時間反応させた。反応溶液は2Nの塩酸で中和し、THFを留去した後、クロロホルムで抽出した。溶媒を留去して得た粗生成物をシリカゲルカラムで精製し、生成物Aを得た。
窒素雰囲気の容器に、前記生成物A1.0g(3.28mmol)、フタルイミドカリウム0.67g(3.61mmol)、及びジメチルホルムアミド(脱水)30.0mLを加え、オイルバスで18時間還流した。反応後、クロロホルムで抽出し、0.2N水酸化ナトリウム50mLで蒸留水洗浄した。溶媒を留去して酢酸エチルとヘキサンから再結晶を行い、生成物Bを得た。
塩化ルテニウム(III)(2.98g、0.01mol)、及び2,2’−ビピリジン(3.44g、0.022mol)をジメチルホルムアミド(80.0mL)中で6時間還流した後、溶媒を留去した。その後、アセトンを加え、一晩冷却することで得られた黒色沈殿物を採取し、エタノール水溶液170mL(エタノール:水=1:1)を加え1時間加熱還流を行った。ろ過後、塩化リチウムを20g加え、エタノールを留去し、さらに一晩冷却した。析出した黒色物質は吸引ろ過で採取し、生成物Cを得た。
窒素置換した容器に、前記生成物B0.50g(1.35mmol)、前記生成物C0.78g(1.61mmol)、及びエタノール50mLを加えた。9時間窒素雰囲気で還流した後、溶媒を留去し、蒸留水で溶解させ、1.0Mの過塩素酸水溶液で沈殿させた。この沈殿物を採取し、メタノールで再結晶を行い、生成物Dを得た。
さらに、前記生成物D1.0g(1.02mmol)、及びメタノール70.0mLを1時間還流した。室温まで冷却した後、ヒドラジン一水和物0.21mL(4.21mmol)を加え再び13時間還流した。反応後、蒸留水を15mL加え、メタノールを留去した。
次に、濃塩酸を5.0mL加え、2時間還流して得られた反応液を8時間4度で冷蔵し、不純物を自然ろ過で除去した。
これを炭酸水素ナトリウムで中和した後、水を留去し、無機物をアセトニトリルで除去した。溶媒を留去して得た粗生成物をシリカゲルカラムで精製し、生成物Eを得た。
アルミホイルで遮光した容器に、前記生成物E0.65g(0.76mmol)を加え、アセトニトリル10mLに溶解させた。次に、トリエチルアミン0.23g(2.29mmol)を加えた後、アセトニトリル20mLに溶解したグルタル酸無水物0.87g(7.62mmol)を滴下した。
9時間反応後、エバポレーターでアセトニトリルを留去して得た粗生成物を高速液体クロマトグラフィー(HPLC)で精製し、下記式(化1)に示す電気化学発光物質を得た。
Figure 2009192349
表1は、前述のようにして得た(化1)に示す物質の1H‐NMR結果である。
Figure 2009192349
このようにして得た(化1)の電気化学発光物質と配列表2のオリゴデオキシヌクレオチドを以下のようにして結合させる。まず、該オリゴデオキシヌクレオチド283μg(29.7pmol)を蒸留水0.2mLに溶解させ、該オリゴデオキシヌクレオチドの溶液に、1mMに調製した(化1)溶液89μL(89.0pmol)、N−ヒドロキシスクシンイミド0.3mg(2.6μmol)、WSC5.1mg(26.7μmol)、0.1Mトリエチルアミン0.9μL(90.0pmol)を添加し、2日間室温で反応させた。HPLCで精製後、目的物のフラクションを採取し、溶液を留去して末端に電気化学発光物質が修飾された検出用プローブ核酸を得た。
(3)ハイブリダイゼーション反応
本発明で用いる目的核酸には、ヒト由来CytochromeP−450の遺伝子配列の5’−末端より599−698番目に位置するAATTGAATGA AAACATCAGG ATTGTAAGCA CCCCCTGGAT CCAGATATGC AATAATTTTC CCACTATCAT TGATTATTTC CCGGGAACCC ATAACAAATTの配列を有する100塩基のオリゴデオキシヌクレオチド(配列表3)を使用した。
(1)の工程で得られたプローブ核酸が固定された磁気ビーズに2XSSCを14μL加え、そこに(2)の工程で作製した5μMの検出用プローブ核酸と該目的核酸をそれぞれ4μL添加し、70℃で穏やかに振とうさせた。1時間振とうさせた後、溶液を除去し、40℃に加温した2XSSCで洗浄した。洗浄溶液を除去し、さらにTTバッファーで洗浄することで、磁気ビーズA'を得た。
(4)電気化学発光測定
(3)の工程で得られた磁気ビーズA’を1μL電極上の作用極上に滴下し、60度5分で乾燥させた。乾燥後、電解液(0.1M PBS、 0.1M トリエチルアミン、 0.002vol% 1,2−Ethanedithiol、金コロイド:光学的濃度値(波長520nm)0.2)を100μL作用極上に滴下し、電圧を印加した。電圧の印加は、0Vから1.3Vまで1秒間で掃印し、電気化学発光測定を行った。電気化学発光量の測定は、光電子増倍管(浜松ホトニクス製H7360−01)を用いて行い、電圧印加中におけるルテニウム錯体の最大発光量を測定した。
比較例として、上記電解液で金コロイドと1,2−Ethanedithiolを含まない電解液(0.1M PBS、 0.1M トリエチルアミン)で磁気ビーズA’の電気化学発光測定を行った。
図1は実施例及び比較例の結果を示している。図1に示すように、実施例において得られた磁気ビーズA’からの発光量16,344(RLU)と比較例の発光量8,675(RLU)に対して著しく高い値を示した。これは、本実施例における電解液への金コロイドとジチオール化合物の添加による効果を示している。すなわち、金コロイドとジチオール化合物の添加により電気2重層が拡張され、発光できるルテニウム錯体が向上したものと考えられる。図1の結果により、本発明を用いることで、磁気ビーズ錯体に捕捉されたルテニウム錯体を効率よく発光させることができるので、従来よりもさらに高感度に目的遺伝子の検出が可能となる。
本発明に係る生体サンプル分析方法は、電気化学発光を行う際に金コロイドとジチオール化合物を含む電解液を用いることで高感度に検体サンプルを検出することが可能となる。 このため、高感度測定が必要な一塩基変異多型の検出や細菌検査、ウイルス検査に有用である。
実施例及び比較例によって得られたルテニウム錯体の最大発光量を示す図

