JP2009189424A - Blood pressure measuring instrument and its control method - Google Patents

Blood pressure measuring instrument and its control method Download PDF

Info

Publication number
JP2009189424A
JP2009189424A JP2008030711A JP2008030711A JP2009189424A JP 2009189424 A JP2009189424 A JP 2009189424A JP 2008030711 A JP2008030711 A JP 2008030711A JP 2008030711 A JP2008030711 A JP 2008030711A JP 2009189424 A JP2009189424 A JP 2009189424A
Authority
JP
Japan
Prior art keywords
pulse wave
pressure
cuff
blood pressure
deriving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008030711A
Other languages
Japanese (ja)
Other versions
JP5158786B2 (en
Inventor
Takahiro Soma
孝博 相馬
Osamu Tochikubo
修 杤久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Yokohama National University NUC
Yokohama City University
Original Assignee
Terumo Corp
Yokohama National University NUC
Yokohama City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp, Yokohama National University NUC, Yokohama City University filed Critical Terumo Corp
Priority to JP2008030711A priority Critical patent/JP5158786B2/en
Publication of JP2009189424A publication Critical patent/JP2009189424A/en
Application granted granted Critical
Publication of JP5158786B2 publication Critical patent/JP5158786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide data which can make a user judge the reliability of the individual measured value led out of a blood pressure measuring instrument. <P>SOLUTION: The blood pressure measuring instrument is equipped with a cuff for oppressing a blood pressure measuring region, a pressure control means for increasing and decreasing the pressure in the cuff, a pressure sensor for detecting the pressure in the cuff, a pulse wave signal detecting means for extracting the time series data of the pulse wave signal superposed on the pressure in the cuff detected by the pressure sensor in the process of increasing or decreasing the pressure in the cuff by the pressure control means, a relational expression deriving means for deriving the relational expression between pulse wave amplitude and inner and outer pressure difference of a blood vessel on the basis of a change in a plurality of the one-cycle pulse wave signals contained in the data during a period, when at least the cuff pressure is larger than a systolic blood pressure value, in the time series data of the extracted pulse wave signal, and a degree-of-variation deriving means for deriving the degree of variation of blood pressure on the basis of the pressure value corresponding to the difference between the pulse wave amplitude in the extracted pulse wave signal and the pulse wave amplitude derived from the relational expression. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、測定部位にカフを装着し、カフ圧を変化させたときに検出される圧脈波の変化に基づいて血圧を測定する技術に関するものであり、特に、収縮期血圧の変動の程度を推定する技術に関するものである。   The present invention relates to a technique for measuring blood pressure based on a change in pressure pulse wave that is detected when a cuff is attached to a measurement site and the cuff pressure is changed, and in particular, the degree of fluctuation in systolic blood pressure. It is related with the technique which estimates this.

高血圧症の治療において血圧測定は非常に重要である。WHO/ISHの高血圧治療ガイドラインによれば血圧分類の血圧値の最小単位が5mmHgにて高血圧症の程度が分けられ、きめ細かい治療が要求されている。一方、血圧は病的な理由以外に、活動量、会話、精神的な不安、緊張、あせり、おどろき、我慢、飲酒、喫煙、寒さなどさまざまな原因で大きく変化する性質を有している。   Blood pressure measurement is very important in the treatment of hypertension. According to the hypertension treatment guideline of WHO / ISH, the degree of hypertension is divided when the minimum unit of the blood pressure value of the blood pressure classification is 5 mmHg, and fine treatment is required. On the other hand, blood pressure has a characteristic that changes greatly due to various causes such as activity amount, conversation, mental anxiety, tension, flirting, surprise, patience, drinking, smoking, and cold, in addition to pathological reasons.

現在広く知られている白衣性高血圧も、医師、看護士の前で不安緊張による交感神経の興奮により病因とは関係なく血圧が上昇する現象である。また、診療室まで急いできた直後など運動によっても大きく血圧を上昇させることになる。現在これらの血圧変動に対処するためには、24時間携帯して血圧を30分または60分間隔で測定記録する血圧計(ABPM:Ambulatory Blood Pressure Monitoring)を利用する(例えば、特許文献1)。または、家庭用血圧計を購入してもらい家庭で血圧を計ってきてもらうなどの診療室以外の場所、時間で血圧の測定を行い診療室で計った血圧と比べるなどの対応を行っている。しかし、これらは時間と手間がかかる方法であるため、通常の診療においては、たとえば待合室に設置させた血圧計にて一度計った値、または、診療室にて診療時に1回計った値にて血圧を判断している。   White coat hypertension, which is now widely known, is a phenomenon in which blood pressure rises regardless of the etiology due to sympathetic excitement caused by anxiety and tension in front of doctors and nurses. In addition, blood pressure can be greatly increased by exercise such as immediately after rushing to the clinic. Currently, in order to deal with these blood pressure fluctuations, a blood pressure monitor (ABPM: Ambulatory Blood Pressure Monitoring) that carries around 24 hours and measures and records blood pressure at 30-minute or 60-minute intervals is used (for example, Patent Document 1). Alternatively, measures are taken such as measuring blood pressure at a place other than the clinic, such as having a home blood pressure meter purchased and taking blood pressure at home, and comparing it with the blood pressure measured at the clinic. However, since these methods are time consuming and troublesome, in normal medical care, for example, a value measured once with a sphygmomanometer installed in a waiting room, or a value measured once during medical examination in a medical office Judging blood pressure.

また、血圧変動には1年間、1カ月間、24時間など個々人の生活行動パターンに基づいた変動があり、近年、寝ているときの血圧と起きて活動しているときの血圧、または、朝起きたときの血圧との差が臓器障害発生のリスク判断に使用できる研究もなされている。そして、これらの血圧変動を観察し治療する例もみられるが、これらは特殊な高血圧症例についての調査である。通常の血圧測定において大きな影響要因は緊張に関係した血圧変動である。
特開平11−47103号公報
In addition, blood pressure fluctuations include fluctuations based on individual behavior patterns such as one year, one month, 24 hours, etc. Recently, blood pressure when sleeping and blood pressure when waking up and active or waking up in the morning There are also studies that can be used to determine the risk of organ damage from the difference in blood pressure. There are also examples of observing and treating these blood pressure fluctuations, but these are investigations on special cases of hypertension. A major influencing factor in normal blood pressure measurement is blood pressure fluctuation related to tension.
Japanese Patent Laid-Open No. 11-47103

しかしながら、従来の血圧測定装置においては、測定した血圧値を表示するだけであり、緊張あるいはその他の理由で血圧が変動しているかどうかまでは分からない。そのため、正確な血圧の測定には時間をあけて複数回計測を繰り返す必要があり患者への負担が大きいという問題点があった。また、上述のABPMを使用する場合には治療費とは別に経費がかかると共に、診断までに時間を要し、迅速な治療が行えない場合があった。   However, the conventional blood pressure measuring device only displays the measured blood pressure value and does not know whether the blood pressure fluctuates due to tension or other reasons. For this reason, accurate blood pressure measurement has to be repeated several times over time, and there is a problem that the burden on the patient is large. In addition, when the above-mentioned ABPM is used, there is a cost in addition to the treatment cost, and it takes time until diagnosis, and there is a case where a rapid treatment cannot be performed.

