JP2009186599A - 光増幅装置、光通信装置および光通信方法 - Google Patents

光増幅装置、光通信装置および光通信方法 Download PDF

Info

Publication number
JP2009186599A
JP2009186599A JP2008024231A JP2008024231A JP2009186599A JP 2009186599 A JP2009186599 A JP 2009186599A JP 2008024231 A JP2008024231 A JP 2008024231A JP 2008024231 A JP2008024231 A JP 2008024231A JP 2009186599 A JP2009186599 A JP 2009186599A
Authority
JP
Japan
Prior art keywords
power
optical signal
optical
signal
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008024231A
Other languages
English (en)
Other versions
JP4555352B2 (ja
Inventor
Yoshinori Onaka
美紀 尾中
Yasushi Sugaya
靖 菅谷
Togo Fukushi
到吾 福士
Masanori Kondo
雅則 近藤
Kiyotoshi Nobechi
清敏 野辺地
Suguru Hayasaka
卓 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008024231A priority Critical patent/JP4555352B2/ja
Priority to EP08165364.4A priority patent/EP2086132B1/en
Priority to US12/285,229 priority patent/US8049955B2/en
Publication of JP2009186599A publication Critical patent/JP2009186599A/ja
Application granted granted Critical
Publication of JP4555352B2 publication Critical patent/JP4555352B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2931Signal power control using AGC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q

Abstract

【課題】光信号に含まれる雑音成分のパワーを精度よく高速に算出すること。
【解決手段】ラマン増幅器111は、光信号が通過する光ファイバ(伝送路101)に励起光を入力して光信号を増幅する。受光部114は、ラマン増幅器111の後段に設けられ、ラマン増幅器111によって増幅された光信号のパワーをモニタする。算出部116は、受光部114によってモニタされた光信号のパワーに基づいてラマン増幅利得を定め、その値から光信号に含まれる雑音成分のパワーを算出する。算出部116は、条件に応じて複雑に変化する雑音成分のパワーをリアルタイムに算出し、その情報はmsオーダー周期で他装置に通知される。
【選択図】図1

