JP2009189576A - 血流計測装置及び血流計測装置を用いた脳活動計測装置 - Google Patents

血流計測装置及び血流計測装置を用いた脳活動計測装置 Download PDF

Info

Publication number
JP2009189576A
JP2009189576A JP2008033617A JP2008033617A JP2009189576A JP 2009189576 A JP2009189576 A JP 2009189576A JP 2008033617 A JP2008033617 A JP 2008033617A JP 2008033617 A JP2008033617 A JP 2008033617A JP 2009189576 A JP2009189576 A JP 2009189576A
Authority
JP
Japan
Prior art keywords
light
blood flow
measurement
measuring device
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008033617A
Other languages
English (en)
Other versions
JP5295584B2 (ja
Inventor
Yoshiyuki Sankai
嘉之 山海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2008033617A priority Critical patent/JP5295584B2/ja
Priority to US12/499,309 priority patent/US8945018B2/en
Publication of JP2009189576A publication Critical patent/JP2009189576A/ja
Application granted granted Critical
Publication of JP5295584B2 publication Critical patent/JP5295584B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Neurology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】本発明は血流を正確に計測することを課題とする。
【解決手段】脳活動計測装置100は、頭部に装着される血流計測装置20と、血流計測装置20によって計測された透過光量の検出信号に基づいて脳の活動状態(赤血球の分布)を計測する制御部30と、制御部30から出力された計測結果(血流データ)を外部機器に無線で送信する無線通信装置40とを有する。血流計測装置20は、帽子型のベース22に光を照射して光導波路を形成する光学式センサユニット24(24〜24)が多数配置されている。データ管理装置50は、無線通信装置40から送信された血流計測データを受信する無線通信装置60と、無線通信装置60から得られた血流計測データを格納するデータベース70と、データベース70を介して供給された血流計測データに基づいて画像データを作成する計測データ画像表示制御装置80と、計測データ画像表示制御装置80によって生成された計測結果の画像データを表示するモニタ90とを有する。
【選択図】図1

