JP2009192236A - Ultrasonic flaw detection method and ultrasonic flaw detector - Google Patents

Ultrasonic flaw detection method and ultrasonic flaw detector Download PDF

Info

Publication number
JP2009192236A
JP2009192236A JP2008030309A JP2008030309A JP2009192236A JP 2009192236 A JP2009192236 A JP 2009192236A JP 2008030309 A JP2008030309 A JP 2008030309A JP 2008030309 A JP2008030309 A JP 2008030309A JP 2009192236 A JP2009192236 A JP 2009192236A
Authority
JP
Japan
Prior art keywords
flaw detection
inspected
probe
defect
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008030309A
Other languages
Japanese (ja)
Other versions
JP5145066B2 (en
Inventor
Kentaro Tanaka
謙太郎 田中
Tomohiro Suzuki
朝寛 鈴木
Yasuo Watase
保夫 渡瀬
Yuuko Nishiake
ゆう子 西明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Inspection & Service Co
Kobe Steel Ltd
Kobelco Inspection and Service Co Ltd
Original Assignee
Shinko Inspection & Service Co
Kobe Steel Ltd
Kobelco Inspection and Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Inspection & Service Co, Kobe Steel Ltd, Kobelco Inspection and Service Co Ltd filed Critical Shinko Inspection & Service Co
Priority to JP2008030309A priority Critical patent/JP5145066B2/en
Publication of JP2009192236A publication Critical patent/JP2009192236A/en
Application granted granted Critical
Publication of JP5145066B2 publication Critical patent/JP5145066B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection method and an ultrasonic flaw detector for accurately detecting flaw in an inspected part, including a joint part of a complex shape which extends along the joint part, as to two members mutually connected via the joint part. <P>SOLUTION: On a flaw detection surface 53, a transmitting probe 12a and a receiving probe 12b are juxtaposed/disposed, in a direction orthogonal or substantially orthogonal to the inspected part 55 extending along the joint part We. This method is such that ultrasonic waves are transmitted from the transmitting probe 12a toward the inspected part 55, while both the probes 12 are moved along the inspected part 55 on the detection surface 53, and that the ultrasonic waves which are diffracted or reflected by a flaw CL are received by the receiving probe 12b, when there is the flaw CL generated in the inspected part 55. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超音波を用い、被検査物の表面割れ、内部割れ、融合不良、溶込み不良等の欠陥を検出する超音波探傷方法及び超音波探傷装置に関する。特に、厚肉圧力容器と、当該厚肉圧力容器に取り付くノズルやマンホール等との接合部のように複雑な形状を有する接合部における欠陥を検出及び定量するのに有利な超音波探傷方法及び超音波探傷装置に関する。   The present invention relates to an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus that detect defects such as surface cracks, internal cracks, poor fusion, and poor penetration of an object to be inspected using ultrasonic waves. In particular, an ultrasonic flaw detection method and an ultrasonic method that are advantageous for detecting and quantifying defects in a junction having a complicated shape such as a junction between a thick pressure vessel and a nozzle or a manhole attached to the thick pressure vessel. The present invention relates to a sound flaw detection apparatus.

従来から、互いに接合された第1部材及び第2部材の接合部を含む被検査部内の欠陥、例えば、溶接によって接合された2つの鋼材(第1の鋼材及び第2の鋼材)における溶接部及びその周辺部内の欠陥(表面割れ、内部割れ、融合不良、溶込み不良等)を検出する超音波探傷方法として種々の方法が知られている。   Conventionally, a defect in an inspected part including a joint part of a first member and a second member joined to each other, for example, a welded part in two steel materials (first steel material and second steel material) joined by welding, and Various methods are known as ultrasonic flaw detection methods for detecting defects (surface cracks, internal cracks, poor fusion, poor penetration, etc.) in the periphery.

例えば、平板の突合せ溶接等における直線状の単純な形状の溶接部(被検査部)に対する超音波探傷方法としては、特許文献1に記載されたTOFD(Time Of Flight Diffraction)法が知られている。このTOFD法は、図11(a)乃至図11(c)に示されるように、突合せ溶接された平板状の2枚の鋼材101a,101bの探傷面(表面)102に一対の探触子103a,103bが溶接部WLを挟んで対称に配置される。この一対の探触子103a,103bは、一方が探傷面102に対し超音波を発信して鋼材101(101a及び101b)の探傷面102及び内部に超音波を伝播させる発信探触子103aで、他方が鋼材101の探傷面102から前記伝播してきた超音波を受信する受信探触子103bである。   For example, a TOFD (Time Of Flight Diffraction) method described in Patent Document 1 is known as an ultrasonic flaw detection method for a welded portion (inspected portion) of a straight simple shape in butt welding of a flat plate or the like. . In this TOFD method, as shown in FIGS. 11A to 11C, a pair of probes 103a is provided on the flaw detection surface (front surface) 102 of two flat steel materials 101a and 101b which are butt welded. 103b are arranged symmetrically across the welded portion WL. One of the pair of probes 103a and 103b is a transmission probe 103a that transmits ultrasonic waves to the flaw detection surface 102 and the inside of the steel material 101 (101a and 101b) by transmitting ultrasonic waves to the flaw detection surface 102. The other is a receiving probe 103b that receives the ultrasonic waves propagated from the flaw detection surface 102 of the steel material 101.

このように配置された状態で発信探触子103aが溶接部(被検査部)WLに向けて超音波を発信すると共に受信探触子103bが前記超音波を受信しつつ、両探触子103a,103bがその間隔を一定に保った状態で溶接部WLに沿って鋼材101の表面(探傷面)102上を移動(走査)する(図11(c)の矢印V方向)。   In such a state, the transmitting probe 103a transmits ultrasonic waves toward the welded portion (inspected portion) WL, and the receiving probe 103b receives the ultrasonic waves while the two probes 103a are receiving the ultrasonic waves. , 103b moves (scans) on the surface (flaw detection surface) 102 of the steel material 101 along the welded portion WL with the interval kept constant (in the direction of arrow V in FIG. 11C).

受信探触子103bは、前記走査の際、発信探触子103aから発信され、探傷面102に沿って伝播してくるラテラル波110、溶接部WL内に生じている欠陥CL1の上端CL1aからの回折波(又は散乱波)111、欠陥CL1の下端CL1bからの回折波(又は散乱波)112、及び鋼材101の底面104で反射した底面反射波113を受信する(図11(a)及び図11(b)参照)。このようにして受信探触子103bで受信した超音波の受信波形(図11(b)参照)から伝播時間差TM1乃至TM4を求め、この伝播時間差TM1乃至TM4と鋼材101内を伝播する超音波の伝播速度、鋼材101の厚さT、両探触子103a,103b間の距離D等から幾何学的に欠陥CL1の上端CL1a及び下端CL1bの位置が求められる。このように求められた欠陥CL1の上端CL1a及び下端CL1bの位置から欠陥CL1の高さh及び欠陥CL1の探傷面102からの深さ(欠陥深さ)d等が導出される。   During the scanning, the receiving probe 103b is transmitted from the transmitting probe 103a and propagates along the flaw detection surface 102, and from the upper end CL1a of the defect CL1 generated in the welded portion WL. The diffracted wave (or scattered wave) 111, the diffracted wave (or scattered wave) 112 from the lower end CL1b of the defect CL1, and the bottom surface reflected wave 113 reflected by the bottom surface 104 of the steel material 101 are received (FIGS. 11A and 11). (See (b)). Thus, the propagation time differences TM1 to TM4 are obtained from the received waveform of the ultrasonic waves received by the receiving probe 103b (see FIG. 11B), and the propagation time differences TM1 to TM4 and the ultrasonic waves propagating in the steel material 101 are obtained. From the propagation speed, the thickness T of the steel material 101, the distance D between the probes 103a and 103b, and the like, the positions of the upper end CL1a and the lower end CL1b of the defect CL1 are obtained geometrically. The height h of the defect CL1 and the depth (defect depth) d of the defect CL1 from the flaw detection surface 102 are derived from the positions of the upper end CL1a and the lower end CL1b of the defect CL1 thus obtained.

このようなTOFD法は、前記のように単純な形状の溶接部WLに対する超音波探傷に用いられる探傷方法であるため、溶接部(被検査部)を挟んで両側が曲面等で構成される複雑な形状の溶接部、例えば、図12(a)及び図12(b)に示されるような円筒形状のノズル201bと円筒形状のシェル201aとの接合部であるノズル溶接部WCに対しては適用できなかった。   Such a TOFD method is a flaw detection method used for ultrasonic flaw detection with respect to a welded portion WL having a simple shape as described above. Therefore, both sides of the welded portion (inspected portion) are composed of curved surfaces or the like. For example, a nozzle weld WC that is a joint between a cylindrical nozzle 201b and a cylindrical shell 201a as shown in FIGS. 12 (a) and 12 (b). could not.

そこで、ノズル溶接部WCのような複雑な形状の溶接部(被検査部)の探傷を可能とするためにTOFD法を発展させたCG−TOFD(Complex Geometry Time Of Flight Diffraction)法が開発された。この方法は、一方の探触子(受信探触子)203bをノズル201b表面に配置し、他方の探触子(発信探触子)203aをシェル201a表面に配置し、ノズル溶接部WC内の欠陥CL2の上端CL2a及び下端CL2bで回折した後に異なる複数の経路で受信探触子203bに伝播する超音波210乃至213の受信波形等を解析することによって欠陥CL2の位置(上端CL2a及び下端CL2bの位置)や大きさを検出する方法である。   Therefore, a CG-TOFD (Complex Geometry Time Of Flight Diffraction) method has been developed, which is an extension of the TOFD method in order to enable flaw detection of a welded portion (inspected portion) having a complicated shape such as the nozzle welded portion WC. . In this method, one probe (reception probe) 203b is arranged on the surface of the nozzle 201b, the other probe (transmission probe) 203a is arranged on the surface of the shell 201a, and the inside of the nozzle welded portion WC is set. The position of the defect CL2 (the positions of the upper end CL2a and the lower end CL2b) is analyzed by analyzing the received waveforms of the ultrasonic waves 210 to 213 that are diffracted by the upper end CL2a and the lower end CL2b of the defect CL2 and propagate to the reception probe 203b through different paths. Position) and size.

しかし、このCG−TOFD法では、ノズル溶接部WCの内面204側が肉盛溶接されている場合には、この肉盛溶接部205で不規則に反射した反射波(妨害信号)が多く現れ、これら妨害信号が受信探触子203bで受信されることでS/N比が低下する等の問題が生じていた。   However, in this CG-TOFD method, when the inner surface 204 side of the nozzle welded portion WC is overlaid, many reflected waves (interference signals) irregularly reflected by the overlaid welded portion 205 appear. When the interference signal is received by the reception probe 203b, there has been a problem that the S / N ratio is lowered.

そこで、図13(a)乃至図13(c)に示されるように、発信探触子303aと受信探触子303bとを共に台部分(シェル)201aの表面(探傷面)301上にノズル溶接部(被検査部)WCに沿って配置する探傷方法が開発された。この方法では、前記のように配置された状態で発信探触子303aがノズル溶接部WCに向けて超音波を発信する。ノズル溶接部WC内に欠陥CL3が生じていた場合には、当該欠陥CL3からの超音波信号を受信探触子303bが受信し、この受信した欠陥CL3からの超音波を解析することでノズル溶接部WC内の欠陥CL3の検出が行われる(特許文献2参照)。即ち、欠陥CL3からの超音波信号がノズル201bの内面等で反射されることなく直接受信探触子303bに到達し、この直接到達した超音波の受信波形等が解析されることで前記妨害信号が多く現れていたとしても精度よく欠陥CL3の検出(受信波形等の解析)ができる。尚、この超音波探傷方法では、ノズル内面コーナー部に発生した欠陥(割れ)の検出が主体であるが、溶接部の探傷に適用した場合を想定した。
特開2002−62281号公報 特開2004−258008号公報
Therefore, as shown in FIGS. 13A to 13C, both the transmission probe 303a and the reception probe 303b are welded to the surface (flaw detection surface) 301 of the base portion (shell) 201a. A flaw detection method has been developed that is arranged along the part (inspected part) WC. In this method, the transmission probe 303a transmits ultrasonic waves toward the nozzle welded portion WC in the state of being arranged as described above. If a defect CL3 has occurred in the nozzle weld WC, the reception probe 303b receives an ultrasonic signal from the defect CL3, and analyzes the received ultrasonic wave from the defect CL3 to perform nozzle welding. The defect CL3 in the part WC is detected (see Patent Document 2). That is, the ultrasonic signal from the defect CL3 reaches the reception probe 303b directly without being reflected by the inner surface of the nozzle 201b, and the interference signal is analyzed by analyzing the reception waveform of the directly reached ultrasonic wave. Even if many appear, the defect CL3 can be accurately detected (analysis of the received waveform, etc.). In this ultrasonic flaw detection method, detection of a defect (crack) generated at the nozzle inner corner is mainly performed, but a case where it is applied to flaw detection of a welded portion is assumed.
JP 2002-62281 A JP 2004-258008 A

しかし、前記のように一対の探触子303a,303bが共通の面301上において被検査部(ノズル溶接部)WCに沿って配置された状態で行われる超音波探傷方法では、発信探触子303aから超音波が発信され、欠陥CL3からの超音波信号を受信探触子303bで受信する(図13(c)参照)ため両探触子303a,303b間の中央位置Cに対応する被検査部WC内しか精度よく欠陥の検出ができない。即ち、被検査部WCにおける探傷範囲(検査範囲)が狭く、欠陥CL3が被検査部WCに沿った方向に延びる場合、当該被検査部CWに沿った方向の欠陥の長さ(以下、単に「欠陥長さ」とも称する。)L1を精度よく検出することができない場合が懸念される。   However, in the ultrasonic flaw detection method performed in a state where the pair of probes 303a and 303b are arranged along the part to be inspected (nozzle welded part) WC on the common surface 301 as described above, the transmission probe is used. An ultrasonic wave is transmitted from 303a, and the ultrasonic wave signal from the defect CL3 is received by the receiving probe 303b (see FIG. 13C), so that the inspection object corresponding to the center position C between the two probes 303a and 303b. Defects can only be detected accurately within the portion WC. That is, when the flaw detection range (inspection range) in the inspected part WC is narrow and the defect CL3 extends in the direction along the inspected part WC, the length of the defect in the direction along the inspected part CW (hereinafter simply “ Also referred to as “defect length”.) There is a concern that L1 cannot be detected accurately.