Description

この発明は、光を増幅する光増幅装置、光通信装置および光通信方法に関する。
近年の通信トラフィック増加を背景として、光通信装置への需要が高まっている。基幹網で導入されてきた光中継装置のみならず、最近では地域網についても光通信装置の導入が活発に行われており、さらには加入者系へも光ネットワークが形成されている。このように光通信システムは世界の情報網に対して重要な役割を担っている。
光通信システムにおいては、伝送路ごとに波長多重用光増幅器(EDFA:Erbium Doped Fiber Amplifier)を備え、低コスト、高信頼で大容量化、長距離伝送を実現する光増幅中継システムが用いられている。光増幅中継システムにおいて、伝送路長が長いなどの要因により中継損失が大きい場合は、光増幅器へ入力される光信号に含まれる信号成分のパワーが小さくなるため、SN(Signal/Noise)比が劣化し、伝送特性が劣化する可能性がある。
これを回避する手段として、伝送路に励起光を入力し、ラマン効果を利用して伝送路を通過する光信号を増幅する分布ラマン光増幅(DRA:Distributed Raman Amplification)が用いられている。これにより、光増幅器へ入力される光信号に含まれる信号成分のパワーが増加することでSN比が増加し、伝送特性が改善されるため、分布ラマン光増幅器は有効な手段として既に実用化に至っている。
光通信システムにおいては、中継間隔が長いと伝送路における光信号の損失が大きくなる。一般的な伝送路における伝送路損失は、0.2dB/km程度であり、中継距離に応じて伝送路損失が大きくなる。また伝送路上に様々な機能光部品が配置される場合は、その機能光部品の透過損失が付加されることで光信号の損失はさらに大きくなる。中継損失が大きいほど光信号のパワーは小さくなる。
一方、光通信システムにおいては、一般的に光増幅手段(EDFAやラマン増幅)が用いられる。光増幅手段は、光信号に対する利得が大きいほど多くの雑音成分(自然放出光)を発生させる。したがって、中継損失が大きい伝送路においては、利得の大きな光増幅手段を用いることで、光信号に含まれる雑音成分のパワーに対する信号成分のパワーの割合が小さくなる。また、光信号が波長多重光である場合は、信号波長数が少ないほど、光信号に含まれる雑音成分のパワーに対する信号成分のパワーの割合が小さくなる。
また、光通信システムにおいては、光信号を単に増幅させるだけでなく、光信号のパワーを一定に制御するパワー制御装置が用いられている。パワー制御装置は、一般的に、分岐カプラとPD(Photo Diode)を用いて、光信号のトータルパワー(信号成分+雑音成分)をモニタし、監視信号系などから通知を受けた信号波長数情報をもとに、1チャネルあたりの信号成分パワーを制御する。
このパワー制御装置の目的は、光信号に含まれる信号成分のパワーを制御することである。しかし、モニタした光信号のトータルパワーに基づいてパワー制御を行う場合は、信号成分のパワーに対して雑音成分のパワーの割合が大きいと、信号成分のパワー制御の精度が劣化する(たとえば、下記特許文献1参照。)。信号成分のパワーを正常なパワーに制御できないと、伝送特性劣化などの不具合が生じる可能性がある。
たとえば、光信号に含まれる信号成分のパワーが大きくなると、伝送路の非線形特性によって信号成分が劣化し、受信エラーの可能性が増える。また、光信号に含まれる信号成分のパワーが小さくなると、SN比の影響により伝送波形劣化が生じて、受信エラーの可能性が増える。そこで、パワー制御装置においては、光信号に含まれる雑音成分のパワーを見積もって、光信号のトータルパワーから差し引くことで、光信号に含まれる信号成分のみのパワーを算出する技術が開示されている(たとえば、下記特許文献2参照。)。
特開2000−232433号公報 特開2006−189465号公報
しかしながら、伝送路の条件によって光信号に発生する雑音成分のパワーは複雑に変化するため、雑音成分のパワーを精度よく算出することは困難であるという問題がある。たとえば、ラマン増幅における利得特性は、伝送路の設計パラメータまたは光特性のばらつきなどによって変動する。ラマン増幅における利得特性が変化すると、ラマン増幅によって発生する雑音成分のパワーも変化する。
伝送路の光特性は、たとえば、光ファイバ同士を接続するための光コネクタの接続部の汚れや、光ファイバの曲げ損失などによる光損失、伝送路ファイバ自体の特性の製造ばらつき(損失係数および有効断面積など)、伝送路ファイバの中での融着による損失ばらつき、経年劣化、外気温度などによって変化する。
また、上述した特許文献2にかかる技術においては、ラマン増幅器における励起光のパワーをモニタし、モニタ結果に基づいて、ラマン利得を求め、その結果を元に光信号に含まれる雑音成分のパワーを算出する。しかしながら、実際に伝送路に入力する励起光パワーを正確に見積もることは難しい。伝送路の種類によってラマン増幅の励起効率が異なるためである。また、たとえば、何らかの要因により(ファイバやコネクタなどに何らかの負荷がかかるなどして)伝送路の出力側の損失が増加したケースでは、たとえ励起光パワーのモニタ値に変化がなかったとしても、実際に伝送路に入力される励起光パワーは低減するため、利得および雑音光は小さくなる。
これらのケースでは(伝送路損失変動、励起光パワーモニタ誤差、温度特性、経年劣化など)、励起光パワーと利得の比例関係が一定にはならないため、雑音光パワーの正確な見積もりは困難である。したがって、励起光のパワーに対する雑音成分のパワーの特性は一定とならない。このため、上述した特許文献2にかかる技術では、雑音成分のパワーを精度よく算出することができないという問題がある。
また、信号成分のパワーに対して雑音成分のパワーの割合が大きくなる、チャネル数が少ない光信号をシステムサポート対象から外すことが考えられる。これにより、信号成分のパワーに対する雑音成分のパワーの割合を小さくすることができるが、システムサポート対象となる光信号が限定されることで利便性が大幅に劣化するという問題がある。
また、システム条件ごとに発生する雑音成分のパワーをデータベース化しておくことが考えられる。しかしながら、ラマン増幅によって発生する雑音成分のパワーは、システム条件(ラマン増幅の利得、中継損失、伝送路種類、伝送路ファイバ損失係数、伝送路の有効断面積、伝送路長など)に応じて異なる。
このため、高精度のパワー制御を実現するには膨大なデータを保有しておかねばならないという問題がある。また、そのような膨大なデータベースを保有しておいたとしても、その中から適した値を選ぶというプロセスが必要になるため時間がかかり、雑音成分のパワーをリアルタイムに取得することが困難であるという問題がある。
この発明は、上述した従来技術による問題点を解消するため、光信号に含まれる雑音成分のパワーを精度よく高速に算出し、様々な条件で複雑に変化する雑音成分のパワーをリアルタイムに通知することができる光増幅装置、光通信装置および光通信方法を提供することを目的とする。
上述した課題を解決し、目的を達成するため、この光増幅装置は、光信号が通過する光ファイバに励起光を入力して前記光信号を増幅するラマン増幅器と、前記ラマン増幅器の後段に設けられ、前記ラマン増幅器によって増幅された光信号のパワーをモニタする受光手段と、前記受光手段によってモニタされた前記光信号のパワーに基づいて、前記励起光による前記光信号の利得を算出する利得算出手段と、前記利得算出手段によって算出された前記光信号の利得に基づいて、前記光信号に含まれる雑音成分のパワーを算出する雑音パワー算出手段と、前記雑音パワー算出手段によって算出された前記パワーを通知する通知手段と、を備えることを要件とする。
この光増幅装置によれば、ラマン増幅器の後段に設けられた受光手段によって光信号のパワーをモニタすることで、伝送路の変化などによる雑音成分のパワー変動が反映された光信号のパワーをモニタすることができる。出力パワーと利得は一つの同じ物理現象であり、出力パワーが定まれば利得が定まる。
そこで、何らかの要因により伝送路の損失が増加した場合にあっても、ラマン増幅の出力光パワーモニタ値(信号光+雑音光)と利得の関係は一対一の関係となるため、リアルタイムモニタとして有効となる(伝送路損失変動、励起光パワーモニタ誤差、温度特性、経年劣化などがあったとしても、出力パワーと利得の関係は維持されるため)。
そこで、ラマン増幅器の後段に設けられた受光手段を用いて、ラマン増幅の利得を演算で求め、その値から雑音光パワーを演算する機構を備える。これにより、伝送路の変化などによって光信号に含まれる雑音成分が複雑に変化しても、雑音成分のパワーを精度よく算出することができる。このため、たとえば後段に設けられたパワー制御装置が、光信号のパワー制御を精度よく行うことができる。
なお、ラマン増幅装置の利得もしくは出力(主信号光、雑音光)の制御方法は、この発明では限定しない。たとえば特開2004−193640に準拠させるのが好ましい。
これらの演算精度を高めるために、測定した各種帯域におけるラマン雑音光パワーを用いて、各種モニタ値(信号光+雑音光)からラマン増幅により生じた雑音光パワーを差し引く演算機構を備えて、受信レベルモニタ値を補正することで、ラマン増幅による雑音光パワーによる制御誤差が取り除かれた補正値を用いて、利得もしくは出力の演算精度を向上させるラマン増幅装置、およびその下流に備えられた光パワー制御装置がこの発明のポイントである。
この光増幅装置、光通信装置および光通信方法によれば、光信号に含まれる雑音成分のパワーを精度よく高速に算出することができるという効果を奏する。
以下に添付図面を参照して、この光増幅装置、光通信装置および光通信方法の好適な実施の形態を詳細に説明する。
(実施の形態)
図1は、実施の形態にかかる光通信装置の機能的構成を示すブロック図である。図1において、実線矢印は光の経路、点線矢印は電気の経路を示している(図2も同様)。図1に示すように、実施の形態にかかる光通信装置100は、光増幅装置110と、パワー制御装置120と、を備えている。光通信装置100は、たとえば光通信システムにおける中継装置に適用される。光増幅装置110は、ラマン増幅器111と、分岐部112と、フィルタ113と、受光部114と、取得部115と、算出部116と、を備えている。