Description

本発明は、血液に含まれる酸素飽和濃度の影響を受けずに血液の供給状態を正確に計測するよう構成された血流計測装置及び血流計測装置を用いた脳活動計測装置に関する。
例えば、血液の流れを計測する装置としては、光導波路を形成するプローブを頭部に装着し、脳の血流を計測して脳の活動状態の画像をモニタに表示する脳活動計測装置がある(例えば、特許文献1参照)。
また、別の脳活動計測装置としては、生体に対して光を照射する光源、生体より放出される複数波長の光を検出する送受光器を含む光計測手段と、複数波長の透過光量変化から血液内に含まれる特定成分の経時変化を求める経時変化計測手段と、特定成分の経時変化及び特定成分の血液中の比率から血流を算出する血流演算手段を備える装置もある(例えば、特許文献2参照)。この特許文献1、2の装置では、複数の発光部、複数の受光部を頭部に装着し、近赤外分光法を用いて脳内部を伝搬した透過光量を検出することにより脳機能の活動状態をマッピング処理する装置であって、光トポグラフィ装置とも呼ばれている。
また、脳以外の血流を計測する血流計測装置としては、血液層に光を照射して血液層を透過する透過光量を計測して血栓の有無を計測する装置もある(例えば、特許文献3参照)。
上記特許文献1〜3に記載された装置のように光導波路を形成する発光部と受光部とを用いて血流を計測する方法では、血液中を透過した光の透過光量が変化するものの、脳の活動に応じて変動する赤血球の量または密度(ヘマトクリット)を計測するものではない。一方、赤血球中に含まれるヘモグロビン(Hb)は、光を吸収・散乱反射する性質をもっており、その光学特性は血液中のHb密度や酸素飽和度、光路長によって影響を受けることが知られている。従って、上記のような光計測手段を用いて血流を計測する計測方法では、赤血球の細胞内に含まれるヘモグロビンと、酸素飽和度(赤血球によって運搬される酸素量)との2つの条件によって計測結果が変化する。
そのため、血液中の酸素飽和度が一定である場合には、赤血球の量または密度(ヘマトクリット)に応じた透過光量に基づいて血流の計測を正確に行えるが、脳や筋肉の活動によっては、酸素消費量が増減した場合には、酸素分圧(PaO2)によって酸素飽和度が変動し、酸素飽和度によって光の吸収率が変化することで、酸素飽和度による透過光量の変動も血流の変化として計測しまうおそれがある。
特開2003−149137号公報 特開2003−144401号公報 特開2002−345787号公報
上記特許文献1〜3の計測装置を用いて、脳や筋肉に血液を供給する血管の血流を計測する場合、脳や筋肉の活動が活発になると血液中の酸素分圧が変化するため、酸素分圧によって酸素飽和度が変動することで脳や筋肉の活動状態を正確に計測することが難しかった。
また、脳の場合、活動が活発になるのに伴って脳における酸素消費量が増大するため、無数の毛細血管によって脳への血液供給を行なっている。そのため、センサの大きさ(光導波路を形成するプローブの直径)によって複数の毛細血管が存在する所定範囲の血流を計測することになる。しかしながら、従来の血流計測装置及び脳活動計測装置では、酸素飽和度の異なる血液が複数の毛細血管を流れる場合、酸素飽和度の変化による透過光量の変化も検出してしまうので、脳の活動状態を正確に計測することが難しかった。
また、脳以外の血管の血流を計測する場合でも、血液中の酸素飽和度が一定しないときは、赤血球の量または密度(ヘマトクリット)と、酸素飽和度の両方の因子によって透過光量が変動してしまうため、血流を正確に計測することが難しかった。
そこで、本発明は上記事情に鑑み、上記課題を解決した血流計測装置及び血流計測装置を用いた脳活動計測装置を提供することを目的とする。
上記課題を解決するため、本発明は以下のような手段を有する。
本発明は、被計測領域に光を照射する発光部と前記被計測領域を伝搬した光を受光する受光部とを有するセンサユニットと、前記受光部から出力された信号に基づいて被計測領域の血流状態を計測する制御部とを有する血流計測装置であって、前記発光部から出射された光を前記発光部から距離の異なる位置に配置された少なくとも2つの前記受光部で受光し、前記制御部は、少なくとも前記2つの受光部から得られた信号に含まれる酸素飽和度による成分をキャンセルするような演算処理を行なって前記被計測領域の血流状態を計測することにより、上記課題を解決するものである。
また、本発明は、請求項1に記載の血流計測装置であって、前記発光部は、血液中の酸素飽和度によって光学特性に影響を受けにくい波長を有する第1の光と、血液の酸素飽和度によって光学特性に影響を受ける波長を有する第2の光とを出射することにより、上記課題を解決するものである。
また、本発明は、請求項1または2に記載の血流計測装置であって、前記制御部は、前記受光部が前記第1の光を受光したときの第1の透過光量と、前記第2の光を受光したときの第2の透過光量とを比較して前記被計測領域の血流状態を計測することにより、上記課題を解決するものである。
また、本発明は、請求項3に記載の血流計測装置であって、前記制御部は、少なくとも前記2つの受光部から出力された前記第1、第2の光の透過光量に応じた計測データに基づいて前記被計測領域の血流状態を計測することにより、上記課題を解決するものである。
また、本発明は、請求項1乃至4の何れかに記載の血流計測装置であって、前記センサユニットは、前記発光部から前記被計測領域に進む光に対する屈折率と、前記被計測領域から前記受光部に進む光の屈折率とが異なるように構成された光路分離部材を有し、前記発光部と前記受光部とが前記光路分離部材を介して光の発光、受光を行なうことにより、上記課題を解決するものである。
また、本発明は、請求項1乃至5の何れかに記載の前記血流計測装置を用いて脳の血流を計測し、前記血流計測装置によって計測された結果に基づき前記脳の活動状態を計測することにより、上記課題を解決するものである。
また、本発明は、請求項6に記載の脳活動計測装置であって、前記センサユニットを異なる位置に複数個設け、前記制御部は、前記複数のセンサユニットのうち一のセンサユニットの発光部から光りを発光させ、当該一のセンサユニットから異なる距離で離間した少なくとも2つの前記センサユニットの受光部で受光した光の透過光量を検出し、前記2つの受光部から出力された前記第1、第2の光の透過光量に応じた計測データに基づいて前記被計測領域の脳活動状態を計測することにより、上記課題を解決するものである。
また、本発明は、請求項7に記載の脳活動計測装置であって、前記制御部は、前記複数のセンサユニットの全ての前記発光部を順次発光させ、当該発光させた一のセンサユニットから異なる距離で離間した少なくとも2つのセンサユニットの受光部で受光した光り強度を検出し、前記2つの受光部から出力された前記第1、第2の光の透過光量に応じた計測データに基づいて前記被計測領域の脳活動状態を計測することにより、上記課題を解決するものである。
また、本発明は、請求項6乃至8の何れかに記載の脳活動計測装置であって、前記センサユニットは、脳波を計測するための脳波計測用電極を有することにより、上記課題を解決するものである。
また、本発明は、請求項9に記載の脳活動計測装置であって、前記脳波計測用電極は、前記光路分離部材の先端面から側面に形成されることにより、上記課題を解決するものである。
本発明によれば、発光部から出射された光を発光部から距離の異なる位置に配置された少なくとも2つ以上の受光部で受光し、少なくとも2つ以上の受光部から得られた信号に基づいて被計測領域の血流状態を計測するため、2つ以上の受光部から得られた信号に含まれる酸素飽和度による成分を相殺することが可能になり、被計測領域を流れる血液中に含まれる赤血球の容積の割合に応じた信号から血流及び脳活動状態を正確に計測することが可能になる。
以下、図面を参照して本発明を実施するための最良の形態について説明する。
図1は本発明による血流計測装置を用いた脳活動計測装置の一実施例を示すシステム構成図である。図1に示されるように、脳活動計測システム10は、脳活動計測装置100と、脳活動計測装置100によって計測されたデータを管理するデータ管理装置50とを有する。尚、図1では、脳活動計測装置100を頭部片側のみ図示しているが、紙面の裏側となる反対側も同様な構成になっている。
脳活動計測装置100は、頭部に装着される血流計測装置20と、血流計測装置20によって計測された透過光量の検出信号に基づいて脳の活動状態(赤血球の分布)を計測する制御部30と、制御部30から出力された計測結果(血流データ)を外部機器に無線で送信する無線通信装置40とを有する。
制御部30は、少なくとも2つ以上の受光部から得られた信号に含まれる酸素飽和度による成分をキャンセルするような演算処理(後述する演算式参照)を行なう制御プログラムが格納されている。
血流計測装置20は、帽子型のベース22に光を照射して光導波路を形成する光学式センサユニット24(24〜24)が多数配置されている。本実施例では、センサユニット24の直径が10mm〜50mm程度であるので、半球形状のベース22には、150〜300個程度のセンサユニット24が所定の配置パターン(所定の間隔)で取り付けられている。多数のセンサユニット24は、予め計測対象の計測位置に応じたアドレスデータによって個々に管理されており、各センサユニット24から得られた計測データは、夫々のアドレスデータと共に送信されて保存される。
尚、多数のセンサユニット24(24〜24)の配置パターンは、一定の間隔毎にマトリックス状に配列されることが望ましいが、被計測体となる頭部形状が一定ではなく、頭部の大きさも曲面形状も様々であるので、不規則な間隔で配置されるようにしても良い。
また、脳活動計測装置10は、出力手段として無線通信装置40を有するため、本実施例において、無線通信装置40から送信された血流データを管理するデータ管理装置50と組み合わせて使用されるが、他の外部機器(例えば、パーソナルコンピュータなどの電子機器あるいはアクチュエータなどの制御対象となる機器)にデータを送信することも可能である。
データ管理装置50は、無線通信装置40から送信された血流計測データを受信する無線通信装置60と、無線通信装置60から得られた血流計測データを格納するデータベース70と、データベース70を介して供給された血流計測データに基づいて画像データを作成する計測データ画像表示制御装置80と、計測データ画像表示制御装置80によって生成された計測結果の画像データを表示するモニタ90とを有する。
また、データ管理装置50は、脳活動計測装置100と無線通信が行えるので、脳活動計測装置100から離れた場所に設置することも可能であり、例えば、被計測者から見えない場所に設置することも可能である。