そこで、本発明は、上記問題点に鑑み、接合部を介して互いに接続された2つの部材において、複雑な形状の接合部を含み当該接合部に沿って延びる被検査部内の欠陥を精度よく検出することができる超音波探傷方法及び超音波探傷装置を提供することを課題とする。   Therefore, in view of the above problems, the present invention accurately detects a defect in a part to be inspected including a joint part having a complicated shape and extending along the joint part in two members connected to each other through the joint part. It is an object of the present invention to provide an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus that can be performed.

上記課題を解消するために、前記のように被検査部WCに沿って探傷面301上に発信及び受信の両探触子303a,303bを配置し、前記被検査部WCに沿って探傷面301上を移動させながら走査する探傷方法が考えられる。   In order to solve the above problem, both the transmitting and receiving probes 303a and 303b are arranged on the flaw detection surface 301 along the inspection target WC as described above, and the flaw detection surface 301 is aligned along the inspection target WC. A flaw detection method in which scanning is performed while moving up is conceivable.

しかし、このように両探触子を配置すると共に移動させつつ走査する場合であっても、検査対象となる部材(検査対象部材)の形状により探傷面上での両探触子の被検査部に沿った移動が規制される(移動できる距離が限定されている)ような場合には被検査部全体の探傷を行うことができない。   However, even when both probes are arranged and moved while being scanned in this way, the inspected portions of both probes on the flaw detection surface due to the shape of the member to be inspected (inspection target member) If the movement along the line is restricted (the distance that can be moved is limited), it is not possible to perform the flaw detection on the entire part to be inspected.

具体的には、例えば、図14(a)及び図14(b)に示される検査対象部材400のように、被検査部402と探傷面401とに直交する壁部材405が設けられているような場合に、互いの間隔(相対位置)を保った状態での両探触子403a,403bの被検査部402に沿った移動(走査)が前記壁部材405によって規制される。   Specifically, for example, a wall member 405 orthogonal to the part to be inspected 402 and the flaw detection surface 401 is provided as in the inspection target member 400 shown in FIGS. 14A and 14B. In this case, the wall member 405 restricts the movement (scanning) of the probes 403a and 403b along the part to be inspected 402 while maintaining a mutual distance (relative position).

この場合、前記走査方向の移動可能な両端位置に両探触子403a,403bがそれぞれ位置したときに、この両探触子403a,403bの中間位置にそれぞれ対応する被検査部の部位e1,e2間の当該被検査部402の延びる方向に沿った距離(以下、単に「探傷範囲長さ」とも称する。)L2よりも前記延びる方向に沿った被検査部402全体の距離L3の方が長くなる。そのため、被検査部402全体の探傷を行うことができない。   In this case, when the two probes 403a and 403b are respectively positioned at both end positions movable in the scanning direction, the parts e1 and e2 of the inspected part corresponding to the intermediate positions of the two probes 403a and 403b, respectively. The distance L3 of the entire portion to be inspected 402 along the extending direction is longer than the distance L2 in the direction along which the portion to be inspected 402 extends (hereinafter also simply referred to as “flaw detection range length”) L2. . For this reason, it is not possible to perform flaw detection on the entire inspection target portion 402.

尚、発信探触子403aの超音波の発信部と受信探触子403bの超音波の受信部とは、探傷面401に接した状態で移動(走査)する必要があるため、前記のような壁部材405が設けられることなく探傷面401が前記壁部材405の設けられた位置で途切れているような場合であっても、両探触子403a,403bの被検査部402に沿った移動が規制され、被検査部402全体の探傷を行うことができない。   Note that the ultrasonic wave transmitting portion of the transmitting probe 403a and the ultrasonic wave receiving portion of the receiving probe 403b need to move (scan) while in contact with the flaw detection surface 401. Even when the flaw detection surface 401 is interrupted at the position where the wall member 405 is provided without the wall member 405 being provided, the movement of the two probes 403a and 403b along the part to be inspected 402 is performed. The inspection is restricted and the entire inspection target 402 cannot be flawed.

また、図15に示されるように、例えば、円筒の周面形状のシェル501aに円筒形状のノズル501bが接合されている検査対象部材500において前記方法での超音波探傷を行う場合、発信及び受信の両探触子503a,503bが移動方向(被検査部502)に沿って間隔をおいた配置であるため、両探触子間の中央に対応する被検査部の部位に対する発信探触子からの超音波の到達位置は一定でなく両探触子が走査する方向に沿ったシェル501a表面(探傷面)の曲率変化の影響を受け変化する。特に、シェル501aの表面504の走査方向における曲率の変化が大きい場合、受信した超音波の解析が困難となる場合がある。   Further, as shown in FIG. 15, for example, when ultrasonic testing is performed by the above method in the inspection target member 500 in which a cylindrical nozzle 501b is joined to a cylindrical circumferential shell 501a, transmission and reception are performed. Since the two probes 503a and 503b are arranged at intervals along the moving direction (inspected part 502), the transmission probe for the part of the inspected part corresponding to the center between the two probes is used. The arrival position of the ultrasonic wave is not constant and changes under the influence of the curvature change of the surface of the shell 501a (flaw detection surface) along the scanning direction of both probes. In particular, when the change in curvature in the scanning direction of the surface 504 of the shell 501a is large, it may be difficult to analyze the received ultrasonic waves.

そこで、本発明者らが鋭意研究した結果、以下の構成の超音波探傷方法及び超音波探傷装置を創作することにより上記課題を解消した。   Therefore, as a result of intensive studies by the present inventors, the above problems have been solved by creating an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus having the following configuration.

本発明に係る超音波探傷方法は、互いに接合された第1部材及び第2部材における接合部を含んだ被検査部内に超音波を伝播させ、この伝播させた超音波を受信することで前記被検査部内の欠陥を検出する超音波探傷方法であって、互いに交差するように前記接合部を介して連接された前記第1部材における第1の特定の面及び第2部材における第2の特定の面によって形成される探傷面上において、当該探傷面に対して前記超音波を発信する発信探触子とこの発信された超音波を前記探傷面から受信する受信探触子とを前記接合部に沿って延びる被検査部に対して直交若しくは略直交する方向に並べて配置し、前記第1及び第2の特定の面同士が交差する部位からの距離をそれぞれ維持した状態で両探触子を前記被検査部に沿って前記探傷面上を移動させつつ前記被検査部に向けて前記発信探触子から超音波を発信させると共に前記被検査部内に欠陥が生じていた場合にこの欠陥で回折又は反射した超音波を前記受信探触子で受信することを特徴とする。   In the ultrasonic flaw detection method according to the present invention, an ultrasonic wave is propagated in a portion to be inspected including a joint portion of the first member and the second member that are joined to each other, and the propagated ultrasonic wave is received to receive the ultrasonic wave. An ultrasonic flaw detection method for detecting a defect in an inspection unit, wherein a first specific surface in the first member and a second specific in a second member are connected via the joint so as to intersect each other. On the flaw detection surface formed by the surface, a transmission probe that transmits the ultrasonic waves to the flaw detection surface and a reception probe that receives the transmitted ultrasonic waves from the flaw detection surface are formed in the joint portion. The probes are arranged in a state orthogonal to or substantially perpendicular to the inspected part extending along the two, and maintaining the distance from the portion where the first and second specific surfaces intersect each other. The flaw detection along the part to be inspected When an ultrasonic wave is transmitted from the transmitting probe toward the inspected part while moving upward, and a defect has occurred in the inspected part, an ultrasonic wave diffracted or reflected by the defect is received in the receiving probe. It is characterized by receiving at the child.

また、本発明に係る超音波探傷装置は、互いに接合された第1部材及び第2部材における接合部を含んだ被検査部内に超音波を伝播させ、この伝播させた超音波を受信することで前記被検査部内の欠陥を検出する超音波探傷装置であって、互いに交差するように前記接合部を介して連接された前記第1部材における第1の特定の面及び第2部材における第2の特定の面によって形成される探傷面上において、前記接合部に沿って延びる被検査部に対して直交若しくは略直交する方向に並べて配置される前記探傷面に対して前記超音波を発信する発信探触子、及びこの発信された超音波を前記探傷面から受信する受信探触子と、前記第1及び第2の特定の面同士が交差する部位からの距離をそれぞれ維持した状態で両探触子が前記被検査部に沿って前記探傷面上を移動しつつ前記被検査部に向けて前記発信探触子が前記超音波を発信し、前記被検査部内に欠陥が生じていた場合にこの欠陥で回折又は反射した前記超音波を前記受信探触子で受信し、この受信信号から前記被検査部内の欠陥を検出する欠陥検出手段と、を備えることを特徴とする。   In addition, the ultrasonic flaw detection apparatus according to the present invention propagates ultrasonic waves into a part to be inspected including the joints of the first member and the second member joined together, and receives the propagated ultrasonic waves. An ultrasonic flaw detection apparatus for detecting a defect in the inspected part, wherein the first specific surface in the first member and the second in the second member are connected via the joint so as to intersect each other. On the flaw detection surface formed by a specific surface, a transmission probe for transmitting the ultrasonic waves to the flaw detection surface arranged side by side in a direction orthogonal or substantially orthogonal to the part to be inspected extending along the joint. Both probes while maintaining the distance from the probe, the receiving probe that receives the transmitted ultrasonic waves from the flaw detection surface, and the portion where the first and second specific surfaces intersect each other The child follows the inspected part. The transmitting probe transmits the ultrasonic wave toward the inspected part while moving on the flaw detection surface, and the defect diffracted or reflected by the defect when the defect has occurred in the inspected part. And a defect detection means for receiving a sound wave by the reception probe and detecting a defect in the inspected part from the received signal.

これらの構成によれば、前記発信探触子と受信探触子との両探触子が前記接合部に沿って延びる被検査部と直交若しくは略直交する方向に並べられ、当該被検査部に沿って前記探傷面上を移動(走査)する。そのため、前記被検査部の延びる方向において、前記両探触子の前記探傷範囲長さと前記被検査部全体の長さとが等しく若しくはほぼ等しくなり、前記被検査部全体若しくはほぼ全体の探傷が可能となる。   According to these configurations, the probes of the transmission probe and the reception probe are arranged in a direction orthogonal or substantially orthogonal to the inspected portion extending along the joint portion, and the inspected portion And moves (scans) along the flaw detection surface. Therefore, in the extending direction of the inspected part, the flaw detection range lengths of the two probes are equal to or substantially equal to the entire inspected part, and the entire inspected part or substantially the entire flaw can be detected. Become.

また、前記のように両探触子が前記被検査部に沿って移動しつつ当該被検査部内の欠陥の検出を行うため、前記被検査部内の欠陥の有無の検出だけでなく、当該被検査部に沿った欠陥の長さ(以下、単に「欠陥長さ」とも称する。)も検出可能となる。   Further, as described above, since both probes move along the inspected part and detect defects in the inspected part, not only the presence or absence of defects in the inspected part is detected, but also the inspected object. The length of the defect along the portion (hereinafter, also simply referred to as “defect length”) can be detected.