ラマン増幅器111には、光増幅装置110の前段の伝送路101(光ファイバ)を介して送信された光信号が入力される。ラマン増幅器111へ入力される光信号はたとえば波長多重光である。ラマン増幅器111は、伝送路101を介して送信された光信号を分岐部112へ出力する。また、ラマン増幅器111は、光通信装置100の前段の伝送路101に対して、光信号の通過方向とは反対方向に励起光(符号111a)を入力する。
これにより、伝送路101を通過する光信号が、伝送路101へ入力された励起光に応じてラマン増幅される。分岐部112は、ラマン増幅器111から出力された光信号を分岐して、分岐した各光信号をフィルタ113およびパワー制御装置120へそれぞれ出力する。分岐部112はたとえば光カプラである。
フィルタ113(第2光フィルタ)は、分岐部112から出力された光信号を通過させて受光部114へ出力する。フィルタ113は、パワー制御装置120へ出力された光信号がパワー制御装置120の受光部123(第2受光手段)へ入力されるまでに通過する経路に設けられた光フィルタと同等の波長透過特性を有する。ここでは、光信号がパワー制御装置120の受光部123へ入力されるまでに通過する経路にフィルタ122が設けられているため、フィルタ113はフィルタ122と同等の波長透過特性を有する。
受光部114は、ラマン増幅器111によって増幅された光信号をモニタする受光手段である。具体的には、受光部114は、分岐部112から出力され、フィルタ113を通過した光信号を光信号のパワーに応じた電気信号に変換する。受光部114は、変換した電気信号を算出部116へ出力する。受光部114はたとえばフォトダイオードである。
取得部115は、監視信号(OSC)などからシステム情報(信号波長数や伝送路入力パワーなど)が光増幅装置110に伝達される窓口の位置づけであり、伝送路101を通過する光信号の、光通信装置100の前段の光通信装置から伝送路101へ入力されたときの入力パワーの情報を取得し、この情報は、光増幅装置110の利得一定制御といった光パワーレベルの制御に使用される。取得部115は、取得した入力パワーの情報を算出部116へ出力する。
算出部116は、受光部114から出力された電気信号に基づいて、ラマン増幅器111によって増幅された光信号に含まれる雑音成分のパワーを算出する。算出部116は、受光部114から出力された電気信号をリアルタイムに取得して、光信号に含まれる雑音成分のパワーを定期的に算出する。算出部116は、算出した雑音成分のパワーをパワー制御装置120へ出力する。具体的には、算出部116は、利得算出部116aと、雑音パワー算出部116bと、を備えている。
利得算出部116aは、受光部114から出力された電気信号が示す光信号のパワーと、取得部115から出力された入力パワーの情報を少なくとも用いて、ラマン増幅器111のラマン増幅による光信号の利得を算出する。ラマン増幅の利得算出方法は、この発明では限定はしないが、特開2004−193640に開示された方法などを利用するのが好ましい。算出部116は、算出した光信号の利得の情報を雑音パワー算出部116bへ出力する。
雑音パワー算出部116bは、利得算出部116aから出力された情報が示す光信号の利得に基づいて、ラマン増幅器111によって増幅された光信号に含まれる雑音成分のパワーを算出する。雑音パワー算出部116bは、算出した雑音成分のパワーの情報をパワー制御装置120へ出力する。
パワー制御装置120は、分岐部121と、フィルタ122と、受光部123と、増幅部124と、分岐部125と、受光部126と、制御部127と、を備えている。分岐部121は、光増幅装置110から出力された光信号を分岐して、分岐した各光信号をフィルタ122および増幅部124へそれぞれ出力する。
フィルタ122は、分岐部121から出力された光信号のうちの信号帯域成分のみを抽出して受光部123へ出力する。受光部123は、光増幅装置110によって増幅された光信号のパワーをモニタする第2受光手段である。受光部123は、フィルタ122から出力された光信号を、光信号のパワーに応じた電気信号に変換する。受光部123は、変換した電気信号を制御部127へ出力する。
増幅部124は、分岐部121から出力された光信号を、制御部127の制御に応じて増幅して分岐部125へ出力する。増幅部124は、たとえばエルビウムドープ光ファイバ増幅器である。分岐部125は、増幅部124から出力された光信号を分岐して、主信号系光路に出力され、分岐光路では受光部126でモニタする。
受光部126は、分岐部125から出力された光信号を、光信号のパワーに応じた電気信号に変換する。受光部126は、変換した電気信号を制御部127へ出力する。制御部127は、光増幅装置110から通知された情報が示す雑音成分のパワーを用いて、光増幅装置110によって増幅された光信号に含まれる信号成分のパワーを算出する。
たとえば、制御部127は、受光部123から出力された電気信号が示す光信号のパワーと、光増幅装置110から出力された情報が示す雑音成分のパワーと、を引き算することによって、増幅部124へ入力される前の光信号に含まれる信号成分のパワーを算出することができる。そこで、制御部127は、この信号成分のパワー情報を基に、信号光に対して正確に光レベルを制御することが可能になる。
または、制御部127は、受光部126から出力された電気信号が示す光信号のパワーと、光増幅装置110から出力された情報が示す雑音成分のパワーと、を引き算することによって、増幅部124によって増幅された光信号に含まれる信号成分のパワーを算出してもよい。この場合には、制御部127は、算出した信号成分のパワーが一定になるように増幅部124を制御する。この発明では、上述のように分布ラマン増幅における雑音光パワーを正確に演算し、その結果を下流の制御媒体(例.エルビウムドープ光ファイバ増幅器)に通知する機構を言及しており、下流の制御媒体におけるこの通知情報の利用方法(制御方法)については限定しない。
または、制御部127は、受光部123から出力された電気信号が示す光信号のパワーと、受光部126から出力された電気信号が示す光信号のパワーと、光増幅装置110から出力された情報が示す雑音成分のパワーと、に基づいて、光信号に含まれる信号成分の、増幅部124の増幅による利得を算出してもよい。この場合には、制御部127は、算出した信号成分の利得が一定になるように増幅部124を制御する。
図2は、図1に示した光通信装置の具体的な構成例を示すブロック図である。図2において、図1に示した構成と同様の構成については同一の符号を付して説明を省略する。光通信装置10は、光通信装置100の前段に設けられた通信ノードであり、伝送路101を介して光通信装置100に接続されている。光通信装置10は、増幅部11と、分岐部12と、受光部13と、OSC送受信部14と、合波器15と、を備えている。
光通信装置10へ入力された光信号は、増幅部11によって増幅され、分岐部12によって分岐される。分岐部12によって分岐された各光信号は、受光部13および合波器15へ出力される。受光部13は、分岐部12から出力された光信号を、光信号のパワーに応じた電気信号に変換してOSC送受信部14へ出力する。
OSC送受信部14は、受光部13から出力された電気信号が示す光信号のパワーの情報をOSC信号として合波器15へ出力する。OSC信号は、光信号に含まれる信号成分とは異なる波長の監視専用チャネル(OSC:Optical Supervisor Channel)を用いた信号である。合波器15は、分岐部12から出力された光信号に、OSC送受信部14から出力されたOSC信号を合波する。合波器15は、合波した光信号を、伝送路101を介して光通信装置100へ送信する。なお、合波器15は分岐部12の入力側に備えられていてもよく、この発明ではその配置は限定しない。
光通信装置100のラマン増幅器111は、励起光制御部210と、LD221〜224と、カプラ231〜233と、合波部240と、によって構成されている。受光部114は、変換した電気信号を算出部116およびラマン増幅器111へ出力する。励起光制御部210は、たとえばラマン増幅利得が目標の一定値になるように受光部114から出力された電気信号が示す光信号のパワーが各種演算により求められる所定の値になるようにLD221〜224が出力する各励起光のパワーを制御する(利得一定制御)。
LD(Laser Diode)221〜224は、それぞれ異なる波長の光を励起光として出力する。励起光制御部210による各励起光のパワーの制御によって、伝送路101を通過する光信号に対する利得を変化させることができる。LD221〜224が出力する各励起光は、カプラ231〜233により合波されて合波部240へ出力される。
なお、励起LDの数4つを実施例にしたが、励起LDの数および励起光合波手段などこの発明では限定しない。
合波部240は、伝送路101を介して入力された光信号を分岐部112へ出力する。また、合波部240は、カプラ231〜233によって合波されて出力された励起光を伝送路101へ入力する。これにより、伝送路101を通過する光信号が、合波部240から伝送路101へ入力された励起光に応じてラマン増幅される。
なお、励起光制御部210が、受光部114から出力された電気信号が示す光信号のパワーが一定になるように各励起光のパワーを制御する場合について説明したが、利得算出部116aが算出した利得を示す情報を励起光制御部210へ出力してもよい。この場合は、励起光制御部210が、利得算出部116aから出力された情報が示す利得が一定になるように各励起光のパワーを制御してもよい(利得一定制御)。
図1に示した取得部115は、ここでは、パワー制御装置120側に設けられている。取得部115は、分波器250と、OSC送受信部260と、によって構成されている。分波器250は、分岐部121の前段に設けられている。分波器250は、光増幅装置110から分岐部121へ出力される光信号を通過させるとともに、光増幅装置110から出力された光信号に含まれるOSC信号を分離してOSC送受信部260へ出力する。
OSC送受信部260は、分波器250から出力されたOSC信号を受信する。OSC送受信部260が受信するOSC信号には、伝送路101などの伝送経路に関する情報や、光信号の波長多重数の情報や、光通信装置10のOSC送受信部14によって出力された光通信装置10における光信号のパワーの情報などが含まれている。
OSC送受信部260は、OSC信号に含まれている、光通信装置10における光信号のパワーの情報を、伝送路101を通過する光信号の伝送路101へ入力されたときの入力パワーの情報として取得する。OSC送受信部260は、取得した入力パワーの情報を光増幅装置110の利得算出部116aへ出力する。また、OSC送受信部260は、OSC信号に含まれている、光信号の波長多重数の情報などを制御部127へ出力する。
制御部127は、算出した信号成分のパワーを、OSC送受信部260から出力された情報が示す光信号の波長多重数によって割ることで、光信号の1チャネルあたりの信号成分のパワーを算出してもよい。この場合は、制御部127は、算出した光信号の1チャネルあたりの信号成分のパワーに基づいて増幅部124を制御する。
ここでは、光信号がパワー制御装置120の受光部123へ入力されるまでに通過する経路に分波器250とフィルタ122が設けられている。このため、フィルタ113は、分波器250とフィルタ122の合成波長透過特性と同等の波長透過特性を有する。なお、フィルタ122を設けない場合は、フィルタ113が、分波器250の波長透過特性と同等の波長透過特性を有するようにする。
図3は、光信号の伝送路におけるラマン増幅を示すグラフである。図3において、横軸は伝送路101の伝送路長を示している。横軸の右側は光通信装置100に対応しており、横軸の左側は光通信装置100の前段の光通信装置10に対応している。縦軸は、伝送路101における各光のパワーの相対値のイメージを示している。
点線310は、ラマン増幅器111によって伝送路101に励起光を入力しない場合の光信号のパワーの変化を示している。点線310に示すように、伝送路101に励起光を入力しない場合は光信号がラマン増幅されず、光信号が伝送路101を進行するにしたがって光信号のパワーが低下する。光信号のスパンロスは、光信号の伝送路101へ入力された時点のパワーと、光信号の伝送路101を通過して光通信装置100へ入力された時点のパワーと、の差分340によって示される。
破線320は、ラマン増幅器111が伝送路101へ入力する励起光のパワーの変化を示している。破線320に示すように、伝送路101へ入力された励起光は、ラマン増幅器111から入力されたときに最もパワーが大きく、伝送路101を進行するにしたがってパワーが低下する。このため、伝送路101を通過する光信号は、光通信装置100へ近づくほどパワーの大きな励起光と交差してラマン増幅される。
実線330は、ラマン増幅器111によって伝送路101に励起光を入力する場合の光信号のパワーの変化を示している。伝送路101を通過する光信号は、実線330に示すように、光通信装置100へ近づくほどラマン増幅による利得が大きくなる。
光信号のラマン増幅による利得は、ラマン増幅器111によって伝送路101に励起光を入力しない場合の光信号のパワーと、ラマン増幅器111によって伝送路101に励起光を入力する場合の光信号のパワーと、の差分350によって示される。
図4は、光信号の利得と光信号のパワーを対応付けた表を示す図である。図2に示した利得算出部116aは、たとえば図4に示すような表400をあらかじめ生成する。表400は、ラマン増幅器111によって増幅された主信号光の利得[dB]と、ラマン増幅器111によって増幅された光信号のパワー(受光部114でモニタした雑音光パワー+主信号光パワー)[dBm]と、を対応付けた表である。利得算出部116aは、光信号の利得とパワーの関係を算出する。光信号の利得に対するパワーPは、たとえば下記(1)式によって算出することができる。
P=雑音成分のパワー+信号成分のパワー
=a×Gx+10^((Pin−Ploss+Gx)/10) …(1)
すなわち、受光部114でモニタした雑音光パワー+主信号光パワーの現在値と、上記(1)式により算出した利得に対するPを比較して、現在の光信号パワーPに対応する信号光の利得が求める。現在の利得が分かれば、その利得に対する雑音光パワーを演算により求めることができる。これがこの発明の請求する手段である。これらの演算を精度よく実現するために、雑音光パワーをあらかじめ測定し、利得と雑音光の関係(図5)を定めておくことが重要になる。以下に説明する。
上記(1)式において、Gxは、ラマン増幅による光信号の利得(図3の差分350参照)である。aは、光信号の利得Gxと雑音成分のパワーとの比例係数である。ラマン増幅による利得と雑音光成分のパワーの関係を図5に示す。比例係数aの情報を取得するために、主信号光が入力する前のシステム立ち上げ時(主信号光、監視信号光(OSC))などの各種信号光が入力していない状態)にラマン増幅装置の励起光をONし、ラマン増幅による雑音光を生じさた状態で受光部114を用いて雑音光パワーを測定する。このとき、光増幅装置110に対して光信号は入力されていないため、受光部114から出力される電気信号はラマン増幅による利得に応じた雑音成分のパワーを示している。
つぎに信号光なるものがシステム上に入力され(信号光に相当する雑音光でもよい)、この光を対象として、先に測定しておいた雑音光パワーを利用して、受光部114の受光結果から雑音光パワーを差し引くことで信号光成分のパワーが求められる。この値およびラマン増幅を実施しない条件における伝送路の出力光レベル(たとえば、特開2004−193640に準拠した利得参照光の光レベル)や信号光の伝送路への入力レベル(受光部13の結果)を用いて、その時のラマン増幅における利得を演算して求めることができる。
このように雑音光パワーを測定したときの利得が定まれば、利得の比例係数aが求められる。比例係数aが定まれば、算出部116は、光信号の利得Gxごとに受光部114での光信号パワーおよびその時の雑音成分のパワーを求めることができる。また、算出部116が、受光部114から出力される電気信号を取得し、利得が演算され、この結果を踏まえて、所定の利得もしくは光信号パワーになるように、励起光制御部210が、励起光のパワーを調節する。
このような比例係数aの算出方法の詳細は、たとえば特願2005−99916号公報などを参照することができる。Pinは、伝送路101へ入力されたときの光信号の入力パワーである。Plossは、光信号の伝送路101におけるスパンロス(図3の差分340参照)である。スパンロスPlossは下記(2)によって算出することができる。
Ploss=Pin−10×log(Pout−a×Gx)+Gx …(2)
上記(2)式において、Poutは受光部114から出力された電気信号が示す光信号のパワーである。利得算出部116aは、上記(1)式および(2)式と、に基づいて光信号の利得Gxを算出することができる。なお、利得Gxの算出方法は、ここで説明した方法(データベース法)に限らず、他の公知の方法を用いることができる。
たとえば、光信号の利得Gxを算出するために、近似アルゴリズムを用いることができる。近似アルゴリズムとは最適化問題の近似値解を得るための多項式時間アルゴリズムである。近似値解とは、実行可能解(問題の制約を満たす解)ではあるが最適解とは限らない解である。近似アルゴリズムの中でも、そのアルゴリズムが出力する解の目的関数値と最適解の目的関数値の比がある範囲内に収まることが保証されているもののことを、特に精度保証付き近似アルゴリズムという。
このような近似アルゴリムを用いた算出法として、たとえば2分法(bisection method)または2分探索法(binary−search method)とよばれるものがある。2分法は、中間値の定理に基づく算出法である。2分法は、解を含む区間の中間点を求める操作を繰り返すことによって方程式を解く反復法の一種である。
なお、光信号の利得Gxを算出するためにデータベース法および近似アルゴリズムのいずれを用いる場合であっても、想定される光信号の利得Gxの範囲を限定したうえで利得Gxを算出するとよい。たとえば、Gx=5〜10dBのように設計範囲内で想定される範囲内においてGxを算出することで、Gxの算出の高速化を図ることができる。
図5は、光信号の利得と雑音成分のパワーの関係を示すグラフである。図5において、横軸は、ラマン増幅器111によって増幅された光信号の利得[dB]を示している。縦軸は、ラマン増幅によって発生する光信号の雑音成分のパワー[mW]を示している。パワー特性510は、光信号の利得に対する雑音成分のパワーの特性を示している。パワー特性510に示すように、光信号の利得と雑音成分のパワーは比例関係にある。
雑音パワー算出部116bは、光信号の利得と雑音成分のパワーとの比例係数aの情報をあらかじめ取得しておき、利得算出部116aから出力された情報が示す光信号の利得と、光信号の利得と雑音成分のパワーとの比例係数aと、に基づいてラマン増幅器111によって増幅された光信号に含まれる雑音成分のパワーを算出する。
図6は、光増幅装置の動作の一例を示すフローチャートである。図6に示すように、まず、ラマン増幅器111が、伝送路101に対する励起光の入力を開始する(ステップS601)。このときは、光増幅装置110に対する光信号の入力は開始していない。つぎに、雑音パワー算出部116bが、受光部114から出力される電気信に基づいて、雑音成分のパワーを取得する(ステップS602)。
つぎに、信号光もしくは信号光に相当する光が入力され、受光部114(信号光相当光+雑音光)のモニタ値を用いて、ステップS602によって取得した雑音成分のパワーを差し引いて、信号光の伝送路への入力レベル(受光部13の結果)と受光部114における信号光成分の値から光信号の利得を求め、雑音成分のパワーの比例係数aを算出する(ステップS603)。この作業を行うことで表400(図4)を形成することができる。
つぎに、伝送路101を介して光信号の入力が開始される(ステップS604)これはシステム運用状態という位置づけである。つぎに、利得算出部116aが、受光部114から出力される電気信号が示す光信号のパワーと、演算に必要となる情報収集時間および演算時間から定められる時間を持ってして、ある周期でリアルタイムに作成される表400(図4参照)と、に基づいて光信号の利得を算出する(ステップS605)。
つぎに、雑音パワー算出部116bが、ステップS603によって算出された比例係数aと、ステップS605によって算出された光信号の利得とに基づいて、光信号に含まれる雑音成分のパワーを算出する(ステップS606)。つぎに、雑音パワー算出部116bが、ステップS606によって算出された光信号に含まれる雑音成分のパワーをパワー制御装置120へ通知する(ステップS607)。