図2Aはセンサユニット24の取付構造を拡大して示す図である。尚、図2Aにおいては、多数配置されたセンサユニット24のうちセンサユニット24A,24B,24Cが装着された状態を示している。図2に示されるように、各センサユニット24A,24B,24Cは、可撓性を有する半球形状のベース22の取付孔26に挿入され、接着剤などにより固定される。従って、各センサユニット24A,24B,24Cは、ベース22の取付孔26に固定されることで先端部分が被験者の頭部表面220に接触するように保持される。各センサユニット24A,24B,24Cは、夫々が同一構成であり、同一箇所に同一符号を付す。
センサユニット24は、頭部表面220にレーザ光(出射光)Aを照射するレーザダイオードからなる発光部120と、受光した透過光量に応じた電気信号を出力する受光素子からなる受光部130と、発光部120から被計測領域に向けて照射されたレーザ光Aに対する屈折率と、被計測領域を通過して入射され受光部130に進む入射光B、Cの屈折率とが異なるように構成されたホログラムからなる光路分離部材140とを有する。
また、光路分離部材140の外周には、脳波を計測するための脳波計測用電極150が嵌合しており、脳波計測用電極150は円筒形状に形成され、光路分離部材140の先端面から側面に形成されている。脳波計測用電極150の上端は、フレキシブル配線板160の配線パターンに電気的に接続されている。
発光部120及び受光部130は、上面側がフレキシブル配線板160の下面側に実装されている。フレキシブル配線板160には、制御部30に接続される配線パターンが形成されており、配線パターンには各センサユニット24に対応する位置に発光部120及び受光部130の接続端子が半田付けなどによって電気的に接続されている。尚、フレキシブル配線板160は、センサユニット24の先端が被計測領域に接触した際の頭部の形状に応じて撓むことができるので、装着または脱着操作を行なう際に断線が起きないように構成されている。
脳波計測用電極150は、先端で内側に折り曲げられた接触子152が光路分離部材140の端面よりも突出している。そのため、光路分離部材140の端面が被計測領域に当接したとき、接触子152も当該被計測領域に接触して脳波計測が可能になる。また、脳波計測用電極150は、光路分離部材140の外周及び先端縁部に蒸着やめっき等の薄膜形成法により導電性膜を被覆する方法で形成することも可能である。さらに、脳波計測用電極150の材質として、例えば、ITO(Indium Tin Oxide)と呼ばれる酸化インジウム錫による透明な導電性膜を光路分離部材140の外周及び先端縁部に形成することも可能である。この透明導電性膜で脳波計測用電極150を形成した場合には、脳波計測用電極150が透光性を有することになるため、光路分離部材140の外周及び先端面全体を脳波計測用電極150で覆うことが可能になる。
また、通常では、脳の断層写真を撮影する等して血流の状態を計測しながら脳波を計測することはできないが、センサユニット24に電極150を設けることにより、血流と脳波を同時に計測することが可能になり、脳内の血流と脳波との相関関係を詳しく分析することが可能になる。
血流計測を行なう際、制御部30は、多数配列されたセンサユニット24の中から任意のセンサユニット24を選択し、当該センサユニット24の発光部120からレーザ光Aを発光させる。このとき、発光部120から出射されるレーザ光は、酸素飽和度の影響を受けない波長λ(λ≒805nm)で出力される。
また、各センサユニット24は、先端(光路分離部材140の端面)が頭部の被計測領域に当接した状態に保持されている。発光部120から出射されるレーザ光Aは、光路分離部材140を透過して頭部の頭皮に対して垂直方向から脳内部に向けて入射される。脳内部においては、レーザ光Aが脳中心部に向けて進行すると共に、レーザ光Aが入射位置を基点として脳表面に沿うように周辺に向けて伝搬する。このレーザ光Aの脳内の光伝搬経路170は、側方からみると円弧状に形成され、頭部の血管180を通過して頭皮表面220に戻る。
このように光伝搬経路170を通過した光は、血管180を流れる血液に含まれる赤血球の量または密度に応じた透過光量に変化しながら受光側のセンサユニット24B,24Cに到達する。また、レーザ光Aは、脳内部を伝搬する過程で透過光量が徐々に低下するため、レーザ光Aが入射位置を基点から離れる程、距離に比例して受光部130の受光レベルが低下する。従って、レーザ光Aの入射位置からの離間距離よっても受光される透過光量が変化する。
図2Aにおいて、左端に位置するセンサユニット24Aを発光側基点とすると、そのセンサユニット24A自身と、その右隣りのセンサユニット24Bと、さらに右隣りのセンサユニット24Cとは、受光側基点(計測ポイント)となる。
光路分離部材140は、例えば、透明なアクリル樹脂の密度分布を変化させることで、レーザ光Aを直進させ、入射光B、Cを受光部130に導くように形成されている。また、光路分離部材140は、発光部120から出射されたレーザ光Aを基端側(図2Aでは上面側)から先端側(図2Aでは下面側)に透過させる出射側透過領域142と、脳内を伝搬した光を先端側(図2Aでは下面側)から基端側(図2Aでは上面側)に透過させる入射側透過領域144と、出射側透過領域142と入射側透過領域144との間に形成された屈折領域146とを有する。この屈折領域146は、レーザ光Aを透過させるが、血流を通過した光(入射光B、C)を反射させる性質を有する。屈折領域146は、例えば、アクリル樹脂の密度を変化させたり、この領域に金属薄膜を設けたり、金属の微粒子を分散させることにより形成される。これにより、光路分離部材140の先端から入射された光は全て受光部130に集光される。
図2Bはセンサユニット24の変形例を示す図である。図2Bに示されるように、変形例のセンサユニット24Xでは、光路分離部材140の下端に回折格子190が設けられている。回折格子190の下面側周縁部は、脳波計測用電極150の先端を内側に折り曲げた接触子152により保持される。回折格子190は、裏面及び表面に微細な凹凸パターンが形成されており、頭部表面22からの入射光が凹凸パターンの境界部分を通過する際に回折作用により受光部130の方に屈折するように構成された光学素子である。
ここで、血流計測方法の原理について説明する。
図3は血流計測方法の原理を説明するための図である。図3に示されるように、外部から血液に対しレーザ光Aを照射すると、血液層230に入射したレーザ光Aは、通常の赤血球240による反射散乱光成分、及び付着血栓による反射散乱光成分の両成分の光として、血液中を透過して進行する。
光が血液層を透過する過程において受ける影響は、血液の状態によって刻々と変化するため、透過光量(反射光量としてもよい)を連続的に計測し、その光量変化を観測することによりさまざまな血液の性質の変化を観察することが可能となる。
脳の活動が活発になると、脳内での酸素消費量が増加するため、酸素を運搬する赤血球のヘマトクリット及び血液の酸素飽和度に起因する血流の状態が光量の変化となって現れる。
ここで、ヘマトクリット(Hct:単位体積当たりの赤血球の体積比、即ち、単位体積当たりの赤血球の体積濃度を示す。Htとも表記する。)等の変化も同様にヘモグロビン密度の変化に関係する要因であり、光量変化に影響を及ぼす。本実施例における基本的な原理は、このようにレーザ光Aを用いた、血流による光路・透過光量の変化で血流の状態を計測し、さらには脳内の血流状態から脳活動状態を計測する点である。
さらに、本発明の特徴をその原理的な構成で説明する。血液の光学的特性は、血球成分(特に赤血球の細胞内部のヘモグロビン)によって決定される。また、赤血球は、ヘモグロビンが酸素と結合しやすい性質を有しているので、脳細胞に酸素を運搬する役目も果たしている。そして、血液の酸素飽和度は、血液中のヘモグロビンの何%が酸素と結合しているかを表す数値である。また、酸素飽和度は動脈血液中の酸素分圧(PaO2)と相関があり、呼吸機能(ガス交換)の重要な指標である。
酸素分圧が高ければ酸素飽和度も高くなることが分かっており、酸素飽和度が変動すると、血液を透過した光の透過光量も変動する。そのため、血流の計測を行なう際は、酸素飽和度の影響を除くことでより正確な計測が可能になる。
また、酸素分圧(PaO2)に影響を与えている因子としては、肺胞換気量があり、さらには大気圧や吸入酸素濃度(FiO2)などの環境、換気/血流比やガス拡散能、短絡率などの肺胞でのガス交換がある。
制御部30は、上記センサユニット24A,24B,24Cの受光部130によって生成された透過光量(光強度)に応じた信号の処理を行なう演算手段を有する。この演算手段では、後述するようにセンサユニット24B,24Cの受光部130から出力された計測値に基づいて血流状態を検出するための演算処理を行なう。
発光部120のレーザ光Aは、所定時間間隔(例えば、10Hz〜1MHz)で間欠的に照射されるパルス光又は連続光として照射する。この場合、パルス光を用いる場合には、パルス光の点減する周波数である点減周波数を、血液流速に応じて決定し、連続的に又は該点減周波数の2倍以上の計測サンプリング周波数で計測する。また、連続光を用いる場合には、計測サンプリング周波数を、血液流速に応じて決定して計測する。
血液中のヘモグロビン(Hb)は、呼吸をすることにより肺で酸素と化学反応を生じてHbO2となり血液中に酸素を取り込むこととなるが、呼吸の状態等により、血液に酸素を取り込んだ度合(酸素飽和度)が微妙に異なる。すなわち、本発明では、血液に光を照射すると、この酸素飽和度によって光の吸収率が変化するという現象を発見し、この現象は上記レーザ光Aによる血流の計測において外乱要素となるため、酸素飽和度による影響を除去することにした。
図4はレーザ光の波長と、血液の酸素飽和度を変えた場合の光の吸収状態の関係を示すグラフである。体内では赤血球に含まれるヘモグロビンは、酸素と結合した酸化ヘモグロビン(HbO2:グラフII)と酸化されていないヘモグロビン(Hb:グラフI)に分けられる。この2つの状態では、光に対する光吸収率が大きく異なる。例えば、酸素をたっぷりと含んだ血液は鮮血として色鮮やかである。一方、静脈血は酸素を手放しているのでどんよりと黒ずんでいる。これらの光吸収率の状態は、図4のグラフI,IIに示すように広い光の波長領域で変化している。
この図4のグラフI,IIから特定の波長を選択することにより、生体内の酸素代謝などにより赤血球中のヘモグロビンの酸素飽和度が大きく変動しても、光吸収率が影響を受けないで血液に光を照射して血流を計測できることが分かる。
赤血球中のヘモグロビンの酸素飽和度によらず、ある波長領域では光吸収率が小さくなっている。これにより、光が波長λによって血液層を通過しやすいか否かが決まることになる。従って、所定の波長領域(例えば、λ=800nm近辺から1300nm近辺)の光を用いれば、酸素飽和度の影響を小さく抑制して血流を計測することが可能となる。
よって、本発明で用いるレーザ光Aの波長領域は、ほぼ600nm近辺から1500nmを利用し、これにより、ヘモグロビン(Hb)の光吸収率が実用上十分低くかつ、この領域に等吸収点Xを含むため、2波長以上の計測点を活用し、計算上、等吸収点とみなせる。つまり、酸素飽和度の影響を受けない仕様とすることが可能となる。尚、それ以外の波長領域では、λ=600nm未満では、光吸収率が高くなりS/Nが低下し、λ=1500nmをこえた波長では、受光部130の受光感度が十分でなく血液中の他の成分等の外乱が影響し精度のよい計測ができなくなる。
このため、本実施例では、発光部120に波長可変半導体レーザからなる発光素子を用い、発光部120から発光されるレーザ光Aの波長を、グラフI,IIで等吸収点Xとなるλ1=805nm(第1の光)と、グラフIにおいて光吸収率が最も低い波長λ2=680nm(第2の光)の2種類に設定する。
ここで、レーザ光Aが光伝搬経路170(図2参照)を介して伝搬した光を受光する場合の透過光量に基づく赤血球濃度R,Rp,Rpwの検出方法について説明する。
従来の計測方法で行なわれた1点1波長方式を用いた場合の赤血球濃度Rの演算式(1)は、次式のように表せる。
R=log10(Iin/Iout)=f(Iin,L,Ht)…(1)
この(1)式の方法では、赤血球濃度が発光部120から出射されたレーザ光Aの入射透過光量Iinと、発光部120と受光部130との距離(光路長)Lと、前述したヘマトクリット(Ht)との関数になる。そのため、(1)式の方法で赤血球濃度を求める際は、3つの因子によって赤血球濃度が変動するため、赤血球濃度を正確に計測することが難しい。
本実施例による2点1波長方式を用いた場合の赤血球濃度Rpの演算式(2)は、次式のように表せる。
Rp=log10{Iout/(Iout−ΔIout)}=Φ(ΔL,Ht)…(2)
この(2)式の方法では、図2に示すようにレーザ光Aから距離の異なる2点(センサユニット24B,24Cの受光部130)で受光するため、赤血球濃度は2つの受光部130間距離ΔLと、前述したヘマトクリット(Ht)との関数になる。そのため、(2)式の方法で赤血球濃度を求める際は、2つの因子のうち受光部130間距離ΔLが予め分かっているので、赤血球濃度がヘマトクリット(Ht)を係数とした値として計測される。よって、この演算方法では、赤血球濃度をヘマトクリット(Ht)に応じた計測値として正確に計測することが可能になる。
さらに、本実施例の変形例による2点2波長方式を用いた場合の赤血球濃度Rpwの演算式(3)は、次式のように表せる。
Rpw
=[log10{Iout/(Iout−ΔIout)}λ1]/[log10{Iout/(Iout−ΔIout)}λ2]
=ξ(Ht)・・・(3)
この(3)式の方法では、発光部120から出射されるレーザ光Aの波長を異なるλ1,λ2(本実施例では、λ1=805nm、λ2=680nmに設定する)とすることで赤血球濃度をヘマトクリット(Ht)のみの関数として計測される。よって、この演算方法によれば、赤血球濃度をヘマトクリット(Ht)に応じた計測値として正確に計測することが可能になる。
ここで、被計測領域となる脳について説明する。図5は脳を左側面から見た図である。図5に示されるように、人間の脳300は、大脳301と、小脳302と、脳幹303とからなる。大脳301は、人体の運動機能をコントロールする中枢であり、大脳皮質が人体の各部(手、肘、肩、腰、膝、足首の各関節など)に対応して各運動野に分かれる。例えば、大脳300には、前頭前野330、前運動野340、運動野350、体性感覚野360等を有する。さらに、大脳300には、前頭葉眼球運動野332、ブローカ領域334、嗅覚領域336があり、前運動野340には、運動連合野342がある。
さらに、運動野350は、人体の手足の運動を行なうための領域であり、例えば、肩運動野352、肘運動野354を有する。そのため、肩運動野352、肘運動野354の血流を計測し、各領域の血流の変化をマッピング処理することにより肩や肘をどのように動かそうとしているかを検知することが可能になる。
図6は脳の血流から脳活動を計測する場合の原理を説明するための図である。図6に示されるように、脳300は、髄液400、頭蓋骨410、頭皮420によって覆われている。各センサユニット24は、光路分離部材140の先端面を頭皮420に接触させて血流の計測を行なう。センサユニット24Aの発光部120から出射されたレーザ光Aは、頭皮420、頭蓋骨410、髄液400を透過して脳300内部に進行する。そして、頭部に照射された光は、図6中破線で示すような円弧状パターン440で放射方向(深さ方向及び半径方向)に伝搬する。
この光の伝搬は、レーザ光が照射された基点450から半径方向に離間するほど光伝搬経路が長くなって光透過率が低下するため、発光側のセンサユニット24Aに所定距離離間して隣接されたセンサユニット24Bの受光レベル(透過光量)は強く、その次はその隣りに所定距離離間して設けられたセンサユニット24Cの受光レベル(透過光量)がセンサユニット24Cの受光レベルより弱く検出される。また、発光側のセンサユニット24Aの受光部でも、脳300からの光を受光する。これらの複数のセンサユニット24で受光された光強度に応じた検出信号をマッピング処理することで血流の変化に応じた光強度分布が縞模様の図形(等高線)として得られる。
また、各センサユニット24から出力された検出信号(受光した透過光量に応じた信号)を前述した(2)式または(3)式のIoutとすることで赤血球濃度をヘマトクリット(Ht)に応じた計測値(酸素飽和度に影響されない値)として正確に計測することが可能になる。
ここで、図7を参照して脳活動計測装置100の制御部30が実行する脳の血流計測処理について説明する。図7に示されるように、制御部30は、大脳皮質を各運動野毎のブロックに分けて血流計測処理を行なっており、例えば、前頭前野330、前運動野340、運動野350、体性感覚野360の各計測ブロックの血流計測処理を並列処理している。ここでは、例えば、運動野350の血流計測を行なって運動野350の活動状態をマッピング処理する場合について、以下説明する。
先ず、制御部30は、図7のS11で多数配置されたセンサユニットから任意のセンサユニット24A(アドレス番号n=1のセンサユニット)を選択し、当該センサユニット24Aの発光部120からレーザ光を被計測領域(運動野350が収納された頭部領域)に照射させる。続いて、S12では、アドレス番号n=1に隣接するn=n+1のセンサユニット24Bの受光部130から出力された検出信号(受光した透過光量に対応する電気信号)を無線通信装置40からデータ管理装置50に送信する。データ管理装置50では、無線通信装置60から得られたn=n+1のデータをデータベース70に格納する。
次のS13では、アドレス番号n=n+1に隣接するn=n+2のセンサユニット24Cの受光部130から出力された検出信号(受光した透過光量に対応する電気信号)を無線通信装置40からデータ管理装置50に送信する。データ管理装置50では、無線通信装置60から得られたn=n+2のデータをデータベース70に格納する。
このように、レーザ光Aを発光したセンサユニット24Aを基点としてその周囲に配置された全てのセンサユニット24の検出信号をデータ管理装置50に送信する。
そして、S14では、発光点となるセンサユニットのアドレスをn+1に変更する。次のS15では、全てのセンサユニット24が発光したか否かをチェックする。S15において、全てのセンサユニット24が発光完了していないときは、上記n+1のセンサユニット24Bの発光部120からレーザ光Aを照射させてS11〜S15の処理を繰り返す。
また、S15において、全てのセンサユニット24が発光完了したときは、当該計測ブロックの血流計測処理を終了するか、あるいは当該計測ブロックに対する上記血流計測処理を最初から再度行なっても良い。
ここで、データ管理装置50の計測データ画像表示制御装置80が実行する計測データ画像表示処理について図8を参照して説明する。計測データ画像表示制御装置80は、図8のS21でデータベース70に格納された計測データ(血流に応じた透過光量によるデータ)を読み込む。続いて、S22に進み、計測データと前述した演算式(2)または(3)を用いて赤血球濃度RpまたはRpwを演算する。
次のS23では、各計測ポイント毎の赤血球濃度の分布図(等高線で示す線図)を作成し、この分布図の画像データをデータベース70に格納する。そして、S24に進み、全計測ポイントについての赤血球濃度RpまたはRpwの演算が完了したか否かをチェックする。S24において、全計測ポイントについての赤血球濃度RpまたはRpwの演算が完了していないときは、上記S21に戻り、S21以降の処理を繰り返す。
また、S24において、全計測ポイントについての赤血球濃度RpまたはRpwの演算が完了したときは、S25に進み、赤血球濃度の分布を示した脳活動状態図をモニタ90に表示する。
このように、脳活動計測装置100によって計測された血流に応じた計測データから赤血球濃度RpまたはRpwを演算して当該計測ブロックにおける赤血球濃度分布に基づく脳活動状態がモニタ90に表示されるため、被計測領域の脳活動状態を正確に確認することが可能になる。
ここで、計測データ画像表示制御装置80において、脳活動計測装置100から送信された計測データを分析して脳の血流量(赤血球濃度)の計測結果としての得られる画像データの表示例について説明する。図9Aは肩運動野352、肘運動野354の計測前の状態を模式的に示す図である。図9Bは腕を挙げようとする場合の計測データから得られた画像データを模式的に示す図である。図9Cは肘を曲げながら腕を挙げようとする場合の計測データから得られた画像データを模式的に示す図である。
図9Aに示されるように、脳300の肩運動野352(破線で示す領域)には、肩関節の内転筋領域352a、外転筋領域352bがあり、肘運動野354(破線で示す領域)には、肘関節の屈曲筋領域354a、伸展筋領域354bがある。
図9Bに示されるように、例えば、脳300が腕を挙げようと思考したとき、肩運動野352の内転筋領域352a、外転筋領域352bを中心とする等高線のような活動領域360の画像データが作成されて、モニタ90に表示される。この活動領域360の画像データにおいて、密な部分は光強度が強く、血流が多いことを示し、粗の部分は光強度が弱く、血流が少ないことを示している。よって、図9Bに示す図形から肩運動野352の内転筋領域352a、外転筋領域352bでの脳活動が活発化していることから、腕を挙げるように指令を出していることが分かる。
図9Cに示されるように、例えば、脳300が肘を曲げながら腕を挙げようと思考したとき、肩運動野352の内転筋領域352a、外転筋領域352b及び肘運動野354の屈曲筋領域354aを中心とする等高線のような活動領域370の画像データが作成されて、モニタ90に表示される。この活動領域370において、密な部分は光強度が強く、血流が多いことを示し、粗の部分は光強度が弱く、血流が少ないことを示している。よって、図9Cに示す図形から肩運動野352の内転筋領域352a、外転筋領域352b及び肘運動野354の屈曲筋領域354aでの脳活動が活発化していることから、肘を曲げながら腕を挙げるように指令を出していることが分かる。
ここで、図10A〜図10Dを参照して深さ方向の血流の計測結果の表示例について説明する。図10Aは発光部120から出射された光の光伝搬経路を模式的に示す図である。図10Bは発光部120から光が照射された直後(経過時間t1)の状態を示すA−A線に沿う縦断面図である。図10Cは発光部120から光が照射された経過時間t2が経過した状態を示すA−A線に沿う縦断面図である。図10Dは発光部120から光が照射されて経過時間t3が経過した状態を示すA−A線に沿う縦断面図である。
図10Aに示されるように、発光部120から出射されたレーザ光Aは、例えば、3本の光伝搬経路170で示すようにほぼ円弧状の軌跡をたどるように伝搬する。また、図10B〜図10Dでは、3本の光伝搬経路170とA−A線とが交差する計測点A1,A2,A3の光強度の変化を画像で示している。
図10Bに示されるように、発光部120から光が照射された直後(経過時間t1)の状態の光伝搬経路170は、計測点A3での血流量(受光強度)が最も強く検出されていることが分かる。
図10Cに示されるように、発光部120から光が照射されてから経過時間t2が経過した状態の光伝搬経路170は、計測点A2での血流量(受光強度)が最も強く検出されていることが分かる。
図10Dに示されるように、発光部120から光が照射されてから経過時間t3が経過した状態の光伝搬経路170は、計測点A1での血流量(受光強度)が最も強く検出されていることが分かる。
このように、光伝搬経路170による深さ方向の計測点A1,A2,A3での透過光量に基づいて、深さ方向の血流量の分布を計測することが可能となる。たとえば図10Bから図10Dのような場合には、時間の経過に伴って最も血流量の多い点が脳の内部から表層部に移動していくことを計測することができる。
次に脳活動計測装置100の変形例について説明する。
図11Aは脳活動計測装置の変形例1の装着状態を示す図である。図11Aに示されるように、変形例1の脳活動計測装置100Aの血流計測装置20Aは、球状に形成されたネット状ベース22Aに複数のセンサユニット24が取り付けられている。尚、図11Aでは、脳活動計測装置100Aを頭部片側のみ図示しているが、紙面の裏側となる反対側も同様な構成になっている。
各センサユニット24は、ネットの交差部分に貫通した状態に保持されている。また、ネット状ベース22Aは、装着された頭部表面形状に応じて四角状の連結構造が菱形状に変形して伸縮するため、頭部表面形状に対応した球状に変形することができる。
ネット状ベース22Aは、各交差部分に接続されるネット状の腕部(4本〜8本)が弾性を有する樹脂材により形成されているので、材質自体の弾性によって装着された頭部表面に複数のセンサユニット24の端部を密着することが可能になり、頭部表面形状に拘わらず、複数のセンサユニット24の先端部を計測対象である頭部表面に当接させることが可能になる。
本変形例1では、センサユニット24の直径が10mm〜50mm程度であるので、ネット状ベース22Aには、150〜300個程度のセンサユニット24が所定の配置パターン(所定の間隔)で取り付けられている。また、多数のセンサユニット24は、前述した実施例1と同様に、予め計測対象の計測位置に応じたアドレスデータによって個々に管理されており、各センサユニット24から得られた計測データは、夫々のアドレスデータと共にデータ管理装置50に送信されて保存される。
また、ネット状ベース22Aは、複数のブロックA〜Nに仕切られており、各ブロックA〜N毎に小型の無線通信装置400A〜400N(図11中、黒丸で示す)を設けてある。そのため、複数のセンサユニット24による計測データは、各ブロックA〜N毎に無線通信装置400A〜400Nからデータ管理装置50に送信することができる。
図11Bは変形例1の各機器の構成を示すブロック図である。図11Bに示されるように、複数のセンサユニット24は、例えば、脳300を機能別に仕切る各ブロックA〜N毎に分類されており、例えば、センサユニット24A1〜24An、24B1〜24Bn・・・24N1〜24Nnといったようにグループ化されている。各ブロックA〜N毎に設けられた無線通信装置400A〜400Nは、データ管理装置50との無線信号による送受信を行なっており、データ管理装置50から送信される発光指令を受信すると、各ブロックA〜Nの各センサユニット24に対して並列に発光信号を出力する。これにより、各ブロックA〜Nの各発光部120は、順次レーザ光を発光して各ブロックの頭部表面(被計測領域)に照射する。これと共に、各ブロックA〜N毎に設けられたセンサユニット24A1〜24An、24B1〜24Bn・・・24N1〜24Nnの受光部130で受光された透過光量に応じた計測データが無線通信装置400A〜400Nからデータ管理装置50に送信される。そのため、データ管理装置50においては、センサユニット24A1〜24An、24B1〜24Bn・・・24N1〜24Nnによって計測された各ブロックA〜Nの各データが並列処理される。
この変形例1では、脳活動計測装置100Aが複数の無線通信装置400A〜400Nを有するため、センサユニット24A1〜24An、24B1〜24Bn・・・24N1〜24Nnが計測した計測データを短時間で送信できると共に、データ管理装置50において、各ブロックA〜N毎に計測データ分析して各ブロックA〜N毎の画像データを並列処理で効率良く作成することが可能になる。
また、ネット状ベース22Aは、各交差部分に接続される複数の腕部のうちの2本を導電材により形成し、この2本の導電材をセンサユニット24の発光部120、受光部130に接続して発光の指示及び受光された計測データの検出を行なうことも可能である。
図12は脳活動計測装置の変形例2の装着状態を示す図である。図12に示されるように、変形例2の脳活動計測装置100Bの血流計測装置20Bは、樹脂材からなるフレキシブル配線板500に複数の切り込み510A〜510Nが放射状に設けられている。尚、図12では、脳活動計測装置100Bを頭部片側のみ図示しているが、紙面の裏側となる反対側も同様な構成になっている。また、フレキシブル配線板500には、前述した実施例1と同様に複数のセンサユニット24が所定間隔毎に保持されている。
フレキシブル配線板500は、可撓性を有するため、複数の切り込み510A〜510Nによって頭部表面形状に応じた曲面形状に容易に変形することが可能である。しかも、平板状に形成されたフレキシブル配線板500の外側から中心部分に向けて複数の切り込み510A〜510Nを設けると共に、切り込み角度や切り込み長さを調整することにより、様々な曲面形状に対応することが可能になる。そのため、本変形例では、フレキシブル配線板500を撓ませながら頭部表面に簡単に装着することができると共に、計測終了後にフレキシブル配線板500を平面状に戻すだけで容易に分離させることも可能である。
また、フレキシブル配線板500に保持された複数のセンサユニット24は、切り込み510A〜510Nによって仕切られた各領域毎に制御され、センサユニット24A1〜24An、24B1〜24Bn・・・24N1〜24Nnといったようにグループ化される。従って、複数の切り込み510A〜510Nを任意の位置に設けることが可能であるので、被計測領域に応じて各ブロックA〜N毎の領域を設定することが可能になる。
また、本変形例2においても、前述した変形例1と同様、各ブロックA〜N毎に小型の無線通信装置400A〜400N(図12中、黒丸で示す)を設けてある。そのため、複数のセンサユニット24による計測データは、各ブロックA〜N毎に無線通信装置400A〜400Nからデータ管理装置50に送信することができる。
図13は脳活動計測装置の変形例3の装着状態を示す図である。図13に示されるように、変形例3の脳活動計測装置100Cの血流計測装置20Cは、樹脂材からなるフレキシブル配線板600を帯状に形成し、且つフレキシブル配線板600を螺旋状に巻き付けたものである。尚、図13では、脳活動計測装置100Cを頭部片側のみ図示しているが、紙面の裏側となる反対側も同様な構成になっている。また、フレキシブル配線板600には、前述した変形例2と同様に複数のセンサユニット24及び無線通信装置400A〜400N(図13中、黒丸で示す)が所定間隔毎に保持されている。
フレキシブル配線板600は、可撓性を有する帯状に形成されるため、頭部表面形状に自由に巻き付けることができ、頭部の曲面形状に密着するように容易に装着することが可能である。また、非計測者の頭部形状が様々であるが、フレキシブル配線板600の巻き付け範囲を適宜調整するように装着することが可能である。
図14はセンサユニットの変形例を示す縦断面図である。尚、図14において、前述した図2のセンサユニット24と同一部分には、同一符号を付してその説明を省略する。図14に示されるように、変形例のセンサユニット700は、テーパ筒状に形成された脳波計測用電極710の内側にテーパ状に形成された光路分離部材720が挿入保持されている。本変形例においては、光路分離部材720の外周に脳波計測用電極710が一体的に嵌合されている。尚、脳波計測用電極710及び光路分離部材720のテーパ角度は、全長及び上下端部面積などによって任意に設定される。また、光路分離部材720は、前述した実施例1と同様にホログラムからなり、発光部120からのレーザ光を先端部722より出射し、脳300を伝搬し先端部722から入射した光を受光部130に集光する。
脳波計測用電極710の先端部712は、光路分離部材720の先端部722より僅かに下方に突出しているため、頭部表面220に接触して当該被計測領域の脳波を計測することができる。
また、脳波計測用電極710の基端側には大径な鍔部714が設けられている。この鍔部714は、導電材により形成された外筒部材730の内壁を軸方向(上下方向)に摺動可能に挿入されている。外筒部材730は、上記脳波計測用電極710及び光路分離部材720を軸方向に摺動させるための空間740と、空間740の上部を囲むように形成された上部壁部732と、空間740の下部を囲むように形成された下部壁部734とを有する。
脳波計測用電極710の鍔部714と上部壁部732との間には、脳波計測用電極710を下方に付勢する付勢部材(コイルばね)750が介装されている。この付勢部材750は、脳波計測用電極710及び光路分離部材720の先端が頭部表面220に接触すると、その押圧力によって圧縮されるため、その圧縮力に対する弾発力で波計測用電極710及び光路分離部材720の先端を頭部表面220に押圧する。
従って、外筒部材730を下方に押圧するように装着することで、付勢部材750の付勢力が作用して脳波計測用電極710及び光路分離部材720の先端を頭部表面220に密着させることができる。そのため、被計測領域に頭髪が存在する場合でも脳波計測用電極710及び光路分離部材720の先端を頭部表面220に確実に接触させることが可能になる。
光路分離部材720の上端面724には、発光部120と受光部13とが搭載されている。本変形例の光路分離部材720は、上端が大径となるようにテーパ状に形成されているので、上端面724の面積を発光部120及び受光部13のサイズに応じた大きさに設定することができる。また、発光部120及び受光部13のサイズに関係なく光路分離部材720の先端部722の直径を小径化して頭部表面220との接触面積を小さくすることができる。これにより、光路分離部材720の上端面724を頭部表面220に接触する際、頭髪を挟むことが減少して計測精度が高まる。
尚、本変形例において、頭部表面220から発光されたレーザ光A及び光路分離部材720の先端部722から受光された光は、テーパ状の内壁に反射しながら導波路を形成するため、透過光量に影響することはない。
図15は実施例2の血流計測装置の概略構成を示す系統図である。図15に示されるように、実施例2の血流計測装置800は、人工透析を行なう際の血流量を計測する装置であり、人工透析装置810に接続された透析チューブ812に装着されるセンサユニット820と、センサユニット820から出力された計測データに基づいて人工透析装置810を制御する制御部830とを有する。
透析チューブ812は、弾性を有する半透明の樹脂チューブからなる。また、透析チューブ812は、透析を受ける患者840の血管842、844に接続されており、血管842、844から取り出された血液を人工透析装置810に供給する。人工透析装置810には、血液を濾過して透析液を供給する人工腎臓(ダイアライザー)及び血液を送液するポンプ装置とを有する。
制御部830は、センサユニット820によって計測された計測データから血流量及び赤血球濃度を演算し、血流量に応じて人工透析装置810に透析液の供給量及びポンプ回転数を制御する。また、制御部830は、センサユニット820の計測結果及び透析データをパーソナルコンピュータ850に出力する。パーソナルコンピュータ850では、計測結果及び透析データの蓄積及び分析などを行なう。
図16は実施例2のセンサユニット820の構成を示す縦断面図である。図16に示されるように、センサユニット820は、透析チューブ812の一部を上下方向から押圧した状態に保持する保持部材860と、2組のセンサ部870、880とを有する。第1のセンサ部870は、透析チューブ812の上部に配置された第1の発光部872と、透析チューブ812の下部に配置された第1、第2の受光部874,876とから構成されている。また、第2のセンサ部880は、第1のセンサ部870と同様に、透析チューブ812の上部に配置された第2の発光部882と、透析チューブ812の下部に配置された第3、第4の受光部884,886とから構成されている。
この実施例2では、前述した演算式(3)を用いて2点2波長方式の計測方法により赤血球濃度Rpwを計測する。すなわち、第1の発光部872と第2の発光部882から出射されるレーザ光の波長を異なるλ1,λ2(本実施例では、λ1=805nm、λ2=680nmに設定する)とすることで赤血球濃度をヘマトクリット(Ht)のみの関数として計測される。よって、この演算方法によれば、赤血球濃度をヘマトクリット(Ht)に応じた計測値として正確に計測することが可能になる。
図17は実施例3の血流計測装置の概略構成を示す系統図である。図17に示されるように、実施例3の血流計測装置900は、被計測領域の皮膚表面910に接触される計測部920と、計測部920に内蔵されたセンサユニット930と、センサユニット930から出力された計測データに基づいて血流計測画像を生成する制御部940とを有する。
計測部920は、手に持って移動させることができる大きさに形成されており、例えば、人体のどの箇所の血流を計測するかによって適宜移動させることができる。また、計測部920は、円錐状部922の底面が被計測領域に接触される計測面924であり、円錐状部922の上部に把持部926が突出している。従って、血流計測を行なう計測者は、把持部926を把持して計測面924を適宜被計測領域の皮膚表面910に接触させることで、当該被計測領域の血流計測を行える。
センサユニット930は、レーザ光Aを出射する発光部950と、光出射点から異なる距離に配置された一対の受光部960,962と、ホログラムからなる光路分離部材970とを有する。光路分離部材970の上面には、発光部940及び一対の受光部960,962が搭載されており、光路分離部材970の下面が計測面924を形成している。
そのため、発光部940からのレーザ光Aが光路分離部材970を通過して任意の被計測領域の皮膚表面910に照射されると、レーザ光Aは皮膚表面910の下側に配された血管912を流れる血流を透過して計測面924に伝搬する。そして、一対の受光部950,960では、夫々光路分離部材970に伝搬した光を受光し、受光した透過光量に応じた電気信号を制御部940に出力する。
本実施例では、前述した演算式(2)を用いて2点1波長方式の計測方法により血管912を流れる赤血球濃度Rpを計測する。すなわち、赤血球濃度は、2つの受光部960,962間距離ΔLと、前述したヘマトクリット(Ht)との関数となる。そのため、赤血球濃度Rpを求める際は、2つの因子のうち受光部960,962間距離ΔLが予め分かっているので、赤血球濃度がヘマトクリット(Ht)を係数とした値として計測される。よって、この演算方法によれば、赤血球濃度をヘマトクリット(Ht)に応じた計測値として正確に計測することが可能になる。
制御部940は、モニタ980に接続されており、計測部920のセンサユニット930によって計測された血流の計測データから画像データを生成し、その画像データによる計測画像982をモニタ980に表示させる。これにより、計測者は、モニタ980に表示された計測画像982を見ながら計測部920を手に持ったまま計測面924を皮膚表面910に接触させて血流が正常か否かを確認することが可能になる。
また、血流計測装置900は、計測部920を適宜移動させることができるので、頭部以外の箇所の血流も容易に計測できると共に、持ち運びが可能であるので、使用場所を選ばず、医療機関の診察室以外の場所(例えば、地震発生地域での臨時診療所や医療機関以外の建屋、テントでの使用、あるいは屋外)での使用も可能である。
本発明による血流計測装置を用いた脳活動計測装置の一実施例を示すシステム構成図である。 センサユニット24の取付構造を拡大して示す縦断面図である。 センサユニット24の変形例を示す縦断面図である。 血流計測方法の原理を説明するための図である。 レーザ光の波長と、血液の酸素飽和度を変えた場合の光の吸収状態の関係を示すグラフである。 脳を左側面から見た図である。 脳の血流から脳活動を計測する場合の原理を説明するための図である。 脳活動計測装置100の制御部30が実行する脳の血流計測処理を説明するためのフローチャートである。 データ管理装置50の計測データ画像表示制御装置80が実行する計測データ画像表示処理を説明するためのフローチャートである。 肩運動野352、肘運動野354の計測前の状態を模式的に示す図である。 腕を挙げようとする場合の計測データから得られた画像データを模式的に示す図である。 肘を曲げながら腕を挙げようとする場合の計測データから得られた画像データを模式的に示す図である。 発光部120から出射された光の光伝搬経路を模式的に示す図である。 発光部120から光が照射された直後(経過時間t1)の状態を示すA−A線に沿う縦断面図である。 発光部120から光が照射された経過時間t2が経過した状態を示すA−A線に沿う縦断面図である。 発光部120から光が照射されて経過時間t3が経過した状態を示すA−A線に沿う縦断面図である。 脳活動計測装置の変形例1の装着状態を示す図である。 変形例1の各機器の構成を示すブロック図である。 脳活動計測装置の変形例2の装着状態を示す図である。 脳活動計測装置の変形例3の装着状態を示す図である。 センサユニットの変形例を示す縦断面図である。 実施例2の血流計測装置の概略構成を示す系統図である。 実施例2のセンサユニット820の構成を示す縦断面図である。 実施例3の血流計測装置の概略構成を示す系統図である。
符号の説明
10 脳活動計測システム
20,800 血流計測装置
22 ベース
22A ネット状ベース
24(24〜24),24A〜24C,24A1〜24An、24B1〜24Bn・・・24N1〜24Nn,24X,700,820,930 センサユニット
30,830,940 制御部
40,60 無線通信装置
50 データ管理装置
70 データベース
80 計測データ画像表示制御装置
90 モニタ
100,100A〜100C 脳活動計測装置
120,950 発光部
130,960,962 受光部
140,720 光路分離部材
150,710 脳波計測用電極
160,500,600 フレキシブル配線板
170 光伝搬経路
180 血管
220 頭部表面
230 血液層
240 赤血球
300 脳
301 大脳
400A〜400N 無線通信装置
810 人工透析装置
812 透析チューブ
860 保持部材
870,880 センサ部
872 第1の発光部
874,876,884,886 第1〜第4の受光部
882 第2の発光部
900 血流計測装置
910 皮膚表面
920 計測部
924 計測面
970 光路分離部材
980 モニタ

Claims (10)

  1. 被計測領域に光を照射する発光部と前記被計測領域を伝搬した光を受光する受光部とを有するセンサユニットと、前記受光部から出力された信号に基づいて被計測領域の血流状態を計測する制御部とを有する血流計測装置であって、
    前記発光部から出射された光を前記発光部から距離の異なる位置に配置された少なくとも2つの前記受光部で受光し、
    前記制御部は、少なくとも前記2つの受光部から得られた信号に含まれる酸素飽和度による成分をキャンセルするような演算処理を行なって前記被計測領域の血流状態を計測することを特徴とする血流計測装置。
  2. 請求項1に記載の血流計測装置であって、
    前記発光部は、血液中の酸素飽和度によって光学特性に影響を受けにくい波長を有する第1の光と、血液の酸素飽和度によって光学特性に影響を受ける波長を有する第2の光とを出射することを特徴とする血流計測装置。
  3. 請求項1または2に記載の血流計測装置であって、
    前記制御部は、前記受光部が前記第1の光を受光したときの第1の透過光量と、前記第2の光を受光したときの第2の透過光量とを比較して前記被計測領域の血流状態を計測することを特徴とする血流計測装置。
  4. 請求項3に記載の血流計測装置であって、
    前記制御部は、少なくとも前記2つの受光部から出力された前記第1、第2の光の透過光量に応じた計測データに基づいて前記被計測領域の血流状態を計測することを特徴とする血流計測装置。
  5. 請求項1乃至4の何れかに記載の血流計測装置であって、
    前記センサユニットは、
    前記発光部から前記被計測領域に進む光に対する屈折率と、前記被計測領域から前記受光部に進む光の屈折率とが異なるように構成された光路分離部材を有し、
    前記発光部と前記受光部とが前記光路分離部材を介して光の発光、受光を行なうことを特徴とする血流計測装置。
  6. 請求項1乃至5の何れかに記載の前記血流計測装置を用いて脳の血流を計測し、前記血流計測装置によって計測された結果に基づき前記脳の活動状態を計測することを特徴とする脳活動計測装置。
  7. 請求項6に記載の脳活動計測装置であって、
    前記センサユニットを異なる位置に複数個設け、
    前記制御部は、前記複数のセンサユニットのうち一のセンサユニットの発光部から光りを発光させ、当該一のセンサユニットから異なる距離で離間した少なくとも2つの前記センサユニットの受光部で受光した光の透過光量を検出し、前記2つの受光部から出力された前記第1、第2の光の透過光量に応じた計測データに基づいて前記被計測領域の脳活動状態を計測することを特徴とする脳活動計測装置。
  8. 請求項7に記載の脳活動計測装置であって、
    前記制御部は、前記複数のセンサユニットの全ての前記発光部を順次発光させ、当該発光させた一のセンサユニットから異なる距離で離間した少なくとも2つのセンサユニットの受光部で受光した光り強度を検出し、前記2つの受光部から出力された前記第1、第2の光の透過光量に応じた計測データに基づいて前記被計測領域の脳活動状態を計測することを特徴とする脳活動計測装置。
  9. 請求項6乃至8の何れかに記載の脳活動計測装置であって、
    前記センサユニットは、脳波を計測するための脳波計測用電極を有することを特徴とする脳活動計測装置。
  10. 請求項9に記載の脳活動計測装置であって、
    前記脳波計測用電極は、前記光路分離部材の先端面から側面に形成されることを特徴とする脳活動計測装置。
JP2008033617A 2008-02-14 2008-02-14 血流計測装置及び血流計測装置を用いた脳活動計測装置 Active JP5295584B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008033617A JP5295584B2 (ja) 2008-02-14 2008-02-14 血流計測装置及び血流計測装置を用いた脳活動計測装置
US12/499,309 US8945018B2 (en) 2008-02-14 2009-07-08 Blood flow measuring apparatus and brain activity measuring apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008033617A JP5295584B2 (ja) 2008-02-14 2008-02-14 血流計測装置及び血流計測装置を用いた脳活動計測装置