さらに、前記探傷面が両探触子の移動(走査)方向に沿って湾曲する(曲率が変化する)ような曲面であっても、発信探触子から超音波が到達する被検査部の部位に対する前記超音波の到達位置の変化が従来の走査方向に沿って間隔をおいた配置の一対の探触子での走査時に比べて小さくなる。そのため、前記受信探触子で受信した受信波形からの欠陥検出が前記従来の被検査部に沿って間隔をおいた場合に比べて容易になる。   Furthermore, even if the flaw detection surface is a curved surface that curves along the movement (scanning) direction of both probes (the curvature changes), the portion of the part to be inspected that the ultrasonic wave reaches from the transmission probe The change in the arrival position of the ultrasonic wave with respect to is smaller than that in the conventional scanning with a pair of probes arranged at intervals along the scanning direction. Therefore, the defect detection from the received waveform received by the receiving probe is easier than in the case where the conventional inspection target part is spaced.

本発明に係る超音波探傷方法においては、前記発信探触子と受信探触子とが共に前記第1の特定の面又は第2の特定の面上に配置されてもよく、また、前記発信探触子と受信探触子との一方が前記第1の特定の面上に配置されると共に他方が前記第2の特定の面上に配置されてもよい。   In the ultrasonic flaw detection method according to the present invention, both the transmission probe and the reception probe may be arranged on the first specific surface or the second specific surface, and the transmission One of the probe and the reception probe may be disposed on the first specific surface and the other may be disposed on the second specific surface.

これらいずれの配置によっても、前記両探触子(発信探触子及び受信探触子)が前記被検査部と直交若しくは略直交する方向に配置されているため、前記同様、被検査部の延びる方向において、前記両探触子の前記探傷範囲長さと被検査部全体の長さとが等しく若しくはほぼ等しくなり、前記被検査部全体若しくはほぼ全体の探傷が可能となる。また、前記探傷面が前記走査方向に沿って湾曲する曲面であっても、前記同様、発信探触子から超音波が到達する被検査部の部位に対する前記超音波の到達位置の変化が従来の走査方向に沿って間隔をおいた配置の一対の探触子での走査時に比べて小さくなり、欠陥検出が容易になる。   In any of these arrangements, since both the probes (transmitting probe and receiving probe) are arranged in a direction orthogonal or substantially orthogonal to the inspected part, the inspected part extends as described above. In the direction, the length of the flaw detection range of both the probes is equal to or substantially equal to the length of the entire inspected portion, and the entire inspected portion or substantially the entire flaw can be detected. In addition, even if the flaw detection surface is a curved surface that is curved along the scanning direction, the change in the arrival position of the ultrasonic wave with respect to the site of the part to be inspected where the ultrasonic wave arrives from the transmission probe is similar to the conventional one. This is smaller than when scanning with a pair of probes arranged at intervals along the scanning direction, and defect detection is facilitated.

また、本発明に係る超音波探傷方法は、互いに接合された第1部材及び第2部材における接合部を含んだ被検査部内に超音波を伝播させ、この伝播させた超音波を受信することで前記被検査部内の欠陥を検出する超音波探傷方法であって、互いに交差するように前記接合部を介して連接された前記第1部材における第1の特定の面及び第2部材における第2の特定の面によって形成される探傷面上において、当該探傷面に対して前記超音波を発信する発信探触子とこの発信された超音波を前記探傷面から受信する受信探触子とを前記接合部に沿って延びる被検査部に対して直交若しくは略直交する方向に並べて第1の配置とし、前記第1及び第2の特定の面同士が交差する部位からの距離をそれぞれ維持した状態で両探触子を前記被検査部に沿って前記探傷面上を移動させつつ前記被検査部に向けて前記発信探触子から超音波を発信させると共に前記被検査部内に欠陥が生じていた場合にこの欠陥で回折又は反射した超音波を前記受信探触子で受信することで前記被検査部を走査し、前記第1の配置での両探触子の相対位置を前記直交若しくは略直交する方向に沿って変化させて第2の配置とし、この第2の配置で前記被検査部を走査することを特徴とする。   Also, the ultrasonic flaw detection method according to the present invention propagates an ultrasonic wave into a portion to be inspected including a bonded portion of the first member and the second member bonded to each other, and receives the propagated ultrasonic wave. An ultrasonic flaw detection method for detecting defects in the inspected part, wherein the first specific surface in the first member and the second in the second member are connected via the joint so as to cross each other. On the flaw detection surface formed by a specific surface, the transmission probe that transmits the ultrasonic waves to the flaw detection surface and the reception probe that receives the transmitted ultrasonic waves from the flaw detection surface are joined to each other. The first arrangement is arranged in a direction orthogonal or substantially orthogonal to the part to be inspected extending along the part, and both the distances from the part where the first and second specific surfaces intersect each other are maintained. Place the probe on the inspected part The ultrasonic wave transmitted from the transmitting probe toward the inspected portion while moving on the flaw detection surface, and when a defect has occurred in the inspected portion, the ultrasonic wave diffracted or reflected by the defect Is received by the receiving probe to scan the portion to be inspected, and the relative position of both probes in the first arrangement is changed along the direction orthogonal or substantially orthogonal to the second position. An arrangement is provided, and the inspected portion is scanned in the second arrangement.

かかる構成によれば、前記第1の配置及び第2の配置のいずれの配置も前記両探触子が前記被検査部と直交若しくは略直交する方向に配置されているため、前記同様、被検査部の延びる方向において、前記両探触子の前記探傷範囲長さと被検査部全体の長さとが等しく若しくはほぼ等しくなり、前記被検査部全体若しくはほぼ全体の探傷が可能となる。また、前記探傷面が前記走査方向に沿って湾曲する曲面であっても、前記同様、発信探触子から超音波が到達する被検査部の部位に対する前記超音波の到達位置の変化量が小さくなるため前記受信探触子で受信した受信波形の解析が容易となる。   According to such a configuration, in both the first arrangement and the second arrangement, since both the probes are arranged in a direction orthogonal or substantially orthogonal to the inspected part, as in the above, In the direction in which the portions extend, the flaw detection range lengths of the two probes and the length of the entire portion to be inspected are equal or substantially equal, and the entire portion to be inspected or substantially the entire flaw can be detected. In addition, even if the flaw detection surface is a curved surface that is curved along the scanning direction, the amount of change in the arrival position of the ultrasonic wave with respect to the site of the part to be inspected that the ultrasonic wave reaches from the transmission probe is small as described above. Therefore, the received waveform received by the receiving probe can be easily analyzed.

さらに、第1の配置での走査と第2の配置での走査とにおいて、前記同様、被検査部内に生じている共通の欠陥に対する前記欠陥長さをそれぞれ検出するため1つの配置での走査よりも正確な欠陥長さの検出が可能となる。   Further, in the scan in the first arrangement and the scan in the second arrangement, in the same manner as described above, in order to detect the defect lengths for the common defects occurring in the inspected portion, the scan in one arrangement is used. However, it is possible to accurately detect the defect length.

尚、前記第1の配置と第2の配置とで走査を行う構成の場合には、さらに、前記第1の配置及び第2の配置での走査で受信探触子がそれぞれ受信した前記超音波に基づき、前記被検査部内での前記欠陥における前記超音波の回折又は反射した部位が存在する可能性のある存在可能性位置がそれぞれ導出され、これら第1の配置及び第2の配置での各存在可能性位置に基づき前記欠陥における前記超音波の回折又は反射した部位の前記被検査部内での存在位置が導出される構成が好ましい。   In the case of a configuration in which scanning is performed in the first arrangement and the second arrangement, the ultrasonic waves respectively received by the reception probe in the scanning in the first arrangement and the second arrangement are further provided. Based on each of the first position and the second position, the potential positions where the ultrasonic diffraction and reflected portions of the defect in the inspected part may exist are derived, respectively. It is preferable that the position where the ultrasonic wave is diffracted or reflected in the defect in the inspected part is derived based on the existence possibility position.

かかる構成によれば、前記欠陥における所定の部位の正確な被検査部内での存在位置を導出できる。その結果、この欠陥の正確な存在位置に基づき前記被検査部の延びる方向と直交する方向の欠陥の長さ(以下、単に「欠陥高さ」とも称する。)を精度よく検出することが可能となる。   According to such a configuration, it is possible to derive an accurate position of the predetermined portion of the defect in the inspected portion. As a result, it is possible to accurately detect the length of the defect (hereinafter also simply referred to as “defect height”) in the direction orthogonal to the extending direction of the inspected part based on the exact position of the defect. Become.

具体的には、例えば以下のようにして前記欠陥高さを検出(導出)する。まず、前記被検査部内に欠陥が生じていた場合、前記第1の配置で走査を行ったときに、前記受信探触子で受信した超音波に基づき前記発信探触子から前記欠陥の所定の部位(前記欠陥の上端又は下端)を経て前記受信探触子に至る超音波の伝播距離である第1欠陥信号伝播距離を求める。そして、前記発信探触子から第1部材又は第2部材内の仮想点で反射して前記受信探触子に至る前記超音波の伝播距離が前記第1欠陥信号伝播距離と一致した状態で前記発信探触子が前記探傷面に対して種々の方向に超音波を発信したときの前記仮想点の軌跡で構成される回転楕円面を求め、この回転楕円面と前記両探触子を通り且つ前記探傷面に直交する面との交線である前記被検査部内における前記欠陥の所定の部位(前記欠陥の上端又は下端)が存在する可能性のある第1の存在可能性位置(第1のローカス)を求める。   Specifically, for example, the defect height is detected (derived) as follows. First, when a defect has occurred in the inspected part, when scanning is performed in the first arrangement, a predetermined defect is detected from the transmission probe based on the ultrasonic wave received by the reception probe. A first defect signal propagation distance, which is a propagation distance of an ultrasonic wave that reaches the reception probe through a part (the upper end or the lower end of the defect), is obtained. Then, the propagation distance of the ultrasonic wave reflected from a virtual point in the first member or the second member from the transmission probe to the reception probe is matched with the first defect signal propagation distance. Obtaining a spheroid formed by the locus of the virtual point when the transmitting probe transmits ultrasonic waves in various directions to the flaw detection surface, passing through the spheroid and both probes A first possibility position (first position) where there is a possibility that a predetermined part (the upper end or the lower end of the defect) of the defect in the inspected portion, which is an intersecting line with a surface orthogonal to the flaw detection surface. (Locus).

次に、前記第2の配置で走査を行ったときに、前記と同様にして第2の存在可能性位置(第2のローカス)を求める。   Next, when scanning is performed in the second arrangement, the second existence possibility position (second locus) is obtained in the same manner as described above.

このようにして求めた前記第1のローカスと第2のローカスとのうち、前記欠陥の同一部位(上端又は下端)を経て受信探触子で受信した超音波から導出した前記欠陥の同一部位(上端又は下端)の前記第1のローカスと第2のローカスとを用い、その交点を求めることで前記被検査部内での前記欠陥の所定の部位(上端又は下端)の正確な位置が導出される。このようにして導出された前記欠陥の上端と下端との被検査部内での位置から前記欠陥高さが導出される。   Of the first locus and the second locus thus obtained, the same portion of the defect derived from the ultrasonic wave received by the receiving probe through the same portion (upper end or lower end) of the defect ( By using the first locus and the second locus at the upper end or the lower end and obtaining the intersection point, the exact position of the predetermined portion (the upper end or the lower end) of the defect in the inspected part is derived. . The defect height is derived from the positions of the upper end and the lower end of the defect thus derived in the inspected part.

即ち、前記第1の配置による走査と第2の配置による走査とで前記欠陥の上端及び下端の第1のローカス及び第2のローカスがそれぞれ求められ、その交点から欠陥の前記被検査部内での上端位置及び下端位置が求められ、当該被検査部内での欠陥の上端位置及び下端位置が精度よく検出される。これら精度のよい上端及び下端位置を用いることで欠陥高さを精度よく導出することが可能となる。   That is, the first locus and the second locus at the upper and lower ends of the defect are respectively obtained by the scanning by the first arrangement and the scanning by the second arrangement, and the defect within the inspected part is obtained from the intersection. The upper end position and the lower end position are obtained, and the upper end position and the lower end position of the defect in the inspected part are accurately detected. By using these highly accurate upper and lower end positions, it is possible to accurately derive the defect height.