つぎに、光増幅装置110の終了条件を満たしているか否かを判断し(ステップS608)、終了条件を満たしていない場合(ステップS608:No)は、ステップS605に戻って処理を続行する。終了条件を満たしている場合(ステップS608:Yes)は、一連の動作を終了する。
システム運用時にステップS605〜ステップS608のループがリアルタイムに動作し、演算に必要となる情報収集時間および演算時間から定められる時間を持ってして、ある周期で雑音光パワーの演算がリアルタイムに行われることで、条件によって様々に変化する雑音光パワーの情報を他装置にリアルタイムにmsオーダーの早い周期で通知することを特徴とする。
図7は、光信号の各成分を示すグラフである。図7において、横軸は、光増幅装置110へ入力される光信号の波長[nm]を示している。縦軸は、光信号の波長成分ごとのパワー[dB]を示している。符号710は、光信号に含まれる信号成分を示している。符号720は、光信号に含まれるOSC信号を示している。符号730は、光信号に含まれる雑音成分を示している。信号帯域λ2は、光信号に含まれる信号成分の波長帯域である。監視信号帯域λ1は、光信号に含まれるOSC信号の波長帯域である。
図8は、各フィルタの波長透過特性の一例を示すグラフである。図8において、符号250aは、パワー制御装置120が備える分波器250の、分岐部121へ出力される光信号に対する波長透過特性を示している。符号122aは、パワー制御装置120が備えるフィルタ122の波長透過特性を示している。符号113aは、光増幅装置110が備えるフィルタ113の波長透過特性を示している。各波長透過特性において、横軸は波長を示している。縦軸は透過特性[dB]を示している。
分波器250は、分岐部121へ出力される光信号のOSC信号を分離してOSC送受信部260へ出力する。ここでは、分波器250は、波長透過特性250aに示すように、分岐部121へ出力される光に対しては、信号帯域λ2以上の波長成分を透過させ、監視信号帯域λ1以下の波長成分を減衰させるハイパスフィルタとして働く。分波器250において、信号帯域λ2以上の波長成分の透過特性は0dBであり、監視信号帯域λ1以下の波長成分の透過特性は−20dBである。
フィルタ122は、通過する光信号の信号帯域λ2の成分を抽出して受光部123へ出力する。ここでは、フィルタ122は、波長透過特性122aに示すように、通過する光信号の信号帯域λ2以上の波長成分を透過させ、通過する光信号の監視信号帯域λ1以下の波長成分を減衰させるハイパスフィルタである。フィルタ122において、信号帯域λ2以上の波長成分の透過特性は0dBであり、監視信号帯域λ1以下の波長成分の透過特性は−20dBである。
フィルタ113は、波長透過特性113aに示すように、分波器250の波長透過特性250aとフィルタ122の波長透過特性122aとを合成した波長透過特性を有する。ここでは、フィルタ113は、通過する光信号の信号帯域λ2以上の波長成分を透過させ、監視信号帯域λ1以下の波長成分を減衰させるハイパスフィルタとして構成される。フィルタ113において、信号帯域λ2以上の波長成分の透過特性は0dBであり、監視信号帯域λ1以下の波長成分の透過特性は−40dBである。
図9は、各フィルタの波長透過特性の他の例を示すグラフである。図9において、図8に示した部分と同様の部分については同一の符号を付して説明を省略する。フィルタ122は、図9の波長透過特性122aに示すように、光信号の信号帯域λ2の波長成分を透過させ、光信号の信号帯域λ2より長波長側の波長成分と、光信号の監視信号帯域λ1以下の波長成分と、を減衰させるバンドフィルタであってもよい。
この場合は、フィルタ122において、信号帯域λ2の波長成分の透過特性は0dBであり、光信号の信号帯域λ2より長波長側の波長成分と、光信号の監視信号帯域λ1以下の波長成分と、の透過特性は−20dBである。
フィルタ113は、光信号の信号帯域λ2の波長成分を透過させるとともに、光信号の信号帯域λ2より長波長側の波長成分と、光信号の監視信号帯域λ1以下の波長成分と、を減衰させるバンドパスフィルタとして構成される。フィルタ113において、信号帯域λ2の波長成分の透過特性は0dBであり、信号帯域λ2より長波長側の波長成分と、監視信号帯域λ1以下の波長成分と、の透過特性は−40dBである。
なお、光フィルタの透過特性の形状は一例であり限定はしない。この発明では、上述しているように、フィルタ113(第2光フィルタ)は、パワー制御装置120へ出力された光信号がパワー制御装置120の受光部123(第2受光手段)へ入力されるまでに通過する経路に設けられた光フィルタと同等の波長透過特性を有する。
図10は、図2に示した光通信装置の変形例1を示すブロック図である。これは、利得一定制御を実現するための実施例であり、利得参照光(特開2004−193640参照)を適用している。図10において、図2に示した構成と同様の構成については同一の符号を付して説明を省略する。図2に示した光通信装置100においては、利得算出部116aは、受光部114から出力された電気信号が示す光信号のパワーと、取得部115から出力された入力パワーの情報と、に基づいてラマン増幅器111のラマン増幅による光信号の利得を算出する場合について説明したが、ここでは、利得参照光を光通信装置10から光通信装置100へ送信し、利得参照光を利用して光信号の利得を算出する場合について説明する。
光通信装置10は、図2に示した構成に加えて、参照光送受信部16と、合波器17と、を備えている。参照光送受信部16は、あらかじめ定められたパワーであり、光信号に含まれる信号成分およびOSC信号とは異なる波長の利得参照光を合波器17へ出力する。合波器17は、合波器15から出力された光信号に、参照光送受信部16から出力された利得参照光を合波して、伝送路101を介して光通信装置100へ送信する。
光増幅装置110は、図2に示した構成に加えて、利得参照光取得部1010を備えている。利得参照光取得部1010は、分波器1011と、参照光送受信部1012と、によって構成されている。分波器1011は、ラマン増幅器111の後段に設けられている。分波器1011は、ラマン増幅器111からパワー制御装置120へ出力される光信号を通過させるとともに、ラマン増幅器111から出力される光に含まれる利得参照光を分離して参照光送受信部1012へ出力する。
参照光送受信部1012は、分波器1011から出力された利得参照光を受信する。参照光送受信部1012は、利得参照光のパワーに応じた電気信号を、利得算出部116aへ出力する。利得算出部116aは、あらかじめ定められた利得参照光の送信時のパワーから、参照光送受信部1012から出力された電気信号が示す光信号のパワーを引き算することによって、ラマン増幅器111のラマン増幅による光信号の利得を算出する。
あらかじめ定められた利得参照光の送信時のパワーの情報は、たとえば、光通信装置10がOSC信号を利用して光通信装置100へ送信し、分波器250およびOSC送受信部260を介して利得算出部116aが取得する。または、利得参照光の送信時のパワーの情報を、利得算出部116aがあらかじめ記憶しておいてもよい。
図11は、光信号および利得参照光の各成分を示すグラフである。図11において、図7に示した部分と同様の部分については同一の符号を付して説明を省略する。ここでは、波長多重により、信号成分710に複数の信号成分が含まれている。符号1110は、利得参照光を示している。帯域λ3は、利得参照光の波長帯域である。
利得参照光の波長は限定はしないが、帯域λ3は、監視信号帯域λ1および信号帯域λ2よりも長波長側に設定されているのが好ましい。理由は、ラマン増幅の利得が小さい領域でありラマン増幅の雑音光の影響が小さく、且つ、主信号光帯域と伝送路損失が同等である波長帯域が選択されるのが利得一定制御誤差を小さくする上で好ましく、1600〜1620nmを推奨する。
図12は、図10における各フィルタの波長透過特性の一例を示すグラフである。図12において、図8に示した部分と同様の部分については同一の符号を付して説明を省略する。図12において、符号1011aは、光増幅装置110における分波器1011の、参照光送受信部1012へ出力される利得参照光に対する波長透過特性を示している。
分波器1011は、ラマン増幅器111から出力された光のうちの利得参照光を参照光送受信部1012へ出力する。ここでは、分波器1011は、波長透過特性1011aに示すように、参照光送受信部1012へ出力される光に対しては、帯域λ3の波長成分を透過させ、信号帯域λ2以下の波長成分を減衰させるバンドパスとして働く。分波器1011において、帯域λ3の波長成分の透過特性は0dBであり、信号帯域λ2以下の波長成分の透過特性は−40dBである。
分波器250は、分岐部121へ出力される光信号のOSC信号を分離してOSC送受信部260へ出力する。ここでは、分波器250は、波長透過特性250aに示すように、OSC送受信部260へ出力される光に対しては、信号帯域λ2以上(帯域λ3含む)の波長成分を減衰させ、監視信号帯域λ1の波長成分を透過させるローパスフィルタとして働く。分波器250において、信号帯域λ2以上の波長成分の透過特性は−40dBであり、監視信号帯域λ1の波長成分の透過特性は0dBである。
フィルタ122は、通過する光信号の信号帯域λ2以上(帯域λ3含む)の波長成分を透過させ、通過する光信号の監視信号帯域λ1以下の波長成分を減衰させるハイパスフィルタである。フィルタ122において、信号帯域λ2以上の波長成分の透過特性は0dBであり、監視信号帯域λ1以下の波長成分の透過特性は−40dBである。
図13は、図2に示した光通信装置の変形例2を示すブロック図である。ここでは、図2に示した光通信装置100の変形例である光通信装置100Aおよび光通信装置100Bによって構成される光通信システムについて説明する。光通信装置100Aは、伝送路101を介して光通信装置100Bと接続されている。光通信装置100Aは、図10に示した光通信装置100の構成に加えて、増幅部1311と、合波器1312と、合波器1313と、を備えている。