本発明は上述の問題点に鑑みなされたものであり、導出された個々の測定値の信頼性を判断可能な情報をユーザに提供することを目的とする。特に、被測定者の緊張あるいはその他の理由による血圧変動の程度に関する情報をユーザに提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a user with information capable of determining the reliability of each derived measurement value. In particular, it is an object to provide the user with information regarding the degree of blood pressure fluctuation due to the tension of the measurement subject or other reasons.

上述の問題点を解決するために、本発明の血圧測定装置は以下の構成を備える。すなわち、血圧測定装置において、血圧測定部位を圧迫するためのカフと、前記カフ内を加圧または減圧する圧力制御手段と、前記カフ内の圧力を検出する圧力センサと、前記圧力制御手段により前記カフを加圧または減圧する過程において、前記圧力センサにより検出されるカフ内の圧力に重畳した脈波信号の時系列データを抽出する脈波信号抽出手段と、抽出された脈波信号の時系列データのうち、少なくともカフ圧力が収縮期血圧値より大きい期間のデータに含まれる複数の1周期脈波信号の変化に基づいて、脈波振幅と血管内外圧差との関係式を導出する関係式導出手段と、抽出された脈波信号における脈波振幅と前記関係式に基づいて導出される脈波振幅との差分に相当する圧力値に基づいて血圧変動量を導出する変動量導出手段と、を備えることを特徴とする。   In order to solve the above-described problems, the blood pressure measurement device of the present invention has the following configuration. That is, in the blood pressure measurement device, the cuff for compressing the blood pressure measurement site, the pressure control means for pressurizing or depressurizing the inside of the cuff, the pressure sensor for detecting the pressure in the cuff, and the pressure control means In the process of pressurizing or depressurizing the cuff, pulse wave signal extracting means for extracting time series data of the pulse wave signal superimposed on the pressure in the cuff detected by the pressure sensor, and the time series of the extracted pulse wave signal Deriving a relational expression for deriving a relational expression between the pulse wave amplitude and the intravascular / external pressure difference based on a change in a plurality of one-period pulse wave signals included in data in a period where at least the cuff pressure is greater than the systolic blood pressure value. Variation amount deriving means for deriving a blood pressure variation amount based on a pressure value corresponding to a difference between the pulse wave amplitude in the extracted pulse wave signal and the pulse wave amplitude derived based on the relational expression , Characterized in that it comprises a.

上述の問題点を解決するために、本発明の血圧測定装置の制御方法は以下の構成を備える。すなわち、血圧測定部位を圧迫するためのカフと、前記カフ内を加圧または減圧する圧力制御手段と、前記カフ内の圧力を検出する圧力センサと、を備える血圧測定装置の制御方法であって、前記圧力制御手段により前記カフを加圧または減圧する過程において、前記圧力センサにより検出されるカフ内の圧力に重畳した脈波信号の時系列データを抽出する脈波信号抽出工程と、抽出された脈波信号の時系列データのうち、少なくともカフ圧力が収縮期血圧値より大きい期間のデータに含まれる複数の1周期脈波信号の変化に基づいて、脈波振幅と血管内外圧差との関係式を導出する関係式導出工程と、抽出された脈波信号における脈波振幅と前記関係式に基づいて導出される脈波振幅との差分に相当する圧力値に基づいて血圧変動量を導出する変動量導出工程と、を備えることを特徴とする。   In order to solve the above-described problems, a method for controlling a blood pressure measurement device according to the present invention has the following configuration. That is, a control method of a blood pressure measurement device comprising a cuff for compressing a blood pressure measurement site, pressure control means for pressurizing or depressurizing the inside of the cuff, and a pressure sensor for detecting the pressure in the cuff. A pulse wave signal extraction step for extracting time series data of a pulse wave signal superimposed on the pressure in the cuff detected by the pressure sensor in the process of pressurizing or depressurizing the cuff by the pressure control means; The relationship between the pulse wave amplitude and the intravascular external pressure difference based on the change of a plurality of one-cycle pulse wave signals included in the data of the period when at least the cuff pressure is greater than the systolic blood pressure value A relational expression deriving step for deriving an expression, and a blood pressure fluctuation amount is derived based on a pressure value corresponding to a difference between the pulse wave amplitude in the extracted pulse wave signal and the pulse wave amplitude derived based on the relational expression. A variation amount deriving step that, characterized in that it comprises a.

本発明によれば、血圧測定装置により導出された個々の測定値の信頼性が判断可能な情報をユーザに提供することが出来る。特に、被測定者の緊張あるいはその他の理由による血圧変動の程度に関する情報をユーザに提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the information which can judge the reliability of each measured value derived | led-out by the blood-pressure measuring apparatus can be provided to a user. In particular, it is possible to provide the user with information regarding the degree of blood pressure fluctuation due to the tension of the measurement subject or other reasons.

本発明の血圧測定装置を、好適な実施形態に基づいて図面を参照して説明する。なお、ここでは、トリプルカフ法を用いた血圧測定装置を例について説明する。   The blood pressure measurement device of the present invention will be described with reference to the drawings based on a preferred embodiment. Here, an example of a blood pressure measurement device using the triple cuff method will be described.

<概要>
人間は緊張している場合、例えば呼吸に同期した血圧変動が発生する。そのため、呼吸が影響する周波数(0.15〜0.5Hz)の血圧変化に基づいて、緊張の程度を判定可能とする情報を測定者に提供する。
<Overview>
When a human is nervous, for example, blood pressure fluctuations synchronized with respiration occur. Therefore, information that enables determination of the degree of tension is provided to the measurer based on a blood pressure change at a frequency (0.15 to 0.5 Hz) at which respiration affects.

<装置構成>
図4は、第1実施形態に係る血圧測定装置を示すブロック図である。カフ本体201は、上腕部を含む血圧測定部位に対して着脱自在に設けられる布製のカフ部材202を備えており、このカフ部材202の測定部位接触側の端部に破線で図示した雄(フック型)面ファスナー203を設け、また、測定部位接触側と反対の面の阻血用空気袋と同じ位置と面積の雌(ループ型)面ファスナー204を設けている。このカフ部材202を図示のように上腕に巻き付け、各面ファスナーを係止することで、カフ本体201の着脱ができるように構成されている。ここで、面ファスナーは一例に過ぎず、これ以外の部材でもよく、また筒状に形成しておき上腕を挿入する方式にカフ本体を設ける構成であっても良い。
<Device configuration>
FIG. 4 is a block diagram illustrating the blood pressure measurement device according to the first embodiment. The cuff body 201 includes a cloth cuff member 202 that is detachably provided to a blood pressure measurement site including the upper arm, and a male (hook) illustrated by a broken line at an end of the cuff member 202 on the measurement site contact side. A type) hook-and-loop fastener 203 is provided, and a female (loop-type) hook-and-loop fastener 204 having the same position and area as the blood-blocking air bag on the surface opposite to the measurement site contact side is provided. The cuff member 202 is wound around the upper arm as shown in the figure, and each hook-and-loop fastener is locked, so that the cuff body 201 can be attached and detached. Here, the hook-and-loop fastener is merely an example, and other members may be used, or a configuration in which the cuff body is provided in a method of forming a tubular shape and inserting the upper arm may be employed.