また、前記の第1の配置と第2の配置とで両探触子の配置を変える構成の場合、前記第1の配置では、前記発信探触子と受信探触子とが共に第1の特定の面又は第2の特定の面上に配置され、前記第2の配置では、前記発信探触子と受信探触子との一方が第1の特定の面上に配置されると共に他方が第2の特定の面上に配置される構成が好ましい。また、前記第1の配置では、前記発信探触子と受信探触子との一方が第1の特定の面上に配置されると共に他方が第2の特定の面上に配置され、前記第2の配置では、前記発信探触子と受信探触子とが共に第1の特定の面又は第2の特定の面上に配置される構成も好ましい。   Further, in the case where the arrangement of both probes is changed between the first arrangement and the second arrangement, in the first arrangement, both the transmission probe and the reception probe are the first. Arranged on a specific surface or a second specific surface, and in the second arrangement, one of the transmitting probe and the receiving probe is arranged on the first specific surface and the other is A configuration arranged on the second specific surface is preferable. In the first arrangement, one of the transmission probe and the reception probe is arranged on a first specific surface and the other is arranged on a second specific surface, In the arrangement of 2, the configuration in which both the transmission probe and the reception probe are arranged on the first specific surface or the second specific surface is also preferable.

これらいずれの構成であっても、欠陥上端(又は下端)の第1及び第2のローカス同士の交点を求める際、第1及び第2のローカス同士の交差角が大きくなるためより正確に前記ローカス同士の交点の位置を特定できる。そのため、より精度よく欠陥上端(又は下端)の前記被検査部内での位置の検出が可能となり、前記欠陥高さをより精度よく検出することが可能となる。   In any of these configurations, when the intersection between the first and second loci at the upper end (or lower end) of the defect is obtained, the intersection angle between the first and second loci increases, so that the locus is more accurately detected. The position of the intersection of each other can be specified. Therefore, it is possible to detect the position of the upper end (or lower end) of the defect in the inspection target portion with higher accuracy, and to detect the height of the defect with higher accuracy.

また、前記第1の配置では、前記発信探触子と受信探触子との一方が第1の特定の面上に配置されると共に他方が第2の特定の面上に配置され、前記第2の配置では、前記発信探触子又は前記受信探触子が前記第1の配置において配置された位置から同一面上を前記直交若しくは略直交する方向に沿って移動した位置に配置される構成であってもよい。   In the first arrangement, one of the transmission probe and the reception probe is arranged on a first specific surface and the other is arranged on a second specific surface, In the arrangement of 2, the transmitting probe or the receiving probe is arranged at a position moved from the position arranged in the first arrangement on the same plane along the orthogonal or substantially orthogonal direction. It may be.

かかる構成によっても、前記同様、前記第1の配置による走査と第2の配置による走査とで欠陥の上端及び下端の第1のローカス及び第2のローカスがそれぞれ求められ、その交点から欠陥の前記被検査部内での上端位置及び下端位置が求められ、当該被検査部内での欠陥の上端位置及び下端位置が精度よく検出される。   Even in such a configuration, similarly to the above, the first locus and the second locus at the upper end and the lower end of the defect are respectively obtained by the scanning by the first arrangement and the scanning by the second arrangement, and the defect of the defect is determined from the intersection point. The upper end position and the lower end position in the inspected part are obtained, and the upper end position and the lower end position of the defect in the inspected part are accurately detected.

以上より、本発明によれば、接合部を介して互いに接続された2つの部材において、複雑な形状の接合部を含み当該接合部に沿って延びる被検査部内の欠陥を精度よく検出することができる超音波探傷方法及び超音波探傷装置を提供できる。   As described above, according to the present invention, in two members connected to each other through a joint, it is possible to accurately detect a defect in a part to be inspected that includes a joint having a complicated shape and extends along the joint. An ultrasonic flaw detection method and an ultrasonic flaw detection apparatus that can be provided can be provided.

以下、本発明の一実施形態について、添付図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

本実施形態に係る超音波探傷装置は、超音波を用い、互いに接合された2つの部材(検査対象部材)の接合部を含んだ被検査部内の欠陥(表面割れ、内部割れ、融合不良、溶込み不良等)を検出するための装置である。本実施形態において検査対象部材は、円筒の周面形状に形成されたシェルに円筒形状のノズルが溶接(接合)されたもので、被検査部は、これらシェルとノズルとの溶接部と当該溶接部の周辺を含んで溶接部に沿って延びる部位である(図3(a)参照)。   The ultrasonic flaw detection apparatus according to the present embodiment uses ultrasonic waves to detect defects (surface cracks, internal cracks, poor fusion, melting) in the inspected part including the joint part of two members (inspection target members) joined to each other. This is a device for detecting an indentation defect, etc.). In the present embodiment, the inspection target member is a cylindrical nozzle welded (joined) to a shell formed in the shape of a cylindrical peripheral surface, and the inspected portion includes a welded portion between the shell and the nozzle and the weld. It is a site | part which extends along a welding part including the periphery of a part (refer Fig.3 (a)).

具体的には、図1に示されるように、本実施形態に係る超音波探傷装置10は、超音波の発信及び受信を行う一対の探触子12a,12bと、これら一対の探触子12a,12bがそれぞれケーブルkを介して接続された超音波探傷器30と、この超音波探傷器30で得られた検査情報に基づき欠陥の有無等を解析するための解析用計算機40と、を備える。   Specifically, as shown in FIG. 1, an ultrasonic flaw detector 10 according to this embodiment includes a pair of probes 12a and 12b that transmit and receive ultrasonic waves, and the pair of probes 12a. , 12b are connected to each other via a cable k, and an analysis computer 40 for analyzing the presence / absence of a defect based on inspection information obtained by the ultrasonic flaw detector 30 is provided. .

一対の探触子12a,12bは、図2(a)及び図2(b)にも示されるように、発信探触子12aと受信探触子12bとで構成されている。発信探触子12aは、先端に設けられた発信部14aから後述する探傷面53に対して超音波、詳細には、パルス状の超音波の縦波を発信するためのものである。また、受信探触子12bは、先端に設けられた受信部14bで探傷面53から超音波、詳細には、発信探触子12aから発信され、検査対象部材50表面(探傷面53)及び内部を伝播してきた超音波を受信するためのものである。   The pair of probes 12a and 12b is composed of a transmission probe 12a and a reception probe 12b as shown in FIGS. 2 (a) and 2 (b). The transmission probe 12a is for transmitting ultrasonic waves, specifically, longitudinal waves of pulsed ultrasonic waves, to a flaw detection surface 53 described later from a transmission portion 14a provided at the tip. Further, the receiving probe 12b is transmitted from the flaw detection surface 53 by the receiving portion 14b provided at the tip, in detail, from the transmission probe 12a, and the surface of the inspection target member 50 (flaw detection surface 53) and the inside. It is for receiving the ultrasonic wave which has propagated.

これら発信探触子12a及び受信探触子12b(以下、単に「両探触子12」と称することもある。)は、探傷面53の形状によってこの探傷面53上での配置位置に制約を受ける場合もあるため、前記探傷面53に対して0〜90°(探傷面の法線方向から平行な方向まで)の範囲内で超音波を発信又は受信できるように構成されている。   The transmitting probe 12a and the receiving probe 12b (hereinafter sometimes simply referred to as “both probes 12”) restrict the arrangement position on the flaw detection surface 53 depending on the shape of the flaw detection surface 53. In some cases, the ultrasonic waves can be transmitted or received within a range of 0 to 90 ° (from the normal direction to the parallel direction of the flaw detection surface) with respect to the flaw detection surface 53.

また、両探触子12の先端部には当該探触子12a又は12bが探傷面53上を滑らかに移動できるようにシュー20が取り付けられている。このシュー20は探傷面53と面接触するような当接面22を先端部に有する。シュー20は、探触子12a(又は12b)に対して着脱自在であり、探傷面53の形状に合わせて交換される。本実施形態においては、探傷面53と接する当接面22と反対側(図2(a)においては上側)の面24に探触子先端部が羅入される凹部26が形成され、この凹部26の内周面26aには雌ネジが螺刻されている。この雌ネジは、探触子12a及び12b先端部の外周面16に螺刻された雄ネジと螺合する。   Further, a shoe 20 is attached to the tips of both probes 12 so that the probe 12a or 12b can smoothly move on the flaw detection surface 53. The shoe 20 has an abutting surface 22 at the tip portion so as to come into surface contact with the flaw detection surface 53. The shoe 20 is detachable from the probe 12a (or 12b), and is exchanged in accordance with the shape of the flaw detection surface 53. In the present embodiment, a concave portion 26 into which the probe tip is inserted is formed on a surface 24 opposite to the contact surface 22 in contact with the flaw detection surface 53 (upper side in FIG. 2A). A female screw is threaded on the inner peripheral surface 26a of 26. This female screw is engaged with a male screw threaded on the outer peripheral surface 16 of the tips of the probes 12a and 12b.

また、本実施形態において、発信探触子12aと受信探触子12bとはそれぞれ独立しているが、発信探触子12aと受信探触子12bとの相対位置を固定して高精度な探傷を行うために、互いが連結機構(図示省略)によって連結されていてもよい。   In the present embodiment, the transmission probe 12a and the reception probe 12b are independent of each other. However, the relative positions of the transmission probe 12a and the reception probe 12b are fixed and a high-accuracy flaw detection is performed. In order to perform the above, they may be coupled to each other by a coupling mechanism (not shown).

超音波探傷器30は、CRT、LCD等で構成される表示手段(モニタ)32を備え、発信探触子12aに超音波を発生させるための信号を生成して送信すると共に、受信探触子12bからの超音波の受信信号(受信波形)を受信し、表示手段32に探傷結果を表示(例えば、図4(a)及び図4(b)参照)するものである。また、超音波探傷器30は、受信波形を記憶する探傷結果記憶手段(図示省略)も備える。   The ultrasonic flaw detector 30 includes a display means (monitor) 32 composed of a CRT, an LCD, etc., and generates and transmits a signal for generating an ultrasonic wave to the transmission probe 12a and a reception probe. The ultrasonic reception signal (reception waveform) from 12b is received, and the flaw detection result is displayed on the display means 32 (see, for example, FIGS. 4A and 4B). The ultrasonic flaw detector 30 also includes flaw detection result storage means (not shown) for storing the received waveform.

解析用計算機40は、CRT、LCD等で構成される表示手段42を備える。超音波探傷器30の探傷結果記憶手段から探傷結果情報を読取り、後述する欠陥存在置位の解析を行うものである。解析用計算機40は、汎用の計算器(いわゆるパソコン)と同様に、CPU、RAM、ROM、HDD、FDD、CDR、キーボード、マウス等を備え(図示省略)、ハードディスク(又はROM、RAM等)には、OS及び欠陥の位置を解析するための解析プログラムが予め記憶されている。   The analysis computer 40 includes display means 42 composed of a CRT, LCD or the like. The flaw detection result information is read from the flaw detection result storage means of the ultrasonic flaw detector 30 and the defect presence position described later is analyzed. The analysis computer 40 is provided with a CPU, RAM, ROM, HDD, FDD, CDR, keyboard, mouse, etc. (not shown) as in a general-purpose computer (so-called personal computer), and is provided on a hard disk (or ROM, RAM, etc.). , An analysis program for analyzing the OS and the position of the defect is stored in advance.

尚、ハードディスクに代えて、CD、LD、メモリーカード等の他の外部記憶手段に解析プログラムが記憶されており、解析を実行する際にRAMに読み込む形態でもよい。   Instead of the hard disk, the analysis program may be stored in other external storage means such as a CD, LD, or memory card, and read into the RAM when executing the analysis.

本実施形態に係る超音波探傷装置10は、以上の構成からなり、次に、両探触子12での走査方法について図3(a)乃至図6(b)も参照しつつ説明する。   The ultrasonic flaw detection apparatus 10 according to the present embodiment has the above-described configuration. Next, a scanning method using both the probes 12 will be described with reference to FIGS. 3 (a) to 6 (b).

本実施形態における検査対象部材50は、互いに接合された第1部材51及び第2部材52で構成されている。具体的には、円筒の周面形状のシェル(第1部材)51に円筒形状のノズル(第2部材)52が溶接(接合)されたものである。この検査対象部材50において超音波探傷装置10によって探傷が行われる被検査部55は、シェル51とノズル52との溶接部We及びこの溶接部Weの周辺を含み、溶接部Weに沿って延びる部位である。   The inspection target member 50 in the present embodiment includes a first member 51 and a second member 52 that are joined to each other. Specifically, a cylindrical nozzle (second member) 52 is welded (joined) to a cylindrical circumferential shell (first member) 51. A portion 55 to be inspected by the ultrasonic flaw detector 10 in the inspection target member 50 includes a welded portion We of the shell 51 and the nozzle 52 and the periphery of the welded portion We, and extends along the welded portion We. It is.