増幅部1311および増幅部1311は、パワー制御装置120に設けられている。増幅部1311は、光通信装置100Aの前段の光通信装置から送信された光信号を増幅して合波器1312へ出力する。OSC送受信部260は、OSC信号を合波器1312へ出力する。合波器1312は、増幅部1311から出力された光信号に、OSC送受信部260から出力されたOSC信号を合波して光増幅装置110へ出力する。
合波器1313は、光増幅装置110に設けられている。参照光送受信部1012は、利得参照光を合波器1313へ出力する。合波器1313は、パワー制御装置120の合波器1312から出力された光信号に、参照光送受信部1012から出力された利得参照光を合波して光通信装置100の後段の光通信装置(光通信装置100B)へ送信する。
また、光通信装置100Bも光通信装置100Aと同様の構成を備えている。このように、光通信装置100Aおよび光通信装置100Bは、双方向の光通信システムを構成している。光通信装置100Aおよび光通信装置100Bのような光通信システムをさらに直列接続することで、多段の双方向光通信システムを構成することができる。
図14は、実施の形態にかかる光通信システムの構成を示すブロック図である。図14に示すように、実施の形態にかかる光通信システム1400は、光通信装置100A〜光通信装置100Dによって構成されている。光通信装置100Aおよび光通信装置100Bは、図13に示した構成と同様である。光通信装置100Cおよび光通信装置100Dも、光通信装置100Aおよび光通信装置100Bと同様の構成を備えている。
これにより、光通信装置100A〜光通信装置100Dのそれぞれにおいて、雑音成分のパワーを精度よく算出し、光信号のパワー制御を精度よく行うことができる。たとえば、光信号を光通信装置100Aから光通信装置100Dへ送信する場合に、光通信装置100A〜光通信装置100Dのそれぞれにおいてパワー制御を精度よく行いながら光信号を伝送することで、高品質な伝送特性を得ることができる。
以上説明したように、本実施の形態にかかる光増幅装置110によれば、ラマン増幅器111の後段に設けられた受光部114によって光信号のパワーを受光することで、伝送路101の変化などによる雑音成分のパワー変動が反映された光信号のパワーをモニタすることができる。受光部114によってモニタされた光信号のパワーに基づいて光信号に含まれる雑音成分のパワーを算出することで、伝送路101の変化などによって雑音成分が複雑に変化しても、雑音成分のパワーを精度よく算出することができる。
また、本実施の形態にかかる光通信装置100によれば、光増幅装置110によって精度よく算出された雑音成分のパワーを用いることで、光信号のパワー制御を精度よく行うことができる。これにより、光通信システムの伝送特性を向上させることができる。
また、パワー制御装置120へ出力された光信号が受光部123(第2受光手段)へ入力されるまでに通過する経路に設けられた光フィルタと同等の波長透過特性を有するフィルタ113を受光部114の前段に設けることによって、受光部123へ入力される光信号と同等の光信号を受光部114へも入力することができる。これにより、パワー制御装置120においてモニタされる光信号に含まれる雑音成分のパワーを、光増幅装置110において精度よく算出することができる。
なお、図1および図2に示したパワー制御装置120において、受光部123を第2受光手段としてフィルタ113の波長透過特性を決定する場合について説明したが、制御部127が受光部126から出力される電気信号に基づいて増幅部124を制御する場合は、受光部126を第2受光手段としてフィルタ113の波長透過特性を決定してもよい。
この場合は、たとえば図2に示したパワー制御装置120において、光信号がパワー制御装置120の受光部126へ入力されるまでに通過する経路に分波器250が設けられているため、フィルタ113の波長透過特性は、分波器250と同等となるように決定される。また、増幅部124が無視できない波長透過特性を有する場合は、フィルタ113の波長透過特性は、増幅部124と分波器250の合成波長透過特性と同等となるように決定される。
以下に利得参照光を用いた利得一定制御の演算式の例を示す。
利得(dB)=スパンロス(dB)−(伝送路信号光入力パワー(dBm)−受光部114における主信号光パワー(dBm))
(主信号光の目標利得をGx)
利得Gxにおける受光部114モニタ値=ASEパワー_Gx+主信号光パワー_Gx
ASEパワー_Gx[mW]=立ち上げ時に取得したASEパワー[mW]×Gx[dB]/立ち上げ時の信号光利得[dB]
主信号光パワー_Gx[mW]=10^((伝送路信号光入力パワー測定値[dBm]−スパンロス(dB)+Gx[dB])/10)
スパンロス=(利得参照光伝送路入力測定値−Gxでの利得参照光伝送路出力レベル+Gxでの利得参照光利得)×係数
(係数は、信号帯域と利得参照光帯域の伝送路損失の比(固定値))
Gxでの利得参照光の伝送路出力レベル=Gxでの利得参照光出力モニタ値測定値−利得参照光帯域におけるGxにおけるASE演算値
利得参照光帯域におけるGxにおけるASE演算値=Gxにおける主信号光帯域におけるASE演算値×立ち上げ時に測定しておいた利得参照光と信号光帯域の雑音光パワー比
Gxでの利得参照光利得=Gx×立ち上げ時に測定した利得参照光と信号光の利得比
また、上述した実施の形態においては、伝送路101に対して後段の光通信装置100から励起光111aを入力する後方ラマン増幅について説明したが、伝送路101の前段の光通信装置10から伝送路101へ励起光を入力する前方ラマン増幅としてもよい。また、前方ラマン増幅および後方ラマン増幅の双方を行う双方ラマン増幅を行ってもよい。上述した実施の形態に関し、さらに以下の付記を開示する。
(付記1)光信号が通過する光ファイバに励起光を入力して前記光信号を増幅するラマン増幅器と、
前記ラマン増幅器の後段に設けられ、前記ラマン増幅器によって増幅された光信号のパワーをモニタする受光手段と、
前記受光手段によってモニタされた前記光信号のパワーに基づいて、前記励起光による前記光信号の利得を算出する利得算出手段と、
前記利得算出手段によって算出された前記光信号の利得に基づいて、前記光信号に含まれる雑音成分のパワーを算出する雑音パワー算出手段と、
前記雑音パワー算出手段によって算出された前記パワーを通知する通知手段と、
を備えることを特徴とする光増幅装置。
(付記2)前記雑音パワー算出手段は、システム運用時にも常に雑音光パワーの演算を行い、
前記通知手段は、条件によって様々に変化する雑音光パワーの情報を他装置にリアルタイムに通知することを特徴とする付記1に記載の光増幅装置。
(付記3)付記1または2に記載の光増幅装置と、
前記光増幅装置の下流に設けられ、前記増幅された光信号を受光し、受光した光信号のパワーから前記通知手段によって通知された前記雑音成分のパワーを差し引くことで前記増幅された光信号に含まれる信号成分のパワーを算出し、算出した前記信号成分のパワーに基づいて前記増幅された光信号のパワーを制御することで利得もしくは出力の制御精度が向上したパワー制御装置と、
を備えることを特徴とする光通信装置。
(付記4)前記パワー制御装置は、
前記増幅された光信号のパワーをモニタする第2受光手段を備え、前記第2受光手段によってモニタされた前記光信号のパワーと、前記雑音成分のパワーと、に基づいて前記信号成分のパワーを算出し、
前記光増幅装置は、
前記増幅された光信号が前記第2受光手段へ入力されるまでに通過する経路に設けられた光フィルタと同等の波長透過特性を有する第2光フィルタを前記受光手段の前段に備え、前記光フィルタは、前記増幅された光信号に含まれる監視信号を主信号から分離して前記増幅された光信号の信号帯域成分を抽出する透過特性を有することを特徴とする付記3に記載の光通信装置。
(付記5)光信号が通過する光ファイバにラマン増幅器によって励起光を入力して前記光信号を増幅するラマン増幅工程と、
前記ラマン増幅器の後段に設けられた受光手段によって、前記ラマン増幅工程によって増幅された光信号のパワーをモニタする受光工程と、
前記受光工程によってモニタされた前記光信号のパワーに基づいて、前記励起光による前記光信号の利得を算出する利得算出工程と、
前記利得算出工程によって算出された前記光信号の利得に基づいて前記光信号に含まれる雑音成分のパワーを算出する雑音パワー算出工程と、
前記雑音パワー算出工程によって算出された前記雑音成分のパワーの情報を通知する通知工程と、
前記増幅された光信号のパワーと、前記通知工程によって出力された情報が示す前記雑音成分のパワーと、に基づいて前記増幅された光信号に含まれる信号成分のパワーを算出し、算出した前記信号成分のパワーに基づいて前記増幅された光信号のパワーを制御するパワー制御工程と、
を含むことを特徴とする光通信方法。
以上のように、光増幅装置、光通信装置および光通信方法は、光を増幅する光増幅装置、光通信装置および光通信方法に有用であり、特に、光信号のパワーを精度よく制御する場合に適している。
実施の形態にかかる光通信装置の機能的構成を示すブロック図である。 図1に示した光通信装置の具体的な構成例を示すブロック図である。 光信号の伝送路におけるラマン増幅を示すグラフである。 光信号の利得と光信号のパワーを対応付けた表を示す図である。 光信号の利得と雑音成分のパワーの関係を示すグラフである。 光増幅装置の動作の一例を示すフローチャートである。 光信号の各成分を示すグラフである。 各フィルタの波長透過特性の一例を示すグラフである。 各フィルタの波長透過特性の他の例を示すグラフである。 図2に示した光通信装置の変形例1を示すブロック図である。 光信号および利得参照光の各成分を示すグラフである。 図10における各フィルタの波長透過特性の一例を示すグラフである。 図2に示した光通信装置の変形例2を示すブロック図である。 実施の形態にかかる光通信システムの構成を示すブロック図である。
符号の説明
10,100 光通信装置
11,124 増幅部
12,112,121,125 分岐部
13,114,123,126 受光部
14,260 OSC送受信部
15,17,1312,1313 合波器
101 伝送路
110 光増幅装置
111 ラマン増幅器
113,122 フィルタ
113a,122a,250a,1011a 波長透過特性
116 算出部
120 パワー制御装置
221〜224 LD
231〜233 カプラ
240 合波部
250,1011 分波器
510 パワー特性
1010 利得参照光取得部
1400 光通信システム

Claims (5)

  1. 光信号が通過する光ファイバに励起光を入力して前記光信号を増幅するラマン増幅器と、
    前記ラマン増幅器の後段に設けられ、前記ラマン増幅器によって増幅された光信号のパワーをモニタする受光手段と、
    前記受光手段によってモニタされた前記光信号のパワーに基づいて、前記励起光による前記光信号の利得を算出する利得算出手段と、
    前記利得算出手段によって算出された前記光信号の利得に基づいて、前記光信号に含まれる雑音成分のパワーを算出する雑音パワー算出手段と、
    前記雑音パワー算出手段によって算出された前記パワーを通知する通知手段と、
    を備えることを特徴とする光増幅装置。
  2. 前記雑音パワー算出手段は、システム運用時にも常に雑音光パワーの演算を行い、
    前記通知手段は、条件によって様々に変化する雑音光パワーの情報を他装置にリアルタイムに通知することを特徴とする請求項1に記載の光増幅装置。
  3. 請求項1または2に記載の光増幅装置と、
    前記光増幅装置の下流に設けられ、前記増幅された光信号を受光し、受光した光信号のパワーから前記通知手段によって通知された前記雑音成分のパワーを差し引くことで前記増幅された光信号に含まれる信号成分のパワーを算出し、算出した前記信号成分のパワーに基づいて前記増幅された光信号のパワーを制御することで利得もしくは出力の制御精度が向上したパワー制御装置と、
    を備えることを特徴とする光通信装置。
  4. 前記パワー制御装置は、
    前記増幅された光信号のパワーをモニタする第2受光手段を備え、前記第2受光手段によってモニタされた前記光信号のパワーと、前記雑音成分のパワーと、に基づいて前記信号成分のパワーを算出し、
    前記光増幅装置は、
    前記増幅された光信号が前記第2受光手段へ入力されるまでに通過する経路に設けられた光フィルタと同等の波長透過特性を有する第2光フィルタを前記受光手段の前段に備え、前記光フィルタは、前記増幅された光信号に含まれる監視信号を主信号から分離して前記増幅された光信号の信号帯域成分を抽出する透過特性を有することを特徴とする請求項3に記載の光通信装置。
  5. 光信号が通過する光ファイバにラマン増幅器によって励起光を入力して前記光信号を増幅するラマン増幅工程と、
    前記ラマン増幅器の後段に設けられた受光手段によって、前記ラマン増幅工程によって増幅された光信号のパワーをモニタする受光工程と、
    前記受光工程によってモニタされた前記光信号のパワーに基づいて、前記励起光による前記光信号の利得を算出する利得算出工程と、
    前記利得算出工程によって算出された前記光信号の利得に基づいて前記光信号に含まれる雑音成分のパワーを算出する雑音パワー算出工程と、
    前記雑音パワー算出工程によって算出された前記雑音成分のパワーの情報を通知する通知工程と、
    前記増幅された光信号のパワーと、前記通知工程によって出力された情報が示す前記雑音成分のパワーと、に基づいて前記増幅された光信号に含まれる信号成分のパワーを算出し、算出した前記信号成分のパワーに基づいて前記増幅された光信号のパワーを制御するパワー制御工程と、
    を含むことを特徴とする光通信方法。
JP2008024231A 2008-02-04 2008-02-04 光通信装置および光通信方法 Active JP4555352B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008024231A JP4555352B2 (ja) 2008-02-04 2008-02-04 光通信装置および光通信方法
EP08165364.4A EP2086132B1 (en) 2008-02-04 2008-09-29 Optical amplification apparatus, optical communication apparatus, and optical communication method
US12/285,229 US8049955B2 (en) 2008-02-04 2008-09-30 Optical amplification apparatus, optical communication apparatus, and optical communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008024231A JP4555352B2 (ja) 2008-02-04 2008-02-04 光通信装置および光通信方法