Publications (2)

Publication Number Publication Date
JP2009189576A true JP2009189576A (ja) 2009-08-27
JP5295584B2 JP5295584B2 (ja) 2013-09-18

Family

ID=41072183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008033617A Active JP5295584B2 (ja) 2008-02-14 2008-02-14 血流計測装置及び血流計測装置を用いた脳活動計測装置

Country Status (2)

Country Link
US (1) US8945018B2 (ja)
JP (1) JP5295584B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067833A1 (ja) * 2009-12-01 2011-06-09 株式会社島津製作所 光計測システム、それに用いられる携帯型光計測装置及びそれを用いたリハビリ計画方法
KR101086854B1 (ko) 2010-03-30 2011-11-24 주식회사 바이오닉스 3차원 가이드 구조를 포함하는 뇌혈류 측정 시스템 및 이를 이용한 측정방법
WO2012091229A1 (ko) * 2010-12-28 2012-07-05 성균관대학교 산학협력단 뇌혈류 역학의 광학 이미징 분석 방법
JP2012161375A (ja) * 2011-02-03 2012-08-30 Univ Of Tsukuba 血流計測装置及び血流計測装置を用いた脳活動計測装置
JP2013106641A (ja) * 2011-11-17 2013-06-06 Univ Of Tsukuba 血流脈波検査装置
JP2017176264A (ja) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 生体情報測定装置、及び生体情報測定プログラム
JP2019171225A (ja) * 2019-07-23 2019-10-10 京セラ株式会社 測定装置及び測定方法
KR20200082773A (ko) * 2018-12-31 2020-07-08 (주)오비이랩 신체 조직을 모니터링하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036600B (zh) * 2008-05-23 2014-08-06 皇家飞利浦电子股份有限公司 适于携带传感器、致动器或者电子元件的基底层
CN103458801B (zh) * 2011-04-11 2015-06-03 株式会社岛津制作所 支架套件及使用所述支架套件的脑功能测量装置
JP5794388B2 (ja) * 2012-04-25 2015-10-14 株式会社島津製作所 光生体計測装置
CN104207770B (zh) * 2014-08-27 2017-02-15 中国科学院自动化研究所 一种可穿戴式光电同步脑活动无线监测设备
DE102016109694A1 (de) * 2016-05-25 2017-11-30 Osram Opto Semiconductors Gmbh Sensorvorrichtung
US10791981B2 (en) * 2016-06-06 2020-10-06 S Square Detect Medical Devices Neuro attack prevention system, method, and apparatus
US11160502B2 (en) * 2016-12-02 2021-11-02 Zeto, Inc. Electroencephalography headset and system for collecting biosignal data
EP3703523B1 (en) 2017-12-01 2024-02-07 Zeto, Inc. Headset and electrodes for sensing bioelectrical potential and methods of operation thereof
US11589749B2 (en) * 2018-07-23 2023-02-28 Northeastern University Optically monitoring brain activities using 3D-aware head-probe
US20220273233A1 (en) * 2021-02-26 2022-09-01 Hi Llc Brain Activity Derived Formulation of Target Sleep Routine for a User
US20220300075A1 (en) * 2021-03-19 2022-09-22 MindPortal, Inc. Systems and Methods Involving Devices that Detect Mind/Brain Activity, Generation of Control Instructions via Same and/or Other Features
CN114403840A (zh) * 2022-01-20 2022-04-29 雅安市人民医院 一种基于近红外光谱的深层组织灌注度计算方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103434A (ja) * 1994-10-06 1996-04-23 Hitachi Ltd 生体光計測装置及び計測方法
JPH0998972A (ja) * 1995-10-06 1997-04-15 Hitachi Ltd 生体光計測装置及び画像作成方法
JP2002369813A (ja) * 2002-05-07 2002-12-24 Hitachi Ltd 生体光計測装置
JP2003149137A (ja) * 2001-11-12 2003-05-21 Hitachi Ltd 生体計測用プローブ、並びにそれを用いた生体光計測装置及び脳機能計測装置
WO2003068070A1 (en) * 2002-02-14 2003-08-21 Toshinori Kato Apparatus for evaluating biological function
JP2004097590A (ja) * 2002-09-11 2004-04-02 Shimadzu Corp 生体計測用プローブ、及び生体計測用プローブホルダー
WO2006009178A1 (ja) * 2004-07-20 2006-01-26 Toshinori Kato 生体機能診断装置、生体機能診断方法、生体用プローブ、生体用プローブ装着具、生体用プローブ支持具及び生体用プローブ装着支援具
JP2006305334A (ja) * 2005-03-30 2006-11-09 Advanced Telecommunication Research Institute International 回答獲得装置及び評価解析装置
WO2006129740A1 (ja) * 2005-05-30 2006-12-07 Olympus Corporation ヘモグロビン観察装置及びヘモグロビン観察方法
JP2007111101A (ja) * 2005-10-18 2007-05-10 National Institute Of Advanced Industrial & Technology 近赤外光を用いた生体光計測法のための波長差分を用いたベースライン安定化方法
WO2010004940A1 (ja) * 2008-07-11 2010-01-14 国立大学法人筑波大学 血管特性計測装置及び血管特性計測方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2228314B (en) 1989-02-16 1992-11-18 Hamamatsu Photonics Kk Examination apparatus
US5490506A (en) * 1994-03-28 1996-02-13 Colin Corporation Peripheral blood flow evaluating apparatus
US5601080A (en) 1994-12-28 1997-02-11 Coretech Medical Technologies Corporation Spectrophotometric blood analysis
US5636633A (en) * 1995-08-09 1997-06-10 Rio Grande Medical Technologies, Inc. Diffuse reflectance monitoring apparatus
JP4680422B2 (ja) 2001-05-29 2011-05-11 嘉之 山海 血栓計測装置
JP3753650B2 (ja) 2001-11-14 2006-03-08 株式会社島津製作所 血流測定装置
US6934570B2 (en) * 2002-01-08 2005-08-23 Masimo Corporation Physiological sensor combination
US7917219B2 (en) * 2002-02-28 2011-03-29 Greatbatch Ltd. Passive electronic network components designed for direct body fluid exposure
US7179279B2 (en) * 2002-09-30 2007-02-20 Medtronic Physio Control Corp. Rapid induction of mild hypothermia
WO2005034761A1 (ja) * 2003-09-19 2005-04-21 Hitachi Medical Corporation 生体光計測装置と脳波計測装置を組み合せた生体情報信号処理システムおよびそれに用いられるプローブ装置
US20050107716A1 (en) * 2003-11-14 2005-05-19 Media Lab Europe Methods and apparatus for positioning and retrieving information from a plurality of brain activity sensors
EP1845365A4 (en) * 2005-02-02 2009-07-01 Panasonic Corp OPTICAL ELEMENT AND OPTICAL MEASURING DEVICE THEREWITH
US7729773B2 (en) * 2005-10-19 2010-06-01 Advanced Neuromodualation Systems, Inc. Neural stimulation and optical monitoring systems and methods
US7486977B2 (en) * 2005-10-27 2009-02-03 Smiths Medical Pm, Inc. Single use pulse oximeter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103434A (ja) * 1994-10-06 1996-04-23 Hitachi Ltd 生体光計測装置及び計測方法
JPH0998972A (ja) * 1995-10-06 1997-04-15 Hitachi Ltd 生体光計測装置及び画像作成方法
JP2003149137A (ja) * 2001-11-12 2003-05-21 Hitachi Ltd 生体計測用プローブ、並びにそれを用いた生体光計測装置及び脳機能計測装置
WO2003068070A1 (en) * 2002-02-14 2003-08-21 Toshinori Kato Apparatus for evaluating biological function
JP2002369813A (ja) * 2002-05-07 2002-12-24 Hitachi Ltd 生体光計測装置
JP2004097590A (ja) * 2002-09-11 2004-04-02 Shimadzu Corp 生体計測用プローブ、及び生体計測用プローブホルダー
WO2006009178A1 (ja) * 2004-07-20 2006-01-26 Toshinori Kato 生体機能診断装置、生体機能診断方法、生体用プローブ、生体用プローブ装着具、生体用プローブ支持具及び生体用プローブ装着支援具
JP2006305334A (ja) * 2005-03-30 2006-11-09 Advanced Telecommunication Research Institute International 回答獲得装置及び評価解析装置
WO2006129740A1 (ja) * 2005-05-30 2006-12-07 Olympus Corporation ヘモグロビン観察装置及びヘモグロビン観察方法
JP2007111101A (ja) * 2005-10-18 2007-05-10 National Institute Of Advanced Industrial & Technology 近赤外光を用いた生体光計測法のための波長差分を用いたベースライン安定化方法
WO2010004940A1 (ja) * 2008-07-11 2010-01-14 国立大学法人筑波大学 血管特性計測装置及び血管特性計測方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067833A1 (ja) * 2009-12-01 2011-06-09 株式会社島津製作所 光計測システム、それに用いられる携帯型光計測装置及びそれを用いたリハビリ計画方法
JPWO2011067833A1 (ja) * 2009-12-01 2013-04-18 株式会社島津製作所 光計測システム、それに用いられる携帯型光計測装置及びそれを用いたリハビリ計画方法
US8755867B2 (en) 2009-12-01 2014-06-17 Shimadzu Corporation Optical measurement system, portable optical measurement device used therein, and rehabilitation planning method using same
JP5573845B2 (ja) * 2009-12-01 2014-08-20 株式会社島津製作所 光計測システム、それに用いられる携帯型光計測装置及びその使用方法
KR101086854B1 (ko) 2010-03-30 2011-11-24 주식회사 바이오닉스 3차원 가이드 구조를 포함하는 뇌혈류 측정 시스템 및 이를 이용한 측정방법
WO2012091229A1 (ko) * 2010-12-28 2012-07-05 성균관대학교 산학협력단 뇌혈류 역학의 광학 이미징 분석 방법
JP2012161375A (ja) * 2011-02-03 2012-08-30 Univ Of Tsukuba 血流計測装置及び血流計測装置を用いた脳活動計測装置
JP2013106641A (ja) * 2011-11-17 2013-06-06 Univ Of Tsukuba 血流脈波検査装置
JP2017176264A (ja) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 生体情報測定装置、及び生体情報測定プログラム
KR20200082773A (ko) * 2018-12-31 2020-07-08 (주)오비이랩 신체 조직을 모니터링하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체
KR102171385B1 (ko) * 2018-12-31 2020-10-29 (주)오비이랩 신체 조직을 모니터링하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체
JP2019171225A (ja) * 2019-07-23 2019-10-10 京セラ株式会社 測定装置及び測定方法

Also Published As

Publication number Publication date
US8945018B2 (en) 2015-02-03
US20090270745A1 (en) 2009-10-29
JP5295584B2 (ja) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5295584B2 (ja) 血流計測装置及び血流計測装置を用いた脳活動計測装置
JP5283700B2 (ja) 血管特性計測装置及び血管特性計測方法
JP5717064B2 (ja) 血流計測装置及び血流計測装置を用いた脳活動計測装置
US9931040B2 (en) Applications of hyperspectral laser speckle imaging
JP2016168177A (ja) 生体情報検出装置および背もたれ付シート
JP5710767B2 (ja) オキシメータを含む意識深度モニタ
CN104207767B (zh) 血流测量装置及使用该血流测量装置的脑活动测量装置
WO2016002759A1 (ja) 生体情報検出装置、背もたれ付シート及び心肺機能監視装置
US20180310880A1 (en) Methods for Reducing Noise in Optical Biological Sensors
US20130324815A1 (en) Continuous measurement of total hemoglobin
US10178959B1 (en) Non-invasive flow monitoring
US10499839B1 (en) Optimized biophotonic sensors
CN115770016A (zh) 用于感测肌肉组织中糖原的近红外光谱学技术
JP2013106641A (ja) 血流脈波検査装置
US20150165234A1 (en) Real-time tumor perfusion imaging during radiation therapy delivery
JP2016168104A (ja) 脳活動計測装置及びセンサユニット
KR101628218B1 (ko) 혈류계측장치 및 혈류계측장치를 이용한 뇌활동 계측장치
JP2020018430A (ja) 生体情報測定装置
EP2272428B1 (en) Blood flow measuring apparatus and brain activity measuring apparatus using the same
US20200359938A1 (en) Lipid measurement device and method therefor
CA2671221C (en) Blood flow measuring apparatus and brain activity measuring apparatus using the same
JP2024013142A (ja) 酸素飽和度測定装置及び酸素飽和度測定方法
WO2010027339A2 (en) The method of electronic transcutanne analysis of inner blood surrounding parameters
Jalan et al. Rapid prototyping of pulse oximeter
Jagelka et al. Implementation of pulse oximetry measurement to wireless biosignals probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5295584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250