まず、検査対象部材50の探傷面53上に一対の探触子12a,12bが配置される。ここで、探触子12a(又は12b)が配置される探傷面53は、互いに交差するように溶接部Weを介して連接されたシェル51の表面(第1部材51における第1の特定の面)及びノズル52の表面(第2部材52における第2の特定の面)によって形成される面である。尚、本実施形態において、探傷面53におけるシェル51の表面に対応する部位をシェル探傷面51a、ノズル52の表面に対応する部位をノズル探傷面52aと称する場合もある。   First, a pair of probes 12 a and 12 b are arranged on the flaw detection surface 53 of the inspection target member 50. Here, the flaw detection surface 53 on which the probe 12a (or 12b) is arranged is the surface of the shell 51 (first specific surface of the first member 51) connected via the welded portion We so as to cross each other. ) And the surface of the nozzle 52 (second specific surface of the second member 52). In the present embodiment, a portion corresponding to the surface of the shell 51 in the flaw detection surface 53 may be referred to as a shell flaw detection surface 51a, and a portion corresponding to the surface of the nozzle 52 may be referred to as a nozzle flaw detection surface 52a.

このとき、図3(a)乃至図3(c)にも示されるように、両探触子(発信探触子と受信探触子と)12a,12bは、溶接部Weに沿って延びる被検査部55に対して直交する方向に並べて配置される。また、両探触子12は、共にシェル探傷面51a上に配置されている。本実施形態では、このように互いに接合されたシェル(第1部材)51及びノズル(第2部材)52の一方の部材における表面上に、両探触子12が被検査部55に対して前後に並べられる配置を第1の配置と称する。尚、本実施形態においては、両探触子12が並べられる方向は、被検査部55と直交する方向であるが、略直交(前記直交する方向に対して10°以内が好ましい。)する方向であってもよい。また、前記第1の配置では、被検査部55に対して前側に発信探触子12aが配置され、後側に受信探触子12bが配置されているが、逆の配置、即ち、被検査部55に対して前側に受信探触子12bが配置され、後側に発信探触子12aが配置されてもよい。   At this time, as shown in FIGS. 3A to 3C, the two probes (the transmitting probe and the receiving probe) 12a and 12b are covered along the welded portion We. They are arranged side by side in a direction orthogonal to the inspection unit 55. Both probes 12 are arranged on the shell flaw detection surface 51a. In the present embodiment, the two probes 12 are moved back and forth with respect to the inspected portion 55 on the surface of one member of the shell (first member) 51 and the nozzle (second member) 52 thus joined together. The arrangement arranged in a row is referred to as a first arrangement. In the present embodiment, the direction in which the two probes 12 are arranged is a direction orthogonal to the inspected portion 55, but is substantially orthogonal (preferably within 10 ° with respect to the orthogonal direction). It may be. In the first arrangement, the transmitting probe 12a is arranged on the front side with respect to the inspected part 55, and the receiving probe 12b is arranged on the rear side. The reception probe 12b may be disposed on the front side with respect to the unit 55, and the transmission probe 12a may be disposed on the rear side.

このように配置された後、シェル51の表面及びノズル52の表面同士が交差する部位、即ち、溶接部Weからの距離をそれぞれ維持した状態で両探触子12は、被検査部55に沿って探傷面53(シェル探傷面51a)上を移動する。このとき、発信探触子12aは被検査部55に向けて超音波を発信しつつ移動する。一方、受信探触子12bは、発信探触子12aが発信して検査対象部材50内を伝播し、被検査部55内に欠陥CLが生じていた場合にこの欠陥CLで回折又は反射した超音波を探傷面53から受信しつつ移動する。   After being arranged in this way, the two probes 12 follow the portion 55 to be inspected while maintaining the distance between the surface of the shell 51 and the surface of the nozzle 52, that is, the distance from the welded portion We. To move on the flaw detection surface 53 (shell flaw detection surface 51a). At this time, the transmission probe 12a moves while transmitting ultrasonic waves toward the inspected portion 55. On the other hand, the reception probe 12b is transmitted by the transmission probe 12a and propagates in the inspection target member 50, and when the defect CL is generated in the inspected portion 55, the reception probe 12b is diffracted or reflected by the defect CL. It moves while receiving the sound wave from the flaw detection surface 53.

このように被検査部55と直交する方向に並べられた両探触子12は、当該探触子12a,12bを結ぶ方向との交差部付近の被検査部55内の探傷を精度よく検出することができる。そのため、前記のように両探触子12が配置されて被検査部55を走査することで、被検査部55の延びる方向における両探触子12の被検査部55内の欠陥を精度よく検出できる範囲(探傷範囲長さ)と被検査部55全体の長さとが等しく若しくはほぼ等しくなり、被検査部55全体若しくはほぼ全体の探傷が可能となる。   Thus, the two probes 12 arranged in the direction orthogonal to the inspected portion 55 accurately detect flaws in the inspected portion 55 near the intersection with the direction connecting the probes 12a and 12b. be able to. Therefore, the two probes 12 are arranged as described above, and the inspected portion 55 is scanned, so that the defects in the inspected portions 55 of the two probes 12 in the extending direction of the inspected portions 55 are accurately detected. The possible range (the flaw detection range length) and the entire length of the inspected portion 55 are equal or substantially equal, and the entire inspected portion 55 or substantially the entire flaw can be detected.

また、前記のように両探触子12が被検査部55に沿って移動しつつ当該被検査部55内の欠陥CLの検出を行うため、被検査部55内の欠陥CLの有無の検出だけでなく、当該被検査部55に沿った欠陥の長さ(欠陥長さ)Lも検出可能となる(図4(b)参照)。   Further, as described above, since the two probes 12 move along the inspected portion 55 and detect the defect CL in the inspected portion 55, only the presence / absence of the defect CL in the inspected portion 55 is detected. In addition, the length (defect length) L of the defect along the inspected portion 55 can also be detected (see FIG. 4B).

さらに、本実施形態のように、探傷面53が両探触子12の移動(走査)方向に沿って湾曲するような曲面であっても、発信探触子12aからの超音波が到達する被検査部55の部位に対する前記超音波の到達位置の変化が従来の走査方向に沿って間隔をおいた配置の一対の探触子での走査時に比べて小さくなる。即ち、前記被検査部55の部位に対する発信探触子12aからの超音波の到達位置が走査する方向に沿った探傷面53の曲率変化の影響を受け難くなる。そのため、前記受信探触子で受信した受信波形からの欠陥検出が前記従来の被検査部に沿って間隔をおいた場合に比べて容易になる。   Furthermore, even if the flaw detection surface 53 is a curved surface curved along the movement (scanning) direction of the two probes 12 as in the present embodiment, the ultrasonic wave from the transmission probe 12a reaches. The change of the arrival position of the ultrasonic wave with respect to the site of the inspection unit 55 is smaller than that in the conventional scanning with a pair of probes arranged at intervals along the scanning direction. In other words, the arrival position of the ultrasonic wave from the transmission probe 12a with respect to the portion of the inspected portion 55 is hardly affected by the curvature change of the flaw detection surface 53 along the scanning direction. Therefore, the defect detection from the received waveform received by the receiving probe is easier than in the case where the conventional inspection target part is spaced.

このように両探触子12を第1の配置で走査したときに得られた受信波形(図4(a)参照)は、超音波探傷器30に送信される。超音波探傷器30は、この受信波形を両探触子12の探傷面53上での走査距離と対応付けて探傷結果記憶手段に記憶する。また、この受信波形に表れる欠陥上端信号Sig1及び欠陥下端信号Sig2と走査距離等とに対応して導出された探傷画像(図4(b)参照)が超音波探傷器30の表示手段32に表示される。   The reception waveform (see FIG. 4A) obtained when the two probes 12 are scanned in the first arrangement in this way is transmitted to the ultrasonic flaw detector 30. The ultrasonic flaw detector 30 stores this received waveform in the flaw detection result storage means in association with the scanning distance on the flaw detection surface 53 of both probes 12. Further, flaw detection images (see FIG. 4B) derived corresponding to the defect upper end signal Sig1 and the defect lower end signal Sig2 appearing in the received waveform and the scanning distance are displayed on the display means 32 of the ultrasonic flaw detector 30. Is done.

ここで、欠陥上端信号Sig1(又は欠陥下端信号Sig2)とは、発信探触子12aから発信されて検査対象部材50内を伝播し、欠陥上端CLa(又は欠陥下端CLb)で回折又は反射した後、他の部位で回折や反射されることなく受信探触子12bで受信された超音波の受信信号(受信波形)をいう。   Here, the defect upper end signal Sig1 (or defect lower end signal Sig2) is transmitted from the transmission probe 12a, propagates through the inspection target member 50, and is diffracted or reflected by the defect upper end CLa (or defect lower end CLb). This refers to an ultrasonic reception signal (reception waveform) received by the reception probe 12b without being diffracted or reflected by other parts.

このように両探触子12の第1の配置での走査が終了すると、両探触子12の配置を変更し、この変更後の配置で再度走査が行われる。   When scanning in the first arrangement of both probes 12 is thus completed, the arrangement of both probes 12 is changed, and scanning is performed again with the changed arrangement.

前記の両探触子12の配置変更は、具体的には、図5(a)乃至図5(c)に示されるように、前記第1の配置での一方の探触子(受信探触子)12bの探傷面53上の位置を維持しつつ両探触子12a,12bの相対位置を前記直交する方向(両探触子12が並んでいた方向)に沿って変化させる。配置変更後の両探触子12は、発信探触子12aがノズル52の表面(ノズル探傷面52a)上に配置され、受信探触子12bがシェル51の表面(シェル探傷面51a)上に配置されている。   Specifically, the change in the arrangement of the two probes 12 is performed as shown in FIGS. 5 (a) to 5 (c). One probe (reception probe) in the first arrangement is used. The relative position of the probes 12a and 12b is changed along the orthogonal direction (the direction in which the probes 12 are arranged) while maintaining the position of the probe 12b on the flaw detection surface 53. In both the probes 12 after the change of the arrangement, the transmission probe 12a is arranged on the surface of the nozzle 52 (nozzle flaw detection surface 52a), and the reception probe 12b is on the surface of the shell 51 (shell flaw detection surface 51a). Has been placed.

本実施形態では、このように両探触子12における発信探触子(一方)12aがノズル探傷面52a上に配置されると共に受信探触子(他方)12bがシェル探傷面51a上に配置される配置を第2の配置と称する。尚、第2の配置では、前記第1の配置同様に、両探触子12の配置が入れ替わってもよい。即ち、受信探触子12bがノズル探傷面52a上に配置され、発信探触子12aがシェル探傷面51a上に配置されていてもよい。   In the present embodiment, the transmitting probe (one) 12a in both probes 12 is thus arranged on the nozzle flaw detection surface 52a, and the receiving probe (the other) 12b is arranged on the shell flaw detection surface 51a. This arrangement is referred to as a second arrangement. In the second arrangement, the arrangement of the probes 12 may be interchanged as in the first arrangement. In other words, the reception probe 12b may be disposed on the nozzle flaw detection surface 52a, and the transmission probe 12a may be disposed on the shell flaw detection surface 51a.

この第2の配置で前記第1の配置での走査同様に前記被検査部55が走査され、得られた受信波形(図6(a)参照)が超音波探傷器30に送信される。また、前記同様、この受信波形に表れる欠陥上端信号Sig1及び欠陥下端信号Sig2と走査距離等とに基づいて導出された探傷画像(図6(b)参照)が超音波探傷器30の表示手段32に表示される。   In this second arrangement, the inspected portion 55 is scanned in the same manner as in the first arrangement, and the obtained received waveform (see FIG. 6A) is transmitted to the ultrasonic flaw detector 30. Similarly to the above, the flaw detection image (see FIG. 6B) derived based on the defect upper end signal Sig1 and the defect lower end signal Sig2 appearing in the received waveform and the scanning distance or the like is displayed on the display means 32 of the ultrasonic flaw detector 30. Is displayed.

以上のように両探触子12の配置を変更し、それぞれ前記走査を行うことで得られた受信波形が超音波探傷器30及び解析用計算器40によって解析されることで、被検査部55内の欠陥CLの有無、欠陥存在位置が検出される。以下でこの解析について図7(a)乃至図8も参照しつつ説明する。   As described above, the arrangement of the probes 12 is changed, and the received waveforms obtained by performing the scanning are analyzed by the ultrasonic flaw detector 30 and the analyzing calculator 40, whereby the inspected portion 55 The presence / absence of a defect CL and the position where the defect exists are detected. This analysis will be described below with reference to FIGS. 7 (a) to 8 as well.