Publications (2)

Publication Number Publication Date
JP2009186599A true JP2009186599A (ja) 2009-08-20
JP4555352B2 JP4555352B2 (ja) 2010-09-29

Family

ID=40344576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024231A Active JP4555352B2 (ja) 2008-02-04 2008-02-04 光通信装置および光通信方法

Country Status (3)

Country Link
US (1) US8049955B2 (ja)
EP (1) EP2086132B1 (ja)
JP (1) JP4555352B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013042321A1 (ja) * 2011-09-20 2015-03-26 日本電気株式会社 光増幅制御装置及びその制御方法
US9042005B2 (en) 2012-06-07 2015-05-26 Fujitsu Limited Raman fiber amplifier and its control via path switching

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2471203B1 (en) 2009-08-25 2016-07-06 Xieon Networks S.à r.l. Method and arrangement for in service raman gain measurement and monitoring
JP2012043934A (ja) * 2010-08-18 2012-03-01 Fujitsu Ltd 増幅装置、通信システムおよび増幅方法
US8885248B2 (en) * 2012-10-17 2014-11-11 Ciena Corporation Raman amplifier gain compression systems and methods based on signal power monitoring
CN103475420A (zh) * 2013-09-12 2013-12-25 成都成电光信科技有限责任公司 光纤网络信号选通放大装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232433A (ja) * 1999-02-08 2000-08-22 Fujitsu Ltd 波長多重光通信システム及び光増幅装置
JP2001109025A (ja) * 1999-10-05 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> ラマン増幅器及び光通信システム
JP2004159070A (ja) * 2002-11-06 2004-06-03 Fujitsu Ltd ロスポイント有無判定方法及びそれを用いた分布型ラマン増幅装置
JP2004193640A (ja) * 2002-12-06 2004-07-08 Mitsubishi Electric Corp ラマン増幅器および光中継伝送システム
JP2004287307A (ja) * 2003-03-25 2004-10-14 Fujitsu Ltd ラマン増幅器およびそれを用いたシステム
JP2004361979A (ja) * 2004-08-30 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> ラマン増幅器及び光通信システム
JP2006049405A (ja) * 2004-08-02 2006-02-16 Fujitsu Ltd 光増幅器および光モニタ回路
JP2006189465A (ja) * 2003-08-01 2006-07-20 Fujitsu Ltd ラマン光増幅器、ラマン光増幅器の調整方法、プログラム及びコンピュータ読取り可能な情報記録媒体
JP2006345070A (ja) * 2005-06-07 2006-12-21 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム
WO2006137123A1 (ja) * 2005-06-20 2006-12-28 Fujitsu Limited ラマン光増幅器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411415B2 (ja) 1994-11-08 2003-06-03 富士通株式会社 光パワーモニター方法
EP1130802A1 (en) 2000-03-02 2001-09-05 Telefonaktiebolaget Lm Ericsson Power stabilisation in an optical communication system
WO2002021203A1 (en) * 2000-09-07 2002-03-14 Fujitsu Limited Optical amplifier and optical communication system
SE0103853D0 (sv) * 2001-11-15 2001-11-15 Ericsson Telefon Ab L M Method and system of retransmission
US7554721B2 (en) 2003-08-01 2009-06-30 Fujitsu Limited Raman amplifier and Raman amplifier adjustment method
JP2008024231A (ja) 2006-07-24 2008-02-07 Denso Corp ケースの嵌合保持部構造

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232433A (ja) * 1999-02-08 2000-08-22 Fujitsu Ltd 波長多重光通信システム及び光増幅装置
JP2001109025A (ja) * 1999-10-05 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> ラマン増幅器及び光通信システム
JP2004159070A (ja) * 2002-11-06 2004-06-03 Fujitsu Ltd ロスポイント有無判定方法及びそれを用いた分布型ラマン増幅装置
JP2004193640A (ja) * 2002-12-06 2004-07-08 Mitsubishi Electric Corp ラマン増幅器および光中継伝送システム
JP2004287307A (ja) * 2003-03-25 2004-10-14 Fujitsu Ltd ラマン増幅器およびそれを用いたシステム
JP2006189465A (ja) * 2003-08-01 2006-07-20 Fujitsu Ltd ラマン光増幅器、ラマン光増幅器の調整方法、プログラム及びコンピュータ読取り可能な情報記録媒体
JP2006049405A (ja) * 2004-08-02 2006-02-16 Fujitsu Ltd 光増幅器および光モニタ回路
JP2004361979A (ja) * 2004-08-30 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> ラマン増幅器及び光通信システム
JP2006345070A (ja) * 2005-06-07 2006-12-21 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム
WO2006137123A1 (ja) * 2005-06-20 2006-12-28 Fujitsu Limited ラマン光増幅器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013042321A1 (ja) * 2011-09-20 2015-03-26 日本電気株式会社 光増幅制御装置及びその制御方法
JP2018033176A (ja) * 2011-09-20 2018-03-01 日本電気株式会社 光増幅制御装置及びその制御方法
US9042005B2 (en) 2012-06-07 2015-05-26 Fujitsu Limited Raman fiber amplifier and its control via path switching

Also Published As

Publication number Publication date
EP2086132A1 (en) 2009-08-05
US8049955B2 (en) 2011-11-01
JP4555352B2 (ja) 2010-09-29
US20090195863A1 (en) 2009-08-06
EP2086132B1 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US7400440B2 (en) Method and system for determining gain for an optical signal
JP4601676B2 (ja) 分布ラマン増幅を用いた波長多重光通信システム
JP4498509B2 (ja) 波長多重用光アンプの制御装置および制御方法
US8818189B2 (en) Transmission-path-type specifying apparatus and transmission-path-type specifying method
JP4626918B2 (ja) ラマン光増幅中継器
JP4459277B2 (ja) ラマン増幅による雑音光のモニタ方法および装置、並びに、それを用いた光通信システム
JP4476333B2 (ja) 光増幅装置および制御方法
JP4555352B2 (ja) 光通信装置および光通信方法
US7843631B2 (en) Gain control apparatus, optical transmission apparatus, gain control method for optical amplifier, and wavelength multiplex optical transmission system
US8824045B2 (en) Optical amplifier control apparatus
US20170005727A1 (en) Transmission loss measurement device, transmission loss measurement method, and optical transmission system
US9887778B2 (en) Optical amplifier, optical transmission apparatus, and optical repeating apparatus
US20090195862A1 (en) Distributed raman amplifying system, start-up method thereof, and optical device
JP3966005B2 (ja) ラマン増幅方法、ラマン増幅用励起ユニットおよび波長多重光通信システム
JP5625415B2 (ja) 光増幅装置,利得制御方法,光伝送装置および利得制御装置
US8922876B2 (en) Optical amplifying device and optical transmission system
US11711160B2 (en) Transmission device and transmission system
US20230388040A1 (en) Transmission apparatus and transmission system
JP2014170085A (ja) ラマン増幅器、光中継装置、光通信システム、ラマン増幅制御方法及びプログラム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4555352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150