このカフ部材202の内部には、血圧測定部位の全体を圧迫するための破線図示の阻血用空気袋208が敷設されている。また、この阻血用空気袋208の血圧測定部位に接する側には血圧測定部位の心臓H側を圧迫するために幅がより狭く形成された破線図示のサブ空気袋207が敷設されている。サブ空気袋207と阻血用空気袋208との間にはサブ空気袋207の振動を減衰する第1緩衝部材209が設けられている。   Inside the cuff member 202, a hemostatic air bag 208 shown in broken lines is laid to compress the entire blood pressure measurement site. In addition, a sub air bag 207 shown in a broken line having a narrower width is laid on the side in contact with the blood pressure measurement site of the ischemic air bladder 208 to compress the heart H side of the blood pressure measurement site. A first buffer member 209 that attenuates vibration of the sub air bag 207 is provided between the sub air bag 207 and the ischemic air bag 208.

また、この阻血用空気袋208の血圧測定部位の接する側のほぼ中央部に敷設されて血圧測定部位の血管の中央部やや下流側を圧迫し、かつ中央部やや下流側の脈波を検出する破線図示の脈波検出用空気袋205が敷設されてカフ本体201を構成している。   In addition, the air bag 208 for ischemia is laid at a substantially central part on the side where the blood pressure measurement site is in contact, compresses the central part of the blood vessel at the blood pressure measurement part and slightly downstream, and detects a pulse wave at the central part and slightly downstream. A cuff body 201 is configured by laying a pulse wave detection air bag 205 shown by a broken line.

このカフ本体201を加圧及び減圧するために、カフ本体201の阻血用空気袋208とは第2配管212と配管215により、また、カフ本体201の脈波検出用空気袋205とは第1配管211と流体抵抗器214を介して、また、カフ本体201のサブ空気袋207とは第3配管213と開閉弁216を介して、加減圧手段であるポンプ223が接続されている。また脈波検出用空気袋205の圧力変化からカフ圧信号を得るためのカフ圧力検出手段である圧力センサ231は脈波検出用空気袋205との間で第1配管211を介して接続されている。また、サブ空気袋207には第3配管213が接続されている。   In order to pressurize and depressurize the cuff main body 201, the cuff main body 201 is provided with the blood-blocking air bag 208 by the second pipe 212 and the pipe 215, and the pulse wave detection air bag 205 of the cuff main body 201 is the first. A pump 223 which is a pressure increasing / decreasing means is connected to the sub air bag 207 of the cuff body 201 via a pipe 211 and a fluid resistor 214 via a third pipe 213 and an on-off valve 216. A pressure sensor 231 serving as a cuff pressure detecting means for obtaining a cuff pressure signal from a change in pressure of the pulse wave detection air bag 205 is connected to the pulse wave detection air bag 205 via the first pipe 211. Yes. A third pipe 213 is connected to the sub air bag 207.

第1配管211、第2配管212、第3配管213は軟質チューブからなり、コネクタ210を介して本体230から着脱自在に設けられている。   The first pipe 211, the second pipe 212, and the third pipe 213 are made of a soft tube and are detachably provided from the main body 230 via the connector 210.

十字分岐部220にはポンプ223と急速排気弁兼定速排気弁222が接続されている。急速排気弁兼定速排気弁222は制御部248に、開閉弁216は制御部246に夫々接続されており、中央制御部235の指令で、急速排気弁兼定速排気弁222は電磁弁の開口面積が制御され、また、開閉弁216は電磁開閉弁が開閉動作される。   A pump 223 and a quick exhaust valve / constant speed exhaust valve 222 are connected to the cross-branching portion 220. The rapid exhaust valve / constant speed exhaust valve 222 is connected to the control unit 248, and the on-off valve 216 is connected to the control unit 246, and the quick exhaust valve / constant speed exhaust valve 222 is an electromagnetic valve in response to a command from the central control unit 235. The opening area is controlled, and the on-off valve 216 is opened / closed by an electromagnetic on-off valve.

また、ポンプ223はモータMに接続されるポンプ駆動部249からの電力供給にともない駆動され、外気を開口部223aからポンプ内に導入して加圧を行い十字分岐部220を介して加圧空気を配管215と、第3配管部213aに送ることで各空気袋の加圧ができるように構成されている。   The pump 223 is driven in accordance with power supply from a pump drive unit 249 connected to the motor M, introduces external air into the pump through the opening 223a, pressurizes, and pressurizes air through the cross-branch unit 220. Is sent to the pipe 215 and the third pipe part 213a so that each air bag can be pressurized.

図3は、第1実施形態に係る血圧測定装置のカフ(トリプルカフ)の長手方向(上腕の延びる方向)の断面図である。変形例に係るカフは、血管阻血用の大カフ1(阻血用空気袋208に相当)、脈波検出用の小カフ2(脈波検出用空気袋205に相当)、および上流部に設けられたサブカフ3(サブ空気袋207に相当)を含むトリプルカフである。加圧された血管阻血用の大カフ1およびサブカフ3により血管100はQの部分で阻血され、上流側100aから下流側100bへの血流が抑えられている様子が示されている。   FIG. 3 is a cross-sectional view in the longitudinal direction (the direction in which the upper arm extends) of the cuff (triple cuff) of the blood pressure measurement device according to the first embodiment. The cuff according to the modified example is provided in a large cuff 1 for blood vessel ischemia (corresponding to the air bag 208 for ischemia), a small cuff 2 for pulse wave detection (corresponding to the air bag 205 for pulse wave detection), and an upstream portion. A triple cuff including the sub cuff 3 (corresponding to the sub air bag 207). It is shown that the blood vessel 100 is blocked at the portion Q by the pressurized large cuff 1 and subcuff 3 for blood vessel ischemia, and the blood flow from the upstream side 100a to the downstream side 100b is suppressed.

大カフ1により腕を圧拍する力は、カフの幅方向の中央部(図3のAの部分、以下、単に、カフ中央部Aという)で最も強く、両端に近くなるに従い弱くなり、両端ではほぼ0となる。ただし、サブカフ3を備えないダブルカフの場合と比較すると、サブカフ3の効果により図3の”B”に示される区間における血流の侵入が阻止されている点が異なる。   The force that squeezes the arm with the large cuff 1 is strongest at the center in the width direction of the cuff (part A in FIG. 3, hereinafter simply referred to as the cuff center A), and weakens as it approaches both ends. Then it becomes almost 0. However, compared with the case of the double cuff that does not include the sub-cuff 3, the difference is that the invasion of blood flow in the section indicated by “B” in FIG.

小カフ2は、このカフの幅方向のカフ中央部やや下流Aに設けられることで、この部分での血管内圧力変化(血管内容積変化)を最もよく捉える。尚、明細書中において「カフ圧力」は、カフ内の圧力を意味するが、実質的には、カフの幅方向のカフ中央部Aでの腕の圧迫力と等しいことから、カフの幅方向のカフ中央部Aの下の血管へ加えられるカフからの圧力でもある。   The small cuff 2 is provided at the cuff central portion in the width direction of the cuff and slightly downstream A, so that the intravascular pressure change (intravascular volume change) in this portion is best captured. In the specification, “cuff pressure” means the pressure in the cuff, but is substantially equal to the compression force of the arm at the cuff central portion A in the cuff width direction. It is also the pressure from the cuff applied to the blood vessel under the cuff center A.