超音波探傷器30は、受信探触子12bから第1の配置での走査において得られた受信波形に欠陥CLからの信号が含まれているか否かを判定する。欠陥CLからの信号が含まれていると判定した場合には、走査距離と欠陥信号が含まれていると判定されている時間とに基づき、欠陥CLの被検査部55に沿った長さ、即ち、欠陥長さLが求められる。   The ultrasonic flaw detector 30 determines whether or not a signal from the defect CL is included in the reception waveform obtained in the scan in the first arrangement from the reception probe 12b. When it is determined that the signal from the defect CL is included, the length of the defect CL along the inspected portion 55 based on the scanning distance and the time during which it is determined that the defect signal is included, That is, the defect length L is obtained.

具体的には、両探触子12を被検査部55に沿って走査し、探傷画像上に欠陥の上端と下端とを表示させる(図4(b)及び図6(b)参照)。この欠陥上端CLa及び下端CLbの探傷画像上の左右両端部は円弧状となり、この円弧状部分を除いた直線部の長さが欠陥長さLとなる。詳細には、両探触子12の配置と検出された欠陥信号の時間に対応する放物線カーソルを探傷画像上に表示させ、検出された欠陥画像の端部の曲率と前記放物線カーソルの曲率とが一致した位置を欠陥の長さ方向の端部とし、左右両端の位置を計測することによって欠陥長さLが導出される。   Specifically, both the probes 12 are scanned along the inspected portion 55, and the upper and lower ends of the defect are displayed on the flaw detection image (see FIGS. 4B and 6B). The left and right ends of the defect upper end CLa and the lower end CLb on the flaw detection image are arcuate, and the length of the straight line portion excluding the arcuate portion is the defect length L. Specifically, a parabolic cursor corresponding to the arrangement of the probes 12 and the time of the detected defect signal is displayed on the flaw detection image, and the curvature of the edge of the detected defect image and the curvature of the parabolic cursor are determined. A defect length L is derived by measuring the positions of the left and right ends using the coincident position as an end in the length direction of the defect.

この欠陥長さLが導出された後、第1の配置及び第2の配置での走査で受信探触子12bがそれぞれ受信した前記超音波に基づき、前記被検査部55内での欠陥CLにおける前記超音波の回折又は反射した部位が存在する可能性のある存在可能性位置がそれぞれ導出される。そして、これら第1の配置及び第2の配置での各存在可能性位置に基づき欠陥CLにおける前記超音波の回折又は反射した部位の被検査部55内での正確な存在位置が導出される。このようにして導出された前記存在位置を用いて欠陥CLの被検査部55と直交する方向における長さ、即ち、欠陥高さHが求められる。   After the defect length L is derived, the defect CL in the inspected portion 55 is detected based on the ultrasonic waves respectively received by the reception probe 12b in the scans in the first and second arrangements. Potential positions where there is a possibility that a portion where the ultrasonic wave is diffracted or reflected are derived. Then, based on each possibility position in the first arrangement and the second arrangement, an accurate existence position in the inspected portion 55 of the portion where the ultrasonic wave is diffracted or reflected in the defect CL is derived. Using the existence position thus derived, the length of the defect CL in the direction orthogonal to the inspected part 55, that is, the defect height H is obtained.

具体的には、例えば、以下のようにして欠陥CLの被検査部55内での存在位置が導出される。   Specifically, for example, the existence position of the defect CL in the inspected portion 55 is derived as follows.

まず、受信探触子12bで受信した受信波形(超音波)に基づき発信探触子12aから欠陥CLの所定の部位を経て受信探触子12bに至る超音波の伝播距離(第1欠陥伝播距離)を求める。詳細には、発信探触子12aから前記欠陥CLの前記所定の部位(本実施形態においては、欠陥CLの上端CLa又は下端CLb)で回折又は反射されて受信探触子12bに至る超音波の欠陥信号伝播時間t1又はt2(図4(a)及び図6(a)参照)を求め、この欠陥信号伝播時間t1又はt2と検査対象部材50内の超音波の伝播速度とから第1欠陥伝播距離を求める。   First, based on the received waveform (ultrasonic wave) received by the receiving probe 12b, the propagation distance of ultrasonic waves (first defect propagation distance) from the transmitting probe 12a to the receiving probe 12b through a predetermined portion of the defect CL. ) Specifically, the ultrasonic wave that is diffracted or reflected from the transmitting probe 12a at the predetermined portion of the defect CL (in this embodiment, the upper end CLa or the lower end CLb of the defect CL) and reaches the receiving probe 12b. The defect signal propagation time t1 or t2 (see FIGS. 4A and 6A) is obtained, and the first defect propagation is determined from the defect signal propagation time t1 or t2 and the propagation speed of the ultrasonic wave in the inspection target member 50. Find the distance.

そして、発信探触子12aから検査対象部材50(詳細には、被検査部55)内の仮想点Vp(図7(a)参照)で回折して受信探触子12bに至る前記超音波の伝播距離(PS1+PS2)が第1欠陥信号伝播距離と一致した状態で発信探触子12aが探傷面53に対して種々の方向の超音波を発信したときの仮想点の軌跡で構成される回転楕円面を求める。   Then, the ultrasonic wave diffracted from the transmission probe 12a to the reception probe 12b by being diffracted at the virtual point Vp (see FIG. 7A) in the inspection target member 50 (specifically, the inspected portion 55). A rotating ellipse composed of a locus of virtual points when the transmission probe 12a transmits ultrasonic waves in various directions to the flaw detection surface 53 in a state where the propagation distance (PS1 + PS2) coincides with the first defect signal propagation distance. Find a face.

この回転楕円面と両探触子12a,12bを通り且つ探傷面53に直交する面(ローカス解析平面(図7(a)及び図7(b)における紙面))との交線である第1のローカスRc1を求める。この第1のローカスRc1は、楕円曲線で構成され、被検査部55内における欠陥CLの所定の部位(本実施形態においては、欠陥CLの上端CLa又は下端CLb)が存在する可能性のある点の軌跡(存在可能性位置)であり、欠陥上端CLa及び下端CLbに対応した2本の第1のローカスRc1が求められる。   A first line that intersects the spheroid and a plane that passes through both the probes 12a and 12b and is orthogonal to the flaw detection surface 53 (the locus analysis plane (the paper surface in FIGS. 7A and 7B)). The locus Rc1 is obtained. The first locus Rc1 is configured by an elliptic curve, and there is a possibility that a predetermined portion of the defect CL in the inspected portion 55 (in this embodiment, the upper end CLa or the lower end CLb of the defect CL) may exist. The two first loci Rc1 corresponding to the defect upper end CLa and the lower end CLb are obtained.

同様にして、第2の配置での走査において得られた受信波形に基づき第2の存在可能性位置、即ち、第2のローカスRc2を求める。   Similarly, the second existence possibility position, that is, the second locus Rc2 is obtained based on the received waveform obtained in the scanning with the second arrangement.

このようにして求められた第1のローカスRc1と第2のローカスRc2とを用い、欠陥上端CLaに対応する第1及び第2のローカスRc1,Rc2同士の交点N1、並びに欠陥下端CLbに対応する第1及び第2のローカスRc1,Rc2同士の交点N2をそれぞれ求める。この交点N1,N2から欠陥CLの被検査部55内での上端位置及び下端位置を求めることで、被検査部55内での欠陥CLの上端位置及び下端位置を精度よく検出できる。   Using the first locus Rc1 and the second locus Rc2 thus obtained, the intersection N1 between the first and second locus Rc1, Rc2 corresponding to the defect upper end CLa, and the defect lower end CLb. The intersection N2 between the first and second locus Rc1, Rc2 is obtained. By obtaining the upper end position and the lower end position of the defect CL in the inspected portion 55 from the intersections N1 and N2, the upper end position and the lower end position of the defect CL in the inspected portion 55 can be detected with high accuracy.

さらに、これら被検査部55内での正確な欠陥上端CLa及び下端CLbの位置を用いることで欠陥CLの欠陥高さHが正確に(精度よく)求められる。   Furthermore, the defect height H of the defect CL is accurately (accurately) obtained by using the positions of the accurate defect upper end CLa and lower end CLb in the inspected portion 55.

前記の実施形態に係る超音波探傷方法及び超音波探傷装置10を用いて超音波探傷を行った。図9に示されるように、試験体Exとして前記ノズル溶接部を模擬した200mm厚さのものを用いた。この試験体は、材質が炭素鋼で、その内表面がステンレス鋼の肉盛溶接にて形成され、前記の実施形態におけるノズル52に相当する部分の厚さが96mm、シェル51に相当する部分の厚さが200mmに形成されている。前記の実施形態における溶接部Weに相当する部分には人工欠陥ACL1乃至ACL3が形成されている。   Ultrasonic flaw detection was performed using the ultrasonic flaw detection method and the ultrasonic flaw detection apparatus 10 according to the above embodiment. As shown in FIG. 9, a specimen having a thickness of 200 mm simulating the nozzle weld was used as the specimen Ex. This test body is made of carbon steel, and the inner surface is formed by overlay welding of stainless steel. The thickness of the portion corresponding to the nozzle 52 in the above embodiment is 96 mm, and the portion corresponding to the shell 51 is The thickness is 200 mm. Artificial defects ACL1 to ACL3 are formed in a portion corresponding to the welded portion We in the embodiment.

この人工欠陥ACL1乃至ACL3は、試験体Ex内に形成された割れを模擬したスリット状の人工欠陥で、前記の実施形態における溶接部Weに相当する部分の外表面、内表面及び内部にそれぞれ設けられている。また、試験体Exの内表面部は肉盛溶接が施されている。   These artificial defects ACL1 to ACL3 are slit-like artificial defects that simulate cracks formed in the specimen Ex, and are provided on the outer surface, the inner surface, and the inner portion of the portion corresponding to the welded portion We in the above-described embodiment. It has been. In addition, overlay welding is performed on the inner surface portion of the specimen Ex.

外表面及び内表面に設けられた外表面欠陥ACL1と内表面欠陥ACL2との大きさ(寸法)は、高さが5mm、長さが10mmである。また、内部に設けられた内部欠陥ACL3の大きさは、高さが14mm、長さが14mmである。尚、前記人工欠陥ACL1乃至ALC3の高さは、欠陥高さ方向の長さであり、前記人工欠陥ACL1乃至ACL3の長さは、欠陥長さ方向の長さである。   The size (dimensions) of the outer surface defect ACL1 and the inner surface defect ACL2 provided on the outer surface and the inner surface is 5 mm in height and 10 mm in length. The internal defect ACL3 provided inside has a height of 14 mm and a length of 14 mm. The height of the artificial defects ACL1 to ALC3 is the length in the defect height direction, and the length of the artificial defects ACL1 to ACL3 is the length in the defect length direction.

この試験体Exに対し、各探触子から溶接部に対応する部位(被検査部)までの距離の変更等を行った複数の条件で第1の配置での走査及び第2の配置での走査をそれぞれ行った。また、これら種々の条件における第1の配置及び第2の配置での走査結果から第1及び第2のローカスを求め、その交点から欠陥高さを導出した。その結果を表1に示す。   The test body Ex is scanned in the first arrangement and in the second arrangement under a plurality of conditions in which the distance from each probe to the part (inspected part) corresponding to the welded part is changed. Each scan was performed. Further, the first and second loci were obtained from the scanning results in the first and second arrangements under these various conditions, and the defect height was derived from the intersection. The results are shown in Table 1.

Figure 2009192236
Figure 2009192236

この結果から、全ての欠陥が検出されていることが確認できる。   From this result, it can be confirmed that all defects have been detected.

上記結果において、欠陥長さ及び欠陥高さは、いずれも測定値の方が実際の人工欠陥ACL1乃至ACL3の大きさ(実測値)よりも大きな値となっている。欠陥寸法の測定において、実測値(実際の寸法)より測定値の方が大きな値となることは、工業分野では安全側に評価される。   In the above results, the defect length and the defect height are both larger in the measured values than the actual sizes (actually measured values) of the artificial defects ACL1 to ACL3. In the measurement of defect dimensions, the fact that the measured value is larger than the actually measured value (actual dimension) is evaluated on the safety side in the industrial field.

以上より、当該超音波探傷方法及び超音波探傷装置におけるノズル溶接部の欠陥検出能力及び寸法測定能力の有用性が確認できた。   From the above, the usefulness of the defect detection ability and the dimension measurement ability of the nozzle weld in the ultrasonic flaw detection method and ultrasonic flaw detection apparatus could be confirmed.