Claims (6)

  1. 電気化学発光物質が修飾されたプローブと検体サンプルとからなる結合体を測定電極上に配し、金コロイドとジチオール化合物を含む電解液を前記測定電極に滴下した後に前記測定電極に電圧を印加して前記結合体の発光を測定する生体サンプル分析方法。
  2. 前記電解液に対する前記金コロイドの光学的濃度値(波長520nm)は0.1〜0.5とする請求項1に記載の生体サンプル分析方法。
  3. 前記金コロイドの粒径は1〜100nmとする請求項1に記載の生体サンプル分析方法。
  4. 前記電解液に対する前記ジチオール化合物の体積比は0.001〜0.01%とする請求項1に記載の生体サンプル分析方法。
  5. 前記電解液は、トリエチルアミンを主成分とする緩衝液からなる溶液とする請求項1に記載の生体サンプル分析方法。
  6. 前記電気化学発光物質は、ルテニウム錯体である請求項1に記載の生体サンプル分析方法。
JP2008032873A 2008-02-14 2008-02-14 生体サンプル分析方法 Pending JP2009192349A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008032873A JP2009192349A (ja) 2008-02-14 2008-02-14 生体サンプル分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008032873A JP2009192349A (ja) 2008-02-14 2008-02-14 生体サンプル分析方法

Publications (1)

Publication Number Publication Date
JP2009192349A true JP2009192349A (ja) 2009-08-27

Family

ID=41074500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008032873A Pending JP2009192349A (ja) 2008-02-14 2008-02-14 生体サンプル分析方法

Country Status (1)

Country Link
JP (1) JP2009192349A (ja)

Similar Documents

Publication Publication Date Title
US10613095B2 (en) 1,1′-[[(substituted alkyl)imino]bis(alkylene)]bis-ferrocenes and their use in I electrochemical assays by labelling substrates of interest
JP4146239B2 (ja) オリゴヌクレオチド修飾粒子をベースとするバイオバーコード
CN109837326B (zh) 基于多价捕获并放大输出信号的生物靶标分子检测方法
CN106066324B (zh) 一种电致化学发光生物传感器标记物的制备方法
Yi et al. Aptamer-aided target capturing with biocatalytic metal deposition: An electrochemical platform for sensitive detection of cancer cells
Fan et al. An ultrasensitive and simple assay for the Hepatitis C virus using a reduced graphene oxide-assisted hybridization chain reaction
Li et al. Plasmonic nanoplatform for point-of-care testing trace HCV core protein
Gao et al. A fluorescence assay for microRNA let-7a by a double-stranded DNA modified gold nanoparticle nanoprobe combined with graphene oxide
CN114397343A (zh) 肿瘤标志物活性检测试剂盒、检测方法及其应用
JP2010117140A (ja) アナライト分析方法
CN110553991B (zh) 基于中空金纳米粒-dna复合物的生物/化学检测试剂和检测方法
JP2007232675A (ja) 遺伝子検出方法
JP2006337351A (ja) 遺伝子の電気化学的検出方法
JP2009222635A (ja) 核酸検出方法
CN114113013B (zh) 一种荧光适配体探针及其在microRNA/ctDNA核酸分子检测中的应用
JP4701176B2 (ja) 遺伝子検出方法、及び挿入剤
JP2007232676A (ja) 遺伝子検出方法
Pusta et al. Aptamers and new bioreceptors for the electrochemical detection of biomarkers expressed in hepatocellular carcinoma
JP2009092546A (ja) 遺伝子検出方法
JP2009068869A (ja) 生体分子検出方法
JP2009139308A (ja) 遺伝子検出方法
JP2009136238A (ja) 遺伝子検出方法
JP2007304091A (ja) 遺伝子検出方法
JP2009192349A (ja) 生体サンプル分析方法
US20080166712A1 (en) Gene detection method