急速排気弁兼定速排気弁222は、毎秒2〜4mmHgの減圧速度を実現するために電磁力の強さで開口面積を可変する構造であり、制御部248からのPWM駆動信号を得ることで任意の減圧速度を設定できるように構成されている。   The rapid exhaust valve / constant speed exhaust valve 222 has a structure in which the opening area is varied by the strength of electromagnetic force in order to realize a pressure reduction speed of 2 to 4 mmHg per second, and by obtaining a PWM drive signal from the control unit 248 Arbitrary decompression speed can be set.

流体抵抗器214を介して、脈波成分を減衰した阻血用空気袋208からの阻血圧力信号と脈波検出用空気袋205の圧力変化はカフ圧力検出手段である圧力センサ231に入力される。この圧力センサ231には、圧力センサ231に定電流を供給する手段と電気信号を増幅する圧力計測部232とが接続されており、さらに圧力計測部232にはアナログ信号をデジタル信号に変換するA/Dコンバータ233が接続されており、デジタル信号を中央制御部235にカフ圧信号として出力するように構成されている。   Via the fluid resistor 214, the ischemic pressure signal from the ischemic bladder 208 having attenuated the pulse wave component and the pressure change of the pulse wave detecting bladder 205 are input to the pressure sensor 231 which is a cuff pressure detecting means. The pressure sensor 231 is connected to a means for supplying a constant current to the pressure sensor 231 and a pressure measuring unit 232 for amplifying an electric signal. The pressure measuring unit 232 further converts an analog signal into a digital signal A. A / D converter 233 is connected and configured to output a digital signal to the central control unit 235 as a cuff pressure signal.

この中央制御部235は、測定データ及び解析結果の読み書き等を行なうRAM238、また、カフ圧力信号から重畳している脈波信号を検出する脈波処理部239、カフ(阻血用空気袋,脈波検出用空気袋,サブ空気袋)の圧力を加圧,減圧するカフ圧制御部240、検出した脈波変化と阻血カフ圧力信号から血圧を決定する血圧測定部241、測定した血圧値を血圧表示手段237に表示させるための表示制御部(不図示)を中央制御部235により読取り可能な各種制御プログラムとし記憶したROM236を含んでいる。なお、RAM238は、中央制御部235において処理されるプログラムのワークエリアとしても機能する。   The central control unit 235 includes a RAM 238 that reads and writes measurement data and analysis results, a pulse wave processing unit 239 that detects a superimposed pulse wave signal from the cuff pressure signal, and a cuff (an air bag for ischemia, a pulse wave). A cuff pressure control unit 240 that pressurizes and depressurizes the pressure of the detection air bag (sub air bag), a blood pressure measurement unit 241 that determines the blood pressure from the detected pulse wave change and the ischemic cuff pressure signal, and displays the measured blood pressure value as a blood pressure A ROM 236 that stores various control programs that can be read by the central control unit 235 includes a display control unit (not shown) for displaying on the means 237. The RAM 238 also functions as a work area for programs processed in the central control unit 235.

また、中央制御部235には、上述のポンプ、急速排気弁兼定速排気弁222の開閉弁の制御を行う制御部が接続されている。   The central control unit 235 is connected to a control unit that controls the on-off valves of the pump and the quick exhaust valve / constant speed exhaust valve 222 described above.

また、乾電池を含む電源部243からの電力供給は、スイッチ242の操作により、中央制御部235にて各部に電力供給して血圧測定に必要な各動作を行えるように構成される。   Further, the power supply from the power supply unit 243 including the dry battery is configured such that each operation necessary for blood pressure measurement can be performed by supplying power to each unit by the central control unit 235 by operating the switch 242.

以上のように構成される血圧測定装置ではROM236に予め記憶された各種測定用制御プログラムを中央制御部235で読み出し、後述の血圧測定ルーチンのフローチャートのように動作させることができる。   In the blood pressure measurement apparatus configured as described above, various measurement control programs stored in advance in the ROM 236 can be read out by the central control unit 235 and operated as in a flowchart of a blood pressure measurement routine described later.

<装置の動作>
図5は、カフ加圧ルーチンの動作フローチャートである。
<Operation of the device>
FIG. 5 is an operation flowchart of the cuff pressurizing routine.

先ず、カフ本体201が上腕部に対して装着される。そして、不図示の測定開始スイッチ242が押圧されると、急速排気弁兼定速排気弁222の開口面積を全開にし、また、開閉弁216を開き、各空気袋の排気をおこなう。   First, the cuff body 201 is attached to the upper arm portion. When a measurement start switch 242 (not shown) is pressed, the opening area of the quick exhaust valve / constant speed exhaust valve 222 is fully opened, and the open / close valve 216 is opened to exhaust each air bag.

ステップS401では、各空気袋内の残留空気の排気が終了すると、圧力センサ231のゼロセット(初期化)が行われる。   In step S401, when the exhaust of the residual air in each air bag is completed, the pressure sensor 231 is zero-set (initialized).

ステップS402では、開閉弁216は開いた状態に維持し、急速排気弁兼定速排気弁222は全閉される。以上でカフ(阻血用空気袋,脈波検出用空気袋,サブ空気袋)への加圧の準備が整い、ステップS403でポンプ223への通電が行われる。   In step S402, the on-off valve 216 is kept open, and the rapid exhaust valve / constant speed exhaust valve 222 is fully closed. With the above, preparation for pressurization of the cuff (the air bag for ischemia, the air bag for detecting the pulse wave, the sub air bag) is completed, and the pump 223 is energized in step S403.

ステップS404では、規定圧力(阻血の障害にならず、カフエッジ効果を低減できるようにサブ空気袋207を膨らませるような圧力)になったか否かをチェックし、規定圧力になったらステップS405で開閉弁216を閉じる。   In step S404, it is checked whether or not the specified pressure (pressure that inflates the sub air bag 207 so as to reduce the cuff edge effect without being an obstacle to ischemia) is reached. When the specified pressure is reached, the opening and closing is performed in step S405. Valve 216 is closed.

ステップS406では、カフ圧力が加圧設定値になったか否かが判断され、加圧設定値になると、ステップS407に進みポンプ駆動を停止する。このようにして、阻血用空気袋408の圧力が予想される収縮期血圧より20〜30mmHg高い加圧設定値になるようにポンプ223の連続駆動が行われる。   In step S406, it is determined whether or not the cuff pressure has reached the pressurization set value. When the cuff pressure reaches the pressurization set value, the process proceeds to step S407 and the pump drive is stopped. In this manner, the pump 223 is continuously driven so that the pressure of the air bag 408 for ischemia becomes a set pressure value that is 20 to 30 mmHg higher than the expected systolic blood pressure.

ステップS408では、後述する血圧値の測定ルーチンを実行する。   In step S408, a blood pressure value measurement routine to be described later is executed.

図6は、血圧値の測定ルーチンを示すフローチャートである。なお、血圧値の測定ルーチンにおいて、併せて血圧変動の程度を示す情報が導出される。   FIG. 6 is a flowchart showing a blood pressure value measurement routine. In the blood pressure value measurement routine, information indicating the degree of blood pressure fluctuation is also derived.

ステップS620に進むと急速排気弁兼定速排気弁222により定速排気が開始される。カフ圧制御部240によりカフ圧力検出部からの信号を用いて、減圧速度が2〜3mmHg/秒になるように急速排気弁兼定速排気弁222の開口面積を可変して定速減圧が開始される。   When the process proceeds to step S620, constant speed exhaust is started by the rapid exhaust valve / constant speed exhaust valve 222. The cuff pressure controller 240 uses the signal from the cuff pressure detector to change the opening area of the rapid exhaust valve / constant exhaust valve 222 so that the decompression speed becomes 2 to 3 mmHg / sec, and starts constant speed decompression. Is done.

ステップS621では、カフ圧力検出部からカフ圧力を得る。また、ステップS622では、脈波信号を検出する。そして、ステップS623に進み、カフ圧力と脈波振幅とを一組にして、順次RAM238に時系列データとして記憶される。   In step S621, the cuff pressure is obtained from the cuff pressure detector. In step S622, a pulse wave signal is detected. Then, the process proceeds to step S623, and the cuff pressure and the pulse wave amplitude are set as a set and sequentially stored in the RAM 238 as time series data.

図1は、カフ圧力の減圧過程で、カフ圧力に脈波信号が重畳している様子を示すグラフである。このグラフには、カフ圧力の減少につれて、脈波信号の大きさや形が変化していく様子が示されている。また、図2は、カフ圧力の減圧過程での、カフ圧力に重畳する脈波振幅値の変化の様子をカフ圧力の変化と共に示した図である。カフ圧力の減圧過程で、脈波振幅値は徐々に大きくなり、最大振幅値が現れるポイントMを経た後、脈波振幅値は徐々に減少する傾向をもつことが示されている。   FIG. 1 is a graph showing a state in which a pulse wave signal is superimposed on the cuff pressure in the process of reducing the cuff pressure. This graph shows how the magnitude and shape of the pulse wave signal change as the cuff pressure decreases. FIG. 2 is a diagram showing a change of the pulse wave amplitude value superimposed on the cuff pressure in the process of reducing the cuff pressure together with the change of the cuff pressure. It is shown that in the process of reducing the cuff pressure, the pulse wave amplitude value gradually increases, and after passing through the point M where the maximum amplitude value appears, the pulse wave amplitude value tends to gradually decrease.

ステップS624では、ステップS623で記憶された脈波振幅の時系列データを検査する。そして、ポイントMが検出されると、ポイントM以前の時系列データにおいて、例えば、振幅が規定割合以上に急にステップ状に大きくなる時点でのカフ圧力値を収縮期血圧値として決定する。   In step S624, the time-series data of the pulse wave amplitude stored in step S623 is inspected. Then, when the point M is detected, in the time series data before the point M, for example, the cuff pressure value at the time when the amplitude suddenly increases stepwise beyond a specified ratio is determined as the systolic blood pressure value.

ステップS626では、収縮期血圧値が決定された後、再び、脈波信号を検出する。そして、ステップS627に進み、カフ圧力と脈波振幅とを一組にして、順次RAM238に時系列データとして記憶される。   In step S626, after the systolic blood pressure value is determined, the pulse wave signal is detected again. Then, the process proceeds to step S627, and the cuff pressure and the pulse wave amplitude are set as a set and sequentially stored in the RAM 238 as time series data.

ステップS628では、ステップS627で記憶された脈波振幅の時系列データを検査する。そして、ポイントM以後の時系列データにおいて、例えば、ポイントMの脈波振幅(PA)の60%の脈波振幅に対応する時点でのカフ圧力値を拡張期血圧値として決定する。   In step S628, the time-series data of the pulse wave amplitude stored in step S627 is inspected. Then, in the time series data after the point M, for example, the cuff pressure value at the time corresponding to 60% of the pulse wave amplitude (PA) at the point M is determined as the diastolic blood pressure value.

ステップS629では、急速排気弁兼定速排気弁222の開口面積を全開にし、かつ、開閉弁216を開くことでカフを大気圧にする。   In step S629, the opening area of the rapid exhaust valve / constant speed exhaust valve 222 is fully opened, and the on / off valve 216 is opened to bring the cuff to atmospheric pressure.

ステップS630では、ステップS627で記憶された脈波振幅の時系列データを検査し、以下で説明する処理に従って血圧変動の程度を推定する。   In step S630, the time-series data of the pulse wave amplitude stored in step S627 is examined, and the degree of blood pressure fluctuation is estimated according to the process described below.

ステップS631では、上述のステップにおいて決定された収縮期血圧値、拡張期血圧値、および、決定された血圧変動の程度に関する情報を液晶表示部237に表示して一連の血圧測定動作を終了する。   In step S631, information regarding the systolic blood pressure value, the diastolic blood pressure value determined in the above-described step, and the determined degree of blood pressure fluctuation is displayed on the liquid crystal display unit 237, and the series of blood pressure measurement operations is terminated.

図7は、血圧変動の程度を決定するための詳細フローチャートである。   FIG. 7 is a detailed flowchart for determining the degree of blood pressure fluctuation.

ステップS1701では、RAM238に記憶された脈波振幅の時系列データについて血管内外圧差を算出する。具体的には、収縮期血圧以上にて検出された1周期脈波信号それぞれについて、測定した収縮期血圧値(内圧)と検出されたカフ圧力値(外圧)との差を計算する。   In step S1701, the intravascular external pressure difference is calculated for the time series data of the pulse wave amplitude stored in the RAM 238. Specifically, the difference between the measured systolic blood pressure value (internal pressure) and the detected cuff pressure value (external pressure) is calculated for each one-cycle pulse wave signal detected at systolic blood pressure or higher.

カフ圧が十分高い場合には、カフのコンプライアンスが小さく容積変化を圧力変化と見なせる。そこで、収縮期血圧値以上のときの圧力変化である脈波振幅を容積変化と見なし、血管内外圧差(=収縮期血圧−カフ圧)との関係を調べ、血管の弾性特性(圧容積特性)を導出する。ここでは、カフの減圧過程において、収縮期血圧+40mmHgから収縮期血圧までの測定データに基づき導出する。   When the cuff pressure is sufficiently high, the compliance of the cuff is small and the volume change can be regarded as a pressure change. Therefore, the pulse wave amplitude, which is the pressure change when the systolic blood pressure is equal to or greater than that, is regarded as a volume change, and the relationship between the intravascular external pressure difference (= systolic blood pressure-cuff pressure) is examined, and the elastic characteristics of the blood vessels (pressure volume characteristics) Is derived. Here, it is derived based on measurement data from systolic blood pressure + 40 mmHg to systolic blood pressure in the cuff decompression process.

ステップS1702では、例えば図8に示すように、x軸に収縮期血圧の場合をゼロ(基準点)としたときの血管内外圧差(=(収縮期血圧−カフ圧力))y軸に圧力変化である脈波振幅値を、液晶表示部237にプロットする。   In step S1702, for example, as shown in FIG. 8, the intravascular external pressure difference (= (systolic blood pressure−cuff pressure)) when the systolic blood pressure is zero (reference point) on the x axis is a pressure change on the y axis. A certain pulse wave amplitude value is plotted on the liquid crystal display unit 237.

ステップS1703では、脈波振幅値の時系列データに基づいて近似曲線・回帰曲線(たとえば指数曲線、2次曲線)を求める。なお、一般には、血管内外圧差が小さくなるほど脈波振幅は大きくなると見なせるので、単調増加曲線による近似で十分である。これにより、呼吸における典型的な周波数範囲(0.15〜0.5Hz)よりも低い周波数での変化特性を抽出することができる。   In step S1703, an approximate curve / regression curve (for example, exponential curve, quadratic curve) is obtained based on time-series data of pulse wave amplitude values. In general, it can be considered that the pulse wave amplitude increases as the intra-vascular external pressure difference decreases, so approximation by a monotonically increasing curve is sufficient. Thereby, the change characteristic in the frequency lower than the typical frequency range (0.15-0.5 Hz) in respiration can be extracted.

なお、血管内外圧差がゼロに近い場合(つまり収縮期血圧付近)、血管スラスト方向(血管に沿った方向)の容積変化が大きく変化し血管ラジアル方向の容積変化を正確に反映できない場合がある。そのため、血管内外圧差がゼロより規定圧までの解析禁止区間を除いたデータ成分により近似曲線を導出すると好適である。   When the intra-vascular external pressure difference is close to zero (that is, near systolic blood pressure), the volume change in the blood vessel thrust direction (direction along the blood vessel) may change greatly, and the volume change in the blood vessel radial direction may not be accurately reflected. Therefore, it is preferable to derive the approximate curve from the data component excluding the analysis prohibited section where the intravascular external pressure difference is from zero to the specified pressure.

ステップS1704では、検出した脈波振幅とステップS1703で求めた近似曲線との差を血管に作用する圧力値に換算する。脈波振幅変化に対し血管に作用する圧力変化は、yを脈波振幅、xを血管内外圧差として求めた近似曲線を、xについて解くことにより求められる。つまり、yに血圧変動で生じた振幅変化すなわち検出した脈波の実際の振幅と近似曲線との差を入力することにより、xである血管内外圧差(=血管に作用した圧力の変化)が求められる。   In step S1704, the difference between the detected pulse wave amplitude and the approximate curve obtained in step S1703 is converted into a pressure value acting on the blood vessel. The pressure change acting on the blood vessel in response to the change in the pulse wave amplitude is obtained by solving an approximate curve obtained by using y as the pulse wave amplitude and x as the intra-vascular external pressure difference. That is, by inputting the amplitude change caused by the blood pressure fluctuation in y, that is, the difference between the actual amplitude of the detected pulse wave and the approximate curve, the intravascular / external pressure difference (= change in pressure acting on the blood vessel) as x is obtained. It is done.

図8は、脈波振幅差に対応する血管内外圧差の導出の一例を示す図である。検出した実際の振幅(S点)と近似曲線との差(=血圧変動が無かった場合との差)Amaxとする。そして、検出した実際の振幅(S点)から近似曲線にX軸に平行な線を引き、その交点とS点とのX座標の差をBmaxとする。このとき、Bmaxは、Amaxに対応する血管内外圧差を示すことになる。この演算を各1周期脈波について実行し各1周期脈波についてのBmaxを導出する。   FIG. 8 is a diagram showing an example of derivation of the intravascular external pressure difference corresponding to the pulse wave amplitude difference. The difference between the detected actual amplitude (S point) and the approximate curve (= difference when there is no blood pressure fluctuation) is assumed to be Amax. A line parallel to the X axis is drawn on the approximate curve from the detected actual amplitude (S point), and the difference in the X coordinate between the intersection and the S point is defined as Bmax. At this time, Bmax indicates the intravascular external pressure difference corresponding to Amax. This calculation is performed for each one-cycle pulse wave, and Bmax for each one-cycle pulse wave is derived.

ステップS1705では、ステップS1704で導出したBmaxについて、プラス方向およびマイナス方向のそれぞれにおける最大Bmaxを検出する。   In step S1705, the maximum Bmax in each of the plus direction and the minus direction is detected for Bmax derived in step S1704.

ステップS1706では、ステップS1705で決定したプラス方向およびマイナス方向のそれぞれの最大Bmaxの差(絶対値の和)を血圧変動幅として導出する。   In step S1706, the difference (sum of absolute values) of the maximum Bmax in the positive direction and the negative direction determined in step S1705 is derived as the blood pressure fluctuation range.

この推定した変動幅については、阻血空気袋の中央部で血管が圧閉されているときの空気袋上流側(カフ装着時の心臓側)の圧迫力による血管容積変化には、血管ラジアル方向での作用だけではなくスラスト方向での作用も含まれる。スラスト方向の容積変化の影響を低減するために、収縮期血圧から規定圧以内の脈波は使用しないように構成してもスラスト方向での作用の影響はゼロにはならない。そのため、ある母集団にて同時測定した連続血圧と本方式で求めた推定値との比較データを用いて補正式を導出し、推定した変動幅に対しさらに補正することが好適である。   Regarding the estimated fluctuation range, the change in blood vessel volume due to the pressure on the upstream side of the air bag (the heart side when the cuff is attached) when the blood vessel is closed at the center of the ischemic air bag This includes not only the action of the thrust but also the action in the thrust direction. In order to reduce the influence of the volume change in the thrust direction, the influence of the action in the thrust direction does not become zero even if the pulse wave within the specified pressure from the systolic blood pressure is not used. Therefore, it is preferable to derive a correction formula using comparison data between the continuous blood pressure measured simultaneously in a certain population and the estimated value obtained by this method, and further correct the estimated fluctuation range.

ステップS1707では、ステップS1706で求めた血圧変動振幅推定値を補正し、推定値を、例えばステップS624で測定した収縮期血圧値に対する割合(例えば百分率)に換算してからRAM238に記憶する。その後、前述のステップS631において、この割合が、血圧変動の程度に関する情報として、例えば図9のように液晶表示部237に表示される。   In step S1707, the blood pressure fluctuation amplitude estimated value obtained in step S1706 is corrected, and the estimated value is converted into a ratio (for example, percentage) to the systolic blood pressure value measured in step S624 and stored in the RAM 238. Thereafter, in step S631, the ratio is displayed on the liquid crystal display unit 237 as information on the degree of blood pressure fluctuation, for example, as shown in FIG.

以上説明したように本発明の血圧測定装置は、測定部位にカフを巻いて血圧を測定する過程で、カフ圧が収縮期血圧よりも高いときに検出される脈波振幅変化と測定された収縮期血圧値とカフ圧力との差の圧力との関係(近似曲線)を求める。そして、この関係から導出される脈波振幅変化と実際に測定される呼吸に影響を受けた脈波振幅変化との差より、血圧の変動量を推定する。   As described above, the blood pressure measurement device according to the present invention is a process of measuring a blood pressure by cuffing a measurement site and measuring a change in pulse wave amplitude detected when the cuff pressure is higher than a systolic blood pressure. The relationship (approximate curve) between the blood pressure value of the period and the pressure of the difference between the cuff pressure is obtained. Then, the fluctuation amount of the blood pressure is estimated from the difference between the pulse wave amplitude change derived from this relationship and the pulse wave amplitude change affected by the actually measured respiration.

これにより、収縮期血圧測定値と併せて、現在の血圧変動の程度が予想可能となり、緊張の程度が推定できる。この推定される緊張の程度により、測定した血圧値を信頼して血圧治療に使用してよいのか、あるいは、もっと安静な状態で再度測定する必要があるのかの指標となる。その結果、より正しい高血圧治療を行うことが可能となる。また、ABPMを実施する場合に比較し、患者負担の軽減、経費負担の軽減、診断時間の短縮が実現でき迅速な治療が行える。   Thereby, together with the systolic blood pressure measurement value, the current degree of blood pressure fluctuation can be predicted, and the degree of tension can be estimated. The estimated degree of tension provides an indication of whether the measured blood pressure value may be used reliably for blood pressure treatment or whether it needs to be measured again in a more resting state. As a result, more accurate hypertension treatment can be performed. Compared with the case where ABPM is performed, the patient burden, the expense burden, and the diagnosis time can be reduced, so that rapid treatment can be performed.

また、血圧変動を測定した収縮期血圧に対する比率で表現するので、実測値表示にくらべ血圧変動の影響の程度の把握しやすく、再測定の判断等が瞬時にできる。また、データ使用禁止区間を設けることにより血管ラジアル方向の容積変化の影響を排除でき、より精度の高い近似曲線の導出が可能となる。   In addition, since the blood pressure fluctuation is expressed as a ratio to the measured systolic blood pressure, the degree of the influence of the blood pressure fluctuation can be easily grasped compared to the actual measurement value display, and remeasurement can be determined instantaneously. In addition, by providing the data use prohibition section, it is possible to eliminate the influence of the volume change in the vascular radial direction, and it is possible to derive a more accurate approximate curve.

なお、以上の実施の形態はあくまで例示であり、本発明の範囲を限定する趣旨のものではなく、様々な変形が可能である。例えば、上述の実施形態では、カフを収縮期血圧より高い圧力で加圧した後の減圧過程において血圧の測定を実行するよう説明を行った。しかし、拡張期血圧より低い圧力からの加圧過程において血圧の測定を実行するよう構成してもよい。   The above embodiments are merely examples, and are not intended to limit the scope of the present invention, and various modifications are possible. For example, in the above-described embodiment, the blood pressure is measured in the decompression process after the cuff is pressurized at a pressure higher than the systolic blood pressure. However, the blood pressure may be measured in the pressurization process from a pressure lower than the diastolic blood pressure.

カフ圧力の減圧過程で、カフ圧力に脈波信号が重畳している様子を示す図である。It is a figure which shows a mode that the pulse-wave signal is superimposed on the cuff pressure in the pressure reduction process of the cuff pressure. カフ圧力の減圧過程での、カフ圧力に重畳する脈波振幅値の変化の様子をカフ圧力の変化と共に示した図である。It is the figure which showed the mode of the change of the pulse wave amplitude value superimposed on a cuff pressure in the pressure reduction process of a cuff pressure with the change of the cuff pressure. 第1実施形態に係る血圧測定装置のカフの長手方向の断面図である。It is sectional drawing of the longitudinal direction of the cuff of the blood pressure measuring device which concerns on 1st Embodiment. 第1実施形態に係る血圧測定装置の構成を示す図である。It is a figure showing composition of a blood pressure measuring device concerning a 1st embodiment. 第1実施形態に係る血圧測定装置のカフ加圧ルーチンの動作フローチャートである。It is an operation | movement flowchart of the cuff pressurization routine of the blood-pressure measurement apparatus which concerns on 1st Embodiment. 血圧値の測定ルーチンの詳細フローチャートである。It is a detailed flowchart of a blood pressure value measurement routine. 血圧変動の程度を決定するための詳細フローチャートである。It is a detailed flowchart for determining the degree of blood pressure fluctuation. 脈波振幅差に対応する血管内外圧差の導出の一例を示す図である。It is a figure which shows an example of derivation | leading-out of the intravascular external pressure difference corresponding to a pulse wave amplitude difference. 血圧測定の結果表示の一例を示す図である。It is a figure which shows an example of the result display of a blood pressure measurement.

Claims (6)

血圧測定部位を圧迫するためのカフと、
前記カフ内を加圧または減圧する圧力制御手段と、
前記カフ内の圧力を検出する圧力センサと、
前記圧力制御手段により前記カフを加圧または減圧する過程において、前記圧力センサにより検出されるカフ内の圧力に重畳した脈波信号の時系列データを抽出する脈波信号抽出手段と、
抽出された脈波信号の時系列データのうち、少なくともカフ圧力が収縮期血圧値より大きい期間のデータに含まれる複数の1周期脈波信号の変化に基づいて、脈波振幅と血管内外圧差との関係式を導出する関係式導出手段と、
抽出された脈波信号における脈波振幅と前記関係式に基づいて導出される脈波振幅との差分に相当する圧力値に基づいて血圧変動量を導出する変動量導出手段と、
を備えることを特徴とする血圧測定装置。
A cuff to compress the blood pressure measurement site;
Pressure control means for pressurizing or depressurizing the inside of the cuff;
A pressure sensor for detecting the pressure in the cuff;
In the process of pressurizing or depressurizing the cuff by the pressure control means, a pulse wave signal extracting means for extracting time series data of a pulse wave signal superimposed on the pressure in the cuff detected by the pressure sensor;
Based on changes in a plurality of one-cycle pulse wave signals included in data of a period in which at least the cuff pressure is greater than the systolic blood pressure value among the time-series data of the extracted pulse wave signals, the pulse wave amplitude and the intravascular external pressure difference A relational expression deriving means for deriving a relational expression of
A fluctuation amount deriving means for deriving a blood pressure fluctuation amount based on a pressure value corresponding to a difference between the pulse wave amplitude in the extracted pulse wave signal and the pulse wave amplitude derived based on the relational expression;
A blood pressure measurement apparatus comprising:
前記関係式導出手段は、前記複数の1周期脈波信号の変化に対応する近似曲線として前記関係式を導出することを特徴とする請求項1に記載の血圧測定装置。   2. The blood pressure measurement device according to claim 1, wherein the relational expression deriving unit derives the relational expression as an approximate curve corresponding to a change in the plurality of one-period pulse wave signals. 前記近似曲線は、単調増加関数で表現されることを特徴とする請求項2に記載の血圧測定装置。   The blood pressure measurement device according to claim 2, wherein the approximate curve is expressed by a monotonically increasing function. 前記変動量導出手段は、
抽出された脈波信号における脈波振幅と前記関係式に基づいて導出される脈波振幅との差分を、複数の1周期脈波信号の各々について導出し、
導出された複数の脈波振幅の差分のうち最大の脈波振幅に相当する圧力値を前記血圧変動量として導出することを特徴とする請求項1乃至3の何れか一項に記載の血圧測定装置。
The variation amount derivation means includes:
A difference between the pulse wave amplitude in the extracted pulse wave signal and the pulse wave amplitude derived based on the relational expression is derived for each of the plurality of one-period pulse wave signals,
The blood pressure measurement according to any one of claims 1 to 3, wherein a pressure value corresponding to a maximum pulse wave amplitude among a plurality of derived pulse wave amplitude differences is derived as the blood pressure fluctuation amount. apparatus.
抽出された脈波信号の時系列データに含まれる複数の1周期脈波信号の変化に基づいて収縮期血圧値を決定する血圧値決定手段をさらに備え、
前記関係式導出手段は、抽出された脈波信号の時系列データのうち、カフ圧力と決定された収縮期血圧値との差が所定値より小さい期間のデータを、前記近似式の導出に使用しないことを特徴とする請求項1乃至4の何れか一項に記載の血圧測定装置。
Blood pressure value determining means for determining a systolic blood pressure value based on changes in a plurality of one-period pulse wave signals included in the time-series data of the extracted pulse wave signal;
The relational expression deriving unit uses data of a period in which the difference between the cuff pressure and the determined systolic blood pressure value is smaller than a predetermined value among the extracted time series data of the pulse wave signal for deriving the approximate expression. The blood pressure measurement device according to any one of claims 1 to 4, wherein the blood pressure measurement device is not.
血圧測定部位を圧迫するためのカフと、前記カフ内を加圧または減圧する圧力制御手段と、前記カフ内の圧力を検出する圧力センサと、を備える血圧測定装置の制御方法であって、
前記圧力制御手段により前記カフを加圧または減圧する過程において、前記圧力センサにより検出されるカフ内の圧力に重畳した脈波信号の時系列データを抽出する脈波信号抽出工程と、
抽出された脈波信号の時系列データのうち、少なくともカフ圧力が収縮期血圧値より大きい期間のデータに含まれる複数の1周期脈波信号の変化に基づいて、脈波振幅と血管内外圧差との関係式を導出する関係式導出工程と、
抽出された脈波信号における脈波振幅と前記関係式に基づいて導出される脈波振幅との差分に相当する圧力値に基づいて血圧変動量を導出する変動量導出工程と、
を備えることを特徴とする血圧測定装置の制御方法。
A control method of a blood pressure measurement device comprising a cuff for compressing a blood pressure measurement site, a pressure control means for pressurizing or depressurizing the inside of the cuff, and a pressure sensor for detecting the pressure in the cuff,
In the process of pressurizing or depressurizing the cuff by the pressure control means, a pulse wave signal extraction step of extracting time series data of a pulse wave signal superimposed on the pressure in the cuff detected by the pressure sensor;
Based on changes in a plurality of one-cycle pulse wave signals included in data of a period in which at least the cuff pressure is greater than the systolic blood pressure value among the time-series data of the extracted pulse wave signals, the pulse wave amplitude and the intravascular external pressure difference A relational expression deriving step for deriving a relational expression of
A fluctuation amount deriving step for deriving a blood pressure fluctuation amount based on a pressure value corresponding to a difference between the pulse wave amplitude in the extracted pulse wave signal and the pulse wave amplitude derived based on the relational expression;
A method for controlling a blood pressure measurement device comprising:
JP2008030711A 2008-02-12 2008-02-12 Blood pressure measurement device and control method thereof Active JP5158786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030711A JP5158786B2 (en) 2008-02-12 2008-02-12 Blood pressure measurement device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030711A JP5158786B2 (en) 2008-02-12 2008-02-12 Blood pressure measurement device and control method thereof

Publications (2)

Publication Number Publication Date
JP2009189424A true JP2009189424A (en) 2009-08-27
JP5158786B2 JP5158786B2 (en) 2013-03-06

Family

ID=41072061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030711A Active JP5158786B2 (en) 2008-02-12 2008-02-12 Blood pressure measurement device and control method thereof

Country Status (1)

Country Link
JP (1) JP5158786B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168574A (en) * 2013-03-04 2014-09-18 Omron Healthcare Co Ltd Electronic sphygmomanometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367648A (en) * 1991-06-14 1992-12-18 Colleen Denshi Kk Blood pressure monitor device
JPH07124129A (en) * 1993-05-17 1995-05-16 Omron Corp Circulatory organ function measuring instrument
JP2006181348A (en) * 2004-12-02 2006-07-13 Nippon Seimitsu Sokki Kk Hemodynamics measurement system
JP2006247220A (en) * 2005-03-11 2006-09-21 Omron Healthcare Co Ltd Blood pressure measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367648A (en) * 1991-06-14 1992-12-18 Colleen Denshi Kk Blood pressure monitor device
JPH07124129A (en) * 1993-05-17 1995-05-16 Omron Corp Circulatory organ function measuring instrument
JP2006181348A (en) * 2004-12-02 2006-07-13 Nippon Seimitsu Sokki Kk Hemodynamics measurement system
JP2006247220A (en) * 2005-03-11 2006-09-21 Omron Healthcare Co Ltd Blood pressure measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168574A (en) * 2013-03-04 2014-09-18 Omron Healthcare Co Ltd Electronic sphygmomanometer

Also Published As

Publication number Publication date
JP5158786B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
US6332867B1 (en) Method and apparatus for measuring values of physiological parameters
JP2938231B2 (en) Oscillometric type automatic blood pressure measurement device
TWI374020B (en)
US7390302B2 (en) Method and system of determining NIBP target inflation pressure using an SpO2 plethysmograph signal
JP6019592B2 (en) Blood pressure measurement device
JP5152153B2 (en) Electronic blood pressure monitor
EP3166509B1 (en) Personalized tourniquet system
WO2010026862A1 (en) Electronic sphygmomanometer and method for controlling blood pressure measurement
JP2009101089A (en) Blood pressure measuring apparatus and its control method
JPH04279147A (en) Automatic sphygmomanometer
KR101604078B1 (en) Blood pressure monitoring apparatus and method of low pressurization
JP4943748B2 (en) Blood pressure measurement device, measurement method thereof, and storage medium
JP5158786B2 (en) Blood pressure measurement device and control method thereof
JP2007209492A (en) Evaluation system for vascular endothelial function
JP2008018035A (en) Apparatus for measuring pulse wave propagation speed, method for calculating pulse wave propagation speed, program and machine readable recording medium having program recorded thereon
JP3818853B2 (en) Electronic blood pressure monitor
CN108778103B (en) Blood pressure pulse wave measuring device
JPH0538332A (en) Device for measuring degree of arteriosclerosis
JP5112767B2 (en) Blood pressure measurement device
JP2008264365A (en) Blood pressure measuring apparatus and measured data processing program
JP5111053B2 (en) Blood pressure measurement device
CN113543701A (en) Blood pressure measurement system and blood pressure measurement method using same
WO2013061778A1 (en) Blood pressure meter
JP7367478B2 (en) Blood pressure monitor, blood pressure measurement method, and program
JP2019024979A (en) Heart rate meter, heart rate acquisition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5158786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250