尚、本発明に係る超音波探傷方法及び超音波探傷装置10は、前記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the ultrasonic flaw detection method and the ultrasonic flaw detection apparatus 10 according to the present invention are not limited to the above-described embodiments, and various changes can be made without departing from the scope of the present invention. .

例えば、前記の実施形態においては、欠陥CLの検出の際に、第1の配置での走査及び第2の配置での走査を順に行っているが、第2の配置での走査を行った後、第1の配置での走査を行っても同様の精度で欠陥の検出を行うことが可能である。   For example, in the above-described embodiment, when the defect CL is detected, the scan in the first arrangement and the scan in the second arrangement are sequentially performed, but after the scan in the second arrangement is performed. Even when scanning is performed in the first arrangement, it is possible to detect defects with the same accuracy.

また、図10(a)及び図10(b)に示されるように、前記の実施形態における第1(又は第2)の配置(図10(a)及び図10(b)における実線の位置)での走査を行った後、発信探触子12aを第1(又は第2)の配置において両探触子12a,12bがそれぞれ配置されている同一部材の探傷面51a(又は52a)上で被検査部55と直交(又は略直交)する方向にそれぞれ移動させた第1a(又は第2a)の配置(図10(a)及び図10(b)における二点差線の位置)とし、この第1a(又は第2a)の配置での走査を行うようにしてもよい。   Further, as shown in FIGS. 10A and 10B, the first (or second) arrangement in the above-described embodiment (the position of the solid line in FIGS. 10A and 10B). After scanning, the transmitting probe 12a is covered on the flaw detection surface 51a (or 52a) of the same member in which both the probes 12a and 12b are arranged in the first (or second) arrangement. The 1a (or 2a) arrangement (the position of the two-dot chain line in FIGS. 10 (a) and 10 (b)) moved in the direction orthogonal (or substantially orthogonal) to the inspection unit 55 is used. You may make it scan by the arrangement of (or 2a).

この場合、欠陥の上端と下端に対応する第1及び第1a(又は第2及び第2a)のローカスRc1,Rc1a(又はRc2及びRc2a)同士の交点N1(又はN2)を求める際に、ローカス同士の交差角が前記の実施形態に比べて小さくなるが、交点N1,N2間の距離から欠陥高さを求めることが可能である。   In this case, when obtaining the intersection N1 (or N2) of the first and first a (or second and second a) loci Rc1, Rc1a (or Rc2 and Rc2a) corresponding to the upper and lower ends of the defect, However, the height of the defect can be obtained from the distance between the intersections N1 and N2.

また、前記の実施形態においては、両探触子12の配置を変更し、異なる配置での走査をそれぞれ行っているが、欠陥CLの有無及び欠陥長さLのみの検出を目的とする場合であれば、1つの配置(例えば、第1の配置のみ、又は第2の配置のみ)での走査により検出可能である。   In the above-described embodiment, the arrangement of the probes 12 is changed and scanning is performed in different arrangements. However, in the case where only the presence / absence of the defect CL and the defect length L are detected. If there is, it can be detected by scanning in one arrangement (for example, only the first arrangement or only the second arrangement).

また、前記の実施形態においては、検査対象部材50として円筒の周面形状のシェル51に円筒形状のノズル52を前記シェル51の表面と直交する方向に接合(溶接)された部材が用いられているが、これに限定される必要はない。例えば、図16(a)及び図16(b)に示されるように、ノズル52の軸がシェル51の軸方向及び円周方向にオフセットするように接合された部材であってもよい。また、図16(c)及び図16(d)に示されるように、表面が球面形状(曲面形状)のシェル51であってもよいし、ノズルの軸心がオフセットされていてもよい。また、図16(e)乃至図16(g)に示されるように、いわゆるT継手、角継手又は十字継手で構成される部材であってもよい。   In the above-described embodiment, a member in which a cylindrical nozzle 52 is joined (welded) to a cylindrical circumferential shell 51 in a direction orthogonal to the surface of the shell 51 is used as the inspection target member 50. However, it need not be limited to this. For example, as shown in FIG. 16A and FIG. 16B, a member joined so that the axis of the nozzle 52 is offset in the axial direction and the circumferential direction of the shell 51 may be used. Further, as shown in FIGS. 16C and 16D, the surface may be a shell 51 having a spherical shape (curved surface), or the axis of the nozzle may be offset. Further, as shown in FIGS. 16 (e) to 16 (g), a member constituted by a so-called T joint, a corner joint, or a cross joint may be used.

即ち、本発明に係る超音波探傷方法及び超音波探傷装置によれば、前記図16(a)乃至図16(g)に記載の部材における溶接部We及びこの溶接部Weを含んで当該溶接部Weに沿って延びる被検査部内の欠陥の有無、欠陥存在位置及び欠陥大きさの検出が可能である。   That is, according to the ultrasonic flaw detection method and the ultrasonic flaw detection apparatus according to the present invention, the welded portion We in the member described in FIGS. 16A to 16G and the welded portion including the welded portion We. It is possible to detect the presence / absence of a defect in the inspected part extending along We, the position where the defect exists, and the size of the defect.

本実施形態に係る超音波探傷装置の概略構成図である。1 is a schematic configuration diagram of an ultrasonic flaw detector according to an embodiment. 同実施形態に係る超音波探傷装置における(a)は平滑な当接面を有するシューを備えた探触子の側面図であり、(b)は平滑な当接面を有するシューの背面図である。In the ultrasonic flaw detector according to the embodiment, (a) is a side view of a probe including a shoe having a smooth contact surface, and (b) is a rear view of the shoe having a smooth contact surface. is there. 同実施形態に係る超音波探傷方法における(a)は両探触子を第1の配置とした検査対象部材の斜視図であり、(b)は図3(a)の両探触子の配置位置における部分拡大断面図であり、(c)は図3(a)の平面図である。In the ultrasonic flaw detection method according to the embodiment, (a) is a perspective view of a member to be inspected in which both probes are in the first arrangement, and (b) is an arrangement of both probes in FIG. 3 (a). It is a partial expanded sectional view in a position, and (c) is a top view of Drawing 3 (a). 同実施形態に係る超音波探傷方法における(a)は第1の配置での受信波形を示し、(b)は第1の配置での探傷画像である。In the ultrasonic flaw detection method according to the embodiment, (a) shows a received waveform in the first arrangement, and (b) is a flaw detection image in the first arrangement. 同実施形態に係る超音波探傷方法における(a)は両探触子を第2の配置とした検査対象部材の斜視図であり、(b)は図5(a)の両探触子の配置位置における部分拡大断面図であり、(c)は図5(a)の平面図である。In the ultrasonic flaw detection method according to the embodiment, (a) is a perspective view of a member to be inspected in which both probes are in the second arrangement, and (b) is an arrangement of both probes in FIG. 5 (a). It is a partial expanded sectional view in a position, and (c) is a top view of Drawing 5 (a). 同実施形態に係る超音波探傷方法における(a)は第2の配置での受信波形を示し、(b)は第2の配置での探傷画像である。In the ultrasonic flaw detection method according to the embodiment, (a) shows a received waveform in the second arrangement, and (b) is a flaw detection image in the second arrangement. 同実施形態に係る超音波探傷方法における(a)は解析用計算器が行う第1の配置での欠陥存在位置の解析処理の説明図であり、(b)は解析用計算器が行う第2の配置での欠陥存在位置の解析処理の説明図である。In the ultrasonic flaw detection method according to the embodiment, (a) is an explanatory diagram of the analysis process of the defect location in the first arrangement performed by the analysis computer, and (b) is a second diagram performed by the analysis computer. It is explanatory drawing of the analysis process of the defect presence position in arrangement | positioning. 同実施形態に係る超音波探傷方法における解析用計算機が行う欠陥高さの解析処理の説明図である。It is explanatory drawing of the analysis process of the defect height which the calculator for analysis performs in the ultrasonic flaw detection method which concerns on the embodiment. 試験体における人工欠陥の位置を示す部分拡大断面図である。It is a partial expanded sectional view which shows the position of the artificial defect in a test body. 他実施形態に係る超音波探傷方法における(a)は第1及び第1aの配置を示す部分拡大断面図であり、(b)は第2及び第2aの配置を示す部分拡大断面図である。(A) in the ultrasonic flaw detection method which concerns on other embodiment is a partial expanded sectional view which shows arrangement | positioning of 1st and 1a, (b) is a partial expanded sectional view which shows arrangement | positioning of 2nd and 2a. 平板状の2枚の鋼板を突合せ溶接した場合の溶接部内部の欠陥をTOFD法を用いて検出する場合における(a)は超音波の伝播経路を示す説明図であり、(b)は受信波形を示す図であり、(c)は両探触子の走査方向を示す図である。(A) is explanatory drawing which shows the propagation path of an ultrasonic wave in the case of detecting the defect inside a welding part at the time of butt-welding two flat steel plates using a TOFD method, (b) is a received waveform. (C) is a figure which shows the scanning direction of both probes. 円筒の周面形状のシェルに円筒形状のノズルが接合されている検査対象部材の接合部内の欠陥をCG−TOFD法を用いて検出する場合における(a)は両探触子を配置した検査対象部材の斜視図であり、(b)は両探触子を配置位置における部分拡大断面図である。(A) in the case of detecting a defect in a joint portion of a member to be inspected in which a cylindrical nozzle is joined to a cylindrical shell of a cylindrical surface by using the CG-TOFD method is an inspection subject in which both probes are arranged. It is a perspective view of a member, (b) is the elements on larger scale in the arrangement position of both probes. (a)は被検査部に沿って一対の探触子が平行配置された検査対象部材の斜視図であり、(b)は両探触子間の中間位置における部分拡大断面図であり、(c)は両探触子の配置位置における部分拡大平面図である。(A) is a perspective view of a member to be inspected in which a pair of probes are arranged in parallel along the part to be inspected, and (b) is a partially enlarged cross-sectional view at an intermediate position between the two probes. c) is a partially enlarged plan view of the arrangement positions of the two probes. (a)及び(b)は、探触子の移動が規制される検査対象部材の一例を示す図である。(A) And (b) is a figure which shows an example of the test object member by which the movement of a probe is controlled. 円筒の周面形状のシェルに円筒形状のノズルが接合されている検査対象部材における両探触子の配置及び走査方向を示す図である。It is a figure which shows arrangement | positioning and the scanning direction of both the probes in the to-be-inspected member by which the cylindrical nozzle is joined to the cylindrical shell of the surrounding surface shape. (a)乃至(g)は、本発明に係る超音波探傷方法及び超音波探傷装置で探傷可能な検査対象部材を例示する図である。(A) thru | or (g) is a figure which illustrates the to-be-inspected member which can be flaw-detected with the ultrasonic flaw detection method and ultrasonic flaw detection apparatus which concern on this invention.

符号の説明Explanation of symbols

10 超音波探傷装置
12 両探触子
12a 発信探触子
12b 受信探触子
53 探傷面
55 被検査部
CL 欠陥
DESCRIPTION OF SYMBOLS 10 Ultrasonic flaw detector 12 Both probes 12a Transmission probe 12b Reception probe 53 Test surface 55 Inspected part CL Defect

Claims (9)

互いに接合された第1部材及び第2部材における接合部を含んだ被検査部内に超音波を伝播させ、この伝播させた超音波を受信することで前記被検査部内の欠陥を検出する超音波探傷方法であって、
互いに交差するように前記接合部を介して連接された前記第1部材における第1の特定の面及び第2部材における第2の特定の面によって形成される探傷面上において、当該探傷面に対して前記超音波を発信する発信探触子とこの発信された超音波を前記探傷面から受信する受信探触子とを前記接合部に沿って延びる被検査部に対して直交若しくは略直交する方向に並べて配置し、
前記第1及び第2の特定の面同士が交差する部位からの距離をそれぞれ維持した状態で両探触子を前記被検査部に沿って前記探傷面上を移動させつつ前記被検査部に向けて前記発信探触子から超音波を発信させると共に前記被検査部内に欠陥が生じていた場合にこの欠陥で回折又は反射した超音波を前記受信探触子で受信することを特徴とする超音波探傷方法。
Ultrasonic flaw detection in which an ultrasonic wave is propagated in a portion to be inspected including a joint portion of the first member and the second member joined to each other, and a defect in the portion to be inspected is detected by receiving the propagated ultrasonic wave A method,
On the flaw detection surface formed by the first specific surface of the first member and the second specific surface of the second member connected via the joint so as to cross each other, the flaw detection surface A direction in which the transmitting probe for transmitting the ultrasonic wave and the receiving probe for receiving the transmitted ultrasonic wave from the flaw detection surface are orthogonal or substantially orthogonal to the part to be inspected extending along the joint. Placed side by side,
The probes are moved toward the inspected portion while moving both probes along the inspected portion along the inspected portion while maintaining the distance from the portion where the first and second specific surfaces intersect each other. And transmitting ultrasonic waves from the transmitting probe and receiving a ultrasonic wave diffracted or reflected by the defect with the receiving probe when a defect has occurred in the inspected portion. Flaw detection method.
請求項1に記載の超音波探傷方法において、
前記発信探触子と受信探触子とが共に前記第1の特定の面又は第2の特定の面上に配置されることを特徴とする超音波探傷方法。
The ultrasonic flaw detection method according to claim 1,
The ultrasonic flaw detection method, wherein both the transmission probe and the reception probe are arranged on the first specific surface or the second specific surface.
請求項1に記載の超音波探傷方法において、
前記発信探触子と受信探触子との一方が前記第1の特定の面上に配置されると共に他方が前記第2の特定の面上に配置されることを特徴とする超音波探傷方法。
The ultrasonic flaw detection method according to claim 1,
One of the transmitting probe and the receiving probe is disposed on the first specific surface, and the other is disposed on the second specific surface, and the ultrasonic flaw detection method is characterized in that .
互いに接合された第1部材及び第2部材における接合部を含んだ被検査部内に超音波を伝播させ、この伝播させた超音波を受信することで前記被検査部内の欠陥を検出する超音波探傷方法であって、
互いに交差するように前記接合部を介して連接された前記第1部材における第1の特定の面及び第2部材における第2の特定の面によって形成される探傷面上において、当該探傷面に対して前記超音波を発信する発信探触子とこの発信された超音波を前記探傷面から受信する受信探触子とを前記接合部に沿って延びる被検査部に対して直交若しくは略直交する方向に並べて第1の配置とし、
前記第1及び第2の特定の面同士が交差する部位からの距離をそれぞれ維持した状態で両探触子を前記被検査部に沿って前記探傷面上を移動させつつ前記被検査部に向けて前記発信探触子から超音波を発信させると共に前記被検査部内に欠陥が生じていた場合にこの欠陥で回折又は反射した超音波を前記受信探触子で受信することで前記被検査部を走査し、
前記第1の配置での両探触子の相対位置を前記直交若しくは略直交する方向に沿って変化させて第2の配置とし、
この第2の配置で前記被検査部を走査することを特徴とする超音波探傷方法。
Ultrasonic flaw detection in which an ultrasonic wave is propagated in a portion to be inspected including a joint portion of the first member and the second member joined to each other, and a defect in the portion to be inspected is detected by receiving the propagated ultrasonic wave A method,
On the flaw detection surface formed by the first specific surface of the first member and the second specific surface of the second member connected via the joint so as to cross each other, the flaw detection surface A direction in which the transmitting probe for transmitting the ultrasonic wave and the receiving probe for receiving the transmitted ultrasonic wave from the flaw detection surface are orthogonal or substantially orthogonal to the part to be inspected extending along the joint. To the first arrangement,
The probes are moved toward the inspected portion while moving both probes along the inspected portion along the inspected portion while maintaining the distance from the portion where the first and second specific surfaces intersect each other. And transmitting the ultrasonic wave from the transmission probe and receiving the ultrasonic wave diffracted or reflected by the defect when the defect is generated in the inspection target part. Scan,
The relative position of both probes in the first arrangement is changed along the direction orthogonal or substantially orthogonal to the second arrangement,
An ultrasonic flaw detection method comprising scanning the part to be inspected in the second arrangement.
請求項4に記載の超音波探傷方法において、
前記第1の配置及び第2の配置での走査で受信探触子がそれぞれ受信した前記超音波に基づき、前記被検査部内での前記欠陥における前記超音波の回折又は反射した部位が存在する可能性のある存在可能性位置がそれぞれ導出され、
これら第1の配置及び第2の配置での各存在可能性位置に基づき前記欠陥における前記超音波の回折又は反射した部位の前記被検査部内での存在位置が導出されることを特徴とする超音波探傷方法。
The ultrasonic flaw detection method according to claim 4,
There may be a portion where the ultrasonic wave is diffracted or reflected in the defect in the inspected part based on the ultrasonic waves respectively received by the receiving probe in the scanning in the first arrangement and the second arrangement. Each potential position of existence is derived,
The superposition characterized in that the existence position in the inspected part of the ultrasonic diffraction or reflection part in the defect is derived based on the existence possibility positions in the first arrangement and the second arrangement. Sonic flaw detection method.
請求項4又は5に記載の超音波探傷方法において、
前記第1の配置では、前記発信探触子と受信探触子とが共に第1の特定の面又は第2の特定の面上に配置され、
前記第2の配置では、前記発信探触子と受信探触子との一方が第1の特定の面上に配置されると共に他方が第2の特定の面上に配置されることを特徴とする超音波探傷方法。
The ultrasonic flaw detection method according to claim 4 or 5,
In the first arrangement, both the transmitting probe and the receiving probe are arranged on the first specific surface or the second specific surface,
In the second arrangement, one of the transmission probe and the reception probe is arranged on a first specific surface, and the other is arranged on a second specific surface. Ultrasonic flaw detection method.
請求項4又は5に記載の超音波探傷方法において、
前記第1の配置では、前記発信探触子と受信探触子との一方が第1の特定の面上に配置されると共に他方が第2の特定の面上に配置され、
前記第2の配置では、前記発信探触子と受信探触子とが共に第1の特定の面又は第2の特定の面上に配置されることを特徴とする超音波探傷方法。
The ultrasonic flaw detection method according to claim 4 or 5,
In the first arrangement, one of the transmission probe and the reception probe is arranged on a first specific surface and the other is arranged on a second specific surface,
In the second arrangement, the transmission probe and the reception probe are both arranged on the first specific surface or the second specific surface.
請求項4又は5に記載の超音波探傷方法において、
前記第1の配置では、前記発信探触子と受信探触子との一方が第1の特定の面上に配置されると共に他方が第2の特定の面上に配置され、
前記第2の配置では、前記発信探触子又は前記受信探触子が前記第1の配置において配置された位置から同一面上を前記直交若しくは略直交する方向に沿って移動した位置に配置されることを特徴とする超音波探傷方法。
The ultrasonic flaw detection method according to claim 4 or 5,
In the first arrangement, one of the transmission probe and the reception probe is arranged on a first specific surface and the other is arranged on a second specific surface,
In the second arrangement, the transmitting probe or the receiving probe is arranged at a position moved on the same plane from the position arranged in the first arrangement along the orthogonal or substantially orthogonal direction. An ultrasonic flaw detection method characterized by:
互いに接合された第1部材及び第2部材における接合部を含んだ被検査部内に超音波を伝播させ、この伝播させた超音波を受信することで前記被検査部内の欠陥を検出する超音波探傷装置であって、
互いに交差するように前記接合部を介して連接された前記第1部材における第1の特定の面及び第2部材における第2の特定の面によって形成される探傷面上において、前記接合部に沿って延びる被検査部に対して直交若しくは略直交する方向に並べて配置される前記探傷面に対して前記超音波を発信する発信探触子、及びこの発信された超音波を前記探傷面から受信する受信探触子と、
前記第1及び第2の特定の面同士が交差する部位からの距離をそれぞれ維持した状態で両探触子が前記被検査部に沿って前記探傷面上を移動しつつ前記被検査部に向けて前記発信探触子が前記超音波を発信し、前記被検査部内に欠陥が生じていた場合にこの欠陥で回折又は反射した前記超音波を前記受信探触子で受信し、この受信信号から前記被検査部内の欠陥を検出する欠陥検出手段と、を備えることを特徴とする超音波探傷装置。
Ultrasonic flaw detection in which an ultrasonic wave is propagated in a portion to be inspected including a joint portion of the first member and the second member joined to each other, and a defect in the portion to be inspected is detected by receiving the propagated ultrasonic wave A device,
On the flaw detection surface formed by the first specific surface of the first member and the second specific surface of the second member connected via the joint so as to cross each other, along the joint A transmitting probe for transmitting the ultrasonic waves to the flaw detection surface arranged in a direction orthogonal to or substantially orthogonal to the part to be inspected extending, and receiving the transmitted ultrasonic waves from the flaw detection surface A receiving probe;
Both probes move toward the inspected portion while moving on the flaw detection surface along the inspected portion in a state where the distances from the portions where the first and second specific surfaces intersect each other are maintained. The transmitting probe transmits the ultrasonic wave, and when a defect occurs in the inspection target portion, the ultrasonic wave diffracted or reflected by the defect is received by the receiving probe, and the received signal is An ultrasonic flaw detector comprising: defect detection means for detecting a defect in the inspected part.
JP2008030309A 2008-02-12 2008-02-12 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus Expired - Fee Related JP5145066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030309A JP5145066B2 (en) 2008-02-12 2008-02-12 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030309A JP5145066B2 (en) 2008-02-12 2008-02-12 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Publications (2)

Publication Number Publication Date
JP2009192236A true JP2009192236A (en) 2009-08-27
JP5145066B2 JP5145066B2 (en) 2013-02-13

Family

ID=41074401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030309A Expired - Fee Related JP5145066B2 (en) 2008-02-12 2008-02-12 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JP5145066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047705A (en) * 2009-08-25 2011-03-10 Kobe Steel Ltd Ultrasonic flaw inspection method
JP7349390B2 (en) 2020-03-02 2023-09-22 株式会社日立製作所 Ultrasonic inspection device for welded parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248690A (en) * 1998-03-06 1999-09-17 Hitachi Ltd Ultrasonic flaw detector
JP2002062281A (en) * 2000-08-15 2002-02-28 Toshiba Corp Flaw depth measuring method and its device
JP2004138392A (en) * 2002-10-15 2004-05-13 Jfe Koken Corp Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2004191295A (en) * 2002-12-13 2004-07-08 Shinko Inspection & Service Co Ltd Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2004258008A (en) * 2003-02-28 2004-09-16 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detector and ultrasonic flaw detection method
JP2007285813A (en) * 2006-04-14 2007-11-01 Jfe Koken Corp Ultrasonic flaw inspection device and ultrasonic flaw inspection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248690A (en) * 1998-03-06 1999-09-17 Hitachi Ltd Ultrasonic flaw detector
JP2002062281A (en) * 2000-08-15 2002-02-28 Toshiba Corp Flaw depth measuring method and its device
JP2004138392A (en) * 2002-10-15 2004-05-13 Jfe Koken Corp Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2004191295A (en) * 2002-12-13 2004-07-08 Shinko Inspection & Service Co Ltd Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2004258008A (en) * 2003-02-28 2004-09-16 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detector and ultrasonic flaw detection method
JP2007285813A (en) * 2006-04-14 2007-11-01 Jfe Koken Corp Ultrasonic flaw inspection device and ultrasonic flaw inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047705A (en) * 2009-08-25 2011-03-10 Kobe Steel Ltd Ultrasonic flaw inspection method
JP7349390B2 (en) 2020-03-02 2023-09-22 株式会社日立製作所 Ultrasonic inspection device for welded parts

Also Published As

Publication number Publication date
JP5145066B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP2014048169A (en) Ultrasonic flaw detection method and ultrasonic flaw detection device
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
JP5846367B2 (en) Flaw detection method and flaw detection apparatus for welds using TOFD method
JP4355679B2 (en) Ultrasonic test method and ultrasonic test apparatus
JP5574731B2 (en) Ultrasonic flaw detection test method
TWI471559B (en) Ultrasonic sensor, the use of its inspection methods and inspection devices
JP4148959B2 (en) Ultrasonic flaw detection method and apparatus
JP2012145512A (en) Ultrasonic flaw detection device and ultrasonic flaw detection method
JP5145066B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP6026245B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2007322350A (en) Ultrasonic flaw detector and method
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP5738684B2 (en) Ultrasonic flaw detection test method, ultrasonic flaw detection test apparatus and ultrasonic flaw detection test program incorporating surface shape identification processing of ultrasonic flaw detection test specimen
JP3740123B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2008164397A (en) Flaw detection method and flaw detector used therein
JP2009014513A (en) Ultrasonic flaw detection method
Pereira et al. Non-destructive material testing in welding: ultrasonic scanning
JP5478989B2 (en) Ultrasonic flaw detection method
JP2023049117A (en) Ultrasonic flaw detection data processing program, ultrasonic flaw detection data processing device, and method for determining analyte
JP2006138672A (en) Method of and device for ultrasonic inspection
JP5955638B2 (en) Weld metal shape estimation method, estimation apparatus, and estimation program
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
JP2009139225A (en) Method of detecting end of defect or the like and detection device for detecting end of defect or the like
Mares Simulation as a support for ultrasonic testing
JP2004191088A (en) Ultrasonic flaw detection method and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5145066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees